A new particle swarm optimization algorithm for noisy optimization problems
We propose a new particle swarm optimization algorithm for problems where objective functions are subject to zero-mean, independent, and identically distributed stochastic noise. While particle swarm optimization has been successfully applied to solve many complex deterministic nonlinear optimizatio...
Saved in:
Published in | Swarm intelligence Vol. 10; no. 3; pp. 161 - 192 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1935-3812 1935-3820 |
DOI | 10.1007/s11721-016-0125-2 |
Cover
Loading…
Abstract | We propose a new particle swarm optimization algorithm for problems where objective functions are subject to zero-mean, independent, and identically distributed stochastic noise. While particle swarm optimization has been successfully applied to solve many complex deterministic nonlinear optimization problems, straightforward applications of particle swarm optimization to noisy optimization problems are subject to failure because the noise in objective function values can lead the algorithm to incorrectly identify positions as the global/personal best positions. Instead of having the entire swarm follow a global best position based on the sample average of objective function values, the proposed new algorithm works with a set of
statistically global best
positions that include one or more positions with objective function values that are statistically equivalent, which is achieved using a combination of statistical subset selection and clustering analysis. The new PSO algorithm can be seamlessly integrated with adaptive resampling procedures to enhance the capability of PSO to cope with noisy objective functions. Numerical experiments demonstrate that the new algorithm is able to consistently find better solutions than the canonical particle swarm optimization algorithm in the presence of stochastic noise in objective function values with different resampling procedures. |
---|---|
AbstractList | We propose a new particle swarm optimization algorithm for problems where objective functions are subject to zero-mean, independent, and identically distributed stochastic noise. While particle swarm optimization has been successfully applied to solve many complex deterministic nonlinear optimization problems, straightforward applications of particle swarm optimization to noisy optimization problems are subject to failure because the noise in objective function values can lead the algorithm to incorrectly identify positions as the global/personal best positions. Instead of having the entire swarm follow a global best position based on the sample average of objective function values, the proposed new algorithm works with a set of statistically global best positions that include one or more positions with objective function values that are statistically equivalent, which is achieved using a combination of statistical subset selection and clustering analysis. The new PSO algorithm can be seamlessly integrated with adaptive resampling procedures to enhance the capability of PSO to cope with noisy objective functions. Numerical experiments demonstrate that the new algorithm is able to consistently find better solutions than the canonical particle swarm optimization algorithm in the presence of stochastic noise in objective function values with different resampling procedures. We propose a new particle swarm optimization algorithm for problems where objective functions are subject to zero-mean, independent, and identically distributed stochastic noise. While particle swarm optimization has been successfully applied to solve many complex deterministic nonlinear optimization problems, straightforward applications of particle swarm optimization to noisy optimization problems are subject to failure because the noise in objective function values can lead the algorithm to incorrectly identify positions as the global/personal best positions. Instead of having the entire swarm follow a global best position based on the sample average of objective function values, the proposed new algorithm works with a set of statistically global best positions that include one or more positions with objective function values that are statistically equivalent, which is achieved using a combination of statistical subset selection and clustering analysis. The new PSO algorithm can be seamlessly integrated with adaptive resampling procedures to enhance the capability of PSO to cope with noisy objective functions. Numerical experiments demonstrate that the new algorithm is able to consistently find better solutions than the canonical particle swarm optimization algorithm in the presence of stochastic noise in objective function values with different resampling procedures. |
Author | Xu, Jie Taghiyeh, Sajjad |
Author_xml | – sequence: 1 givenname: Sajjad surname: Taghiyeh fullname: Taghiyeh, Sajjad organization: Department of Systems Engineering and Operations Research, George Mason University – sequence: 2 givenname: Jie orcidid: 0000-0002-9422-6080 surname: Xu fullname: Xu, Jie email: jxu13@gmu.edu organization: Department of Systems Engineering and Operations Research, George Mason University |
BookMark | eNp9kEFLAzEQhYNUsK3-AG8Lnlczk242eyxFrVjwoueQXZOasrtZk5RSf71bV0QFPQwzh_fNe7wJGbWu1YScA70ESvOrAJAjpBR4P5ileETGULAsZQLp6OsGPCGTEDaUZgVjbEzu50mrd0mnfLRVrZOwU75JXBdtY99UtK5NVL123saXJjHOJ62zYf9T0HlX1roJp-TYqDros889JU8314-LZbp6uL1bzFdpxYDHVGQzLFTJMw2aGaw0K1UpVAnPYIQRVDGOhREKISs5cjVDwVGYrEBjeJEDm5KL4W9v_LrVIcqN2_q2t5QgBBU5Z0h7VT6oKu9C8NrIysaPwNErW0ug8tCcHJqTfXPy0JzEnoRfZOdto_z-XwYHJvTadq39t0x_Qu_RjoKK |
CitedBy_id | crossref_primary_10_1007_s00366_017_0523_0 crossref_primary_10_1109_TSMC_2017_2679192 crossref_primary_10_1016_j_trip_2021_100378 crossref_primary_10_1080_17477778_2022_2046520 crossref_primary_10_3390_s21113820 crossref_primary_10_1080_24725854_2019_1576951 crossref_primary_10_1109_ACCESS_2020_3025559 crossref_primary_10_3390_math7040357 crossref_primary_10_1016_j_petrol_2018_01_001 crossref_primary_10_4236_cweee_2017_63016 crossref_primary_10_1002_eng2_12221 crossref_primary_10_1155_2017_3271969 crossref_primary_10_1016_j_asoc_2019_105874 crossref_primary_10_1016_j_sca_2023_100032 crossref_primary_10_1142_S0217595921500305 crossref_primary_10_1007_s10489_022_03701_2 crossref_primary_10_1016_j_eswa_2020_113954 crossref_primary_10_1021_acs_jctc_3c00637 crossref_primary_10_4236_jcc_2017_513002 crossref_primary_10_1177_0142331217716983 crossref_primary_10_1109_TPWRS_2020_3008428 crossref_primary_10_1007_s00500_021_05752_y crossref_primary_10_1007_s10489_018_1310_3 crossref_primary_10_1038_s41598_018_22332_7 crossref_primary_10_1109_TEVC_2016_2592185 crossref_primary_10_1177_0309524X17737337 crossref_primary_10_1016_j_asoc_2020_107068 crossref_primary_10_1002_nav_21976 crossref_primary_10_1016_j_ijtst_2020_01_001 |
Cites_doi | 10.1109/TEVC.2012.2196047 10.1287/opre.49.3.334.11210 10.1162/evco.1996.4.2.113 10.1016/j.amc.2006.01.066 10.1109/TEVC.2010.2049361 10.1109/TNN.2005.845141 10.1016/j.tcs.2009.01.016 10.1109/TCYB.2013.2264670 10.1109/TEVC.2014.2306677 10.1145/2627736 10.1023/A:1008349927281 10.1109/TSMCC.2006.875410 10.1287/opre.49.5.732.10615 10.1109/TEVC.2005.859468 10.1080/07408170304364 10.1145/1667072.1667075 10.1109/4235.985692 10.1109/ICNN.1995.488968 10.1016/S0020-0190(02)00447-7 10.1016/j.neunet.2007.07.002 10.1109/TEVC.2009.2030331 10.1214/aoap/1177005588 10.1016/j.ipl.2006.10.005 10.1007/s11721-009-0028-6 10.1109/59.898095 10.1287/ijoc.1080.0314 10.1109/TEVC.2005.846356 10.1109/TEVC.2010.2053935 10.1287/ijoc.1080.0268 10.1109/TEVC.2004.826074 10.1137/070693424 10.1177/0037549714548095 10.1109/TEVC.2006.880326 10.1007/978-0-387-21736-9 10.1007/s11721-012-0073-4 10.1109/CEC.2001.934407 10.1111/j.2517-6161.1980.tb01111.x 10.1109/ICRA.2015.7140036 10.1145/1569901.1569905 10.1109/CEC.2008.4630938 10.1109/CEC.2006.1688399 10.1016/j.swevo.2015.01.003 10.1109/MHS.1995.494215 10.1109/CEC.2004.1331041 10.1109/CEC.2015.7256940 10.1145/2330163.2330173 10.1007/BFb0040810 10.1109/WSC.2011.6148055 10.1007/s00500-014-1438-y 10.1016/j.swevo.2014.02.004 10.1109/CEC.2010.5586186 10.1109/CEC.2001.934428 10.1109/WSC.2011.6148117 10.1145/2463372.2463373 10.1109/CEC.1999.785509 10.1016/S0927-0507(06)13017-0 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2016 Copyright Springer Science & Business Media 2016 |
Copyright_xml | – notice: Springer Science+Business Media New York 2016 – notice: Copyright Springer Science & Business Media 2016 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11721-016-0125-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1935-3820 |
EndPage | 192 |
ExternalDocumentID | 10_1007_s11721_016_0125_2 |
GrantInformation_xml | – fundername: National Science Foundation (US) grantid: Grant CMMI-1233376; ECCS-1462409 funderid: http://dx.doi.org/10.13039/100000001 – fundername: National Science Foundation (US) grantid: CMMI-1462787 funderid: http://dx.doi.org/10.13039/100000001 |
GroupedDBID | -5B -5G -BR -D3 -DT -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 203 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 875 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXD IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KOV KZ1 LLZTM M4Y M7P MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ |
ID | FETCH-LOGICAL-c316t-85429ab65e1e3f2ce3bab8ab1d1f8f80a3629f8a215b626a428628f592ff69713 |
IEDL.DBID | U2A |
ISSN | 1935-3812 |
IngestDate | Fri Jul 25 11:00:15 EDT 2025 Thu Apr 24 22:53:42 EDT 2025 Thu Jul 03 08:35:55 EDT 2025 Fri Feb 21 02:33:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Noisy optimization Clustering Particle swarm optimization Subset selection Optimality gap |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-85429ab65e1e3f2ce3bab8ab1d1f8f80a3629f8a215b626a428628f592ff69713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9422-6080 |
PQID | 1880876320 |
PQPubID | 2044102 |
PageCount | 32 |
ParticipantIDs | proquest_journals_1880876320 crossref_citationtrail_10_1007_s11721_016_0125_2 crossref_primary_10_1007_s11721_016_0125_2 springer_journals_10_1007_s11721_016_0125_2 |
PublicationCentury | 2000 |
PublicationDate | 2016-09-01 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Swarm intelligence |
PublicationTitleAbbrev | Swarm Intell |
PublicationYear | 2016 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Yoshida, Kawata, Fukuyama, Takayama, Nakanishi (CR76) 2000; 15 AlRashidi, El-Hawary (CR1) 2009; 13 Kennedy, Mendes (CR35) 2006; 36 Xiao, Lee (CR71) 2014; 90 Shi (CR60) 2004; 2 Kennedy, Kennedy, Eberhart, Shi (CR36) 2001 CR37 Xu, Nelson, Hong (CR72) 2010; 20 CR34 Kennedy, Eberhart (CR33) 1995; 4 CR77 CR32 Chen, Lin, Yücesan, Chick (CR11) 2000; 10 Bratley, Fox, Schrage (CR9) 2011 CR70 Jiang, Luo, Yang (CR30) 2007; 102 Chen, Zhang, Chung, Zhong, Wu, Shi (CR13) 2010; 14 Xu, Venayagamoorthy, Wunsch (CR75) 2007; 20 Jacod, Protter (CR29) 2003 CR4 CR6 CR8 Parrott, Li (CR49) 2006; 10 Xu, Vidyashankar, Nielsen (CR73) 2014; 24 CR47 CR44 Samanta, Nataraj (CR59) 2009; 3 CR43 CR41 Beielstein, Markon (CR5) 2002; 1 Xu, Wunsch (CR74) 2005; 16 Pan, Wang, Liu (CR48) 2006; 181 Frazier, Powell, Dayanik (CR26) 2008; 47 Fernandez-Martinez, Garcia-Gonzalo (CR23) 2011; 15 Pehlivanoglu (CR50) 2013; 17 Li, Tang (CR40) 2015; 19 CR19 Langeveld, Engelbrecht (CR38) 2012; 6 CR18 CR17 CR16 Tang, Li, Suganthan, Yang, Weise (CR65) 2009 Wasserman (CR68) 2004 Zheng, Ma, Zhang, Qian (CR78) 2003; 3 CR58 CR57 CR56 CR55 CR10 Mahajan, van Ryzin (CR42) 2001; 49 CR54 CR53 Chen, He, Fu, Lee (CR12) 2008; 20 CR52 CR51 Jin, Branke (CR31) 2005; 9 Law, Kelton (CR39) 2000 Clerc, Kennedy (CR15) 2002; 6 Fitzpatrick, Grefenstette (CR24) 1988; 3 Horng, Lin, Lee, Chen (CR27) 2013; 43 Miller, Goldberg (CR46) 1996; 4 Auer (CR3) 2003; 3 Trelea (CR67) 2003; 85 Boesel, Nelson, Ishii (CR7) 2003; 35 Frazier, Powell, Dayanik (CR25) 2009; 21 Mendes, Kennedy, Neves (CR45) 2004; 8 CR28 Audibert, Munos, Szepesvári (CR2) 2009; 410 Weber (CR69) 1992; 2 CR22 CR21 CR20 Chick, Inoue, Inoue, Inoue (CR14) 2001; 49 CR63 CR62 CR61 Sun, Liu, Tsai, Hsieh, Li (CR64) 2011; 15 Thompson, Seber (CR66) 1996 R Xu (125_CR74) 2005; 16 125_CR47 SE Chick (125_CR14) 2001; 49 125_CR43 125_CR44 YL Zheng (125_CR78) 2003; 3 IC Trelea (125_CR67) 2003; 85 125_CR41 J Kennedy (125_CR36) 2001 J Kennedy (125_CR33) 1995; 4 CH Chen (125_CR12) 2008; 20 JL Fernandez-Martinez (125_CR23) 2011; 15 Y Jin (125_CR31) 2005; 9 JY Audibert (125_CR2) 2009; 410 H Yoshida (125_CR76) 2000; 15 R Weber (125_CR69) 1992; 2 125_CR57 J Xu (125_CR72) 2010; 20 125_CR58 P Auer (125_CR3) 2003; 3 125_CR16 125_CR53 125_CR10 125_CR54 R Xu (125_CR75) 2007; 20 125_CR55 125_CR56 125_CR51 K Tang (125_CR65) 2009 125_CR52 CH Chen (125_CR11) 2000; 10 J Langeveld (125_CR38) 2012; 6 JM Fitzpatrick (125_CR24) 1988; 3 L Li (125_CR40) 2015; 19 T Beielstein (125_CR5) 2002; 1 H Xiao (125_CR71) 2014; 90 P Bratley (125_CR9) 2011 BL Miller (125_CR46) 1996; 4 125_CR20 125_CR21 P Frazier (125_CR25) 2009; 21 125_CR22 B Samanta (125_CR59) 2009; 3 SK Thompson (125_CR66) 1996 125_CR61 M Jiang (125_CR30) 2007; 102 125_CR62 125_CR63 MR AlRashidi (125_CR1) 2009; 13 S Mahajan (125_CR42) 2001; 49 TY Sun (125_CR64) 2011; 15 J Boesel (125_CR7) 2003; 35 J Jacod (125_CR29) 2003 M Clerc (125_CR15) 2002; 6 J Xu (125_CR73) 2014; 24 Y Shi (125_CR60) 2004; 2 125_CR17 SC Horng (125_CR27) 2013; 43 125_CR18 125_CR19 PI Frazier (125_CR26) 2008; 47 125_CR4 125_CR37 125_CR8 WN Chen (125_CR13) 2010; 14 125_CR32 125_CR6 125_CR77 125_CR34 AM Law (125_CR39) 2000 R Mendes (125_CR45) 2004; 8 125_CR70 J Kennedy (125_CR35) 2006; 36 H Pan (125_CR48) 2006; 181 D Parrott (125_CR49) 2006; 10 L Wasserman (125_CR68) 2004 125_CR28 YV Pehlivanoglu (125_CR50) 2013; 17 |
References_xml | – volume: 17 start-page: 436 issue: 3 year: 2013 end-page: 452 ident: CR50 article-title: A new particle swarm optimization method enhanced with a periodic mutation strategy and neural networks publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2012.2196047 – ident: CR70 – ident: CR22 – volume: 49 start-page: 334 issue: 3 year: 2001 end-page: 351 ident: CR42 article-title: Stocking retail assortments under dynamic consumer substitution publication-title: Operations Research doi: 10.1287/opre.49.3.334.11210 – ident: CR4 – volume: 4 start-page: 113 issue: 2 year: 1996 end-page: 131 ident: CR46 article-title: Genetic algorithms, selection schemes, and the varying effects of noise publication-title: Evolutionary Computation doi: 10.1162/evco.1996.4.2.113 – ident: CR16 – ident: CR51 – volume: 181 start-page: 908 issue: 2 year: 2006 end-page: 919 ident: CR48 article-title: Particle swarm optimization for function optimization in noisy environment publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2006.01.066 – volume: 15 start-page: 798 issue: 6 year: 2011 end-page: 811 ident: CR64 article-title: Cluster guide particle swarm optimization (CGPSO) for underdetermined blind source separation with advanced conditions publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2010.2049361 – volume: 16 start-page: 645 issue: 3 year: 2005 end-page: 678 ident: CR74 article-title: Survey of clustering algorithms publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2005.845141 – volume: 410 start-page: 1876 issue: 19 year: 2009 end-page: 1902 ident: CR2 article-title: Exploration–exploitation tradeoff using variance estimates in multi-armed bandits publication-title: Theoretical Computer Science doi: 10.1016/j.tcs.2009.01.016 – ident: CR54 – ident: CR61 – year: 2003 ident: CR29 publication-title: Probability essentials – ident: CR77 – ident: CR8 – volume: 43 start-page: 1495 issue: 5 year: 2013 end-page: 1509 ident: CR27 article-title: Memetic algorithm for real-time combinatorial stochastic simulation optimization problems with performance analysis publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2013.2264670 – volume: 19 start-page: 136 issue: 1 year: 2015 end-page: 150 ident: CR40 article-title: History-based topological speciation for multimodal optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2014.2306677 – ident: CR58 – year: 2009 ident: CR65 publication-title: Benchmark functions for the CEC2010 special session and competition on large scale global optimization – volume: 24 start-page: 20 issue: 4 year: 2014 ident: CR73 article-title: Drug resistance or re-emergence? simulating equine parasites publication-title: ACM Transactions on Modeling and Computer Simulation (TOMACS) doi: 10.1145/2627736 – volume: 10 start-page: 251 issue: 3 year: 2000 end-page: 270 ident: CR11 article-title: Simulation budget allocation for further enhancing the efficiency of ordinal optimization publication-title: Discrete Event Dynamic Systems doi: 10.1023/A:1008349927281 – ident: CR21 – volume: 36 start-page: 515 issue: 4 year: 2006 ident: CR35 article-title: Neighborhood topologies in fully informed and best-of-neighborhood particle swarms publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews doi: 10.1109/TSMCC.2006.875410 – ident: CR19 – volume: 49 start-page: 732 issue: 5 year: 2001 end-page: 743 ident: CR14 article-title: New two-stage and sequential procedures for selecting the best simulated system publication-title: Operations Research doi: 10.1287/opre.49.5.732.10615 – volume: 10 start-page: 440 issue: 4 year: 2006 end-page: 458 ident: CR49 article-title: Locating and tracking multiple dynamic optima by a particle swarm model using speciation publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2005.859468 – volume: 35 start-page: 221 issue: 3 year: 2003 end-page: 229 ident: CR7 article-title: A framework for simulation-optimization software publication-title: IIE Transactions doi: 10.1080/07408170304364 – year: 2011 ident: CR9 publication-title: A guide to simulation – volume: 20 start-page: 3:1 issue: 1 year: 2010 end-page: 3:29 ident: CR72 article-title: Industrial strength compass: A comprehensive algorithm and software for optimization via simulation publication-title: ACM Transactions on Modeling and Computer Simulation (TOMACS) doi: 10.1145/1667072.1667075 – ident: CR57 – ident: CR32 – volume: 6 start-page: 58 issue: 1 year: 2002 end-page: 73 ident: CR15 article-title: The particle swarm—Explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.985692 – volume: 3 start-page: 1802 year: 2003 end-page: 1807 ident: CR78 article-title: On the convergence analysis and parameter selection in particle swarm optimization publication-title: IEEE International Conference on Machine Learning and Cybernetics – volume: 4 start-page: 1942 year: 1995 end-page: 1948 ident: CR33 article-title: Particle swarm optimization publication-title: Proceedings of IEEE International Conference on Neural Networks doi: 10.1109/ICNN.1995.488968 – volume: 3 start-page: 397 year: 2003 end-page: 422 ident: CR3 article-title: Using confidence bounds for exploitation–exploration trade-offs publication-title: The Journal of Machine Learning Research – year: 1996 ident: CR66 publication-title: Adaptive Sampling – volume: 85 start-page: 317 issue: 6 year: 2003 end-page: 325 ident: CR67 article-title: The particle swarm optimization algorithm: Convergence analysis and parameter selection publication-title: Information Processing Letters doi: 10.1016/S0020-0190(02)00447-7 – ident: CR18 – ident: CR43 – volume: 20 start-page: 917 issue: 8 year: 2007 end-page: 927 ident: CR75 article-title: Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization publication-title: Neural Networks doi: 10.1016/j.neunet.2007.07.002 – ident: CR47 – volume: 14 start-page: 278 issue: 2 year: 2010 end-page: 300 ident: CR13 article-title: A novel set-based particle swarm optimization method for discrete optimization problems publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2009.2030331 – ident: CR37 – ident: CR53 – volume: 2 start-page: 1024 issue: 4 year: 1992 end-page: 1033 ident: CR69 article-title: On the Gittins index for multiarmed bandits publication-title: The Annals of Applied Probability doi: 10.1214/aoap/1177005588 – volume: 102 start-page: 8 issue: 1 year: 2007 end-page: 16 ident: CR30 article-title: Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm publication-title: Information Processing Letters doi: 10.1016/j.ipl.2006.10.005 – volume: 3 start-page: 303 issue: 4 year: 2009 end-page: 325 ident: CR59 article-title: Application of particle swarm optimization and proximal support vector machines for fault detection publication-title: Swarm Intelligence doi: 10.1007/s11721-009-0028-6 – volume: 15 start-page: 1232 issue: 4 year: 2000 end-page: 1239 ident: CR76 article-title: A particle swarm optimization for reactive power and voltage control considering voltage security assessment publication-title: IEEE Transactions on Power Systems doi: 10.1109/59.898095 – ident: CR10 – volume: 21 start-page: 599 issue: 4 year: 2009 end-page: 613 ident: CR25 article-title: The knowledge-gradient policy for correlated normal beliefs publication-title: INFORMS Journal on Computing doi: 10.1287/ijoc.1080.0314 – ident: CR6 – volume: 9 start-page: 303 issue: 3 year: 2005 end-page: 317 ident: CR31 article-title: Evolutionary optimization in uncertain environments—A survey publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2005.846356 – volume: 15 start-page: 405 issue: 3 year: 2011 end-page: 423 ident: CR23 article-title: Stochastic stability analysis of the linear continuous and discrete PSO models publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2010.2053935 – ident: CR56 – ident: CR63 – volume: 20 start-page: 579 issue: 4 year: 2008 end-page: 595 ident: CR12 article-title: Efficient simulation budget allocation for selecting an optimal subset publication-title: INFORMS Journal on Computing doi: 10.1287/ijoc.1080.0268 – volume: 2 start-page: 8 issue: 1 year: 2004 end-page: 13 ident: CR60 article-title: Particle swarm optimization publication-title: IEEE Connections – volume: 3 start-page: 101 issue: 2–3 year: 1988 end-page: 120 ident: CR24 article-title: Genetic algorithms in noisy environments publication-title: Machine learning – ident: CR44 – volume: 8 start-page: 204 issue: 3 year: 2004 end-page: 210 ident: CR45 article-title: The fully informed particle swarm: Simpler, maybe better publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2004.826074 – volume: 47 start-page: 2410 issue: 5 year: 2008 end-page: 2439 ident: CR26 article-title: A knowledge-gradient policy for sequential information collection publication-title: SIAM Journal on Control and Optimization doi: 10.1137/070693424 – ident: CR52 – ident: CR17 – year: 2000 ident: CR39 publication-title: Simulation modeling and analysis – volume: 90 start-page: 1146 issue: 10 year: 2014 end-page: 1157 ident: CR71 article-title: Simulation optimization using genetic algorithms with optimal computing budget allocation publication-title: Simulation doi: 10.1177/0037549714548095 – volume: 1 start-page: 777 year: 2002 end-page: 782 ident: CR5 article-title: Threshold selection, hypothesis tests, and doe methods publication-title: IEEE Proceedings of the World Congress on Computational Intelligence – volume: 13 start-page: 913 issue: 4 year: 2009 end-page: 918 ident: CR1 article-title: A survey of particle swarm optimization applications in electric power systems publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2006.880326 – ident: CR34 – year: 2001 ident: CR36 publication-title: Swarm intelligence – ident: CR55 – year: 2004 ident: CR68 publication-title: All of statistics: A concise course in statistical inference (Springer Texts in Statistics) doi: 10.1007/978-0-387-21736-9 – ident: CR28 – ident: CR41 – ident: CR62 – volume: 6 start-page: 297 issue: 4 year: 2012 end-page: 342 ident: CR38 article-title: Set-based particle swarm optimization applied to the multidimensional knapsack problem publication-title: Swarm Intelligence doi: 10.1007/s11721-012-0073-4 – ident: CR20 – ident: 125_CR58 doi: 10.1109/CEC.2001.934407 – ident: 125_CR52 – ident: 125_CR70 doi: 10.1111/j.2517-6161.1980.tb01111.x – volume: 6 start-page: 297 issue: 4 year: 2012 ident: 125_CR38 publication-title: Swarm Intelligence doi: 10.1007/s11721-012-0073-4 – volume: 35 start-page: 221 issue: 3 year: 2003 ident: 125_CR7 publication-title: IIE Transactions doi: 10.1080/07408170304364 – ident: 125_CR16 doi: 10.1109/ICRA.2015.7140036 – ident: 125_CR10 – volume: 13 start-page: 913 issue: 4 year: 2009 ident: 125_CR1 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2006.880326 – ident: 125_CR21 doi: 10.1145/1569901.1569905 – volume-title: Benchmark functions for the CEC2010 special session and competition on large scale global optimization year: 2009 ident: 125_CR65 – ident: 125_CR61 – ident: 125_CR47 doi: 10.1109/CEC.2008.4630938 – volume: 90 start-page: 1146 issue: 10 year: 2014 ident: 125_CR71 publication-title: Simulation doi: 10.1177/0037549714548095 – volume: 17 start-page: 436 issue: 3 year: 2013 ident: 125_CR50 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2012.2196047 – volume: 14 start-page: 278 issue: 2 year: 2010 ident: 125_CR13 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2009.2030331 – ident: 125_CR28 – volume: 4 start-page: 113 issue: 2 year: 1996 ident: 125_CR46 publication-title: Evolutionary Computation doi: 10.1162/evco.1996.4.2.113 – ident: 125_CR6 doi: 10.1109/CEC.2006.1688399 – volume: 2 start-page: 8 issue: 1 year: 2004 ident: 125_CR60 publication-title: IEEE Connections – volume: 3 start-page: 397 year: 2003 ident: 125_CR3 publication-title: The Journal of Machine Learning Research – volume: 47 start-page: 2410 issue: 5 year: 2008 ident: 125_CR26 publication-title: SIAM Journal on Control and Optimization doi: 10.1137/070693424 – volume: 8 start-page: 204 issue: 3 year: 2004 ident: 125_CR45 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2004.826074 – ident: 125_CR34 – volume: 49 start-page: 334 issue: 3 year: 2001 ident: 125_CR42 publication-title: Operations Research doi: 10.1287/opre.49.3.334.11210 – volume: 19 start-page: 136 issue: 1 year: 2015 ident: 125_CR40 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2014.2306677 – volume: 36 start-page: 515 issue: 4 year: 2006 ident: 125_CR35 publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews doi: 10.1109/TSMCC.2006.875410 – volume: 3 start-page: 1802 year: 2003 ident: 125_CR78 publication-title: IEEE International Conference on Machine Learning and Cybernetics – ident: 125_CR56 doi: 10.1016/j.swevo.2015.01.003 – volume: 49 start-page: 732 issue: 5 year: 2001 ident: 125_CR14 publication-title: Operations Research doi: 10.1287/opre.49.5.732.10615 – volume-title: Simulation modeling and analysis year: 2000 ident: 125_CR39 – volume: 2 start-page: 1024 issue: 4 year: 1992 ident: 125_CR69 publication-title: The Annals of Applied Probability doi: 10.1214/aoap/1177005588 – volume: 4 start-page: 1942 year: 1995 ident: 125_CR33 publication-title: Proceedings of IEEE International Conference on Neural Networks doi: 10.1109/ICNN.1995.488968 – ident: 125_CR19 doi: 10.1109/MHS.1995.494215 – ident: 125_CR18 doi: 10.1109/CEC.2004.1331041 – ident: 125_CR20 – volume: 10 start-page: 251 issue: 3 year: 2000 ident: 125_CR11 publication-title: Discrete Event Dynamic Systems doi: 10.1023/A:1008349927281 – volume: 181 start-page: 908 issue: 2 year: 2006 ident: 125_CR48 publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2006.01.066 – ident: 125_CR17 doi: 10.1109/CEC.2015.7256940 – volume: 20 start-page: 3:1 issue: 1 year: 2010 ident: 125_CR72 publication-title: ACM Transactions on Modeling and Computer Simulation (TOMACS) doi: 10.1145/1667072.1667075 – ident: 125_CR51 doi: 10.1145/2330163.2330173 – ident: 125_CR8 – volume: 21 start-page: 599 issue: 4 year: 2009 ident: 125_CR25 publication-title: INFORMS Journal on Computing doi: 10.1287/ijoc.1080.0314 – volume: 15 start-page: 798 issue: 6 year: 2011 ident: 125_CR64 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2010.2049361 – volume-title: A guide to simulation year: 2011 ident: 125_CR9 – ident: 125_CR4 – volume: 3 start-page: 101 issue: 2–3 year: 1988 ident: 125_CR24 publication-title: Machine learning – volume: 20 start-page: 579 issue: 4 year: 2008 ident: 125_CR12 publication-title: INFORMS Journal on Computing doi: 10.1287/ijoc.1080.0268 – ident: 125_CR62 doi: 10.1007/BFb0040810 – ident: 125_CR41 doi: 10.1109/WSC.2011.6148055 – ident: 125_CR44 – ident: 125_CR55 doi: 10.1007/s00500-014-1438-y – ident: 125_CR63 – volume-title: All of statistics: A concise course in statistical inference (Springer Texts in Statistics) year: 2004 ident: 125_CR68 doi: 10.1007/978-0-387-21736-9 – ident: 125_CR54 doi: 10.1016/j.swevo.2014.02.004 – ident: 125_CR22 doi: 10.1109/CEC.2010.5586186 – volume: 6 start-page: 58 issue: 1 year: 2002 ident: 125_CR15 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.985692 – volume: 9 start-page: 303 issue: 3 year: 2005 ident: 125_CR31 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2005.846356 – ident: 125_CR43 doi: 10.1109/CEC.2001.934428 – volume: 43 start-page: 1495 issue: 5 year: 2013 ident: 125_CR27 publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2013.2264670 – ident: 125_CR57 – volume: 410 start-page: 1876 issue: 19 year: 2009 ident: 125_CR2 publication-title: Theoretical Computer Science doi: 10.1016/j.tcs.2009.01.016 – volume: 1 start-page: 777 year: 2002 ident: 125_CR5 publication-title: IEEE Proceedings of the World Congress on Computational Intelligence – volume-title: Probability essentials year: 2003 ident: 125_CR29 – volume: 102 start-page: 8 issue: 1 year: 2007 ident: 125_CR30 publication-title: Information Processing Letters doi: 10.1016/j.ipl.2006.10.005 – volume: 16 start-page: 645 issue: 3 year: 2005 ident: 125_CR74 publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2005.845141 – ident: 125_CR77 doi: 10.1109/WSC.2011.6148117 – volume-title: Swarm intelligence year: 2001 ident: 125_CR36 – volume: 24 start-page: 20 issue: 4 year: 2014 ident: 125_CR73 publication-title: ACM Transactions on Modeling and Computer Simulation (TOMACS) doi: 10.1145/2627736 – volume: 10 start-page: 440 issue: 4 year: 2006 ident: 125_CR49 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2005.859468 – volume: 20 start-page: 917 issue: 8 year: 2007 ident: 125_CR75 publication-title: Neural Networks doi: 10.1016/j.neunet.2007.07.002 – volume: 3 start-page: 303 issue: 4 year: 2009 ident: 125_CR59 publication-title: Swarm Intelligence doi: 10.1007/s11721-009-0028-6 – ident: 125_CR53 doi: 10.1145/2463372.2463373 – volume: 85 start-page: 317 issue: 6 year: 2003 ident: 125_CR67 publication-title: Information Processing Letters doi: 10.1016/S0020-0190(02)00447-7 – volume: 15 start-page: 405 issue: 3 year: 2011 ident: 125_CR23 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2010.2053935 – volume-title: Adaptive Sampling year: 1996 ident: 125_CR66 – ident: 125_CR32 doi: 10.1109/CEC.1999.785509 – ident: 125_CR37 doi: 10.1016/S0927-0507(06)13017-0 – volume: 15 start-page: 1232 issue: 4 year: 2000 ident: 125_CR76 publication-title: IEEE Transactions on Power Systems doi: 10.1109/59.898095 |
SSID | ssj0059333 |
Score | 2.2006485 |
Snippet | We propose a new particle swarm optimization algorithm for problems where objective functions are subject to zero-mean, independent, and identically... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 161 |
SubjectTerms | Artificial Intelligence Communications Engineering Computer Communication Networks Computer Science Computer Systems Organization and Communication Networks Mathematical and Computational Engineering Networks Noise Optimization algorithms Statistical analysis |
Title | A new particle swarm optimization algorithm for noisy optimization problems |
URI | https://link.springer.com/article/10.1007/s11721-016-0125-2 https://www.proquest.com/docview/1880876320 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDI3QduHCN2Iwphw4gSK1aZOlxwptTExwYtI4VUmXANLWTusQ4t_jdAljCJA4183BTmw_2X5G6AJigK3OhUQJxUmcAGZVhhrS1SKPVaTymNlB4bt7PhjFt2M2dnPcle929yXJ2lOvh90sWgHoaxEwZQT8bpNZ6A6XeERT734ZIPRoVUpmBMIR9aXMn47YDEbrDPNbUbSONf09tOOSRJyurLqPtnRxgHb9Agbs3uMhGqYYsmI8d-bH1ZtczHAJXmDmxiuxnD6VgP-fZxiyU1yUL9X7poDbKFMdoVG_93A9IG47AsmjkC-JsJumpOJMhzoyNNeRkkpIFU5CI4wIJISmxAgJMV0BapGAMzgVhiXUGJ4ANj1GjaIs9AnCsQwtTdqEc6FiFTAVBVoKyFUigBtBqFoo8GrKckcdbjdYTLM16bHVbGbbxaxmM9pCl5-_zFe8GX8Jt73uM_eEqswSxVm6PBq00JW3x5fPvx12-i_pM7RN6_tgu8baqLFcvOpzSDOWqoOa6c3jsNepr9cH9jLI-Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQGWDhjSgU8MAEspQ4sXHGClEV-phaqVtkpzYgtUnVFCH-PefUphQBEnMuHu7su-_TvRC6ghhgs3MhUUJxEifAWZWhhtxqkcUqUlnMbKNwr8_bw_hxxEauj7v01e4-JVl56lWzm2UrQH0tA6aMgN_dBCwgbB3XkDa9-2XA0KNlKpkRCEfUpzJ_OmI9GK0Q5rekaBVrWntox4FE3FxadR9t6PwA7foFDNi9x0PUaWJAxXjmzI_LNzmf4gK8wNS1V2I5eSqA_z9PMaBTnBcv5fu6gNsoUx6hYet-cNcmbjsCyaKQL4iwm6ak4kyHOjI005GSSkgVjkMjjAgkhKbECAkxXQFrkcAzOBWGJdQYngA3PUa1vMj1CcKxDO2YtDHnQsUqYCoKtBSAVSKgG0Go6ijwakozNzrcbrCYpKuhx1azqS0Xs5pNaR1df_4yW87N-Eu44XWfuidUpnZQnB2XR4M6uvH2-PL5t8NO_yV9ibbag1437T70O2dom1Z3w1aQNVBtMX_V5wA5FuqiumIfQ93KWA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDI3QkBAXvhGDATlwAkVr06akxwmYBoOJA5N2q5IugUlbO61FiH-PsyaMIUDiXDcHx7H9ZPsZoTOIAaY65xPJZUTCGDCr1FSTS8XTUAYyDZkZFH7oRZ1-eDdgA7vntHDd7q4kWc00GJamrGxOh7q5GHwzyAVgsEHDlBHwwavgjX1j1n3acq6YAVoPqrIyIxCaqCtr_nTEcmBaZJvfCqTzuNPeQhs2YcSt6oa30YrKdtCmW8aA7dvcRd0WhgwZT60p4OJNzCY4B48wsaOWWIyf89mofJlgyFRxlo-K92UBu12m2EP99s3TVYfYTQkkDfyoJNxsnRIyYspXgaapCqSQXEh_6GuuuScgTMWaC4jvEhCMAMwRUa5ZTLWOYsCp-6iW5Zk6QDgUvqFMG0YRl6H0mAw8JTjkLQFAD8-XdeQ5NSWppRE32yzGyYIA2Wg2Ma1jRrMJraPzz1-mFYfGX8INp_vEPqciMaRxhjqPenV04e7jy-ffDjv8l_QpWnu8bif3t73uEVqnc9MwzWQNVCtnr-oYso9Snswt7ANGSM6U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+particle+swarm+optimization+algorithm+for+noisy+optimization+problems&rft.jtitle=Swarm+intelligence&rft.au=Taghiyeh%2C+Sajjad&rft.au=Xu%2C+Jie&rft.date=2016-09-01&rft.issn=1935-3812&rft.eissn=1935-3820&rft.volume=10&rft.issue=3&rft.spage=161&rft.epage=192&rft_id=info:doi/10.1007%2Fs11721-016-0125-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11721_016_0125_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-3812&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-3812&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-3812&client=summon |