Unique equilibrium states for geodesic flows in nonpositive curvature

We study geodesic flows over compact rank 1 manifolds and prove that sufficiently regular potential functions have unique equilibrium states if the singular set does not carry full pressure. In dimension 2, this proves uniqueness for scalar multiples of the geometric potential on the interval ( - ∞...

Full description

Saved in:
Bibliographic Details
Published inGeometric and functional analysis Vol. 28; no. 5; pp. 1209 - 1259
Main Authors Burns, K., Climenhaga, V., Fisher, T., Thompson, D. J.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.10.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…