Parallel Multi-Block ADMM with o(1 / k) Convergence

This paper introduces a parallel and distributed algorithm for solving the following minimization problem with linear constraints: minimize f 1 ( x 1 ) + ⋯ + f N ( x N ) subject to A 1 x 1 + ⋯ + A N x N = c , x 1 ∈ X 1 , … , x N ∈ X N , where N ≥ 2 , f i are convex functions, A i are matrices, and X...

Full description

Saved in:
Bibliographic Details
Published inJournal of scientific computing Vol. 71; no. 2; pp. 712 - 736
Main Authors Deng, Wei, Lai, Ming-Jun, Peng, Zhimin, Yin, Wotao
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0885-7474
1573-7691
DOI10.1007/s10915-016-0318-2

Cover

Loading…
Abstract This paper introduces a parallel and distributed algorithm for solving the following minimization problem with linear constraints: minimize f 1 ( x 1 ) + ⋯ + f N ( x N ) subject to A 1 x 1 + ⋯ + A N x N = c , x 1 ∈ X 1 , … , x N ∈ X N , where N ≥ 2 , f i are convex functions, A i are matrices, and X i are feasible sets for variable x i . Our algorithm extends the alternating direction method of multipliers (ADMM) and decomposes the original problem into N smaller subproblems and solves them in parallel at each iteration. This paper shows that the classic ADMM can be extended to the N -block Jacobi fashion and preserve convergence in the following two cases: (i) matrices A i are mutually near-orthogonal and have full column-rank, or (ii) proximal terms are added to the N subproblems (but without any assumption on matrices A i ). In the latter case, certain proximal terms can let the subproblem be solved in more flexible and efficient ways. We show that ‖ x k + 1 - x k ‖ M 2 converges at a rate of o (1 /  k ) where M is a symmetric positive semi-definte matrix. Since the parameters used in the convergence analysis are conservative, we introduce a strategy for automatically tuning the parameters to substantially accelerate our algorithm in practice. We implemented our algorithm (for the case ii above) on Amazon EC2 and tested it on basis pursuit problems with >300 GB of distributed data. This is the first time that successfully solving a compressive sensing problem of such a large scale is reported.
AbstractList This paper introduces a parallel and distributed algorithm for solving the following minimization problem with linear constraints: minimize f 1 ( x 1 ) + ⋯ + f N ( x N ) subject to A 1 x 1 + ⋯ + A N x N = c , x 1 ∈ X 1 , … , x N ∈ X N , where N ≥ 2 , f i are convex functions, A i are matrices, and X i are feasible sets for variable x i . Our algorithm extends the alternating direction method of multipliers (ADMM) and decomposes the original problem into N smaller subproblems and solves them in parallel at each iteration. This paper shows that the classic ADMM can be extended to the N -block Jacobi fashion and preserve convergence in the following two cases: (i) matrices A i are mutually near-orthogonal and have full column-rank, or (ii) proximal terms are added to the N subproblems (but without any assumption on matrices A i ). In the latter case, certain proximal terms can let the subproblem be solved in more flexible and efficient ways. We show that ‖ x k + 1 - x k ‖ M 2 converges at a rate of o (1 /  k ) where M is a symmetric positive semi-definte matrix. Since the parameters used in the convergence analysis are conservative, we introduce a strategy for automatically tuning the parameters to substantially accelerate our algorithm in practice. We implemented our algorithm (for the case ii above) on Amazon EC2 and tested it on basis pursuit problems with >300 GB of distributed data. This is the first time that successfully solving a compressive sensing problem of such a large scale is reported.
This paper introduces a parallel and distributed algorithm for solving the following minimization problem with linear constraints: minimizef1(x1)+⋯+fN(xN)subject toA1x1+⋯+ANxN=c,x1∈X1,…,xN∈XN,where N≥2, fi are convex functions, Ai are matrices, and Xi are feasible sets for variable xi. Our algorithm extends the alternating direction method of multipliers (ADMM) and decomposes the original problem into N smaller subproblems and solves them in parallel at each iteration. This paper shows that the classic ADMM can be extended to the N-block Jacobi fashion and preserve convergence in the following two cases: (i) matrices Ai are mutually near-orthogonal and have full column-rank, or (ii) proximal terms are added to the N subproblems (but without any assumption on matrices Ai). In the latter case, certain proximal terms can let the subproblem be solved in more flexible and efficient ways. We show that ‖xk+1-xk‖M2 converges at a rate of o(1 / k) where M is a symmetric positive semi-definte matrix. Since the parameters used in the convergence analysis are conservative, we introduce a strategy for automatically tuning the parameters to substantially accelerate our algorithm in practice. We implemented our algorithm (for the case ii above) on Amazon EC2 and tested it on basis pursuit problems with >300 GB of distributed data. This is the first time that successfully solving a compressive sensing problem of such a large scale is reported.
Author Lai, Ming-Jun
Deng, Wei
Peng, Zhimin
Yin, Wotao
Author_xml – sequence: 1
  givenname: Wei
  surname: Deng
  fullname: Deng, Wei
  organization: Department of Computational and Applied Mathematics, Rice University
– sequence: 2
  givenname: Ming-Jun
  surname: Lai
  fullname: Lai, Ming-Jun
  email: mjlai@uga.edu
  organization: Department of Mathematics, University of Georgia
– sequence: 3
  givenname: Zhimin
  surname: Peng
  fullname: Peng, Zhimin
  organization: Department of Mathematics, University of California
– sequence: 4
  givenname: Wotao
  surname: Yin
  fullname: Yin, Wotao
  organization: Department of Mathematics, University of California
BookMark eNp9kE1OwzAQhS1UJNrCAdhFYgML05k4tpNlafmTWsEC1pbrOiVtiIudgrhNz9KTkSpISEiwms373jx9PdKpXGUJOUW4RAA5CAgZcgooKDBMaXxAusglo1Jk2CFdSFNOZSKTI9ILYQkAWZrFXcIftddlactouinrgl6Vzqyi4Xg6jT6K-iVy57jbDnbb1UU0ctW79QtbGXtMDnNdBnvyffvk-eb6aXRHJw-396PhhBqGoqYp03MpY6GNzhmbceDasLlJdTMxmRkmdZZzLmyegZUgwKJgGk3C57OcIResT87a3rV3bxsbarV0G181L1WcYcowlpw3KdmmjHcheJsrU9S6LlxVe12UCkHtHanWkWocqb0jFTck_iLXvnjV_vNfJm6Z0GSrhfU_m_6GvgBNaXlY
CitedBy_id crossref_primary_10_1007_s11036_024_02352_6
crossref_primary_10_1109_TAC_2017_2658438
crossref_primary_10_1109_TSG_2019_2942616
crossref_primary_10_1109_JSAC_2019_2959180
crossref_primary_10_1109_TNNLS_2021_3054778
crossref_primary_10_1002_mp_15978
crossref_primary_10_1007_s10696_024_09538_w
crossref_primary_10_1109_TIFS_2023_3277222
crossref_primary_10_1016_j_ejor_2020_12_010
crossref_primary_10_3390_info14020109
crossref_primary_10_1109_TRO_2022_3228132
crossref_primary_10_1137_17M1151973
crossref_primary_10_1007_s10107_017_1205_9
crossref_primary_10_1142_S0219530518500082
crossref_primary_10_1109_TAC_2021_3053907
crossref_primary_10_1109_TCYB_2024_3424221
crossref_primary_10_1109_JSYST_2019_2897788
crossref_primary_10_7717_peerj_cs_237
crossref_primary_10_1016_j_ifacol_2020_12_159
crossref_primary_10_1109_TAC_2023_3244904
crossref_primary_10_1109_TPDS_2018_2882174
crossref_primary_10_1016_j_jobe_2022_104498
crossref_primary_10_1007_s10589_018_0037_8
crossref_primary_10_1109_LCSYS_2024_3396399
crossref_primary_10_1088_1361_6420_aabce9
crossref_primary_10_1016_j_ijepes_2020_106119
crossref_primary_10_1109_TMC_2022_3232495
crossref_primary_10_1049_itr2_12241
crossref_primary_10_1111_biom_13860
crossref_primary_10_1109_TMC_2017_2711026
crossref_primary_10_1186_s13663_023_00751_0
crossref_primary_10_1287_moor_2022_1350
crossref_primary_10_1007_s10898_022_01174_8
crossref_primary_10_1109_TIE_2018_2881938
crossref_primary_10_1007_s12190_017_1138_8
crossref_primary_10_1016_j_apenergy_2021_116551
crossref_primary_10_1007_s12190_017_1080_9
crossref_primary_10_1016_j_apenergy_2022_120428
crossref_primary_10_1080_10556788_2019_1683553
crossref_primary_10_1109_TWC_2024_3374794
crossref_primary_10_1016_j_eswa_2024_124836
crossref_primary_10_1109_TCI_2018_2857446
crossref_primary_10_1109_TPWRS_2020_3021474
crossref_primary_10_1049_iet_gtd_2020_0415
crossref_primary_10_1109_TVT_2017_2731359
crossref_primary_10_1007_s00180_022_01318_0
crossref_primary_10_1109_TSP_2021_3078625
crossref_primary_10_1109_JSAC_2024_3443759
crossref_primary_10_1109_LCSYS_2019_2923078
crossref_primary_10_1016_j_apenergy_2022_120436
crossref_primary_10_1007_s10915_017_0612_7
crossref_primary_10_1016_j_apenergy_2023_121491
crossref_primary_10_1016_j_is_2024_102379
crossref_primary_10_1007_s40305_021_00368_3
crossref_primary_10_3390_su14073751
crossref_primary_10_1145_3154492
crossref_primary_10_1109_TMC_2021_3085979
crossref_primary_10_1109_LWC_2018_2842189
crossref_primary_10_1093_imanum_draa018
crossref_primary_10_1142_S0217595922400024
crossref_primary_10_1109_TCCN_2021_3051947
crossref_primary_10_1155_2017_9674528
crossref_primary_10_1109_TWC_2021_3068207
crossref_primary_10_1109_TSP_2018_2818081
crossref_primary_10_1007_s10915_020_01267_0
crossref_primary_10_1016_j_apenergy_2024_123666
crossref_primary_10_12677_pm_2024_1412411
crossref_primary_10_1016_j_neunet_2018_07_016
crossref_primary_10_1007_s10589_018_0039_6
crossref_primary_10_1016_j_automatica_2022_110551
crossref_primary_10_1016_j_ijepes_2023_109428
crossref_primary_10_1109_TASLP_2022_3201391
crossref_primary_10_1109_TITS_2023_3262580
crossref_primary_10_1109_TAC_2020_3022492
crossref_primary_10_1080_00207160_2018_1435864
crossref_primary_10_1142_S0217595920400096
crossref_primary_10_1109_TSP_2022_3192171
crossref_primary_10_1137_19M1292473
crossref_primary_10_1109_JIOT_2021_3058116
crossref_primary_10_1109_TAC_2019_2934755
crossref_primary_10_1109_TNNLS_2024_3382030
crossref_primary_10_1016_j_arcontrol_2024_100983
crossref_primary_10_1016_j_cam_2021_113781
crossref_primary_10_1109_TSG_2023_3349318
crossref_primary_10_1109_ACCESS_2022_3187204
crossref_primary_10_1145_3392157
crossref_primary_10_1109_TSP_2022_3163525
crossref_primary_10_1109_TCOMM_2021_3078783
crossref_primary_10_1016_j_apenergy_2019_01_249
crossref_primary_10_1109_LCOMM_2019_2955442
crossref_primary_10_1016_j_parco_2023_102999
crossref_primary_10_1007_s40305_021_00344_x
crossref_primary_10_1109_TGRS_2020_2983063
crossref_primary_10_1002_oca_3054
crossref_primary_10_1109_TPAMI_2024_3393131
crossref_primary_10_1007_s10589_019_00087_9
crossref_primary_10_1016_j_ijepes_2020_106533
crossref_primary_10_1002_zamm_202000288
crossref_primary_10_1109_TCOMM_2023_3308149
crossref_primary_10_1007_s40314_019_0949_7
crossref_primary_10_2514_1_C037283
crossref_primary_10_1186_s13660_019_2080_0
crossref_primary_10_1109_TNNLS_2021_3104840
crossref_primary_10_1007_s10898_024_01418_9
crossref_primary_10_1007_s40305_023_00518_9
crossref_primary_10_1109_LCSYS_2020_3044873
crossref_primary_10_1016_j_nexus_2024_100292
crossref_primary_10_1007_s40430_023_04202_0
crossref_primary_10_1016_j_cam_2021_113681
crossref_primary_10_1080_03610918_2023_2249271
crossref_primary_10_1109_ACCESS_2019_2914461
crossref_primary_10_1007_s10589_019_00091_z
crossref_primary_10_1109_COMST_2021_3097916
crossref_primary_10_1137_19M1284336
crossref_primary_10_1016_j_apenergy_2024_123860
crossref_primary_10_1007_s11042_020_10233_9
crossref_primary_10_1016_j_ijepes_2019_105777
crossref_primary_10_1109_TSG_2020_3037066
crossref_primary_10_1109_JETCAS_2017_2703907
crossref_primary_10_1016_j_isprsjprs_2021_05_011
crossref_primary_10_1109_TSG_2022_3202695
crossref_primary_10_1109_TIFS_2018_2855169
crossref_primary_10_1016_j_apnum_2023_09_003
crossref_primary_10_1109_TPWRS_2022_3140676
crossref_primary_10_1109_ACCESS_2021_3061995
crossref_primary_10_1109_JSTSP_2022_3156756
crossref_primary_10_1109_TSP_2019_2896266
crossref_primary_10_1109_TVT_2023_3308589
crossref_primary_10_1109_JSYST_2019_2913133
crossref_primary_10_1016_j_jobe_2018_06_004
crossref_primary_10_1137_19M127879X
crossref_primary_10_1109_TNNLS_2020_3040379
crossref_primary_10_1016_j_epsr_2020_106479
crossref_primary_10_1016_j_sysconle_2018_08_002
crossref_primary_10_1080_02331934_2022_2057309
crossref_primary_10_1145_3230668
crossref_primary_10_1007_s10957_021_01919_7
crossref_primary_10_1016_j_automatica_2023_111339
crossref_primary_10_1007_s10589_020_00229_4
crossref_primary_10_1109_JSAC_2019_2951989
crossref_primary_10_1115_1_4056853
crossref_primary_10_1007_s10915_022_01815_w
crossref_primary_10_1093_imanum_dry092
crossref_primary_10_1002_rnc_5618
crossref_primary_10_1137_16M1084705
crossref_primary_10_1088_1361_6560_ab22ed
crossref_primary_10_1007_s00186_022_00796_8
crossref_primary_10_1109_TSP_2020_3008050
crossref_primary_10_1016_j_cjche_2018_08_027
crossref_primary_10_1109_ACCESS_2020_2964073
crossref_primary_10_1109_TRO_2023_3297010
crossref_primary_10_1016_j_cam_2017_11_033
crossref_primary_10_1016_j_ifacol_2020_12_2265
crossref_primary_10_3934_jimo_2017052
crossref_primary_10_1109_TSG_2019_2962269
crossref_primary_10_1088_1361_6560_ad580d
crossref_primary_10_1109_ACCESS_2020_2982293
crossref_primary_10_1287_moor_2019_0990
crossref_primary_10_1142_S0217595920500359
crossref_primary_10_1002_mp_15897
crossref_primary_10_1109_TSP_2021_3079819
crossref_primary_10_1109_TCSVT_2020_2967424
crossref_primary_10_1016_j_comcom_2022_03_003
crossref_primary_10_1109_TCOMM_2020_3026398
crossref_primary_10_1109_TVT_2020_2968343
crossref_primary_10_1007_s12532_018_0134_9
crossref_primary_10_1016_j_apenergy_2020_115371
crossref_primary_10_1007_s10915_018_0757_z
crossref_primary_10_3934_jimo_2017078
crossref_primary_10_1109_TNNLS_2019_2921952
crossref_primary_10_1109_TCYB_2021_3052056
crossref_primary_10_1109_TCCN_2019_2937519
crossref_primary_10_1109_ACCESS_2020_3034155
crossref_primary_10_1002_nla_2485
crossref_primary_10_3934_jimo_2025014
crossref_primary_10_1016_j_cad_2019_05_021
crossref_primary_10_3934_ipi_2024048
crossref_primary_10_1007_s10114_023_1401_x
crossref_primary_10_1109_LCSYS_2018_2833116
crossref_primary_10_1109_TTE_2022_3168979
crossref_primary_10_1109_TAC_2020_3033512
crossref_primary_10_1007_s10589_021_00338_8
crossref_primary_10_1016_j_egyr_2021_08_145
crossref_primary_10_1049_esi2_12079
crossref_primary_10_1016_j_neucom_2018_03_069
crossref_primary_10_1109_TPWRS_2019_2896654
crossref_primary_10_1109_TVT_2017_2760920
crossref_primary_10_3389_fenrg_2021_665295
crossref_primary_10_1109_TSIPN_2017_2721298
crossref_primary_10_1109_TCBB_2020_3034861
crossref_primary_10_1142_S0217595921500445
crossref_primary_10_1049_ipr2_12289
crossref_primary_10_1016_j_jappgeo_2023_104940
crossref_primary_10_1016_j_neucom_2018_02_016
crossref_primary_10_1109_TSTE_2018_2815502
crossref_primary_10_1109_TMECH_2021_3105950
crossref_primary_10_1109_TCCN_2021_3130993
crossref_primary_10_1007_s10915_023_02346_8
crossref_primary_10_1109_TII_2019_2937513
crossref_primary_10_1016_j_epsr_2019_106180
crossref_primary_10_1109_TCNS_2023_3338245
crossref_primary_10_1109_TNET_2019_2912077
crossref_primary_10_1016_j_ejor_2022_10_019
crossref_primary_10_1090_mcom_3822
crossref_primary_10_1016_j_rser_2022_112837
crossref_primary_10_1007_s12190_022_01779_y
crossref_primary_10_1016_j_ins_2022_09_068
crossref_primary_10_1109_TNNLS_2019_2927385
crossref_primary_10_1109_TWC_2024_3392443
crossref_primary_10_1016_j_ins_2024_120431
crossref_primary_10_1109_COMST_2023_3315746
crossref_primary_10_1016_j_ins_2019_08_039
crossref_primary_10_1109_TWC_2017_2789195
crossref_primary_10_1049_cth2_12421
crossref_primary_10_1109_TII_2022_3151913
Cites_doi 10.1137/110836936
10.1561/2200000016
10.1007/s00211-014-0673-6
10.1137/110822347
10.1137/0716071
10.1007/BF01582566
10.1109/TSP.2013.2254478
10.1007/s10957-012-0003-z
10.1007/978-3-642-82118-9
10.1137/120896219
10.1007/s10589-007-9109-x
10.1137/130940402
10.1137/100781894
10.1016/0898-1221(76)90003-1
10.1214/11-AOS949
10.1137/130922793
10.1007/s10107-014-0826-5
10.1007/s10915-010-9408-8
10.1137/090777761
10.1007/s10107-004-0552-5
10.1109/TPAMI.2011.282
10.1287/opre.11.3.399
10.1007/s10915-015-0048-x
10.1007/BF02683320
10.1109/ACSSC.2013.6810364
10.1007/978-3-662-12613-4
10.1051/m2an/197509R200411
10.1142/S0217595915500244
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
Springer Science+Business Media New York 2016.
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: Springer Science+Business Media New York 2016.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s10915-016-0318-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-7691
EndPage 736
ExternalDocumentID 10_1007_s10915_016_0318_2
GrantInformation_xml – fundername: National Science Foundation
  grantid: ECCS-1028790; DMS-1521537
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: ARO/ARL MURI
  grantid: FA9550-10-1-0567
– fundername: National Science Foundation
  grantid: DMS-1317602
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: Simons Foundation
  grantid: Collaboration Grant
  funderid: http://dx.doi.org/10.13039/100000893
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z92
ZMTXR
ZWQNP
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c316t-83ad7726acaf33b505ac3dc8a0314bc37a9f556ef90e7060e163a1c45dbf31563
IEDL.DBID U2A
ISSN 0885-7474
IngestDate Fri Jul 25 23:33:10 EDT 2025
Tue Jul 01 00:51:38 EDT 2025
Thu Apr 24 23:14:45 EDT 2025
Fri Feb 21 02:36:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Convergence rate
Alternating direction method of multipliers
Parallel and distributed computing
ADMM
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-83ad7726acaf33b505ac3dc8a0314bc37a9f556ef90e7060e163a1c45dbf31563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918312755
PQPubID 2043771
PageCount 25
ParticipantIDs proquest_journals_2918312755
crossref_citationtrail_10_1007_s10915_016_0318_2
crossref_primary_10_1007_s10915_016_0318_2
springer_journals_10_1007_s10915_016_0318_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170500
2017-5-00
20170501
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 5
  year: 2017
  text: 20170500
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References He, Hou, Yuan (CR21) 2015; 25
Goldstein, O’Donoghue, Setzer, Baraniuk (CR17) 2014; 7
Deng, Yin (CR12) 2016; 66
Chandrasekaran, Parrilo, Willsky (CR4) 2012; 40
Chen, Teboulle (CR7) 1994; 64
CR16
CR15
He, Yuan (CR24) 2015; 130
CR11
CR10
CR32
Gabay, Mercier (CR14) 1976; 2
He (CR19) 1997; 35
Zhang, Burger, Osher (CR38) 2011; 46
Lions, Mercier (CR28) 1979; 16
Rockafellar (CR33) 1997
Corman, Yuan (CR8) 2014; 24
Nesterov (CR30) 2005; 103
Shor, Kiwiel, Ruszcayski (CR34) 1985
Wang, Hong, Ma, Luo (CR36) 2015; 11
Chen, Shen, You (CR6) 2013; 2013
CR9
CR27
Tao, Yuan (CR35) 2011; 21
CR26
CR25
Everett (CR13) 1963; 11
He, Tao, Yuan (CR22) 2012; 22
Mota, Xavier, Aguiar, Puschel (CR29) 2013; 61
He (CR20) 2009; 42
He, Yuan (CR23) 2012; 50
Peng, Ganesh, Wright, Xu, Ma (CR31) 2012; 34
Bertsekas, Tsitsiklis (CR2) 1997
Awanou, Lai, Wenston, Chen, Lai (CR1) 2006
Han, Yuan (CR18) 2012; 155
Boyd, Parikh, Chu, Peleato, Eckstein (CR3) 2011; 3
Chen, He, Ye, Yuan (CR5) 2016; 155
Yang, Zhang (CR37) 2011; 33
D Bertsekas (318_CR2) 1997
JF Mota (318_CR29) 2013; 61
318_CR11
318_CR10
318_CR32
V Chandrasekaran (318_CR4) 2012; 40
BS He (318_CR24) 2015; 130
BS He (318_CR23) 2012; 50
318_CR16
318_CR15
BS He (318_CR19) 1997; 35
D Gabay (318_CR14) 1976; 2
G Awanou (318_CR1) 2006
JF Yang (318_CR37) 2011; 33
RT Rockafellar (318_CR33) 1997
C Chen (318_CR6) 2013; 2013
PL Lions (318_CR28) 1979; 16
318_CR25
H Everett (318_CR13) 1963; 11
W Deng (318_CR12) 2016; 66
M Tao (318_CR35) 2011; 21
X Zhang (318_CR38) 2011; 46
C Chen (318_CR5) 2016; 155
NZ Shor (318_CR34) 1985
S Boyd (318_CR3) 2011; 3
E Corman (318_CR8) 2014; 24
Y Peng (318_CR31) 2012; 34
318_CR27
T Goldstein (318_CR17) 2014; 7
318_CR26
BS He (318_CR20) 2009; 42
BS He (318_CR22) 2012; 22
Y Nesterov (318_CR30) 2005; 103
XF Wang (318_CR36) 2015; 11
318_CR9
D Han (318_CR18) 2012; 155
G Chen (318_CR7) 1994; 64
BS He (318_CR21) 2015; 25
References_xml – volume: 50
  start-page: 700
  issue: 2
  year: 2012
  end-page: 709
  ident: CR23
  article-title: On the convergence rate of the Douglas-Rachford alternating direction method
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110836936
– volume: 2013
  start-page: 183961
  year: 2013
  ident: CR6
  article-title: On the convergence analysis of the alternating direction method of multipliers with three blocks
  publication-title: Abstr. Appl. Anal.
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  end-page: 122
  ident: CR3
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000016
– volume: 130
  start-page: 567
  issue: 3
  year: 2015
  end-page: 577
  ident: CR24
  article-title: On non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers
  publication-title: Numer. Math.
  doi: 10.1007/s00211-014-0673-6
– volume: 22
  start-page: 313
  issue: 2
  year: 2012
  end-page: 340
  ident: CR22
  article-title: Alternating direction method with gaussian back substitution for separable convex programming
  publication-title: SIAM J. Optim.
  doi: 10.1137/110822347
– volume: 16
  start-page: 964
  issue: 6
  year: 1979
  end-page: 979
  ident: CR28
  article-title: Splitting algorithms for the sum of two nonlinear operators
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0716071
– volume: 64
  start-page: 81
  issue: 1
  year: 1994
  end-page: 101
  ident: CR7
  article-title: A proximal-based decomposition method for convex minimization problems
  publication-title: Math. Program.
  doi: 10.1007/BF01582566
– volume: 61
  start-page: 2718
  year: 2013
  end-page: 2723
  ident: CR29
  article-title: D-admm: a communication-efficient distributed algorithm for separable optimization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2254478
– ident: CR16
– volume: 155
  start-page: 227
  issue: 1
  year: 2012
  end-page: 238
  ident: CR18
  article-title: A note on the alternating direction method of multipliers
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-012-0003-z
– year: 1985
  ident: CR34
  publication-title: Minimization Methods for Non-differentiable Functions
  doi: 10.1007/978-3-642-82118-9
– ident: CR10
– volume: 7
  start-page: 1588
  issue: 3
  year: 2014
  end-page: 1623
  ident: CR17
  article-title: Fast alternating direction optimization methods
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/120896219
– volume: 42
  start-page: 195
  issue: 2
  year: 2009
  end-page: 212
  ident: CR20
  article-title: Parallel splitting augmented lagrangian methods for monotone structured variational inequalities
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-007-9109-x
– volume: 24
  start-page: 1614
  issue: 4
  year: 2014
  end-page: 1638
  ident: CR8
  article-title: A generalized proximal point algorithm and its convergence rate
  publication-title: SIAM J. Optim.
  doi: 10.1137/130940402
– volume: 21
  start-page: 57
  issue: 1
  year: 2011
  end-page: 81
  ident: CR35
  article-title: Recovering low-rank and sparse components of matrices from incomplete and noisy observations
  publication-title: SIAM J. Optim.
  doi: 10.1137/100781894
– start-page: 24
  year: 2006
  end-page: 74
  ident: CR1
  article-title: The multivariate spline method for numerical solution of partial differential equations and scattered data interpolation
  publication-title: Wavelets and Splines
– volume: 2
  start-page: 17
  issue: 1
  year: 1976
  end-page: 40
  ident: CR14
  article-title: A dual algorithm for the solution of nonlinear variational problems via finite element approximation
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(76)90003-1
– volume: 11
  start-page: 57
  issue: 4
  year: 2015
  end-page: 81
  ident: CR36
  article-title: Solving multiple-block separable convex minimization problems using two-block alternating direction method of multipliers
  publication-title: Pac. J. Optim.
– volume: 40
  start-page: 1935
  issue: 4
  year: 2012
  end-page: 1967
  ident: CR4
  article-title: Latent variable graphical model selection via convex optimization
  publication-title: Ann. Stat.
  doi: 10.1214/11-AOS949
– volume: 25
  start-page: 2274
  year: 2015
  end-page: 2312
  ident: CR21
  article-title: On full Jacobian decomposition of the augmented lagrangian method for separable convex programming
  publication-title: SIAM J. Optim.
  doi: 10.1137/130922793
– ident: CR25
– ident: CR27
– year: 1997
  ident: CR2
  publication-title: Parallel and Distributed Computation: Numerical Methods
– volume: 155
  start-page: 57
  issue: 1
  year: 2016
  end-page: 79
  ident: CR5
  article-title: The direct extension of admm for multi-block convex minimization problems is not necessarily convergent
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0826-5
– volume: 46
  start-page: 20
  issue: 1
  year: 2011
  end-page: 46
  ident: CR38
  article-title: A unified primal-dual algorithm framework based on Bregman iteration
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-010-9408-8
– volume: 33
  start-page: 250
  issue: 1
  year: 2011
  end-page: 278
  ident: CR37
  article-title: Alternating direction algorithms for -problems in compressive sensing
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090777761
– ident: CR15
– volume: 103
  start-page: 127
  issue: 1
  year: 2005
  end-page: 152
  ident: CR30
  article-title: Smooth minimization of non-smooth functions
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0552-5
– volume: 34
  start-page: 2233
  year: 2012
  end-page: 2246
  ident: CR31
  article-title: RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.282
– ident: CR11
– ident: CR9
– volume: 11
  start-page: 399
  issue: 3
  year: 1963
  end-page: 417
  ident: CR13
  article-title: Generalized lagrange multiplier method for solving problems of optimum allocation of resources
  publication-title: Oper. Res.
  doi: 10.1287/opre.11.3.399
– ident: CR32
– volume: 66
  start-page: 889
  issue: 3
  year: 2016
  end-page: 916
  ident: CR12
  article-title: On the global and linear convergence of the generalized alternating direction method of multipliers
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-015-0048-x
– ident: CR26
– year: 1997
  ident: CR33
  publication-title: Convex Analysis
– volume: 35
  start-page: 69
  issue: 1
  year: 1997
  end-page: 76
  ident: CR19
  article-title: A class of projection and contraction methods for monotone variational inequalities
  publication-title: Appl. Math. Optim.
  doi: 10.1007/BF02683320
– volume: 11
  start-page: 399
  issue: 3
  year: 1963
  ident: 318_CR13
  publication-title: Oper. Res.
  doi: 10.1287/opre.11.3.399
– volume: 7
  start-page: 1588
  issue: 3
  year: 2014
  ident: 318_CR17
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/120896219
– start-page: 24
  volume-title: Wavelets and Splines
  year: 2006
  ident: 318_CR1
– volume: 155
  start-page: 227
  issue: 1
  year: 2012
  ident: 318_CR18
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-012-0003-z
– volume: 50
  start-page: 700
  issue: 2
  year: 2012
  ident: 318_CR23
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110836936
– volume: 46
  start-page: 20
  issue: 1
  year: 2011
  ident: 318_CR38
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-010-9408-8
– volume: 35
  start-page: 69
  issue: 1
  year: 1997
  ident: 318_CR19
  publication-title: Appl. Math. Optim.
  doi: 10.1007/BF02683320
– volume: 34
  start-page: 2233
  year: 2012
  ident: 318_CR31
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.282
– volume: 40
  start-page: 1935
  issue: 4
  year: 2012
  ident: 318_CR4
  publication-title: Ann. Stat.
  doi: 10.1214/11-AOS949
– volume: 64
  start-page: 81
  issue: 1
  year: 1994
  ident: 318_CR7
  publication-title: Math. Program.
  doi: 10.1007/BF01582566
– ident: 318_CR10
– ident: 318_CR9
– volume: 2
  start-page: 17
  issue: 1
  year: 1976
  ident: 318_CR14
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(76)90003-1
– volume: 16
  start-page: 964
  issue: 6
  year: 1979
  ident: 318_CR28
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0716071
– ident: 318_CR32
  doi: 10.1109/ACSSC.2013.6810364
– volume-title: Minimization Methods for Non-differentiable Functions
  year: 1985
  ident: 318_CR34
  doi: 10.1007/978-3-642-82118-9
– volume: 22
  start-page: 313
  issue: 2
  year: 2012
  ident: 318_CR22
  publication-title: SIAM J. Optim.
  doi: 10.1137/110822347
– volume-title: Parallel and Distributed Computation: Numerical Methods
  year: 1997
  ident: 318_CR2
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  ident: 318_CR3
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000016
– volume: 2013
  start-page: 183961
  year: 2013
  ident: 318_CR6
  publication-title: Abstr. Appl. Anal.
– volume: 33
  start-page: 250
  issue: 1
  year: 2011
  ident: 318_CR37
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090777761
– volume: 66
  start-page: 889
  issue: 3
  year: 2016
  ident: 318_CR12
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-015-0048-x
– volume: 130
  start-page: 567
  issue: 3
  year: 2015
  ident: 318_CR24
  publication-title: Numer. Math.
  doi: 10.1007/s00211-014-0673-6
– volume-title: Convex Analysis
  year: 1997
  ident: 318_CR33
– volume: 21
  start-page: 57
  issue: 1
  year: 2011
  ident: 318_CR35
  publication-title: SIAM J. Optim.
  doi: 10.1137/100781894
– volume: 25
  start-page: 2274
  year: 2015
  ident: 318_CR21
  publication-title: SIAM J. Optim.
  doi: 10.1137/130922793
– volume: 42
  start-page: 195
  issue: 2
  year: 2009
  ident: 318_CR20
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-007-9109-x
– ident: 318_CR15
  doi: 10.1007/978-3-662-12613-4
– volume: 61
  start-page: 2718
  year: 2013
  ident: 318_CR29
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2254478
– ident: 318_CR16
  doi: 10.1051/m2an/197509R200411
– ident: 318_CR27
– ident: 318_CR25
– volume: 24
  start-page: 1614
  issue: 4
  year: 2014
  ident: 318_CR8
  publication-title: SIAM J. Optim.
  doi: 10.1137/130940402
– ident: 318_CR11
– volume: 103
  start-page: 127
  issue: 1
  year: 2005
  ident: 318_CR30
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0552-5
– volume: 155
  start-page: 57
  issue: 1
  year: 2016
  ident: 318_CR5
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0826-5
– ident: 318_CR26
  doi: 10.1142/S0217595915500244
– volume: 11
  start-page: 57
  issue: 4
  year: 2015
  ident: 318_CR36
  publication-title: Pac. J. Optim.
SSID ssj0009892
Score 2.6010103
Snippet This paper introduces a parallel and distributed algorithm for solving the following minimization problem with linear constraints: minimize f 1 ( x 1 ) + ⋯ + f...
This paper introduces a parallel and distributed algorithm for solving the following minimization problem with linear constraints:...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 712
SubjectTerms Algorithms
Computational Mathematics and Numerical Analysis
Convergence
Convex analysis
Decomposition
Guarantees
Lagrange multiplier
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Matrices (mathematics)
Optimization
Parameters
Theoretical
Variables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTwIxEJ0oXLwY8SOiaHrwgJqG7XY_uicDCCEmGGIk4bbpdtsLBBDw_9tZum400fN2e5h2Om-m0_cA7nKlmTAsookNjzSIY0mFEYaygOUyErGvsqLb4jUaTYOXWThzBbeta6ssz8TioM5XCmvkHT-xmw_ZyMOn9QdF1Si8XXUSGodQt0ewCGtQ7w1eJ28V7a4oZJGtK4XUAuegvNfcP55LGDau2Yzabmzq_4xMFdz8dUNaBJ7hCRw7xEi6-yVuwIFenkLD-eSWtB1x9P0Z8IncoDTKghTPamnPBqo56T6PxwTLrWTVZqRD5vekj63mxatLfQ7T4eC9P6JOFIEqzqIdFVzmFhFHUknDeWYBjFQ8V0IiD32meCwTE4aRNomnkRlHW8AlmQrCPDPcJmv8AmrL1VJfApFKBYH0TBxzmxRmkRReLj3poQ4oknY3wSsNkirHGI7CFYu04jpGG6bYJYY2TP0mPHz_st7TZfw3uFVaOXWes02rdW7CY2n56vOfk139P9k1HPkYkItWxRbUdptPfWPhxC67dXvmC2KfwdE
  priority: 102
  providerName: ProQuest
Title Parallel Multi-Block ADMM with o(1 / k) Convergence
URI https://link.springer.com/article/10.1007/s10915-016-0318-2
https://www.proquest.com/docview/2918312755
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RuOjBCGpEkezgATSN27pu3XFDBtFAiJFET0vXbRcIGIb_D38Lf5lt2ZgaNfHUw9oeXn-8763f-x7AdcwTg6aGjVzhHpHlOAzRlKbIsIyY2dQxeaTYFiN7MLEeXshLnsedFWz34klS3dSfkt1cQxLNRAQsNiIS926ViNBd8vgmplcq7VJVCVmcHoIEVraKp8yfpvjqjEqE-e1RVPma4BiOcpCoedtVrcFeMq_D4XCnsJrVoZYfykxr58rRnRMgY7aUtVFmmsqrRb7wVFPNux8ONfm_VVu0jc36brOedrSuZJurxMvkFCZB77k7QHldBMSxYa8QxSwWoNhmnKUYRwLDMI5jTpmUoo84dpibEmInqasnUhwnEZiLGdwicZRiEa_hM6jMF_PkHDTGuWUxPXUcLOLCyGZUj5nOdFkKVOp2N0AvDBTyXDRc1q6YhaXcsbRpKIli0qah2YCb3ZC3rWLGX52bhdXD_PBkoemKe0YKz5MG3BYrUX7-dbKLf_W-hANTumhFXmxCZbV8T64EwFhFLdinQb8FVS_w_ZFs-6-PPdH6vdH4qaW22wfeVsmG
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB7UHvQiPrE-96BQlcUkm-dBRKultbYUqeAtbjabS0tbbUX8U_5GZ_IwKOjNc5I9TGZ2vtmd-T6Aw1hp009MlweYHrnteZL7iZ9w0zZj6fqepaK026LrNh_s20fncQ4-ilkYaqss9sR0o47His7Iz6wAnY_YyJ2LyTMn1Si6XS0kNDK3aOv3NyzZpueta_y_R5bVuOnXmzxXFeBKmO6M-0LGCCldqWQiRIQIQCoRK18SkXukhCeDxHFcnQSGJmoZjYhFmsp24igRWO0IXHceKggzAoyiytVNt3df0vz6qQwzhq7DEajbxT1qNqwXmNQohxU8BhK3vmfCEt7-uJFNE11jBZZzhMouM5dahTk9WoPVfA-YslpOVH28DqInX0iKZcjSMV5-hYlxwC6vOx1Gx7tsXDPZGRscszq1tqdTnnoDHv7FXJuwMBqP9BYwqZRtSyPxPIFFaORK34ilIQ3SHSWS8CoYhUFClTOUk1DGMCy5lcmGIXWlkQ1DqwonX59MMnqOv17eLawc5pE6DUu_qsJpYfny8a-Lbf-92AEsNvudu_Cu1W3vwJJFYCBtk9yFhdnLq95DKDOL9nP_YfD03y77CSly_rY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTsJAFL0xkBhdqKBGFLULF6AZaDt9LpGHKEJYSIKrOp12NpBCoGz8Gr6FL3OmtFSJmhjXnU6m87j33M655wLceNRXLKYYyObuEWmmSZDFLIYUTfGIYZkqdSO2Rc9oD7SnoT6M65zOE7Z7ciW5zmkQKk1BWJ16rPop8c1WBOmMR8N8UyJug7Oa0GbPQLb28Nppprq7VlQXmZ8lHXHkrCUXm9918tU1pXhz64o08jytQ3hLxrwmnIwqi9Ct0PctOcd_fNQRHMSoVKqtt1EOdvwgD_vdjaTrPA-52ArMpVIsVV0-Br1PZqIYy1iKEnnRPXeNI6nW6HYl8YNXmpSU1bK6Wo7KUl3Q26NMT_8EBq3mS72N4kIMiGLFCJGFicdRuEEoYRi7HDQRij1qEaF971JsEpvpuuEzW_aFGo_PQR5RqKZ7LsM8QMSnkAkmgX8GEqFU04jMTBPzQNQ1iCV7RCayqD0qhMILICdr4NBYpVwUyxg7qb6ymCZHMNPENDlqAW43r0zXEh2_NS4mC-vEp3XuqDY3bELpXi_AXbJO6eMfOzv_U-tr2O03Ws7zY69zAXuqgAcRcbIImXC28C85uAndq3gDfwBISOyJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Multi-Block+ADMM+with+o%281%C2%A0%2F%C2%A0k%29+Convergence&rft.jtitle=Journal+of+scientific+computing&rft.au=Deng%2C+Wei&rft.au=Lai%2C+Ming-Jun&rft.au=Peng%2C+Zhimin&rft.au=Yin%2C+Wotao&rft.date=2017-05-01&rft.pub=Springer+US&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=71&rft.issue=2&rft.spage=712&rft.epage=736&rft_id=info:doi/10.1007%2Fs10915-016-0318-2&rft.externalDocID=10_1007_s10915_016_0318_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon