Parallel Multi-Block ADMM with o(1 / k) Convergence
This paper introduces a parallel and distributed algorithm for solving the following minimization problem with linear constraints: minimize f 1 ( x 1 ) + ⋯ + f N ( x N ) subject to A 1 x 1 + ⋯ + A N x N = c , x 1 ∈ X 1 , … , x N ∈ X N , where N ≥ 2 , f i are convex functions, A i are matrices, and X...
Saved in:
Published in | Journal of scientific computing Vol. 71; no. 2; pp. 712 - 736 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0885-7474 1573-7691 |
DOI | 10.1007/s10915-016-0318-2 |
Cover
Loading…
Abstract | This paper introduces a parallel and distributed algorithm for solving the following minimization problem with linear constraints:
minimize
f
1
(
x
1
)
+
⋯
+
f
N
(
x
N
)
subject to
A
1
x
1
+
⋯
+
A
N
x
N
=
c
,
x
1
∈
X
1
,
…
,
x
N
∈
X
N
,
where
N
≥
2
,
f
i
are convex functions,
A
i
are matrices, and
X
i
are feasible sets for variable
x
i
. Our algorithm extends the alternating direction method of multipliers (ADMM) and decomposes the original problem into
N
smaller subproblems and solves them in parallel at each iteration. This paper shows that the classic ADMM can be extended to the
N
-block Jacobi fashion and preserve convergence in the following two cases: (i) matrices
A
i
are mutually near-orthogonal and have full column-rank,
or
(ii) proximal terms are added to the
N
subproblems (but without any assumption on matrices
A
i
). In the latter case, certain proximal terms can let the subproblem be solved in more flexible and efficient ways. We show that
‖
x
k
+
1
-
x
k
‖
M
2
converges at a rate of
o
(1 /
k
) where
M
is a symmetric positive semi-definte matrix. Since the parameters used in the convergence analysis are conservative, we introduce a strategy for automatically tuning the parameters to substantially accelerate our algorithm in practice. We implemented our algorithm (for the case ii above) on Amazon EC2 and tested it on basis pursuit problems with >300 GB of distributed data. This is the first time that successfully solving a compressive sensing problem of such a large scale is reported. |
---|---|
AbstractList | This paper introduces a parallel and distributed algorithm for solving the following minimization problem with linear constraints:
minimize
f
1
(
x
1
)
+
⋯
+
f
N
(
x
N
)
subject to
A
1
x
1
+
⋯
+
A
N
x
N
=
c
,
x
1
∈
X
1
,
…
,
x
N
∈
X
N
,
where
N
≥
2
,
f
i
are convex functions,
A
i
are matrices, and
X
i
are feasible sets for variable
x
i
. Our algorithm extends the alternating direction method of multipliers (ADMM) and decomposes the original problem into
N
smaller subproblems and solves them in parallel at each iteration. This paper shows that the classic ADMM can be extended to the
N
-block Jacobi fashion and preserve convergence in the following two cases: (i) matrices
A
i
are mutually near-orthogonal and have full column-rank,
or
(ii) proximal terms are added to the
N
subproblems (but without any assumption on matrices
A
i
). In the latter case, certain proximal terms can let the subproblem be solved in more flexible and efficient ways. We show that
‖
x
k
+
1
-
x
k
‖
M
2
converges at a rate of
o
(1 /
k
) where
M
is a symmetric positive semi-definte matrix. Since the parameters used in the convergence analysis are conservative, we introduce a strategy for automatically tuning the parameters to substantially accelerate our algorithm in practice. We implemented our algorithm (for the case ii above) on Amazon EC2 and tested it on basis pursuit problems with >300 GB of distributed data. This is the first time that successfully solving a compressive sensing problem of such a large scale is reported. This paper introduces a parallel and distributed algorithm for solving the following minimization problem with linear constraints: minimizef1(x1)+⋯+fN(xN)subject toA1x1+⋯+ANxN=c,x1∈X1,…,xN∈XN,where N≥2, fi are convex functions, Ai are matrices, and Xi are feasible sets for variable xi. Our algorithm extends the alternating direction method of multipliers (ADMM) and decomposes the original problem into N smaller subproblems and solves them in parallel at each iteration. This paper shows that the classic ADMM can be extended to the N-block Jacobi fashion and preserve convergence in the following two cases: (i) matrices Ai are mutually near-orthogonal and have full column-rank, or (ii) proximal terms are added to the N subproblems (but without any assumption on matrices Ai). In the latter case, certain proximal terms can let the subproblem be solved in more flexible and efficient ways. We show that ‖xk+1-xk‖M2 converges at a rate of o(1 / k) where M is a symmetric positive semi-definte matrix. Since the parameters used in the convergence analysis are conservative, we introduce a strategy for automatically tuning the parameters to substantially accelerate our algorithm in practice. We implemented our algorithm (for the case ii above) on Amazon EC2 and tested it on basis pursuit problems with >300 GB of distributed data. This is the first time that successfully solving a compressive sensing problem of such a large scale is reported. |
Author | Lai, Ming-Jun Deng, Wei Peng, Zhimin Yin, Wotao |
Author_xml | – sequence: 1 givenname: Wei surname: Deng fullname: Deng, Wei organization: Department of Computational and Applied Mathematics, Rice University – sequence: 2 givenname: Ming-Jun surname: Lai fullname: Lai, Ming-Jun email: mjlai@uga.edu organization: Department of Mathematics, University of Georgia – sequence: 3 givenname: Zhimin surname: Peng fullname: Peng, Zhimin organization: Department of Mathematics, University of California – sequence: 4 givenname: Wotao surname: Yin fullname: Yin, Wotao organization: Department of Mathematics, University of California |
BookMark | eNp9kE1OwzAQhS1UJNrCAdhFYgML05k4tpNlafmTWsEC1pbrOiVtiIudgrhNz9KTkSpISEiwms373jx9PdKpXGUJOUW4RAA5CAgZcgooKDBMaXxAusglo1Jk2CFdSFNOZSKTI9ILYQkAWZrFXcIftddlactouinrgl6Vzqyi4Xg6jT6K-iVy57jbDnbb1UU0ctW79QtbGXtMDnNdBnvyffvk-eb6aXRHJw-396PhhBqGoqYp03MpY6GNzhmbceDasLlJdTMxmRkmdZZzLmyegZUgwKJgGk3C57OcIResT87a3rV3bxsbarV0G181L1WcYcowlpw3KdmmjHcheJsrU9S6LlxVe12UCkHtHanWkWocqb0jFTck_iLXvnjV_vNfJm6Z0GSrhfU_m_6GvgBNaXlY |
CitedBy_id | crossref_primary_10_1007_s11036_024_02352_6 crossref_primary_10_1109_TAC_2017_2658438 crossref_primary_10_1109_TSG_2019_2942616 crossref_primary_10_1109_JSAC_2019_2959180 crossref_primary_10_1109_TNNLS_2021_3054778 crossref_primary_10_1002_mp_15978 crossref_primary_10_1007_s10696_024_09538_w crossref_primary_10_1109_TIFS_2023_3277222 crossref_primary_10_1016_j_ejor_2020_12_010 crossref_primary_10_3390_info14020109 crossref_primary_10_1109_TRO_2022_3228132 crossref_primary_10_1137_17M1151973 crossref_primary_10_1007_s10107_017_1205_9 crossref_primary_10_1142_S0219530518500082 crossref_primary_10_1109_TAC_2021_3053907 crossref_primary_10_1109_TCYB_2024_3424221 crossref_primary_10_1109_JSYST_2019_2897788 crossref_primary_10_7717_peerj_cs_237 crossref_primary_10_1016_j_ifacol_2020_12_159 crossref_primary_10_1109_TAC_2023_3244904 crossref_primary_10_1109_TPDS_2018_2882174 crossref_primary_10_1016_j_jobe_2022_104498 crossref_primary_10_1007_s10589_018_0037_8 crossref_primary_10_1109_LCSYS_2024_3396399 crossref_primary_10_1088_1361_6420_aabce9 crossref_primary_10_1016_j_ijepes_2020_106119 crossref_primary_10_1109_TMC_2022_3232495 crossref_primary_10_1049_itr2_12241 crossref_primary_10_1111_biom_13860 crossref_primary_10_1109_TMC_2017_2711026 crossref_primary_10_1186_s13663_023_00751_0 crossref_primary_10_1287_moor_2022_1350 crossref_primary_10_1007_s10898_022_01174_8 crossref_primary_10_1109_TIE_2018_2881938 crossref_primary_10_1007_s12190_017_1138_8 crossref_primary_10_1016_j_apenergy_2021_116551 crossref_primary_10_1007_s12190_017_1080_9 crossref_primary_10_1016_j_apenergy_2022_120428 crossref_primary_10_1080_10556788_2019_1683553 crossref_primary_10_1109_TWC_2024_3374794 crossref_primary_10_1016_j_eswa_2024_124836 crossref_primary_10_1109_TCI_2018_2857446 crossref_primary_10_1109_TPWRS_2020_3021474 crossref_primary_10_1049_iet_gtd_2020_0415 crossref_primary_10_1109_TVT_2017_2731359 crossref_primary_10_1007_s00180_022_01318_0 crossref_primary_10_1109_TSP_2021_3078625 crossref_primary_10_1109_JSAC_2024_3443759 crossref_primary_10_1109_LCSYS_2019_2923078 crossref_primary_10_1016_j_apenergy_2022_120436 crossref_primary_10_1007_s10915_017_0612_7 crossref_primary_10_1016_j_apenergy_2023_121491 crossref_primary_10_1016_j_is_2024_102379 crossref_primary_10_1007_s40305_021_00368_3 crossref_primary_10_3390_su14073751 crossref_primary_10_1145_3154492 crossref_primary_10_1109_TMC_2021_3085979 crossref_primary_10_1109_LWC_2018_2842189 crossref_primary_10_1093_imanum_draa018 crossref_primary_10_1142_S0217595922400024 crossref_primary_10_1109_TCCN_2021_3051947 crossref_primary_10_1155_2017_9674528 crossref_primary_10_1109_TWC_2021_3068207 crossref_primary_10_1109_TSP_2018_2818081 crossref_primary_10_1007_s10915_020_01267_0 crossref_primary_10_1016_j_apenergy_2024_123666 crossref_primary_10_12677_pm_2024_1412411 crossref_primary_10_1016_j_neunet_2018_07_016 crossref_primary_10_1007_s10589_018_0039_6 crossref_primary_10_1016_j_automatica_2022_110551 crossref_primary_10_1016_j_ijepes_2023_109428 crossref_primary_10_1109_TASLP_2022_3201391 crossref_primary_10_1109_TITS_2023_3262580 crossref_primary_10_1109_TAC_2020_3022492 crossref_primary_10_1080_00207160_2018_1435864 crossref_primary_10_1142_S0217595920400096 crossref_primary_10_1109_TSP_2022_3192171 crossref_primary_10_1137_19M1292473 crossref_primary_10_1109_JIOT_2021_3058116 crossref_primary_10_1109_TAC_2019_2934755 crossref_primary_10_1109_TNNLS_2024_3382030 crossref_primary_10_1016_j_arcontrol_2024_100983 crossref_primary_10_1016_j_cam_2021_113781 crossref_primary_10_1109_TSG_2023_3349318 crossref_primary_10_1109_ACCESS_2022_3187204 crossref_primary_10_1145_3392157 crossref_primary_10_1109_TSP_2022_3163525 crossref_primary_10_1109_TCOMM_2021_3078783 crossref_primary_10_1016_j_apenergy_2019_01_249 crossref_primary_10_1109_LCOMM_2019_2955442 crossref_primary_10_1016_j_parco_2023_102999 crossref_primary_10_1007_s40305_021_00344_x crossref_primary_10_1109_TGRS_2020_2983063 crossref_primary_10_1002_oca_3054 crossref_primary_10_1109_TPAMI_2024_3393131 crossref_primary_10_1007_s10589_019_00087_9 crossref_primary_10_1016_j_ijepes_2020_106533 crossref_primary_10_1002_zamm_202000288 crossref_primary_10_1109_TCOMM_2023_3308149 crossref_primary_10_1007_s40314_019_0949_7 crossref_primary_10_2514_1_C037283 crossref_primary_10_1186_s13660_019_2080_0 crossref_primary_10_1109_TNNLS_2021_3104840 crossref_primary_10_1007_s10898_024_01418_9 crossref_primary_10_1007_s40305_023_00518_9 crossref_primary_10_1109_LCSYS_2020_3044873 crossref_primary_10_1016_j_nexus_2024_100292 crossref_primary_10_1007_s40430_023_04202_0 crossref_primary_10_1016_j_cam_2021_113681 crossref_primary_10_1080_03610918_2023_2249271 crossref_primary_10_1109_ACCESS_2019_2914461 crossref_primary_10_1007_s10589_019_00091_z crossref_primary_10_1109_COMST_2021_3097916 crossref_primary_10_1137_19M1284336 crossref_primary_10_1016_j_apenergy_2024_123860 crossref_primary_10_1007_s11042_020_10233_9 crossref_primary_10_1016_j_ijepes_2019_105777 crossref_primary_10_1109_TSG_2020_3037066 crossref_primary_10_1109_JETCAS_2017_2703907 crossref_primary_10_1016_j_isprsjprs_2021_05_011 crossref_primary_10_1109_TSG_2022_3202695 crossref_primary_10_1109_TIFS_2018_2855169 crossref_primary_10_1016_j_apnum_2023_09_003 crossref_primary_10_1109_TPWRS_2022_3140676 crossref_primary_10_1109_ACCESS_2021_3061995 crossref_primary_10_1109_JSTSP_2022_3156756 crossref_primary_10_1109_TSP_2019_2896266 crossref_primary_10_1109_TVT_2023_3308589 crossref_primary_10_1109_JSYST_2019_2913133 crossref_primary_10_1016_j_jobe_2018_06_004 crossref_primary_10_1137_19M127879X crossref_primary_10_1109_TNNLS_2020_3040379 crossref_primary_10_1016_j_epsr_2020_106479 crossref_primary_10_1016_j_sysconle_2018_08_002 crossref_primary_10_1080_02331934_2022_2057309 crossref_primary_10_1145_3230668 crossref_primary_10_1007_s10957_021_01919_7 crossref_primary_10_1016_j_automatica_2023_111339 crossref_primary_10_1007_s10589_020_00229_4 crossref_primary_10_1109_JSAC_2019_2951989 crossref_primary_10_1115_1_4056853 crossref_primary_10_1007_s10915_022_01815_w crossref_primary_10_1093_imanum_dry092 crossref_primary_10_1002_rnc_5618 crossref_primary_10_1137_16M1084705 crossref_primary_10_1088_1361_6560_ab22ed crossref_primary_10_1007_s00186_022_00796_8 crossref_primary_10_1109_TSP_2020_3008050 crossref_primary_10_1016_j_cjche_2018_08_027 crossref_primary_10_1109_ACCESS_2020_2964073 crossref_primary_10_1109_TRO_2023_3297010 crossref_primary_10_1016_j_cam_2017_11_033 crossref_primary_10_1016_j_ifacol_2020_12_2265 crossref_primary_10_3934_jimo_2017052 crossref_primary_10_1109_TSG_2019_2962269 crossref_primary_10_1088_1361_6560_ad580d crossref_primary_10_1109_ACCESS_2020_2982293 crossref_primary_10_1287_moor_2019_0990 crossref_primary_10_1142_S0217595920500359 crossref_primary_10_1002_mp_15897 crossref_primary_10_1109_TSP_2021_3079819 crossref_primary_10_1109_TCSVT_2020_2967424 crossref_primary_10_1016_j_comcom_2022_03_003 crossref_primary_10_1109_TCOMM_2020_3026398 crossref_primary_10_1109_TVT_2020_2968343 crossref_primary_10_1007_s12532_018_0134_9 crossref_primary_10_1016_j_apenergy_2020_115371 crossref_primary_10_1007_s10915_018_0757_z crossref_primary_10_3934_jimo_2017078 crossref_primary_10_1109_TNNLS_2019_2921952 crossref_primary_10_1109_TCYB_2021_3052056 crossref_primary_10_1109_TCCN_2019_2937519 crossref_primary_10_1109_ACCESS_2020_3034155 crossref_primary_10_1002_nla_2485 crossref_primary_10_3934_jimo_2025014 crossref_primary_10_1016_j_cad_2019_05_021 crossref_primary_10_3934_ipi_2024048 crossref_primary_10_1007_s10114_023_1401_x crossref_primary_10_1109_LCSYS_2018_2833116 crossref_primary_10_1109_TTE_2022_3168979 crossref_primary_10_1109_TAC_2020_3033512 crossref_primary_10_1007_s10589_021_00338_8 crossref_primary_10_1016_j_egyr_2021_08_145 crossref_primary_10_1049_esi2_12079 crossref_primary_10_1016_j_neucom_2018_03_069 crossref_primary_10_1109_TPWRS_2019_2896654 crossref_primary_10_1109_TVT_2017_2760920 crossref_primary_10_3389_fenrg_2021_665295 crossref_primary_10_1109_TSIPN_2017_2721298 crossref_primary_10_1109_TCBB_2020_3034861 crossref_primary_10_1142_S0217595921500445 crossref_primary_10_1049_ipr2_12289 crossref_primary_10_1016_j_jappgeo_2023_104940 crossref_primary_10_1016_j_neucom_2018_02_016 crossref_primary_10_1109_TSTE_2018_2815502 crossref_primary_10_1109_TMECH_2021_3105950 crossref_primary_10_1109_TCCN_2021_3130993 crossref_primary_10_1007_s10915_023_02346_8 crossref_primary_10_1109_TII_2019_2937513 crossref_primary_10_1016_j_epsr_2019_106180 crossref_primary_10_1109_TCNS_2023_3338245 crossref_primary_10_1109_TNET_2019_2912077 crossref_primary_10_1016_j_ejor_2022_10_019 crossref_primary_10_1090_mcom_3822 crossref_primary_10_1016_j_rser_2022_112837 crossref_primary_10_1007_s12190_022_01779_y crossref_primary_10_1016_j_ins_2022_09_068 crossref_primary_10_1109_TNNLS_2019_2927385 crossref_primary_10_1109_TWC_2024_3392443 crossref_primary_10_1016_j_ins_2024_120431 crossref_primary_10_1109_COMST_2023_3315746 crossref_primary_10_1016_j_ins_2019_08_039 crossref_primary_10_1109_TWC_2017_2789195 crossref_primary_10_1049_cth2_12421 crossref_primary_10_1109_TII_2022_3151913 |
Cites_doi | 10.1137/110836936 10.1561/2200000016 10.1007/s00211-014-0673-6 10.1137/110822347 10.1137/0716071 10.1007/BF01582566 10.1109/TSP.2013.2254478 10.1007/s10957-012-0003-z 10.1007/978-3-642-82118-9 10.1137/120896219 10.1007/s10589-007-9109-x 10.1137/130940402 10.1137/100781894 10.1016/0898-1221(76)90003-1 10.1214/11-AOS949 10.1137/130922793 10.1007/s10107-014-0826-5 10.1007/s10915-010-9408-8 10.1137/090777761 10.1007/s10107-004-0552-5 10.1109/TPAMI.2011.282 10.1287/opre.11.3.399 10.1007/s10915-015-0048-x 10.1007/BF02683320 10.1109/ACSSC.2013.6810364 10.1007/978-3-662-12613-4 10.1051/m2an/197509R200411 10.1142/S0217595915500244 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2016 Springer Science+Business Media New York 2016. |
Copyright_xml | – notice: Springer Science+Business Media New York 2016 – notice: Springer Science+Business Media New York 2016. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s10915-016-0318-2 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1573-7691 |
EndPage | 736 |
ExternalDocumentID | 10_1007_s10915_016_0318_2 |
GrantInformation_xml | – fundername: National Science Foundation grantid: ECCS-1028790; DMS-1521537 funderid: http://dx.doi.org/10.13039/100000001 – fundername: ARO/ARL MURI grantid: FA9550-10-1-0567 – fundername: National Science Foundation grantid: DMS-1317602 funderid: http://dx.doi.org/10.13039/100000001 – fundername: Simons Foundation grantid: Collaboration Grant funderid: http://dx.doi.org/10.13039/100000893 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z92 ZMTXR ZWQNP ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c316t-83ad7726acaf33b505ac3dc8a0314bc37a9f556ef90e7060e163a1c45dbf31563 |
IEDL.DBID | U2A |
ISSN | 0885-7474 |
IngestDate | Fri Jul 25 23:33:10 EDT 2025 Tue Jul 01 00:51:38 EDT 2025 Thu Apr 24 23:14:45 EDT 2025 Fri Feb 21 02:36:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Convergence rate Alternating direction method of multipliers Parallel and distributed computing ADMM |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-83ad7726acaf33b505ac3dc8a0314bc37a9f556ef90e7060e163a1c45dbf31563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2918312755 |
PQPubID | 2043771 |
PageCount | 25 |
ParticipantIDs | proquest_journals_2918312755 crossref_citationtrail_10_1007_s10915_016_0318_2 crossref_primary_10_1007_s10915_016_0318_2 springer_journals_10_1007_s10915_016_0318_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170500 2017-5-00 20170501 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 5 year: 2017 text: 20170500 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of scientific computing |
PublicationTitleAbbrev | J Sci Comput |
PublicationYear | 2017 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | He, Hou, Yuan (CR21) 2015; 25 Goldstein, O’Donoghue, Setzer, Baraniuk (CR17) 2014; 7 Deng, Yin (CR12) 2016; 66 Chandrasekaran, Parrilo, Willsky (CR4) 2012; 40 Chen, Teboulle (CR7) 1994; 64 CR16 CR15 He, Yuan (CR24) 2015; 130 CR11 CR10 CR32 Gabay, Mercier (CR14) 1976; 2 He (CR19) 1997; 35 Zhang, Burger, Osher (CR38) 2011; 46 Lions, Mercier (CR28) 1979; 16 Rockafellar (CR33) 1997 Corman, Yuan (CR8) 2014; 24 Nesterov (CR30) 2005; 103 Shor, Kiwiel, Ruszcayski (CR34) 1985 Wang, Hong, Ma, Luo (CR36) 2015; 11 Chen, Shen, You (CR6) 2013; 2013 CR9 CR27 Tao, Yuan (CR35) 2011; 21 CR26 CR25 Everett (CR13) 1963; 11 He, Tao, Yuan (CR22) 2012; 22 Mota, Xavier, Aguiar, Puschel (CR29) 2013; 61 He (CR20) 2009; 42 He, Yuan (CR23) 2012; 50 Peng, Ganesh, Wright, Xu, Ma (CR31) 2012; 34 Bertsekas, Tsitsiklis (CR2) 1997 Awanou, Lai, Wenston, Chen, Lai (CR1) 2006 Han, Yuan (CR18) 2012; 155 Boyd, Parikh, Chu, Peleato, Eckstein (CR3) 2011; 3 Chen, He, Ye, Yuan (CR5) 2016; 155 Yang, Zhang (CR37) 2011; 33 D Bertsekas (318_CR2) 1997 JF Mota (318_CR29) 2013; 61 318_CR11 318_CR10 318_CR32 V Chandrasekaran (318_CR4) 2012; 40 BS He (318_CR24) 2015; 130 BS He (318_CR23) 2012; 50 318_CR16 318_CR15 BS He (318_CR19) 1997; 35 D Gabay (318_CR14) 1976; 2 G Awanou (318_CR1) 2006 JF Yang (318_CR37) 2011; 33 RT Rockafellar (318_CR33) 1997 C Chen (318_CR6) 2013; 2013 PL Lions (318_CR28) 1979; 16 318_CR25 H Everett (318_CR13) 1963; 11 W Deng (318_CR12) 2016; 66 M Tao (318_CR35) 2011; 21 X Zhang (318_CR38) 2011; 46 C Chen (318_CR5) 2016; 155 NZ Shor (318_CR34) 1985 S Boyd (318_CR3) 2011; 3 E Corman (318_CR8) 2014; 24 Y Peng (318_CR31) 2012; 34 318_CR27 T Goldstein (318_CR17) 2014; 7 318_CR26 BS He (318_CR20) 2009; 42 BS He (318_CR22) 2012; 22 Y Nesterov (318_CR30) 2005; 103 XF Wang (318_CR36) 2015; 11 318_CR9 D Han (318_CR18) 2012; 155 G Chen (318_CR7) 1994; 64 BS He (318_CR21) 2015; 25 |
References_xml | – volume: 50 start-page: 700 issue: 2 year: 2012 end-page: 709 ident: CR23 article-title: On the convergence rate of the Douglas-Rachford alternating direction method publication-title: SIAM J. Numer. Anal. doi: 10.1137/110836936 – volume: 2013 start-page: 183961 year: 2013 ident: CR6 article-title: On the convergence analysis of the alternating direction method of multipliers with three blocks publication-title: Abstr. Appl. Anal. – volume: 3 start-page: 1 issue: 1 year: 2011 end-page: 122 ident: CR3 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000016 – volume: 130 start-page: 567 issue: 3 year: 2015 end-page: 577 ident: CR24 article-title: On non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers publication-title: Numer. Math. doi: 10.1007/s00211-014-0673-6 – volume: 22 start-page: 313 issue: 2 year: 2012 end-page: 340 ident: CR22 article-title: Alternating direction method with gaussian back substitution for separable convex programming publication-title: SIAM J. Optim. doi: 10.1137/110822347 – volume: 16 start-page: 964 issue: 6 year: 1979 end-page: 979 ident: CR28 article-title: Splitting algorithms for the sum of two nonlinear operators publication-title: SIAM J. Numer. Anal. doi: 10.1137/0716071 – volume: 64 start-page: 81 issue: 1 year: 1994 end-page: 101 ident: CR7 article-title: A proximal-based decomposition method for convex minimization problems publication-title: Math. Program. doi: 10.1007/BF01582566 – volume: 61 start-page: 2718 year: 2013 end-page: 2723 ident: CR29 article-title: D-admm: a communication-efficient distributed algorithm for separable optimization publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2254478 – ident: CR16 – volume: 155 start-page: 227 issue: 1 year: 2012 end-page: 238 ident: CR18 article-title: A note on the alternating direction method of multipliers publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-012-0003-z – year: 1985 ident: CR34 publication-title: Minimization Methods for Non-differentiable Functions doi: 10.1007/978-3-642-82118-9 – ident: CR10 – volume: 7 start-page: 1588 issue: 3 year: 2014 end-page: 1623 ident: CR17 article-title: Fast alternating direction optimization methods publication-title: SIAM J. Imaging Sci. doi: 10.1137/120896219 – volume: 42 start-page: 195 issue: 2 year: 2009 end-page: 212 ident: CR20 article-title: Parallel splitting augmented lagrangian methods for monotone structured variational inequalities publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-007-9109-x – volume: 24 start-page: 1614 issue: 4 year: 2014 end-page: 1638 ident: CR8 article-title: A generalized proximal point algorithm and its convergence rate publication-title: SIAM J. Optim. doi: 10.1137/130940402 – volume: 21 start-page: 57 issue: 1 year: 2011 end-page: 81 ident: CR35 article-title: Recovering low-rank and sparse components of matrices from incomplete and noisy observations publication-title: SIAM J. Optim. doi: 10.1137/100781894 – start-page: 24 year: 2006 end-page: 74 ident: CR1 article-title: The multivariate spline method for numerical solution of partial differential equations and scattered data interpolation publication-title: Wavelets and Splines – volume: 2 start-page: 17 issue: 1 year: 1976 end-page: 40 ident: CR14 article-title: A dual algorithm for the solution of nonlinear variational problems via finite element approximation publication-title: Comput. Math. Appl. doi: 10.1016/0898-1221(76)90003-1 – volume: 11 start-page: 57 issue: 4 year: 2015 end-page: 81 ident: CR36 article-title: Solving multiple-block separable convex minimization problems using two-block alternating direction method of multipliers publication-title: Pac. J. Optim. – volume: 40 start-page: 1935 issue: 4 year: 2012 end-page: 1967 ident: CR4 article-title: Latent variable graphical model selection via convex optimization publication-title: Ann. Stat. doi: 10.1214/11-AOS949 – volume: 25 start-page: 2274 year: 2015 end-page: 2312 ident: CR21 article-title: On full Jacobian decomposition of the augmented lagrangian method for separable convex programming publication-title: SIAM J. Optim. doi: 10.1137/130922793 – ident: CR25 – ident: CR27 – year: 1997 ident: CR2 publication-title: Parallel and Distributed Computation: Numerical Methods – volume: 155 start-page: 57 issue: 1 year: 2016 end-page: 79 ident: CR5 article-title: The direct extension of admm for multi-block convex minimization problems is not necessarily convergent publication-title: Math. Program. doi: 10.1007/s10107-014-0826-5 – volume: 46 start-page: 20 issue: 1 year: 2011 end-page: 46 ident: CR38 article-title: A unified primal-dual algorithm framework based on Bregman iteration publication-title: J. Sci. Comput. doi: 10.1007/s10915-010-9408-8 – volume: 33 start-page: 250 issue: 1 year: 2011 end-page: 278 ident: CR37 article-title: Alternating direction algorithms for -problems in compressive sensing publication-title: SIAM J. Sci. Comput. doi: 10.1137/090777761 – ident: CR15 – volume: 103 start-page: 127 issue: 1 year: 2005 end-page: 152 ident: CR30 article-title: Smooth minimization of non-smooth functions publication-title: Math. Program. doi: 10.1007/s10107-004-0552-5 – volume: 34 start-page: 2233 year: 2012 end-page: 2246 ident: CR31 article-title: RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.282 – ident: CR11 – ident: CR9 – volume: 11 start-page: 399 issue: 3 year: 1963 end-page: 417 ident: CR13 article-title: Generalized lagrange multiplier method for solving problems of optimum allocation of resources publication-title: Oper. Res. doi: 10.1287/opre.11.3.399 – ident: CR32 – volume: 66 start-page: 889 issue: 3 year: 2016 end-page: 916 ident: CR12 article-title: On the global and linear convergence of the generalized alternating direction method of multipliers publication-title: J. Sci. Comput. doi: 10.1007/s10915-015-0048-x – ident: CR26 – year: 1997 ident: CR33 publication-title: Convex Analysis – volume: 35 start-page: 69 issue: 1 year: 1997 end-page: 76 ident: CR19 article-title: A class of projection and contraction methods for monotone variational inequalities publication-title: Appl. Math. Optim. doi: 10.1007/BF02683320 – volume: 11 start-page: 399 issue: 3 year: 1963 ident: 318_CR13 publication-title: Oper. Res. doi: 10.1287/opre.11.3.399 – volume: 7 start-page: 1588 issue: 3 year: 2014 ident: 318_CR17 publication-title: SIAM J. Imaging Sci. doi: 10.1137/120896219 – start-page: 24 volume-title: Wavelets and Splines year: 2006 ident: 318_CR1 – volume: 155 start-page: 227 issue: 1 year: 2012 ident: 318_CR18 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-012-0003-z – volume: 50 start-page: 700 issue: 2 year: 2012 ident: 318_CR23 publication-title: SIAM J. Numer. Anal. doi: 10.1137/110836936 – volume: 46 start-page: 20 issue: 1 year: 2011 ident: 318_CR38 publication-title: J. Sci. Comput. doi: 10.1007/s10915-010-9408-8 – volume: 35 start-page: 69 issue: 1 year: 1997 ident: 318_CR19 publication-title: Appl. Math. Optim. doi: 10.1007/BF02683320 – volume: 34 start-page: 2233 year: 2012 ident: 318_CR31 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.282 – volume: 40 start-page: 1935 issue: 4 year: 2012 ident: 318_CR4 publication-title: Ann. Stat. doi: 10.1214/11-AOS949 – volume: 64 start-page: 81 issue: 1 year: 1994 ident: 318_CR7 publication-title: Math. Program. doi: 10.1007/BF01582566 – ident: 318_CR10 – ident: 318_CR9 – volume: 2 start-page: 17 issue: 1 year: 1976 ident: 318_CR14 publication-title: Comput. Math. Appl. doi: 10.1016/0898-1221(76)90003-1 – volume: 16 start-page: 964 issue: 6 year: 1979 ident: 318_CR28 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0716071 – ident: 318_CR32 doi: 10.1109/ACSSC.2013.6810364 – volume-title: Minimization Methods for Non-differentiable Functions year: 1985 ident: 318_CR34 doi: 10.1007/978-3-642-82118-9 – volume: 22 start-page: 313 issue: 2 year: 2012 ident: 318_CR22 publication-title: SIAM J. Optim. doi: 10.1137/110822347 – volume-title: Parallel and Distributed Computation: Numerical Methods year: 1997 ident: 318_CR2 – volume: 3 start-page: 1 issue: 1 year: 2011 ident: 318_CR3 publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000016 – volume: 2013 start-page: 183961 year: 2013 ident: 318_CR6 publication-title: Abstr. Appl. Anal. – volume: 33 start-page: 250 issue: 1 year: 2011 ident: 318_CR37 publication-title: SIAM J. Sci. Comput. doi: 10.1137/090777761 – volume: 66 start-page: 889 issue: 3 year: 2016 ident: 318_CR12 publication-title: J. Sci. Comput. doi: 10.1007/s10915-015-0048-x – volume: 130 start-page: 567 issue: 3 year: 2015 ident: 318_CR24 publication-title: Numer. Math. doi: 10.1007/s00211-014-0673-6 – volume-title: Convex Analysis year: 1997 ident: 318_CR33 – volume: 21 start-page: 57 issue: 1 year: 2011 ident: 318_CR35 publication-title: SIAM J. Optim. doi: 10.1137/100781894 – volume: 25 start-page: 2274 year: 2015 ident: 318_CR21 publication-title: SIAM J. Optim. doi: 10.1137/130922793 – volume: 42 start-page: 195 issue: 2 year: 2009 ident: 318_CR20 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-007-9109-x – ident: 318_CR15 doi: 10.1007/978-3-662-12613-4 – volume: 61 start-page: 2718 year: 2013 ident: 318_CR29 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2254478 – ident: 318_CR16 doi: 10.1051/m2an/197509R200411 – ident: 318_CR27 – ident: 318_CR25 – volume: 24 start-page: 1614 issue: 4 year: 2014 ident: 318_CR8 publication-title: SIAM J. Optim. doi: 10.1137/130940402 – ident: 318_CR11 – volume: 103 start-page: 127 issue: 1 year: 2005 ident: 318_CR30 publication-title: Math. Program. doi: 10.1007/s10107-004-0552-5 – volume: 155 start-page: 57 issue: 1 year: 2016 ident: 318_CR5 publication-title: Math. Program. doi: 10.1007/s10107-014-0826-5 – ident: 318_CR26 doi: 10.1142/S0217595915500244 – volume: 11 start-page: 57 issue: 4 year: 2015 ident: 318_CR36 publication-title: Pac. J. Optim. |
SSID | ssj0009892 |
Score | 2.6010103 |
Snippet | This paper introduces a parallel and distributed algorithm for solving the following minimization problem with linear constraints:
minimize
f
1
(
x
1
)
+
⋯
+
f... This paper introduces a parallel and distributed algorithm for solving the following minimization problem with linear constraints:... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 712 |
SubjectTerms | Algorithms Computational Mathematics and Numerical Analysis Convergence Convex analysis Decomposition Guarantees Lagrange multiplier Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Matrices (mathematics) Optimization Parameters Theoretical Variables |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTwIxEJ0oXLwY8SOiaHrwgJqG7XY_uicDCCEmGGIk4bbpdtsLBBDw_9tZum400fN2e5h2Om-m0_cA7nKlmTAsookNjzSIY0mFEYaygOUyErGvsqLb4jUaTYOXWThzBbeta6ssz8TioM5XCmvkHT-xmw_ZyMOn9QdF1Si8XXUSGodQt0ewCGtQ7w1eJ28V7a4oZJGtK4XUAuegvNfcP55LGDau2Yzabmzq_4xMFdz8dUNaBJ7hCRw7xEi6-yVuwIFenkLD-eSWtB1x9P0Z8IncoDTKghTPamnPBqo56T6PxwTLrWTVZqRD5vekj63mxatLfQ7T4eC9P6JOFIEqzqIdFVzmFhFHUknDeWYBjFQ8V0IiD32meCwTE4aRNomnkRlHW8AlmQrCPDPcJmv8AmrL1VJfApFKBYH0TBxzmxRmkRReLj3poQ4oknY3wSsNkirHGI7CFYu04jpGG6bYJYY2TP0mPHz_st7TZfw3uFVaOXWes02rdW7CY2n56vOfk139P9k1HPkYkItWxRbUdptPfWPhxC67dXvmC2KfwdE priority: 102 providerName: ProQuest |
Title | Parallel Multi-Block ADMM with o(1 / k) Convergence |
URI | https://link.springer.com/article/10.1007/s10915-016-0318-2 https://www.proquest.com/docview/2918312755 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RuOjBCGpEkezgATSN27pu3XFDBtFAiJFET0vXbRcIGIb_D38Lf5lt2ZgaNfHUw9oeXn-8763f-x7AdcwTg6aGjVzhHpHlOAzRlKbIsIyY2dQxeaTYFiN7MLEeXshLnsedFWz34klS3dSfkt1cQxLNRAQsNiIS926ViNBd8vgmplcq7VJVCVmcHoIEVraKp8yfpvjqjEqE-e1RVPma4BiOcpCoedtVrcFeMq_D4XCnsJrVoZYfykxr58rRnRMgY7aUtVFmmsqrRb7wVFPNux8ONfm_VVu0jc36brOedrSuZJurxMvkFCZB77k7QHldBMSxYa8QxSwWoNhmnKUYRwLDMI5jTpmUoo84dpibEmInqasnUhwnEZiLGdwicZRiEa_hM6jMF_PkHDTGuWUxPXUcLOLCyGZUj5nOdFkKVOp2N0AvDBTyXDRc1q6YhaXcsbRpKIli0qah2YCb3ZC3rWLGX52bhdXD_PBkoemKe0YKz5MG3BYrUX7-dbKLf_W-hANTumhFXmxCZbV8T64EwFhFLdinQb8FVS_w_ZFs-6-PPdH6vdH4qaW22wfeVsmG |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB7UHvQiPrE-96BQlcUkm-dBRKultbYUqeAtbjabS0tbbUX8U_5GZ_IwKOjNc5I9TGZ2vtmd-T6Aw1hp009MlweYHrnteZL7iZ9w0zZj6fqepaK026LrNh_s20fncQ4-ilkYaqss9sR0o47His7Iz6wAnY_YyJ2LyTMn1Si6XS0kNDK3aOv3NyzZpueta_y_R5bVuOnXmzxXFeBKmO6M-0LGCCldqWQiRIQIQCoRK18SkXukhCeDxHFcnQSGJmoZjYhFmsp24igRWO0IXHceKggzAoyiytVNt3df0vz6qQwzhq7DEajbxT1qNqwXmNQohxU8BhK3vmfCEt7-uJFNE11jBZZzhMouM5dahTk9WoPVfA-YslpOVH28DqInX0iKZcjSMV5-hYlxwC6vOx1Gx7tsXDPZGRscszq1tqdTnnoDHv7FXJuwMBqP9BYwqZRtSyPxPIFFaORK34ilIQ3SHSWS8CoYhUFClTOUk1DGMCy5lcmGIXWlkQ1DqwonX59MMnqOv17eLawc5pE6DUu_qsJpYfny8a-Lbf-92AEsNvudu_Cu1W3vwJJFYCBtk9yFhdnLq95DKDOL9nP_YfD03y77CSly_rY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTsJAFL0xkBhdqKBGFLULF6AZaDt9LpGHKEJYSIKrOp12NpBCoGz8Gr6FL3OmtFSJmhjXnU6m87j33M655wLceNRXLKYYyObuEWmmSZDFLIYUTfGIYZkqdSO2Rc9oD7SnoT6M65zOE7Z7ciW5zmkQKk1BWJ16rPop8c1WBOmMR8N8UyJug7Oa0GbPQLb28Nppprq7VlQXmZ8lHXHkrCUXm9918tU1pXhz64o08jytQ3hLxrwmnIwqi9Ct0PctOcd_fNQRHMSoVKqtt1EOdvwgD_vdjaTrPA-52ArMpVIsVV0-Br1PZqIYy1iKEnnRPXeNI6nW6HYl8YNXmpSU1bK6Wo7KUl3Q26NMT_8EBq3mS72N4kIMiGLFCJGFicdRuEEoYRi7HDQRij1qEaF971JsEpvpuuEzW_aFGo_PQR5RqKZ7LsM8QMSnkAkmgX8GEqFU04jMTBPzQNQ1iCV7RCayqD0qhMILICdr4NBYpVwUyxg7qb6ymCZHMNPENDlqAW43r0zXEh2_NS4mC-vEp3XuqDY3bELpXi_AXbJO6eMfOzv_U-tr2O03Ws7zY69zAXuqgAcRcbIImXC28C85uAndq3gDfwBISOyJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Multi-Block+ADMM+with+o%281%C2%A0%2F%C2%A0k%29+Convergence&rft.jtitle=Journal+of+scientific+computing&rft.au=Deng%2C+Wei&rft.au=Lai%2C+Ming-Jun&rft.au=Peng%2C+Zhimin&rft.au=Yin%2C+Wotao&rft.date=2017-05-01&rft.pub=Springer+US&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=71&rft.issue=2&rft.spage=712&rft.epage=736&rft_id=info:doi/10.1007%2Fs10915-016-0318-2&rft.externalDocID=10_1007_s10915_016_0318_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon |