A new particle swarm optimization algorithm for noisy optimization problems

We propose a new particle swarm optimization algorithm for problems where objective functions are subject to zero-mean, independent, and identically distributed stochastic noise. While particle swarm optimization has been successfully applied to solve many complex deterministic nonlinear optimizatio...

Full description

Saved in:
Bibliographic Details
Published inSwarm intelligence Vol. 10; no. 3; pp. 161 - 192
Main Authors Taghiyeh, Sajjad, Xu, Jie
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2016
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1935-3812
1935-3820
DOI10.1007/s11721-016-0125-2

Cover

Loading…
Abstract We propose a new particle swarm optimization algorithm for problems where objective functions are subject to zero-mean, independent, and identically distributed stochastic noise. While particle swarm optimization has been successfully applied to solve many complex deterministic nonlinear optimization problems, straightforward applications of particle swarm optimization to noisy optimization problems are subject to failure because the noise in objective function values can lead the algorithm to incorrectly identify positions as the global/personal best positions. Instead of having the entire swarm follow a global best position based on the sample average of objective function values, the proposed new algorithm works with a set of statistically global best positions that include one or more positions with objective function values that are statistically equivalent, which is achieved using a combination of statistical subset selection and clustering analysis. The new PSO algorithm can be seamlessly integrated with adaptive resampling procedures to enhance the capability of PSO to cope with noisy objective functions. Numerical experiments demonstrate that the new algorithm is able to consistently find better solutions than the canonical particle swarm optimization algorithm in the presence of stochastic noise in objective function values with different resampling procedures.
AbstractList We propose a new particle swarm optimization algorithm for problems where objective functions are subject to zero-mean, independent, and identically distributed stochastic noise. While particle swarm optimization has been successfully applied to solve many complex deterministic nonlinear optimization problems, straightforward applications of particle swarm optimization to noisy optimization problems are subject to failure because the noise in objective function values can lead the algorithm to incorrectly identify positions as the global/personal best positions. Instead of having the entire swarm follow a global best position based on the sample average of objective function values, the proposed new algorithm works with a set of statistically global best positions that include one or more positions with objective function values that are statistically equivalent, which is achieved using a combination of statistical subset selection and clustering analysis. The new PSO algorithm can be seamlessly integrated with adaptive resampling procedures to enhance the capability of PSO to cope with noisy objective functions. Numerical experiments demonstrate that the new algorithm is able to consistently find better solutions than the canonical particle swarm optimization algorithm in the presence of stochastic noise in objective function values with different resampling procedures.
We propose a new particle swarm optimization algorithm for problems where objective functions are subject to zero-mean, independent, and identically distributed stochastic noise. While particle swarm optimization has been successfully applied to solve many complex deterministic nonlinear optimization problems, straightforward applications of particle swarm optimization to noisy optimization problems are subject to failure because the noise in objective function values can lead the algorithm to incorrectly identify positions as the global/personal best positions. Instead of having the entire swarm follow a global best position based on the sample average of objective function values, the proposed new algorithm works with a set of statistically global best positions that include one or more positions with objective function values that are statistically equivalent, which is achieved using a combination of statistical subset selection and clustering analysis. The new PSO algorithm can be seamlessly integrated with adaptive resampling procedures to enhance the capability of PSO to cope with noisy objective functions. Numerical experiments demonstrate that the new algorithm is able to consistently find better solutions than the canonical particle swarm optimization algorithm in the presence of stochastic noise in objective function values with different resampling procedures.
Author Xu, Jie
Taghiyeh, Sajjad
Author_xml – sequence: 1
  givenname: Sajjad
  surname: Taghiyeh
  fullname: Taghiyeh, Sajjad
  organization: Department of Systems Engineering and Operations Research, George Mason University
– sequence: 2
  givenname: Jie
  orcidid: 0000-0002-9422-6080
  surname: Xu
  fullname: Xu, Jie
  email: jxu13@gmu.edu
  organization: Department of Systems Engineering and Operations Research, George Mason University
BookMark eNp9kEFLAzEQhYNUsK3-AG8Lnlczk242eyxFrVjwoueQXZOasrtZk5RSf71bV0QFPQwzh_fNe7wJGbWu1YScA70ESvOrAJAjpBR4P5ileETGULAsZQLp6OsGPCGTEDaUZgVjbEzu50mrd0mnfLRVrZOwU75JXBdtY99UtK5NVL123saXJjHOJ62zYf9T0HlX1roJp-TYqDros889JU8314-LZbp6uL1bzFdpxYDHVGQzLFTJMw2aGaw0K1UpVAnPYIQRVDGOhREKISs5cjVDwVGYrEBjeJEDm5KL4W9v_LrVIcqN2_q2t5QgBBU5Z0h7VT6oKu9C8NrIysaPwNErW0ug8tCcHJqTfXPy0JzEnoRfZOdto_z-XwYHJvTadq39t0x_Qu_RjoKK
CitedBy_id crossref_primary_10_1007_s00366_017_0523_0
crossref_primary_10_1109_TSMC_2017_2679192
crossref_primary_10_1016_j_trip_2021_100378
crossref_primary_10_1080_17477778_2022_2046520
crossref_primary_10_3390_s21113820
crossref_primary_10_1080_24725854_2019_1576951
crossref_primary_10_1109_ACCESS_2020_3025559
crossref_primary_10_3390_math7040357
crossref_primary_10_1016_j_petrol_2018_01_001
crossref_primary_10_4236_cweee_2017_63016
crossref_primary_10_1002_eng2_12221
crossref_primary_10_1155_2017_3271969
crossref_primary_10_1016_j_asoc_2019_105874
crossref_primary_10_1016_j_sca_2023_100032
crossref_primary_10_1142_S0217595921500305
crossref_primary_10_1007_s10489_022_03701_2
crossref_primary_10_1016_j_eswa_2020_113954
crossref_primary_10_1021_acs_jctc_3c00637
crossref_primary_10_4236_jcc_2017_513002
crossref_primary_10_1177_0142331217716983
crossref_primary_10_1109_TPWRS_2020_3008428
crossref_primary_10_1007_s00500_021_05752_y
crossref_primary_10_1007_s10489_018_1310_3
crossref_primary_10_1038_s41598_018_22332_7
crossref_primary_10_1109_TEVC_2016_2592185
crossref_primary_10_1177_0309524X17737337
crossref_primary_10_1016_j_asoc_2020_107068
crossref_primary_10_1002_nav_21976
crossref_primary_10_1016_j_ijtst_2020_01_001
Cites_doi 10.1109/TEVC.2012.2196047
10.1287/opre.49.3.334.11210
10.1162/evco.1996.4.2.113
10.1016/j.amc.2006.01.066
10.1109/TEVC.2010.2049361
10.1109/TNN.2005.845141
10.1016/j.tcs.2009.01.016
10.1109/TCYB.2013.2264670
10.1109/TEVC.2014.2306677
10.1145/2627736
10.1023/A:1008349927281
10.1109/TSMCC.2006.875410
10.1287/opre.49.5.732.10615
10.1109/TEVC.2005.859468
10.1080/07408170304364
10.1145/1667072.1667075
10.1109/4235.985692
10.1109/ICNN.1995.488968
10.1016/S0020-0190(02)00447-7
10.1016/j.neunet.2007.07.002
10.1109/TEVC.2009.2030331
10.1214/aoap/1177005588
10.1016/j.ipl.2006.10.005
10.1007/s11721-009-0028-6
10.1109/59.898095
10.1287/ijoc.1080.0314
10.1109/TEVC.2005.846356
10.1109/TEVC.2010.2053935
10.1287/ijoc.1080.0268
10.1109/TEVC.2004.826074
10.1137/070693424
10.1177/0037549714548095
10.1109/TEVC.2006.880326
10.1007/978-0-387-21736-9
10.1007/s11721-012-0073-4
10.1109/CEC.2001.934407
10.1111/j.2517-6161.1980.tb01111.x
10.1109/ICRA.2015.7140036
10.1145/1569901.1569905
10.1109/CEC.2008.4630938
10.1109/CEC.2006.1688399
10.1016/j.swevo.2015.01.003
10.1109/MHS.1995.494215
10.1109/CEC.2004.1331041
10.1109/CEC.2015.7256940
10.1145/2330163.2330173
10.1007/BFb0040810
10.1109/WSC.2011.6148055
10.1007/s00500-014-1438-y
10.1016/j.swevo.2014.02.004
10.1109/CEC.2010.5586186
10.1109/CEC.2001.934428
10.1109/WSC.2011.6148117
10.1145/2463372.2463373
10.1109/CEC.1999.785509
10.1016/S0927-0507(06)13017-0
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
Copyright Springer Science & Business Media 2016
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: Copyright Springer Science & Business Media 2016
DBID AAYXX
CITATION
DOI 10.1007/s11721-016-0125-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1935-3820
EndPage 192
ExternalDocumentID 10_1007_s11721_016_0125_2
GrantInformation_xml – fundername: National Science Foundation (US)
  grantid: Grant CMMI-1233376; ECCS-1462409
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: National Science Foundation (US)
  grantid: CMMI-1462787
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID -5B
-5G
-BR
-D3
-DT
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
875
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXD
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
KZ1
LLZTM
M4Y
M7P
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
ID FETCH-LOGICAL-c316t-85429ab65e1e3f2ce3bab8ab1d1f8f80a3629f8a215b626a428628f592ff69713
IEDL.DBID U2A
ISSN 1935-3812
IngestDate Fri Jul 25 11:00:15 EDT 2025
Thu Apr 24 22:53:42 EDT 2025
Thu Jul 03 08:35:55 EDT 2025
Fri Feb 21 02:33:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Noisy optimization
Clustering
Particle swarm optimization
Subset selection
Optimality gap
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-85429ab65e1e3f2ce3bab8ab1d1f8f80a3629f8a215b626a428628f592ff69713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9422-6080
PQID 1880876320
PQPubID 2044102
PageCount 32
ParticipantIDs proquest_journals_1880876320
crossref_citationtrail_10_1007_s11721_016_0125_2
crossref_primary_10_1007_s11721_016_0125_2
springer_journals_10_1007_s11721_016_0125_2
PublicationCentury 2000
PublicationDate 2016-09-01
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Swarm intelligence
PublicationTitleAbbrev Swarm Intell
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Yoshida, Kawata, Fukuyama, Takayama, Nakanishi (CR76) 2000; 15
AlRashidi, El-Hawary (CR1) 2009; 13
Kennedy, Mendes (CR35) 2006; 36
Xiao, Lee (CR71) 2014; 90
Shi (CR60) 2004; 2
Kennedy, Kennedy, Eberhart, Shi (CR36) 2001
CR37
Xu, Nelson, Hong (CR72) 2010; 20
CR34
Kennedy, Eberhart (CR33) 1995; 4
CR77
CR32
Chen, Lin, Yücesan, Chick (CR11) 2000; 10
Bratley, Fox, Schrage (CR9) 2011
CR70
Jiang, Luo, Yang (CR30) 2007; 102
Chen, Zhang, Chung, Zhong, Wu, Shi (CR13) 2010; 14
Xu, Venayagamoorthy, Wunsch (CR75) 2007; 20
Jacod, Protter (CR29) 2003
CR4
CR6
CR8
Parrott, Li (CR49) 2006; 10
Xu, Vidyashankar, Nielsen (CR73) 2014; 24
CR47
CR44
Samanta, Nataraj (CR59) 2009; 3
CR43
CR41
Beielstein, Markon (CR5) 2002; 1
Xu, Wunsch (CR74) 2005; 16
Pan, Wang, Liu (CR48) 2006; 181
Frazier, Powell, Dayanik (CR26) 2008; 47
Fernandez-Martinez, Garcia-Gonzalo (CR23) 2011; 15
Pehlivanoglu (CR50) 2013; 17
Li, Tang (CR40) 2015; 19
CR19
Langeveld, Engelbrecht (CR38) 2012; 6
CR18
CR17
CR16
Tang, Li, Suganthan, Yang, Weise (CR65) 2009
Wasserman (CR68) 2004
Zheng, Ma, Zhang, Qian (CR78) 2003; 3
CR58
CR57
CR56
CR55
CR10
Mahajan, van Ryzin (CR42) 2001; 49
CR54
CR53
Chen, He, Fu, Lee (CR12) 2008; 20
CR52
CR51
Jin, Branke (CR31) 2005; 9
Law, Kelton (CR39) 2000
Clerc, Kennedy (CR15) 2002; 6
Fitzpatrick, Grefenstette (CR24) 1988; 3
Horng, Lin, Lee, Chen (CR27) 2013; 43
Miller, Goldberg (CR46) 1996; 4
Auer (CR3) 2003; 3
Trelea (CR67) 2003; 85
Boesel, Nelson, Ishii (CR7) 2003; 35
Frazier, Powell, Dayanik (CR25) 2009; 21
Mendes, Kennedy, Neves (CR45) 2004; 8
CR28
Audibert, Munos, Szepesvári (CR2) 2009; 410
Weber (CR69) 1992; 2
CR22
CR21
CR20
Chick, Inoue, Inoue, Inoue (CR14) 2001; 49
CR63
CR62
CR61
Sun, Liu, Tsai, Hsieh, Li (CR64) 2011; 15
Thompson, Seber (CR66) 1996
R Xu (125_CR74) 2005; 16
125_CR47
SE Chick (125_CR14) 2001; 49
125_CR43
125_CR44
YL Zheng (125_CR78) 2003; 3
IC Trelea (125_CR67) 2003; 85
125_CR41
J Kennedy (125_CR36) 2001
J Kennedy (125_CR33) 1995; 4
CH Chen (125_CR12) 2008; 20
JL Fernandez-Martinez (125_CR23) 2011; 15
Y Jin (125_CR31) 2005; 9
JY Audibert (125_CR2) 2009; 410
H Yoshida (125_CR76) 2000; 15
R Weber (125_CR69) 1992; 2
125_CR57
J Xu (125_CR72) 2010; 20
125_CR58
P Auer (125_CR3) 2003; 3
125_CR16
125_CR53
125_CR10
125_CR54
R Xu (125_CR75) 2007; 20
125_CR55
125_CR56
125_CR51
K Tang (125_CR65) 2009
125_CR52
CH Chen (125_CR11) 2000; 10
J Langeveld (125_CR38) 2012; 6
JM Fitzpatrick (125_CR24) 1988; 3
L Li (125_CR40) 2015; 19
T Beielstein (125_CR5) 2002; 1
H Xiao (125_CR71) 2014; 90
P Bratley (125_CR9) 2011
BL Miller (125_CR46) 1996; 4
125_CR20
125_CR21
P Frazier (125_CR25) 2009; 21
125_CR22
B Samanta (125_CR59) 2009; 3
SK Thompson (125_CR66) 1996
125_CR61
M Jiang (125_CR30) 2007; 102
125_CR62
125_CR63
MR AlRashidi (125_CR1) 2009; 13
S Mahajan (125_CR42) 2001; 49
TY Sun (125_CR64) 2011; 15
J Boesel (125_CR7) 2003; 35
J Jacod (125_CR29) 2003
M Clerc (125_CR15) 2002; 6
J Xu (125_CR73) 2014; 24
Y Shi (125_CR60) 2004; 2
125_CR17
SC Horng (125_CR27) 2013; 43
125_CR18
125_CR19
PI Frazier (125_CR26) 2008; 47
125_CR4
125_CR37
125_CR8
WN Chen (125_CR13) 2010; 14
125_CR32
125_CR6
125_CR77
125_CR34
AM Law (125_CR39) 2000
R Mendes (125_CR45) 2004; 8
125_CR70
J Kennedy (125_CR35) 2006; 36
H Pan (125_CR48) 2006; 181
D Parrott (125_CR49) 2006; 10
L Wasserman (125_CR68) 2004
125_CR28
YV Pehlivanoglu (125_CR50) 2013; 17
References_xml – volume: 17
  start-page: 436
  issue: 3
  year: 2013
  end-page: 452
  ident: CR50
  article-title: A new particle swarm optimization method enhanced with a periodic mutation strategy and neural networks
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2012.2196047
– ident: CR70
– ident: CR22
– volume: 49
  start-page: 334
  issue: 3
  year: 2001
  end-page: 351
  ident: CR42
  article-title: Stocking retail assortments under dynamic consumer substitution
  publication-title: Operations Research
  doi: 10.1287/opre.49.3.334.11210
– ident: CR4
– volume: 4
  start-page: 113
  issue: 2
  year: 1996
  end-page: 131
  ident: CR46
  article-title: Genetic algorithms, selection schemes, and the varying effects of noise
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1996.4.2.113
– ident: CR16
– ident: CR51
– volume: 181
  start-page: 908
  issue: 2
  year: 2006
  end-page: 919
  ident: CR48
  article-title: Particle swarm optimization for function optimization in noisy environment
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.01.066
– volume: 15
  start-page: 798
  issue: 6
  year: 2011
  end-page: 811
  ident: CR64
  article-title: Cluster guide particle swarm optimization (CGPSO) for underdetermined blind source separation with advanced conditions
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2010.2049361
– volume: 16
  start-page: 645
  issue: 3
  year: 2005
  end-page: 678
  ident: CR74
  article-title: Survey of clustering algorithms
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2005.845141
– volume: 410
  start-page: 1876
  issue: 19
  year: 2009
  end-page: 1902
  ident: CR2
  article-title: Exploration–exploitation tradeoff using variance estimates in multi-armed bandits
  publication-title: Theoretical Computer Science
  doi: 10.1016/j.tcs.2009.01.016
– ident: CR54
– ident: CR61
– year: 2003
  ident: CR29
  publication-title: Probability essentials
– ident: CR77
– ident: CR8
– volume: 43
  start-page: 1495
  issue: 5
  year: 2013
  end-page: 1509
  ident: CR27
  article-title: Memetic algorithm for real-time combinatorial stochastic simulation optimization problems with performance analysis
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2013.2264670
– volume: 19
  start-page: 136
  issue: 1
  year: 2015
  end-page: 150
  ident: CR40
  article-title: History-based topological speciation for multimodal optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2014.2306677
– ident: CR58
– year: 2009
  ident: CR65
  publication-title: Benchmark functions for the CEC2010 special session and competition on large scale global optimization
– volume: 24
  start-page: 20
  issue: 4
  year: 2014
  ident: CR73
  article-title: Drug resistance or re-emergence? simulating equine parasites
  publication-title: ACM Transactions on Modeling and Computer Simulation (TOMACS)
  doi: 10.1145/2627736
– volume: 10
  start-page: 251
  issue: 3
  year: 2000
  end-page: 270
  ident: CR11
  article-title: Simulation budget allocation for further enhancing the efficiency of ordinal optimization
  publication-title: Discrete Event Dynamic Systems
  doi: 10.1023/A:1008349927281
– ident: CR21
– volume: 36
  start-page: 515
  issue: 4
  year: 2006
  ident: CR35
  article-title: Neighborhood topologies in fully informed and best-of-neighborhood particle swarms
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews
  doi: 10.1109/TSMCC.2006.875410
– ident: CR19
– volume: 49
  start-page: 732
  issue: 5
  year: 2001
  end-page: 743
  ident: CR14
  article-title: New two-stage and sequential procedures for selecting the best simulated system
  publication-title: Operations Research
  doi: 10.1287/opre.49.5.732.10615
– volume: 10
  start-page: 440
  issue: 4
  year: 2006
  end-page: 458
  ident: CR49
  article-title: Locating and tracking multiple dynamic optima by a particle swarm model using speciation
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.859468
– volume: 35
  start-page: 221
  issue: 3
  year: 2003
  end-page: 229
  ident: CR7
  article-title: A framework for simulation-optimization software
  publication-title: IIE Transactions
  doi: 10.1080/07408170304364
– year: 2011
  ident: CR9
  publication-title: A guide to simulation
– volume: 20
  start-page: 3:1
  issue: 1
  year: 2010
  end-page: 3:29
  ident: CR72
  article-title: Industrial strength compass: A comprehensive algorithm and software for optimization via simulation
  publication-title: ACM Transactions on Modeling and Computer Simulation (TOMACS)
  doi: 10.1145/1667072.1667075
– ident: CR57
– ident: CR32
– volume: 6
  start-page: 58
  issue: 1
  year: 2002
  end-page: 73
  ident: CR15
  article-title: The particle swarm—Explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.985692
– volume: 3
  start-page: 1802
  year: 2003
  end-page: 1807
  ident: CR78
  article-title: On the convergence analysis and parameter selection in particle swarm optimization
  publication-title: IEEE International Conference on Machine Learning and Cybernetics
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: CR33
  article-title: Particle swarm optimization
  publication-title: Proceedings of IEEE International Conference on Neural Networks
  doi: 10.1109/ICNN.1995.488968
– volume: 3
  start-page: 397
  year: 2003
  end-page: 422
  ident: CR3
  article-title: Using confidence bounds for exploitation–exploration trade-offs
  publication-title: The Journal of Machine Learning Research
– year: 1996
  ident: CR66
  publication-title: Adaptive Sampling
– volume: 85
  start-page: 317
  issue: 6
  year: 2003
  end-page: 325
  ident: CR67
  article-title: The particle swarm optimization algorithm: Convergence analysis and parameter selection
  publication-title: Information Processing Letters
  doi: 10.1016/S0020-0190(02)00447-7
– ident: CR18
– ident: CR43
– volume: 20
  start-page: 917
  issue: 8
  year: 2007
  end-page: 927
  ident: CR75
  article-title: Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2007.07.002
– ident: CR47
– volume: 14
  start-page: 278
  issue: 2
  year: 2010
  end-page: 300
  ident: CR13
  article-title: A novel set-based particle swarm optimization method for discrete optimization problems
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2009.2030331
– ident: CR37
– ident: CR53
– volume: 2
  start-page: 1024
  issue: 4
  year: 1992
  end-page: 1033
  ident: CR69
  article-title: On the Gittins index for multiarmed bandits
  publication-title: The Annals of Applied Probability
  doi: 10.1214/aoap/1177005588
– volume: 102
  start-page: 8
  issue: 1
  year: 2007
  end-page: 16
  ident: CR30
  article-title: Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm
  publication-title: Information Processing Letters
  doi: 10.1016/j.ipl.2006.10.005
– volume: 3
  start-page: 303
  issue: 4
  year: 2009
  end-page: 325
  ident: CR59
  article-title: Application of particle swarm optimization and proximal support vector machines for fault detection
  publication-title: Swarm Intelligence
  doi: 10.1007/s11721-009-0028-6
– volume: 15
  start-page: 1232
  issue: 4
  year: 2000
  end-page: 1239
  ident: CR76
  article-title: A particle swarm optimization for reactive power and voltage control considering voltage security assessment
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/59.898095
– ident: CR10
– volume: 21
  start-page: 599
  issue: 4
  year: 2009
  end-page: 613
  ident: CR25
  article-title: The knowledge-gradient policy for correlated normal beliefs
  publication-title: INFORMS Journal on Computing
  doi: 10.1287/ijoc.1080.0314
– ident: CR6
– volume: 9
  start-page: 303
  issue: 3
  year: 2005
  end-page: 317
  ident: CR31
  article-title: Evolutionary optimization in uncertain environments—A survey
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.846356
– volume: 15
  start-page: 405
  issue: 3
  year: 2011
  end-page: 423
  ident: CR23
  article-title: Stochastic stability analysis of the linear continuous and discrete PSO models
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2010.2053935
– ident: CR56
– ident: CR63
– volume: 20
  start-page: 579
  issue: 4
  year: 2008
  end-page: 595
  ident: CR12
  article-title: Efficient simulation budget allocation for selecting an optimal subset
  publication-title: INFORMS Journal on Computing
  doi: 10.1287/ijoc.1080.0268
– volume: 2
  start-page: 8
  issue: 1
  year: 2004
  end-page: 13
  ident: CR60
  article-title: Particle swarm optimization
  publication-title: IEEE Connections
– volume: 3
  start-page: 101
  issue: 2–3
  year: 1988
  end-page: 120
  ident: CR24
  article-title: Genetic algorithms in noisy environments
  publication-title: Machine learning
– ident: CR44
– volume: 8
  start-page: 204
  issue: 3
  year: 2004
  end-page: 210
  ident: CR45
  article-title: The fully informed particle swarm: Simpler, maybe better
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2004.826074
– volume: 47
  start-page: 2410
  issue: 5
  year: 2008
  end-page: 2439
  ident: CR26
  article-title: A knowledge-gradient policy for sequential information collection
  publication-title: SIAM Journal on Control and Optimization
  doi: 10.1137/070693424
– ident: CR52
– ident: CR17
– year: 2000
  ident: CR39
  publication-title: Simulation modeling and analysis
– volume: 90
  start-page: 1146
  issue: 10
  year: 2014
  end-page: 1157
  ident: CR71
  article-title: Simulation optimization using genetic algorithms with optimal computing budget allocation
  publication-title: Simulation
  doi: 10.1177/0037549714548095
– volume: 1
  start-page: 777
  year: 2002
  end-page: 782
  ident: CR5
  article-title: Threshold selection, hypothesis tests, and doe methods
  publication-title: IEEE Proceedings of the World Congress on Computational Intelligence
– volume: 13
  start-page: 913
  issue: 4
  year: 2009
  end-page: 918
  ident: CR1
  article-title: A survey of particle swarm optimization applications in electric power systems
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2006.880326
– ident: CR34
– year: 2001
  ident: CR36
  publication-title: Swarm intelligence
– ident: CR55
– year: 2004
  ident: CR68
  publication-title: All of statistics: A concise course in statistical inference (Springer Texts in Statistics)
  doi: 10.1007/978-0-387-21736-9
– ident: CR28
– ident: CR41
– ident: CR62
– volume: 6
  start-page: 297
  issue: 4
  year: 2012
  end-page: 342
  ident: CR38
  article-title: Set-based particle swarm optimization applied to the multidimensional knapsack problem
  publication-title: Swarm Intelligence
  doi: 10.1007/s11721-012-0073-4
– ident: CR20
– ident: 125_CR58
  doi: 10.1109/CEC.2001.934407
– ident: 125_CR52
– ident: 125_CR70
  doi: 10.1111/j.2517-6161.1980.tb01111.x
– volume: 6
  start-page: 297
  issue: 4
  year: 2012
  ident: 125_CR38
  publication-title: Swarm Intelligence
  doi: 10.1007/s11721-012-0073-4
– volume: 35
  start-page: 221
  issue: 3
  year: 2003
  ident: 125_CR7
  publication-title: IIE Transactions
  doi: 10.1080/07408170304364
– ident: 125_CR16
  doi: 10.1109/ICRA.2015.7140036
– ident: 125_CR10
– volume: 13
  start-page: 913
  issue: 4
  year: 2009
  ident: 125_CR1
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2006.880326
– ident: 125_CR21
  doi: 10.1145/1569901.1569905
– volume-title: Benchmark functions for the CEC2010 special session and competition on large scale global optimization
  year: 2009
  ident: 125_CR65
– ident: 125_CR61
– ident: 125_CR47
  doi: 10.1109/CEC.2008.4630938
– volume: 90
  start-page: 1146
  issue: 10
  year: 2014
  ident: 125_CR71
  publication-title: Simulation
  doi: 10.1177/0037549714548095
– volume: 17
  start-page: 436
  issue: 3
  year: 2013
  ident: 125_CR50
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2012.2196047
– volume: 14
  start-page: 278
  issue: 2
  year: 2010
  ident: 125_CR13
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2009.2030331
– ident: 125_CR28
– volume: 4
  start-page: 113
  issue: 2
  year: 1996
  ident: 125_CR46
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1996.4.2.113
– ident: 125_CR6
  doi: 10.1109/CEC.2006.1688399
– volume: 2
  start-page: 8
  issue: 1
  year: 2004
  ident: 125_CR60
  publication-title: IEEE Connections
– volume: 3
  start-page: 397
  year: 2003
  ident: 125_CR3
  publication-title: The Journal of Machine Learning Research
– volume: 47
  start-page: 2410
  issue: 5
  year: 2008
  ident: 125_CR26
  publication-title: SIAM Journal on Control and Optimization
  doi: 10.1137/070693424
– volume: 8
  start-page: 204
  issue: 3
  year: 2004
  ident: 125_CR45
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2004.826074
– ident: 125_CR34
– volume: 49
  start-page: 334
  issue: 3
  year: 2001
  ident: 125_CR42
  publication-title: Operations Research
  doi: 10.1287/opre.49.3.334.11210
– volume: 19
  start-page: 136
  issue: 1
  year: 2015
  ident: 125_CR40
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2014.2306677
– volume: 36
  start-page: 515
  issue: 4
  year: 2006
  ident: 125_CR35
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews
  doi: 10.1109/TSMCC.2006.875410
– volume: 3
  start-page: 1802
  year: 2003
  ident: 125_CR78
  publication-title: IEEE International Conference on Machine Learning and Cybernetics
– ident: 125_CR56
  doi: 10.1016/j.swevo.2015.01.003
– volume: 49
  start-page: 732
  issue: 5
  year: 2001
  ident: 125_CR14
  publication-title: Operations Research
  doi: 10.1287/opre.49.5.732.10615
– volume-title: Simulation modeling and analysis
  year: 2000
  ident: 125_CR39
– volume: 2
  start-page: 1024
  issue: 4
  year: 1992
  ident: 125_CR69
  publication-title: The Annals of Applied Probability
  doi: 10.1214/aoap/1177005588
– volume: 4
  start-page: 1942
  year: 1995
  ident: 125_CR33
  publication-title: Proceedings of IEEE International Conference on Neural Networks
  doi: 10.1109/ICNN.1995.488968
– ident: 125_CR19
  doi: 10.1109/MHS.1995.494215
– ident: 125_CR18
  doi: 10.1109/CEC.2004.1331041
– ident: 125_CR20
– volume: 10
  start-page: 251
  issue: 3
  year: 2000
  ident: 125_CR11
  publication-title: Discrete Event Dynamic Systems
  doi: 10.1023/A:1008349927281
– volume: 181
  start-page: 908
  issue: 2
  year: 2006
  ident: 125_CR48
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.01.066
– ident: 125_CR17
  doi: 10.1109/CEC.2015.7256940
– volume: 20
  start-page: 3:1
  issue: 1
  year: 2010
  ident: 125_CR72
  publication-title: ACM Transactions on Modeling and Computer Simulation (TOMACS)
  doi: 10.1145/1667072.1667075
– ident: 125_CR51
  doi: 10.1145/2330163.2330173
– ident: 125_CR8
– volume: 21
  start-page: 599
  issue: 4
  year: 2009
  ident: 125_CR25
  publication-title: INFORMS Journal on Computing
  doi: 10.1287/ijoc.1080.0314
– volume: 15
  start-page: 798
  issue: 6
  year: 2011
  ident: 125_CR64
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2010.2049361
– volume-title: A guide to simulation
  year: 2011
  ident: 125_CR9
– ident: 125_CR4
– volume: 3
  start-page: 101
  issue: 2–3
  year: 1988
  ident: 125_CR24
  publication-title: Machine learning
– volume: 20
  start-page: 579
  issue: 4
  year: 2008
  ident: 125_CR12
  publication-title: INFORMS Journal on Computing
  doi: 10.1287/ijoc.1080.0268
– ident: 125_CR62
  doi: 10.1007/BFb0040810
– ident: 125_CR41
  doi: 10.1109/WSC.2011.6148055
– ident: 125_CR44
– ident: 125_CR55
  doi: 10.1007/s00500-014-1438-y
– ident: 125_CR63
– volume-title: All of statistics: A concise course in statistical inference (Springer Texts in Statistics)
  year: 2004
  ident: 125_CR68
  doi: 10.1007/978-0-387-21736-9
– ident: 125_CR54
  doi: 10.1016/j.swevo.2014.02.004
– ident: 125_CR22
  doi: 10.1109/CEC.2010.5586186
– volume: 6
  start-page: 58
  issue: 1
  year: 2002
  ident: 125_CR15
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.985692
– volume: 9
  start-page: 303
  issue: 3
  year: 2005
  ident: 125_CR31
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.846356
– ident: 125_CR43
  doi: 10.1109/CEC.2001.934428
– volume: 43
  start-page: 1495
  issue: 5
  year: 2013
  ident: 125_CR27
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2013.2264670
– ident: 125_CR57
– volume: 410
  start-page: 1876
  issue: 19
  year: 2009
  ident: 125_CR2
  publication-title: Theoretical Computer Science
  doi: 10.1016/j.tcs.2009.01.016
– volume: 1
  start-page: 777
  year: 2002
  ident: 125_CR5
  publication-title: IEEE Proceedings of the World Congress on Computational Intelligence
– volume-title: Probability essentials
  year: 2003
  ident: 125_CR29
– volume: 102
  start-page: 8
  issue: 1
  year: 2007
  ident: 125_CR30
  publication-title: Information Processing Letters
  doi: 10.1016/j.ipl.2006.10.005
– volume: 16
  start-page: 645
  issue: 3
  year: 2005
  ident: 125_CR74
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2005.845141
– ident: 125_CR77
  doi: 10.1109/WSC.2011.6148117
– volume-title: Swarm intelligence
  year: 2001
  ident: 125_CR36
– volume: 24
  start-page: 20
  issue: 4
  year: 2014
  ident: 125_CR73
  publication-title: ACM Transactions on Modeling and Computer Simulation (TOMACS)
  doi: 10.1145/2627736
– volume: 10
  start-page: 440
  issue: 4
  year: 2006
  ident: 125_CR49
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.859468
– volume: 20
  start-page: 917
  issue: 8
  year: 2007
  ident: 125_CR75
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2007.07.002
– volume: 3
  start-page: 303
  issue: 4
  year: 2009
  ident: 125_CR59
  publication-title: Swarm Intelligence
  doi: 10.1007/s11721-009-0028-6
– ident: 125_CR53
  doi: 10.1145/2463372.2463373
– volume: 85
  start-page: 317
  issue: 6
  year: 2003
  ident: 125_CR67
  publication-title: Information Processing Letters
  doi: 10.1016/S0020-0190(02)00447-7
– volume: 15
  start-page: 405
  issue: 3
  year: 2011
  ident: 125_CR23
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2010.2053935
– volume-title: Adaptive Sampling
  year: 1996
  ident: 125_CR66
– ident: 125_CR32
  doi: 10.1109/CEC.1999.785509
– ident: 125_CR37
  doi: 10.1016/S0927-0507(06)13017-0
– volume: 15
  start-page: 1232
  issue: 4
  year: 2000
  ident: 125_CR76
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/59.898095
SSID ssj0059333
Score 2.2006485
Snippet We propose a new particle swarm optimization algorithm for problems where objective functions are subject to zero-mean, independent, and identically...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 161
SubjectTerms Artificial Intelligence
Communications Engineering
Computer Communication Networks
Computer Science
Computer Systems Organization and Communication Networks
Mathematical and Computational Engineering
Networks
Noise
Optimization algorithms
Statistical analysis
Title A new particle swarm optimization algorithm for noisy optimization problems
URI https://link.springer.com/article/10.1007/s11721-016-0125-2
https://www.proquest.com/docview/1880876320
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDI3QduHCN2Iwphw4gSK1aZOlxwptTExwYtI4VUmXANLWTusQ4t_jdAljCJA4183BTmw_2X5G6AJigK3OhUQJxUmcAGZVhhrS1SKPVaTymNlB4bt7PhjFt2M2dnPcle929yXJ2lOvh90sWgHoaxEwZQT8bpNZ6A6XeERT734ZIPRoVUpmBMIR9aXMn47YDEbrDPNbUbSONf09tOOSRJyurLqPtnRxgHb9Agbs3uMhGqYYsmI8d-bH1ZtczHAJXmDmxiuxnD6VgP-fZxiyU1yUL9X7poDbKFMdoVG_93A9IG47AsmjkC-JsJumpOJMhzoyNNeRkkpIFU5CI4wIJISmxAgJMV0BapGAMzgVhiXUGJ4ANj1GjaIs9AnCsQwtTdqEc6FiFTAVBVoKyFUigBtBqFoo8GrKckcdbjdYTLM16bHVbGbbxaxmM9pCl5-_zFe8GX8Jt73uM_eEqswSxVm6PBq00JW3x5fPvx12-i_pM7RN6_tgu8baqLFcvOpzSDOWqoOa6c3jsNepr9cH9jLI-Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQGWDhjSgU8MAEspQ4sXHGClEV-phaqVtkpzYgtUnVFCH-PefUphQBEnMuHu7su-_TvRC6ghhgs3MhUUJxEifAWZWhhtxqkcUqUlnMbKNwr8_bw_hxxEauj7v01e4-JVl56lWzm2UrQH0tA6aMgN_dBCwgbB3XkDa9-2XA0KNlKpkRCEfUpzJ_OmI9GK0Q5rekaBVrWntox4FE3FxadR9t6PwA7foFDNi9x0PUaWJAxXjmzI_LNzmf4gK8wNS1V2I5eSqA_z9PMaBTnBcv5fu6gNsoUx6hYet-cNcmbjsCyaKQL4iwm6ak4kyHOjI005GSSkgVjkMjjAgkhKbECAkxXQFrkcAzOBWGJdQYngA3PUa1vMj1CcKxDO2YtDHnQsUqYCoKtBSAVSKgG0Go6ijwakozNzrcbrCYpKuhx1azqS0Xs5pNaR1df_4yW87N-Eu44XWfuidUpnZQnB2XR4M6uvH2-PL5t8NO_yV9ibbag1437T70O2dom1Z3w1aQNVBtMX_V5wA5FuqiumIfQ93KWA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDI3QkBAXvhGDATlwAkVr06akxwmYBoOJA5N2q5IugUlbO61FiH-PsyaMIUDiXDcHx7H9ZPsZoTOIAaY65xPJZUTCGDCr1FSTS8XTUAYyDZkZFH7oRZ1-eDdgA7vntHDd7q4kWc00GJamrGxOh7q5GHwzyAVgsEHDlBHwwavgjX1j1n3acq6YAVoPqrIyIxCaqCtr_nTEcmBaZJvfCqTzuNPeQhs2YcSt6oa30YrKdtCmW8aA7dvcRd0WhgwZT60p4OJNzCY4B48wsaOWWIyf89mofJlgyFRxlo-K92UBu12m2EP99s3TVYfYTQkkDfyoJNxsnRIyYspXgaapCqSQXEh_6GuuuScgTMWaC4jvEhCMAMwRUa5ZTLWOYsCp-6iW5Zk6QDgUvqFMG0YRl6H0mAw8JTjkLQFAD8-XdeQ5NSWppRE32yzGyYIA2Wg2Ma1jRrMJraPzz1-mFYfGX8INp_vEPqciMaRxhjqPenV04e7jy-ffDjv8l_QpWnu8bif3t73uEVqnc9MwzWQNVCtnr-oYso9Snswt7ANGSM6U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+particle+swarm+optimization+algorithm+for+noisy+optimization+problems&rft.jtitle=Swarm+intelligence&rft.au=Taghiyeh%2C+Sajjad&rft.au=Xu%2C+Jie&rft.date=2016-09-01&rft.issn=1935-3812&rft.eissn=1935-3820&rft.volume=10&rft.issue=3&rft.spage=161&rft.epage=192&rft_id=info:doi/10.1007%2Fs11721-016-0125-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11721_016_0125_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-3812&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-3812&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-3812&client=summon