A Hybrid grey wolf optimizer and genetic algorithm for minimizing potential energy function

In this paper, we propose a new hybrid algorithm between the grey wolf optimizer algorithm and the genetic algorithm in order to minimize a simplified model of the energy function of the molecule. We call the proposed algorithm by Hybrid Grey Wolf Optimizer and Genetic Algorithm (HGWOGA). We employ...

Full description

Saved in:
Bibliographic Details
Published inMemetic computing Vol. 9; no. 4; pp. 347 - 359
Main Authors Tawhid, Mohamed A., Ali, Ahmed F.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1865-9284
1865-9292
DOI10.1007/s12293-017-0234-5

Cover

Abstract In this paper, we propose a new hybrid algorithm between the grey wolf optimizer algorithm and the genetic algorithm in order to minimize a simplified model of the energy function of the molecule. We call the proposed algorithm by Hybrid Grey Wolf Optimizer and Genetic Algorithm (HGWOGA). We employ three procedures in the HGWOGA. In the first procedure, we apply the grey wolf optimizer algorithm to balance between the exploration and the exploitation process in the proposed algorithm. In the second procedure, we utilize the dimensionality reduction and the population partitioning processes by dividing the population into sub-populations and using the arithmetical crossover operator in each sub-population in order to increase the diversity of the search in the algorithm. In the last procedure, we apply the genetic mutation operator in the whole population in order to refrain from the premature convergence and trapping in local minima. We implement the proposed algorithm with various molecule size with up to 200 dimensions and compare the proposed algorithm with 8 benchmark algorithms in order to validate its efficiency for solving molecular potential energy function. The numerical experiment results show that the proposed algorithm is a promising, competent, and capable of finding the global minimum or near global minimum of the molecular energy function faster than the other comparative algorithms.
AbstractList In this paper, we propose a new hybrid algorithm between the grey wolf optimizer algorithm and the genetic algorithm in order to minimize a simplified model of the energy function of the molecule. We call the proposed algorithm by Hybrid Grey Wolf Optimizer and Genetic Algorithm (HGWOGA). We employ three procedures in the HGWOGA. In the first procedure, we apply the grey wolf optimizer algorithm to balance between the exploration and the exploitation process in the proposed algorithm. In the second procedure, we utilize the dimensionality reduction and the population partitioning processes by dividing the population into sub-populations and using the arithmetical crossover operator in each sub-population in order to increase the diversity of the search in the algorithm. In the last procedure, we apply the genetic mutation operator in the whole population in order to refrain from the premature convergence and trapping in local minima. We implement the proposed algorithm with various molecule size with up to 200 dimensions and compare the proposed algorithm with 8 benchmark algorithms in order to validate its efficiency for solving molecular potential energy function. The numerical experiment results show that the proposed algorithm is a promising, competent, and capable of finding the global minimum or near global minimum of the molecular energy function faster than the other comparative algorithms.
Author Tawhid, Mohamed A.
Ali, Ahmed F.
Author_xml – sequence: 1
  givenname: Mohamed A.
  surname: Tawhid
  fullname: Tawhid, Mohamed A.
  email: Mtawhid@tru.ca
  organization: Department of Mathematics and Statistics, Faculty of Science, Thompson Rivers University, Department of Mathematics and Computer Science, Faculty of Science, Alexandria University
– sequence: 2
  givenname: Ahmed F.
  surname: Ali
  fullname: Ali, Ahmed F.
  organization: Department of Mathematics and Statistics, Faculty of Science, Thompson Rivers University, Department of Computer Science, Faculty of Computers and Informatics, Suez Canal University
BookMark eNp9kE1LxDAQhoOs4LruD_AW8FzNRz-S47KoKyx40ZOHMNumNUubrGkWqb_elIqIoLlkmHmeZHjP0cw6qxG6pOSaElLc9JQxyRNCi4QwnibZCZpTkWeJZJLNvmuRnqFl3-9JPJwVIqVz9LLCm2HnTYUbrwf87toau0MwnfnQHoONfW11MCWGtnHehNcO187jztiRMbbBBxe0DQZaHEnfDLg-2jIYZy_QaQ1tr5df9wI9390-rTfJ9vH-Yb3aJiWneUhERhnXEnZ0x1jKZVWlOQcGFdQy05nIc8IFyKoQAJnUPI0jInlRgsgriNUCXU3vHrx7O-o-qL07ehu_VFTmjDNSSBqpYqJK7_re61qVJsC4Z_BgWkWJGsNUU5gqhqnGMFUWTfrLPHjTgR_-ddjk9JG1jfY_dvpT-gRMpYjX
CitedBy_id crossref_primary_10_3390_math10060999
crossref_primary_10_3390_electronics13071308
crossref_primary_10_3390_en15228754
crossref_primary_10_1007_s00521_019_04284_9
crossref_primary_10_1007_s00366_020_00996_y
crossref_primary_10_3390_mca23010014
crossref_primary_10_1007_s13369_019_03806_w
crossref_primary_10_1080_0952813X_2019_1647558
crossref_primary_10_3390_s24051502
crossref_primary_10_1016_j_asoc_2019_02_037
crossref_primary_10_1016_j_cie_2019_106040
crossref_primary_10_1016_j_eswa_2018_07_022
crossref_primary_10_1080_21642583_2018_1531359
crossref_primary_10_1109_ACCESS_2019_2958288
crossref_primary_10_1002_int_22744
crossref_primary_10_1016_j_matpr_2020_10_534
crossref_primary_10_1109_ACCESS_2023_3240576
crossref_primary_10_1007_s12597_024_00785_x
crossref_primary_10_1016_j_asoc_2019_01_025
crossref_primary_10_1016_j_jocs_2018_06_008
crossref_primary_10_1088_1742_6596_1821_1_012038
crossref_primary_10_36306_konjes_788082
crossref_primary_10_1177_0003702818809996
crossref_primary_10_3390_math10030351
crossref_primary_10_1007_s00500_021_06194_2
crossref_primary_10_1016_j_asoc_2020_106602
crossref_primary_10_1007_s00500_022_07593_9
crossref_primary_10_1007_s12065_019_00255_0
crossref_primary_10_1007_s00521_019_04465_6
crossref_primary_10_1007_s00521_020_05229_3
crossref_primary_10_1016_j_asoc_2022_108429
crossref_primary_10_1080_0952813X_2018_1554712
crossref_primary_10_1007_s10825_020_01464_y
crossref_primary_10_1038_s41598_024_84934_8
crossref_primary_10_1109_ACCESS_2021_3132052
crossref_primary_10_1007_s13198_020_00995_8
crossref_primary_10_1007_s12530_019_09291_8
crossref_primary_10_1007_s11356_023_27574_1
crossref_primary_10_1016_j_eswa_2019_113125
crossref_primary_10_1051_e3sconf_20198701006
crossref_primary_10_3390_app14103986
crossref_primary_10_1007_s12065_022_00705_2
crossref_primary_10_35378_gujs_820885
crossref_primary_10_1109_ACCESS_2019_2897325
crossref_primary_10_1109_ACCESS_2018_2889816
crossref_primary_10_2478_amns_2024_3683
crossref_primary_10_1155_2021_3517145
crossref_primary_10_1016_j_asej_2025_103342
crossref_primary_10_1109_ACCESS_2020_3012633
crossref_primary_10_1007_s10586_024_04458_8
crossref_primary_10_1007_s10586_024_04455_x
crossref_primary_10_1016_j_ijleo_2019_06_013
crossref_primary_10_1049_smt2_12023
crossref_primary_10_53600_ajesa_1321182
crossref_primary_10_1016_j_aej_2022_07_033
crossref_primary_10_1007_s00521_022_07356_5
crossref_primary_10_59782_sidr_v3i1_72
crossref_primary_10_1038_s41598_024_71726_3
crossref_primary_10_1007_s44196_021_00013_0
crossref_primary_10_1016_j_eswa_2022_117597
crossref_primary_10_1038_s41598_025_92983_w
crossref_primary_10_1080_1448837X_2019_1640010
crossref_primary_10_1007_s00542_018_04291_1
crossref_primary_10_1109_ACCESS_2019_2910813
crossref_primary_10_1007_s41403_018_0051_2
crossref_primary_10_1016_j_asoc_2021_107298
crossref_primary_10_1007_s00500_018_3137_6
crossref_primary_10_1016_j_asoc_2019_105658
crossref_primary_10_1007_s10489_018_1340_x
crossref_primary_10_1007_s00500_022_07250_1
crossref_primary_10_1007_s11047_022_09916_z
crossref_primary_10_1007_s12065_024_00909_8
crossref_primary_10_1155_2017_2030489
crossref_primary_10_1186_s13640_020_0491_y
crossref_primary_10_1142_S1469026818500220
crossref_primary_10_1371_journal_pone_0291626
crossref_primary_10_1007_s00366_019_00795_0
crossref_primary_10_1007_s10732_018_9397_6
crossref_primary_10_1109_ACCESS_2023_3250384
crossref_primary_10_1007_s41870_020_00421_z
crossref_primary_10_1016_j_knosys_2020_106684
crossref_primary_10_1371_journal_pone_0282600
crossref_primary_10_1007_s12293_017_0239_0
crossref_primary_10_1007_s11831_020_09429_x
crossref_primary_10_3233_HIS_190271
crossref_primary_10_1007_s10462_022_10324_z
crossref_primary_10_1109_ACCESS_2019_2906757
crossref_primary_10_46519_ij3dptdi_1321945
crossref_primary_10_1007_s00500_018_3310_y
crossref_primary_10_1007_s11042_022_13728_9
Cites_doi 10.1007/s00500-008-0392-y
10.1007/s12293-010-0032-9
10.3934/naco.2011.1.191
10.1023/B:NUMA.0000021763.84725.b9
10.1016/j.advengsoft.2013.12.007
10.1007/978-3-662-03315-9
10.1016/j.jmgm.2014.01.001
10.1007/s12293-016-0180-7
10.1007/BF01096719
10.1201/9781420036268
10.1126/science.285.5432.1368
10.1007/s10479-005-2453-2
10.1007/s12293-013-0128-0
10.1126/science.181.4096.223
10.1016/j.ejor.2006.06.052
10.1007/s12293-016-0212-3
10.11121/ijocta.01.2012.0044
10.1090/dimacs/047/07
10.1002/9780470125793.ch2
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2017
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2017
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
DOI 10.1007/s12293-017-0234-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1865-9292
EndPage 359
ExternalDocumentID 10_1007_s12293_017_0234_5
GrantInformation_xml – fundername: NSERC
GroupedDBID -5B
-5G
-BR
-EM
-~C
06D
0R~
0VY
1N0
203
29M
29~
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
40E
67Z
6NX
875
8TC
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AUKKA
AXYYD
AYJHY
BA0
BGNMA
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PT4
QOS
R89
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z83
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c316t-85123e9ab1b22439dd463a2adaf95e5866038a9d78aa59e342ad0937ca86da093
IEDL.DBID AGYKE
ISSN 1865-9284
IngestDate Sun Sep 07 03:13:44 EDT 2025
Tue Jul 01 02:52:11 EDT 2025
Thu Apr 24 22:57:31 EDT 2025
Fri Feb 21 02:35:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Global optimization
Grey wolf optimizer
Molecular energy function
Genetic algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-85123e9ab1b22439dd463a2adaf95e5866038a9d78aa59e342ad0937ca86da093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1962320791
PQPubID 2044125
PageCount 13
ParticipantIDs proquest_journals_1962320791
crossref_citationtrail_10_1007_s12293_017_0234_5
crossref_primary_10_1007_s12293_017_0234_5
springer_journals_10_1007_s12293_017_0234_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Memetic computing
PublicationTitleAbbrev Memetic Comp
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Mirjalili, Mirjalili, Lewis (CR20) 2014; 69
Sheskin (CR22) 2003
Tawhid, Ali (CR23) 2016; 8
Holland (CR14) 1975
Kusum, Barak, Katiyar, Nagar (CR17) 2011; 2
Troyer, Cohen (CR24) 1991; 2
Bansal, Sharma, Jadon, Clerc (CR4) 2014; 6
CR10
Goldberg (CR12) 1989
Michalewicz (CR19) 1996
Wales, Scheraga (CR25) 1999; 285
Draz̆ić, Lavor, Maculan, Mladenović (CR9) 2008; 185
Deep, Thakur (CR8) 2007; 188
Bansal, Shashi, Katiyar (CR3) 2010; 6
Anfinsen (CR2) 1973; 181
CR6
Deep, Thakur (CR7) 2007; 193
Barbosa, Lavor, Raupp (CR5) 2005; 138
CR26
Garcia, Fernandez, Luengo, Herrera (CR11) 2009; 13
Kovac̆ević-Vujc̆ić, čangalović, Draz̆ić, Mladenović, Hoai An, Tao (CR15) 2004
Zhao, Tang (CR28) 2006; 46
Lavor, Maculan (CR18) 2004; 35
Pardalos, Shalloway, Xue (CR21) 1994; 4
Agrawal, Silakari (CR1) 2014; 49
Hedar, Ali, Hassan (CR13) 2011; 1
Kramer (CR16) 2010; 2.1
Zar (CR27) 1999
DJ Sheskin (234_CR22) 2003
S Mirjalili (234_CR20) 2014; 69
Z Michalewicz (234_CR19) 1996
MA Tawhid (234_CR23) 2016; 8
234_CR10
K Deep (234_CR7) 2007; 193
JM Troyer (234_CR24) 1991; 2
O Kramer (234_CR16) 2010; 2.1
DJ Wales (234_CR25) 1999; 285
JC Bansal (234_CR4) 2014; 6
DE Goldberg (234_CR12) 1989
J Zhao (234_CR28) 2006; 46
K Deep (234_CR8) 2007; 188
CB Anfinsen (234_CR2) 1973; 181
S Agrawal (234_CR1) 2014; 49
PM Pardalos (234_CR21) 1994; 4
234_CR26
HJC Barbosa (234_CR5) 2005; 138
M Draz̆ić (234_CR9) 2008; 185
JC Bansal (234_CR3) 2010; 6
JH Holland (234_CR14) 1975
C Lavor (234_CR18) 2004; 35
JH Zar (234_CR27) 1999
DEEP Kusum (234_CR17) 2011; 2
S Garcia (234_CR11) 2009; 13
A Hedar (234_CR13) 2011; 1
V Kovac̆ević-Vujc̆ić (234_CR15) 2004
234_CR6
References_xml – volume: 13
  start-page: 959
  year: 2009
  end-page: 977
  ident: CR11
  article-title: A study of statistical techniques and performance measures for genetics-based machine learning, accuracy and interpretability
  publication-title: Soft Comput
  doi: 10.1007/s00500-008-0392-y
– volume: 2.1
  start-page: 69
  year: 2010
  end-page: 83
  ident: CR16
  article-title: Iterated local search with Powell’s method: a memetic algorithm for continuous global optimization
  publication-title: Memetic Comput
  doi: 10.1007/s12293-010-0032-9
– year: 1975
  ident: CR14
  publication-title: Adaptation in aatural and artificial systems
– start-page: 215
  year: 2004
  end-page: 222
  ident: CR15
  article-title: VNS-based heuristics for continuous global optimization
  publication-title: Modelling. Computation and optimization in information systems and management sciences
– volume: 1
  start-page: 191
  issue: 1
  year: 2011
  end-page: 209
  ident: CR13
  article-title: Genetic algorithm and tabu search based methods for molecular 3D-structure prediction
  publication-title: Int J Numer Algebra Control Optim
  doi: 10.3934/naco.2011.1.191
– volume: 35
  start-page: 287
  year: 2004
  end-page: 300
  ident: CR18
  article-title: A function to test methods applied to global minimization of potential energy of molecules
  publication-title: Numerical Algorithms
  doi: 10.1023/B:NUMA.0000021763.84725.b9
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: CR20
  article-title: Grey wolf optimizer
  publication-title: Adv Eng Soft
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: CR10
– volume: 193
  start-page: 211
  issue: 1
  year: 2007
  end-page: 230
  ident: CR7
  article-title: A new mutation operator for real coded genetic algorithms
  publication-title: Appl Math Comput
– volume: 6
  start-page: 1
  issue: 9
  year: 2010
  end-page: 9
  ident: CR3
  article-title: Minimization of molecular potential energy function using particle swarm optimization
  publication-title: Int J Appl Math Mech
– ident: CR6
– volume: 46
  start-page: 775
  issue: 5
  year: 2006
  end-page: 780
  ident: CR28
  article-title: An improved simulated annealing algorithm and its application
  publication-title: J Dalian Univ Technol
– year: 1996
  ident: CR19
  publication-title: Genetic algorithms + data structures = evolution programs
  doi: 10.1007/978-3-662-03315-9
– volume: 49
  start-page: 11
  year: 2014
  end-page: 17
  ident: CR1
  article-title: Fletcher–Reeves based particle swarm optimization for prediction of molecular structure
  publication-title: J Mol Graph Model
  doi: 10.1016/j.jmgm.2014.01.001
– volume: 2
  start-page: 51
  issue: 1
  year: 2011
  end-page: 58
  ident: CR17
  article-title: Minimization of molecular potential energy function using newly developed real coded genetic algorithms
  publication-title: Int J Optim Control Theor Appl (IJOCTA)
– volume: 8
  start-page: 169
  issue: 3
  year: 2016
  end-page: 188
  ident: CR23
  article-title: A simplex social spider algorithm for solving integer programming and minimax problems
  publication-title: Memetic Comput
  doi: 10.1007/s12293-016-0180-7
– volume: 4
  start-page: 117
  year: 1994
  end-page: 133
  ident: CR21
  article-title: Optimization methods for computing global minima of nonconvex potential energy function
  publication-title: J Global Optim
  doi: 10.1007/BF01096719
– year: 2003
  ident: CR22
  publication-title: Handbook of parametric and nonparametric statistical procedures
  doi: 10.1201/9781420036268
– volume: 188
  start-page: 895
  issue: 1
  year: 2007
  end-page: 911
  ident: CR8
  article-title: A new crossover operator for real coded genetic algorithms
  publication-title: Appl Math Comput
– volume: 285
  start-page: 1368
  year: 1999
  end-page: 1372
  ident: CR25
  article-title: Global optimization of clusters, crystals and biomolecules
  publication-title: Science
  doi: 10.1126/science.285.5432.1368
– year: 1989
  ident: CR12
  publication-title: Genetic algorithms in search, optimization, and machine learning
– year: 1999
  ident: CR27
  publication-title: Biostatistical analysis
– volume: 138
  start-page: 189
  year: 2005
  end-page: 202
  ident: CR5
  article-title: A GA-simplex hybrid algorithm for global minimization of molecular potential energy function
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-005-2453-2
– volume: 6
  start-page: 31
  issue: 1
  year: 2014
  end-page: 47
  ident: CR4
  article-title: Spider monkey optimization algorithm for numerical optimization
  publication-title: Memetic comput
  doi: 10.1007/s12293-013-0128-0
– ident: CR26
– volume: 181
  start-page: 223
  year: 1973
  end-page: 230
  ident: CR2
  article-title: Principles that govern the folding of protein chains
  publication-title: Science
  doi: 10.1126/science.181.4096.223
– volume: 185
  start-page: 1265
  year: 2008
  end-page: 1273
  ident: CR9
  article-title: A continuous variable neighborhood search heuristic for finding the three-dimensional structure of a molecule
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2006.06.052
– volume: 2
  start-page: 57
  year: 1991
  end-page: 80
  ident: CR24
  article-title: Simplified models for understanding and predicting protein structure
  publication-title: Rev Comput Chem (Wiley-VCH)
– volume-title: Biostatistical analysis
  year: 1999
  ident: 234_CR27
– volume: 6
  start-page: 31
  issue: 1
  year: 2014
  ident: 234_CR4
  publication-title: Memetic comput
  doi: 10.1007/s12293-013-0128-0
– volume: 49
  start-page: 11
  year: 2014
  ident: 234_CR1
  publication-title: J Mol Graph Model
  doi: 10.1016/j.jmgm.2014.01.001
– volume: 193
  start-page: 211
  issue: 1
  year: 2007
  ident: 234_CR7
  publication-title: Appl Math Comput
– volume: 138
  start-page: 189
  year: 2005
  ident: 234_CR5
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-005-2453-2
– start-page: 215
  volume-title: Modelling. Computation and optimization in information systems and management sciences
  year: 2004
  ident: 234_CR15
– volume-title: Handbook of parametric and nonparametric statistical procedures
  year: 2003
  ident: 234_CR22
  doi: 10.1201/9781420036268
– ident: 234_CR26
  doi: 10.1007/s12293-016-0212-3
– volume: 2
  start-page: 51
  issue: 1
  year: 2011
  ident: 234_CR17
  publication-title: Int J Optim Control Theor Appl (IJOCTA)
  doi: 10.11121/ijocta.01.2012.0044
– volume: 69
  start-page: 46
  year: 2014
  ident: 234_CR20
  publication-title: Adv Eng Soft
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 181
  start-page: 223
  year: 1973
  ident: 234_CR2
  publication-title: Science
  doi: 10.1126/science.181.4096.223
– volume: 46
  start-page: 775
  issue: 5
  year: 2006
  ident: 234_CR28
  publication-title: J Dalian Univ Technol
– volume: 285
  start-page: 1368
  year: 1999
  ident: 234_CR25
  publication-title: Science
  doi: 10.1126/science.285.5432.1368
– ident: 234_CR10
  doi: 10.1090/dimacs/047/07
– volume: 13
  start-page: 959
  year: 2009
  ident: 234_CR11
  publication-title: Soft Comput
  doi: 10.1007/s00500-008-0392-y
– volume-title: Genetic algorithms + data structures = evolution programs
  year: 1996
  ident: 234_CR19
  doi: 10.1007/978-3-662-03315-9
– volume: 2
  start-page: 57
  year: 1991
  ident: 234_CR24
  publication-title: Rev Comput Chem (Wiley-VCH)
  doi: 10.1002/9780470125793.ch2
– volume: 188
  start-page: 895
  issue: 1
  year: 2007
  ident: 234_CR8
  publication-title: Appl Math Comput
– volume: 185
  start-page: 1265
  year: 2008
  ident: 234_CR9
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2006.06.052
– volume: 4
  start-page: 117
  year: 1994
  ident: 234_CR21
  publication-title: J Global Optim
  doi: 10.1007/BF01096719
– ident: 234_CR6
– volume: 35
  start-page: 287
  year: 2004
  ident: 234_CR18
  publication-title: Numerical Algorithms
  doi: 10.1023/B:NUMA.0000021763.84725.b9
– volume-title: Genetic algorithms in search, optimization, and machine learning
  year: 1989
  ident: 234_CR12
– volume: 2.1
  start-page: 69
  year: 2010
  ident: 234_CR16
  publication-title: Memetic Comput
  doi: 10.1007/s12293-010-0032-9
– volume: 1
  start-page: 191
  issue: 1
  year: 2011
  ident: 234_CR13
  publication-title: Int J Numer Algebra Control Optim
  doi: 10.3934/naco.2011.1.191
– volume: 6
  start-page: 1
  issue: 9
  year: 2010
  ident: 234_CR3
  publication-title: Int J Appl Math Mech
– volume-title: Adaptation in aatural and artificial systems
  year: 1975
  ident: 234_CR14
– volume: 8
  start-page: 169
  issue: 3
  year: 2016
  ident: 234_CR23
  publication-title: Memetic Comput
  doi: 10.1007/s12293-016-0180-7
SSID ssj0000327841
Score 2.418611
Snippet In this paper, we propose a new hybrid algorithm between the grey wolf optimizer algorithm and the genetic algorithm in order to minimize a simplified model of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 347
SubjectTerms Applications of Mathematics
Artificial Intelligence
Bioinformatics
Complex Systems
Control
Energy conservation
Energy conversion efficiency
Engineering
Genetic algorithms
Mathematical and Computational Engineering
Mathematical models
Mechatronics
Population
Potential energy
Regular Research Paper
Robotics
Simulation
Title A Hybrid grey wolf optimizer and genetic algorithm for minimizing potential energy function
URI https://link.springer.com/article/10.1007/s12293-017-0234-5
https://www.proquest.com/docview/1962320791
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-47aIHP6bi_Bg5eFIiXdrE5DhEHQqeNph4KGmb6HBrh1ZE_3pfutapqLBbaZLXNu_lvV_6PgJwmHDrvGOccs8KGqBJpjJmMZU6QPnysVkX1T5vRG8QXA35sMzjfq6i3SuXZKGp58lujLlYM9SqaGcCymvQ4B2pZB0a3cvb6_mvFc8vvGluqyUFpwo1cOXP_I3Od4s0h5k_PKOFwblYg371qrM4k8eTlzw6id9_VHFc8FvWYbUEoKQ7k5gNWDJpE9aqwx1IudabsPKlUuEm3HVJ780ldxHcn7-R12xsSYbaZjJ6x0E6xfuoNJEk0eP77GmUP0wIwmHiKpdgH6RBplnuIpPw2abINyTOpDqx2ILBxXn_rEfLcxlo7HdEThGkMd8oHXUiBAC-SpJA-JrpRFvFDZdCeL7UKjmVWnNl_ACbPIRBsZYi0Xi1DfU0S80OEKZEpKyNteHCnXsScc1QVAKL_NPG2hZ4FW_CuCxa7s7OGIfzcstuKkOcytBNZchbcPQ5ZDqr2PFf5_2K4WG5eJ9DVEqIM71T1WnBccW_L81_EdtdqPceLDMnAEVozD7U86cXc4AAJ4_apUC3oTZg3Q8ZYvD-
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RPKgHP1AjitqDJ02T0a1lPRIjQUVOkJB4WLqtVRJgBGYM_vW-jk3QqIm3ZW3fkvfa937d-wK4jLmx3jFOuWME9dAkUz9iEfWVh_vLxWGVVfvsiFbPu-_zfp7HPSui3QuXZKapl8lujNlYM9SqaGc8ytdhA7GAb9sW9Fjj88eK42a-NHvR8gWnEvVv4c38icpXe7QEmd_8opm5ae7BTo4TSWMh2H1Y0-My7BY9GEh-JMuwvVJQ8ACeGqQ1tzlYBK_Rc_KWDA1JUCmMBu-4SI3xPeo2JEnU8DmZDtKXEUHUSmyBEZyDNMgkSW0AEX5bZ2mBxFo-K71D6DVvuzctmrdPoJFbEylFLMVcLVVYC9FOuzKOPeEqpmJlJNfcF8JxfSXjuq8Ul9r1cMhBtBIpX8QKn46gNE7G-hgIkyKUxkRKc2Hbk4RcMZSoZ5DRShtTAadgYhDltcVti4thsKyKbPkeIN8Dy_eAV-Dqc8lkUVjjr8nVQjJBfsZmAeoOhINOXdYqcF1Ia2X4N2In_5p9AZut7mM7aN91Hk5hi9mdk0WzVKGUTl_1GWKSNDzP9uAHNrrWNA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4SAgOvBHjmQMnUESXNllznIBpPIQ4MGkShyhtE5i0tRMUofHrcbp2AwRI3Ko8fLAd26njzwBHCbcuO8Yp96ygAbpkGsYspqEOUL98nNYF2uetaHeCqy7vln1OX6rX7lVKclzT4FCa0vx0mNjTaeEbY-7dGVpY9DkB5bMwj9a47hS9w5qTnyyeX-TV3KUrFJxKtMVVZvMnKl990zTg_JYjLVxPaxWWy5iRNMdCXoMZk67DStWPgZTHcx2WPoELbsBDk7RHrh6L4JV6RN6yviUZGohB7x036RTH0c4hSaL7j9lzL38aEIxgiQMbwTVIgwwzxxPUUGKKEkHivKCT5CZ0Whf3Z21atlKgsV8XOcW4ivlG6qgeoc_2ZZIEwtdMJ9pKbngohOeHWiaNUGsujR_glIeRS6xDkWj82oK5NEvNNhAmRSStjbXhwrUqibhmKN3AIqO1sbYGXsVEFZc4467dRV9NEZId3xXyXTm-K16D48mW4Rhk46_Fe5VkVHneXhTaEQwNvYas1-Ckktan6d-I7fxr9SEs3J231M3l7fUuLDKnOMXDlj2Yy59fzT6GJ3l0UKjgB8As2nA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+grey+wolf+optimizer+and+genetic+algorithm+for+minimizing+potential+energy+function&rft.jtitle=Memetic+computing&rft.au=Tawhid%2C+Mohamed+A.&rft.au=Ali%2C+Ahmed+F.&rft.date=2017-12-01&rft.issn=1865-9284&rft.eissn=1865-9292&rft.volume=9&rft.issue=4&rft.spage=347&rft.epage=359&rft_id=info:doi/10.1007%2Fs12293-017-0234-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12293_017_0234_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-9284&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-9284&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-9284&client=summon