A Hybrid grey wolf optimizer and genetic algorithm for minimizing potential energy function
In this paper, we propose a new hybrid algorithm between the grey wolf optimizer algorithm and the genetic algorithm in order to minimize a simplified model of the energy function of the molecule. We call the proposed algorithm by Hybrid Grey Wolf Optimizer and Genetic Algorithm (HGWOGA). We employ...
Saved in:
Published in | Memetic computing Vol. 9; no. 4; pp. 347 - 359 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1865-9284 1865-9292 |
DOI | 10.1007/s12293-017-0234-5 |
Cover
Abstract | In this paper, we propose a new hybrid algorithm between the grey wolf optimizer algorithm and the genetic algorithm in order to minimize a simplified model of the energy function of the molecule. We call the proposed algorithm by Hybrid Grey Wolf Optimizer and Genetic Algorithm (HGWOGA). We employ three procedures in the HGWOGA. In the first procedure, we apply the grey wolf optimizer algorithm to balance between the exploration and the exploitation process in the proposed algorithm. In the second procedure, we utilize the dimensionality reduction and the population partitioning processes by dividing the population into sub-populations and using the arithmetical crossover operator in each sub-population in order to increase the diversity of the search in the algorithm. In the last procedure, we apply the genetic mutation operator in the whole population in order to refrain from the premature convergence and trapping in local minima. We implement the proposed algorithm with various molecule size with up to 200 dimensions and compare the proposed algorithm with 8 benchmark algorithms in order to validate its efficiency for solving molecular potential energy function. The numerical experiment results show that the proposed algorithm is a promising, competent, and capable of finding the global minimum or near global minimum of the molecular energy function faster than the other comparative algorithms. |
---|---|
AbstractList | In this paper, we propose a new hybrid algorithm between the grey wolf optimizer algorithm and the genetic algorithm in order to minimize a simplified model of the energy function of the molecule. We call the proposed algorithm by Hybrid Grey Wolf Optimizer and Genetic Algorithm (HGWOGA). We employ three procedures in the HGWOGA. In the first procedure, we apply the grey wolf optimizer algorithm to balance between the exploration and the exploitation process in the proposed algorithm. In the second procedure, we utilize the dimensionality reduction and the population partitioning processes by dividing the population into sub-populations and using the arithmetical crossover operator in each sub-population in order to increase the diversity of the search in the algorithm. In the last procedure, we apply the genetic mutation operator in the whole population in order to refrain from the premature convergence and trapping in local minima. We implement the proposed algorithm with various molecule size with up to 200 dimensions and compare the proposed algorithm with 8 benchmark algorithms in order to validate its efficiency for solving molecular potential energy function. The numerical experiment results show that the proposed algorithm is a promising, competent, and capable of finding the global minimum or near global minimum of the molecular energy function faster than the other comparative algorithms. |
Author | Tawhid, Mohamed A. Ali, Ahmed F. |
Author_xml | – sequence: 1 givenname: Mohamed A. surname: Tawhid fullname: Tawhid, Mohamed A. email: Mtawhid@tru.ca organization: Department of Mathematics and Statistics, Faculty of Science, Thompson Rivers University, Department of Mathematics and Computer Science, Faculty of Science, Alexandria University – sequence: 2 givenname: Ahmed F. surname: Ali fullname: Ali, Ahmed F. organization: Department of Mathematics and Statistics, Faculty of Science, Thompson Rivers University, Department of Computer Science, Faculty of Computers and Informatics, Suez Canal University |
BookMark | eNp9kE1LxDAQhoOs4LruD_AW8FzNRz-S47KoKyx40ZOHMNumNUubrGkWqb_elIqIoLlkmHmeZHjP0cw6qxG6pOSaElLc9JQxyRNCi4QwnibZCZpTkWeJZJLNvmuRnqFl3-9JPJwVIqVz9LLCm2HnTYUbrwf87toau0MwnfnQHoONfW11MCWGtnHehNcO187jztiRMbbBBxe0DQZaHEnfDLg-2jIYZy_QaQ1tr5df9wI9390-rTfJ9vH-Yb3aJiWneUhERhnXEnZ0x1jKZVWlOQcGFdQy05nIc8IFyKoQAJnUPI0jInlRgsgriNUCXU3vHrx7O-o-qL07ehu_VFTmjDNSSBqpYqJK7_re61qVJsC4Z_BgWkWJGsNUU5gqhqnGMFUWTfrLPHjTgR_-ddjk9JG1jfY_dvpT-gRMpYjX |
CitedBy_id | crossref_primary_10_3390_math10060999 crossref_primary_10_3390_electronics13071308 crossref_primary_10_3390_en15228754 crossref_primary_10_1007_s00521_019_04284_9 crossref_primary_10_1007_s00366_020_00996_y crossref_primary_10_3390_mca23010014 crossref_primary_10_1007_s13369_019_03806_w crossref_primary_10_1080_0952813X_2019_1647558 crossref_primary_10_3390_s24051502 crossref_primary_10_1016_j_asoc_2019_02_037 crossref_primary_10_1016_j_cie_2019_106040 crossref_primary_10_1016_j_eswa_2018_07_022 crossref_primary_10_1080_21642583_2018_1531359 crossref_primary_10_1109_ACCESS_2019_2958288 crossref_primary_10_1002_int_22744 crossref_primary_10_1016_j_matpr_2020_10_534 crossref_primary_10_1109_ACCESS_2023_3240576 crossref_primary_10_1007_s12597_024_00785_x crossref_primary_10_1016_j_asoc_2019_01_025 crossref_primary_10_1016_j_jocs_2018_06_008 crossref_primary_10_1088_1742_6596_1821_1_012038 crossref_primary_10_36306_konjes_788082 crossref_primary_10_1177_0003702818809996 crossref_primary_10_3390_math10030351 crossref_primary_10_1007_s00500_021_06194_2 crossref_primary_10_1016_j_asoc_2020_106602 crossref_primary_10_1007_s00500_022_07593_9 crossref_primary_10_1007_s12065_019_00255_0 crossref_primary_10_1007_s00521_019_04465_6 crossref_primary_10_1007_s00521_020_05229_3 crossref_primary_10_1016_j_asoc_2022_108429 crossref_primary_10_1080_0952813X_2018_1554712 crossref_primary_10_1007_s10825_020_01464_y crossref_primary_10_1038_s41598_024_84934_8 crossref_primary_10_1109_ACCESS_2021_3132052 crossref_primary_10_1007_s13198_020_00995_8 crossref_primary_10_1007_s12530_019_09291_8 crossref_primary_10_1007_s11356_023_27574_1 crossref_primary_10_1016_j_eswa_2019_113125 crossref_primary_10_1051_e3sconf_20198701006 crossref_primary_10_3390_app14103986 crossref_primary_10_1007_s12065_022_00705_2 crossref_primary_10_35378_gujs_820885 crossref_primary_10_1109_ACCESS_2019_2897325 crossref_primary_10_1109_ACCESS_2018_2889816 crossref_primary_10_2478_amns_2024_3683 crossref_primary_10_1155_2021_3517145 crossref_primary_10_1016_j_asej_2025_103342 crossref_primary_10_1109_ACCESS_2020_3012633 crossref_primary_10_1007_s10586_024_04458_8 crossref_primary_10_1007_s10586_024_04455_x crossref_primary_10_1016_j_ijleo_2019_06_013 crossref_primary_10_1049_smt2_12023 crossref_primary_10_53600_ajesa_1321182 crossref_primary_10_1016_j_aej_2022_07_033 crossref_primary_10_1007_s00521_022_07356_5 crossref_primary_10_59782_sidr_v3i1_72 crossref_primary_10_1038_s41598_024_71726_3 crossref_primary_10_1007_s44196_021_00013_0 crossref_primary_10_1016_j_eswa_2022_117597 crossref_primary_10_1038_s41598_025_92983_w crossref_primary_10_1080_1448837X_2019_1640010 crossref_primary_10_1007_s00542_018_04291_1 crossref_primary_10_1109_ACCESS_2019_2910813 crossref_primary_10_1007_s41403_018_0051_2 crossref_primary_10_1016_j_asoc_2021_107298 crossref_primary_10_1007_s00500_018_3137_6 crossref_primary_10_1016_j_asoc_2019_105658 crossref_primary_10_1007_s10489_018_1340_x crossref_primary_10_1007_s00500_022_07250_1 crossref_primary_10_1007_s11047_022_09916_z crossref_primary_10_1007_s12065_024_00909_8 crossref_primary_10_1155_2017_2030489 crossref_primary_10_1186_s13640_020_0491_y crossref_primary_10_1142_S1469026818500220 crossref_primary_10_1371_journal_pone_0291626 crossref_primary_10_1007_s00366_019_00795_0 crossref_primary_10_1007_s10732_018_9397_6 crossref_primary_10_1109_ACCESS_2023_3250384 crossref_primary_10_1007_s41870_020_00421_z crossref_primary_10_1016_j_knosys_2020_106684 crossref_primary_10_1371_journal_pone_0282600 crossref_primary_10_1007_s12293_017_0239_0 crossref_primary_10_1007_s11831_020_09429_x crossref_primary_10_3233_HIS_190271 crossref_primary_10_1007_s10462_022_10324_z crossref_primary_10_1109_ACCESS_2019_2906757 crossref_primary_10_46519_ij3dptdi_1321945 crossref_primary_10_1007_s00500_018_3310_y crossref_primary_10_1007_s11042_022_13728_9 |
Cites_doi | 10.1007/s00500-008-0392-y 10.1007/s12293-010-0032-9 10.3934/naco.2011.1.191 10.1023/B:NUMA.0000021763.84725.b9 10.1016/j.advengsoft.2013.12.007 10.1007/978-3-662-03315-9 10.1016/j.jmgm.2014.01.001 10.1007/s12293-016-0180-7 10.1007/BF01096719 10.1201/9781420036268 10.1126/science.285.5432.1368 10.1007/s10479-005-2453-2 10.1007/s12293-013-0128-0 10.1126/science.181.4096.223 10.1016/j.ejor.2006.06.052 10.1007/s12293-016-0212-3 10.11121/ijocta.01.2012.0044 10.1090/dimacs/047/07 10.1002/9780470125793.ch2 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2017 Copyright Springer Science & Business Media 2017 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2017 – notice: Copyright Springer Science & Business Media 2017 |
DBID | AAYXX CITATION |
DOI | 10.1007/s12293-017-0234-5 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1865-9292 |
EndPage | 359 |
ExternalDocumentID | 10_1007_s12293_017_0234_5 |
GrantInformation_xml | – fundername: NSERC |
GroupedDBID | -5B -5G -BR -EM -~C 06D 0R~ 0VY 1N0 203 29M 29~ 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 40E 67Z 6NX 875 8TC 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AUKKA AXYYD AYJHY BA0 BGNMA CAG COF CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR I~X J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PT4 QOS R89 RIG RLLFE ROL RSV S1Z S27 S3B SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z83 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c316t-85123e9ab1b22439dd463a2adaf95e5866038a9d78aa59e342ad0937ca86da093 |
IEDL.DBID | AGYKE |
ISSN | 1865-9284 |
IngestDate | Sun Sep 07 03:13:44 EDT 2025 Tue Jul 01 02:52:11 EDT 2025 Thu Apr 24 22:57:31 EDT 2025 Fri Feb 21 02:35:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Global optimization Grey wolf optimizer Molecular energy function Genetic algorithm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-85123e9ab1b22439dd463a2adaf95e5866038a9d78aa59e342ad0937ca86da093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1962320791 |
PQPubID | 2044125 |
PageCount | 13 |
ParticipantIDs | proquest_journals_1962320791 crossref_citationtrail_10_1007_s12293_017_0234_5 crossref_primary_10_1007_s12293_017_0234_5 springer_journals_10_1007_s12293_017_0234_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-01 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Memetic computing |
PublicationTitleAbbrev | Memetic Comp |
PublicationYear | 2017 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Mirjalili, Mirjalili, Lewis (CR20) 2014; 69 Sheskin (CR22) 2003 Tawhid, Ali (CR23) 2016; 8 Holland (CR14) 1975 Kusum, Barak, Katiyar, Nagar (CR17) 2011; 2 Troyer, Cohen (CR24) 1991; 2 Bansal, Sharma, Jadon, Clerc (CR4) 2014; 6 CR10 Goldberg (CR12) 1989 Michalewicz (CR19) 1996 Wales, Scheraga (CR25) 1999; 285 Draz̆ić, Lavor, Maculan, Mladenović (CR9) 2008; 185 Deep, Thakur (CR8) 2007; 188 Bansal, Shashi, Katiyar (CR3) 2010; 6 Anfinsen (CR2) 1973; 181 CR6 Deep, Thakur (CR7) 2007; 193 Barbosa, Lavor, Raupp (CR5) 2005; 138 CR26 Garcia, Fernandez, Luengo, Herrera (CR11) 2009; 13 Kovac̆ević-Vujc̆ić, čangalović, Draz̆ić, Mladenović, Hoai An, Tao (CR15) 2004 Zhao, Tang (CR28) 2006; 46 Lavor, Maculan (CR18) 2004; 35 Pardalos, Shalloway, Xue (CR21) 1994; 4 Agrawal, Silakari (CR1) 2014; 49 Hedar, Ali, Hassan (CR13) 2011; 1 Kramer (CR16) 2010; 2.1 Zar (CR27) 1999 DJ Sheskin (234_CR22) 2003 S Mirjalili (234_CR20) 2014; 69 Z Michalewicz (234_CR19) 1996 MA Tawhid (234_CR23) 2016; 8 234_CR10 K Deep (234_CR7) 2007; 193 JM Troyer (234_CR24) 1991; 2 O Kramer (234_CR16) 2010; 2.1 DJ Wales (234_CR25) 1999; 285 JC Bansal (234_CR4) 2014; 6 DE Goldberg (234_CR12) 1989 J Zhao (234_CR28) 2006; 46 K Deep (234_CR8) 2007; 188 CB Anfinsen (234_CR2) 1973; 181 S Agrawal (234_CR1) 2014; 49 PM Pardalos (234_CR21) 1994; 4 234_CR26 HJC Barbosa (234_CR5) 2005; 138 M Draz̆ić (234_CR9) 2008; 185 JC Bansal (234_CR3) 2010; 6 JH Holland (234_CR14) 1975 C Lavor (234_CR18) 2004; 35 JH Zar (234_CR27) 1999 DEEP Kusum (234_CR17) 2011; 2 S Garcia (234_CR11) 2009; 13 A Hedar (234_CR13) 2011; 1 V Kovac̆ević-Vujc̆ić (234_CR15) 2004 234_CR6 |
References_xml | – volume: 13 start-page: 959 year: 2009 end-page: 977 ident: CR11 article-title: A study of statistical techniques and performance measures for genetics-based machine learning, accuracy and interpretability publication-title: Soft Comput doi: 10.1007/s00500-008-0392-y – volume: 2.1 start-page: 69 year: 2010 end-page: 83 ident: CR16 article-title: Iterated local search with Powell’s method: a memetic algorithm for continuous global optimization publication-title: Memetic Comput doi: 10.1007/s12293-010-0032-9 – year: 1975 ident: CR14 publication-title: Adaptation in aatural and artificial systems – start-page: 215 year: 2004 end-page: 222 ident: CR15 article-title: VNS-based heuristics for continuous global optimization publication-title: Modelling. Computation and optimization in information systems and management sciences – volume: 1 start-page: 191 issue: 1 year: 2011 end-page: 209 ident: CR13 article-title: Genetic algorithm and tabu search based methods for molecular 3D-structure prediction publication-title: Int J Numer Algebra Control Optim doi: 10.3934/naco.2011.1.191 – volume: 35 start-page: 287 year: 2004 end-page: 300 ident: CR18 article-title: A function to test methods applied to global minimization of potential energy of molecules publication-title: Numerical Algorithms doi: 10.1023/B:NUMA.0000021763.84725.b9 – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: CR20 article-title: Grey wolf optimizer publication-title: Adv Eng Soft doi: 10.1016/j.advengsoft.2013.12.007 – ident: CR10 – volume: 193 start-page: 211 issue: 1 year: 2007 end-page: 230 ident: CR7 article-title: A new mutation operator for real coded genetic algorithms publication-title: Appl Math Comput – volume: 6 start-page: 1 issue: 9 year: 2010 end-page: 9 ident: CR3 article-title: Minimization of molecular potential energy function using particle swarm optimization publication-title: Int J Appl Math Mech – ident: CR6 – volume: 46 start-page: 775 issue: 5 year: 2006 end-page: 780 ident: CR28 article-title: An improved simulated annealing algorithm and its application publication-title: J Dalian Univ Technol – year: 1996 ident: CR19 publication-title: Genetic algorithms + data structures = evolution programs doi: 10.1007/978-3-662-03315-9 – volume: 49 start-page: 11 year: 2014 end-page: 17 ident: CR1 article-title: Fletcher–Reeves based particle swarm optimization for prediction of molecular structure publication-title: J Mol Graph Model doi: 10.1016/j.jmgm.2014.01.001 – volume: 2 start-page: 51 issue: 1 year: 2011 end-page: 58 ident: CR17 article-title: Minimization of molecular potential energy function using newly developed real coded genetic algorithms publication-title: Int J Optim Control Theor Appl (IJOCTA) – volume: 8 start-page: 169 issue: 3 year: 2016 end-page: 188 ident: CR23 article-title: A simplex social spider algorithm for solving integer programming and minimax problems publication-title: Memetic Comput doi: 10.1007/s12293-016-0180-7 – volume: 4 start-page: 117 year: 1994 end-page: 133 ident: CR21 article-title: Optimization methods for computing global minima of nonconvex potential energy function publication-title: J Global Optim doi: 10.1007/BF01096719 – year: 2003 ident: CR22 publication-title: Handbook of parametric and nonparametric statistical procedures doi: 10.1201/9781420036268 – volume: 188 start-page: 895 issue: 1 year: 2007 end-page: 911 ident: CR8 article-title: A new crossover operator for real coded genetic algorithms publication-title: Appl Math Comput – volume: 285 start-page: 1368 year: 1999 end-page: 1372 ident: CR25 article-title: Global optimization of clusters, crystals and biomolecules publication-title: Science doi: 10.1126/science.285.5432.1368 – year: 1989 ident: CR12 publication-title: Genetic algorithms in search, optimization, and machine learning – year: 1999 ident: CR27 publication-title: Biostatistical analysis – volume: 138 start-page: 189 year: 2005 end-page: 202 ident: CR5 article-title: A GA-simplex hybrid algorithm for global minimization of molecular potential energy function publication-title: Ann Oper Res doi: 10.1007/s10479-005-2453-2 – volume: 6 start-page: 31 issue: 1 year: 2014 end-page: 47 ident: CR4 article-title: Spider monkey optimization algorithm for numerical optimization publication-title: Memetic comput doi: 10.1007/s12293-013-0128-0 – ident: CR26 – volume: 181 start-page: 223 year: 1973 end-page: 230 ident: CR2 article-title: Principles that govern the folding of protein chains publication-title: Science doi: 10.1126/science.181.4096.223 – volume: 185 start-page: 1265 year: 2008 end-page: 1273 ident: CR9 article-title: A continuous variable neighborhood search heuristic for finding the three-dimensional structure of a molecule publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2006.06.052 – volume: 2 start-page: 57 year: 1991 end-page: 80 ident: CR24 article-title: Simplified models for understanding and predicting protein structure publication-title: Rev Comput Chem (Wiley-VCH) – volume-title: Biostatistical analysis year: 1999 ident: 234_CR27 – volume: 6 start-page: 31 issue: 1 year: 2014 ident: 234_CR4 publication-title: Memetic comput doi: 10.1007/s12293-013-0128-0 – volume: 49 start-page: 11 year: 2014 ident: 234_CR1 publication-title: J Mol Graph Model doi: 10.1016/j.jmgm.2014.01.001 – volume: 193 start-page: 211 issue: 1 year: 2007 ident: 234_CR7 publication-title: Appl Math Comput – volume: 138 start-page: 189 year: 2005 ident: 234_CR5 publication-title: Ann Oper Res doi: 10.1007/s10479-005-2453-2 – start-page: 215 volume-title: Modelling. Computation and optimization in information systems and management sciences year: 2004 ident: 234_CR15 – volume-title: Handbook of parametric and nonparametric statistical procedures year: 2003 ident: 234_CR22 doi: 10.1201/9781420036268 – ident: 234_CR26 doi: 10.1007/s12293-016-0212-3 – volume: 2 start-page: 51 issue: 1 year: 2011 ident: 234_CR17 publication-title: Int J Optim Control Theor Appl (IJOCTA) doi: 10.11121/ijocta.01.2012.0044 – volume: 69 start-page: 46 year: 2014 ident: 234_CR20 publication-title: Adv Eng Soft doi: 10.1016/j.advengsoft.2013.12.007 – volume: 181 start-page: 223 year: 1973 ident: 234_CR2 publication-title: Science doi: 10.1126/science.181.4096.223 – volume: 46 start-page: 775 issue: 5 year: 2006 ident: 234_CR28 publication-title: J Dalian Univ Technol – volume: 285 start-page: 1368 year: 1999 ident: 234_CR25 publication-title: Science doi: 10.1126/science.285.5432.1368 – ident: 234_CR10 doi: 10.1090/dimacs/047/07 – volume: 13 start-page: 959 year: 2009 ident: 234_CR11 publication-title: Soft Comput doi: 10.1007/s00500-008-0392-y – volume-title: Genetic algorithms + data structures = evolution programs year: 1996 ident: 234_CR19 doi: 10.1007/978-3-662-03315-9 – volume: 2 start-page: 57 year: 1991 ident: 234_CR24 publication-title: Rev Comput Chem (Wiley-VCH) doi: 10.1002/9780470125793.ch2 – volume: 188 start-page: 895 issue: 1 year: 2007 ident: 234_CR8 publication-title: Appl Math Comput – volume: 185 start-page: 1265 year: 2008 ident: 234_CR9 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2006.06.052 – volume: 4 start-page: 117 year: 1994 ident: 234_CR21 publication-title: J Global Optim doi: 10.1007/BF01096719 – ident: 234_CR6 – volume: 35 start-page: 287 year: 2004 ident: 234_CR18 publication-title: Numerical Algorithms doi: 10.1023/B:NUMA.0000021763.84725.b9 – volume-title: Genetic algorithms in search, optimization, and machine learning year: 1989 ident: 234_CR12 – volume: 2.1 start-page: 69 year: 2010 ident: 234_CR16 publication-title: Memetic Comput doi: 10.1007/s12293-010-0032-9 – volume: 1 start-page: 191 issue: 1 year: 2011 ident: 234_CR13 publication-title: Int J Numer Algebra Control Optim doi: 10.3934/naco.2011.1.191 – volume: 6 start-page: 1 issue: 9 year: 2010 ident: 234_CR3 publication-title: Int J Appl Math Mech – volume-title: Adaptation in aatural and artificial systems year: 1975 ident: 234_CR14 – volume: 8 start-page: 169 issue: 3 year: 2016 ident: 234_CR23 publication-title: Memetic Comput doi: 10.1007/s12293-016-0180-7 |
SSID | ssj0000327841 |
Score | 2.418611 |
Snippet | In this paper, we propose a new hybrid algorithm between the grey wolf optimizer algorithm and the genetic algorithm in order to minimize a simplified model of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 347 |
SubjectTerms | Applications of Mathematics Artificial Intelligence Bioinformatics Complex Systems Control Energy conservation Energy conversion efficiency Engineering Genetic algorithms Mathematical and Computational Engineering Mathematical models Mechatronics Population Potential energy Regular Research Paper Robotics Simulation |
Title | A Hybrid grey wolf optimizer and genetic algorithm for minimizing potential energy function |
URI | https://link.springer.com/article/10.1007/s12293-017-0234-5 https://www.proquest.com/docview/1962320791 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-47aIHP6bi_Bg5eFIiXdrE5DhEHQqeNph4KGmb6HBrh1ZE_3pfutapqLBbaZLXNu_lvV_6PgJwmHDrvGOccs8KGqBJpjJmMZU6QPnysVkX1T5vRG8QXA35sMzjfq6i3SuXZKGp58lujLlYM9SqaGcCymvQ4B2pZB0a3cvb6_mvFc8vvGluqyUFpwo1cOXP_I3Od4s0h5k_PKOFwblYg371qrM4k8eTlzw6id9_VHFc8FvWYbUEoKQ7k5gNWDJpE9aqwx1IudabsPKlUuEm3HVJ780ldxHcn7-R12xsSYbaZjJ6x0E6xfuoNJEk0eP77GmUP0wIwmHiKpdgH6RBplnuIpPw2abINyTOpDqx2ILBxXn_rEfLcxlo7HdEThGkMd8oHXUiBAC-SpJA-JrpRFvFDZdCeL7UKjmVWnNl_ACbPIRBsZYi0Xi1DfU0S80OEKZEpKyNteHCnXsScc1QVAKL_NPG2hZ4FW_CuCxa7s7OGIfzcstuKkOcytBNZchbcPQ5ZDqr2PFf5_2K4WG5eJ9DVEqIM71T1WnBccW_L81_EdtdqPceLDMnAEVozD7U86cXc4AAJ4_apUC3oTZg3Q8ZYvD- |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RPKgHP1AjitqDJ02T0a1lPRIjQUVOkJB4WLqtVRJgBGYM_vW-jk3QqIm3ZW3fkvfa937d-wK4jLmx3jFOuWME9dAkUz9iEfWVh_vLxWGVVfvsiFbPu-_zfp7HPSui3QuXZKapl8lujNlYM9SqaGc8ytdhA7GAb9sW9Fjj88eK42a-NHvR8gWnEvVv4c38icpXe7QEmd_8opm5ae7BTo4TSWMh2H1Y0-My7BY9GEh-JMuwvVJQ8ACeGqQ1tzlYBK_Rc_KWDA1JUCmMBu-4SI3xPeo2JEnU8DmZDtKXEUHUSmyBEZyDNMgkSW0AEX5bZ2mBxFo-K71D6DVvuzctmrdPoJFbEylFLMVcLVVYC9FOuzKOPeEqpmJlJNfcF8JxfSXjuq8Ul9r1cMhBtBIpX8QKn46gNE7G-hgIkyKUxkRKc2Hbk4RcMZSoZ5DRShtTAadgYhDltcVti4thsKyKbPkeIN8Dy_eAV-Dqc8lkUVjjr8nVQjJBfsZmAeoOhINOXdYqcF1Ia2X4N2In_5p9AZut7mM7aN91Hk5hi9mdk0WzVKGUTl_1GWKSNDzP9uAHNrrWNA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4SAgOvBHjmQMnUESXNllznIBpPIQ4MGkShyhtE5i0tRMUofHrcbp2AwRI3Ko8fLAd26njzwBHCbcuO8Yp96ygAbpkGsYspqEOUL98nNYF2uetaHeCqy7vln1OX6rX7lVKclzT4FCa0vx0mNjTaeEbY-7dGVpY9DkB5bMwj9a47hS9w5qTnyyeX-TV3KUrFJxKtMVVZvMnKl990zTg_JYjLVxPaxWWy5iRNMdCXoMZk67DStWPgZTHcx2WPoELbsBDk7RHrh6L4JV6RN6yviUZGohB7x036RTH0c4hSaL7j9lzL38aEIxgiQMbwTVIgwwzxxPUUGKKEkHivKCT5CZ0Whf3Z21atlKgsV8XOcW4ivlG6qgeoc_2ZZIEwtdMJ9pKbngohOeHWiaNUGsujR_glIeRS6xDkWj82oK5NEvNNhAmRSStjbXhwrUqibhmKN3AIqO1sbYGXsVEFZc4467dRV9NEZId3xXyXTm-K16D48mW4Rhk46_Fe5VkVHneXhTaEQwNvYas1-Ckktan6d-I7fxr9SEs3J231M3l7fUuLDKnOMXDlj2Yy59fzT6GJ3l0UKjgB8As2nA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+grey+wolf+optimizer+and+genetic+algorithm+for+minimizing+potential+energy+function&rft.jtitle=Memetic+computing&rft.au=Tawhid%2C+Mohamed+A.&rft.au=Ali%2C+Ahmed+F.&rft.date=2017-12-01&rft.issn=1865-9284&rft.eissn=1865-9292&rft.volume=9&rft.issue=4&rft.spage=347&rft.epage=359&rft_id=info:doi/10.1007%2Fs12293-017-0234-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12293_017_0234_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-9284&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-9284&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-9284&client=summon |