Unique equilibrium states for geodesic flows in nonpositive curvature

We study geodesic flows over compact rank 1 manifolds and prove that sufficiently regular potential functions have unique equilibrium states if the singular set does not carry full pressure. In dimension 2, this proves uniqueness for scalar multiples of the geometric potential on the interval ( - ∞...

Full description

Saved in:
Bibliographic Details
Published inGeometric and functional analysis Vol. 28; no. 5; pp. 1209 - 1259
Main Authors Burns, K., Climenhaga, V., Fisher, T., Thompson, D. J.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.10.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study geodesic flows over compact rank 1 manifolds and prove that sufficiently regular potential functions have unique equilibrium states if the singular set does not carry full pressure. In dimension 2, this proves uniqueness for scalar multiples of the geometric potential on the interval ( - ∞ , 1 ) , which is optimal. In higher dimensions, we obtain the same result on a neighborhood of 0, and give examples where uniqueness holds on all of R . For general potential functions φ , we prove that the pressure gap holds whenever φ is locally constant on a neighborhood of the singular set, which allows us to give examples for which uniqueness holds on a C 0 -open and dense set of Hölder potentials.
AbstractList We study geodesic flows over compact rank 1 manifolds and prove that sufficiently regular potential functions have unique equilibrium states if the singular set does not carry full pressure. In dimension 2, this proves uniqueness for scalar multiples of the geometric potential on the interval (-∞,1), which is optimal. In higher dimensions, we obtain the same result on a neighborhood of 0, and give examples where uniqueness holds on all of R. For general potential functions φ, we prove that the pressure gap holds whenever φ is locally constant on a neighborhood of the singular set, which allows us to give examples for which uniqueness holds on a C0-open and dense set of Hölder potentials.
We study geodesic flows over compact rank 1 manifolds and prove that sufficiently regular potential functions have unique equilibrium states if the singular set does not carry full pressure. In dimension 2, this proves uniqueness for scalar multiples of the geometric potential on the interval ( - ∞ , 1 ) , which is optimal. In higher dimensions, we obtain the same result on a neighborhood of 0, and give examples where uniqueness holds on all of R . For general potential functions φ , we prove that the pressure gap holds whenever φ is locally constant on a neighborhood of the singular set, which allows us to give examples for which uniqueness holds on a C 0 -open and dense set of Hölder potentials.
Author Burns, K.
Fisher, T.
Climenhaga, V.
Thompson, D. J.
Author_xml – sequence: 1
  givenname: K.
  surname: Burns
  fullname: Burns, K.
  organization: Department of Mathematics, Northwestern University
– sequence: 2
  givenname: V.
  surname: Climenhaga
  fullname: Climenhaga, V.
  organization: Department of Mathematics, University of Houston
– sequence: 3
  givenname: T.
  surname: Fisher
  fullname: Fisher, T.
  organization: Department of Mathematics, Brigham Young University
– sequence: 4
  givenname: D. J.
  surname: Thompson
  fullname: Thompson, D. J.
  email: thompson@math.osu.edu
  organization: Department of Mathematics, The Ohio State University
BookMark eNp9kEFLwzAUx4NMcJt-AG8Bz9GXJmnTo4zphIEXB95CmqYjo2u2pJ347c2oIAh6eu_w_73_4zdDk853FqFbCvcUoHiIAMBKAlQS4Lkg8gJNKc-AyLKASdqB5oRz9n6FZjHuUloILqZouenccbDYHgfXuiq4YY9jr3sbceMD3lpf2-gMblr_EbHrcOo9-Oh6d7LYDOGk-yHYa3TZ6Dbam-85R5un5dtiRdavzy-LxzUxjOY9KRpdQ5PxCqQtdcULyIWmteWsZsZoo8GUHIwpIatMVeWWiQQKa4CxRlaGzdHdePcQfPo69mrnh9ClSpVRClIWUoiUomPKBB9jsI06BLfX4VNRUGdbarSlki11tqVkYopfjHFJg_NdH7Rr_yWzkYyppdva8PPT39AXdbeB6A
CitedBy_id crossref_primary_10_1093_imrn_rnac247
crossref_primary_10_1017_etds_2020_26
crossref_primary_10_1016_j_aim_2020_107452
crossref_primary_10_1142_S021919972150067X
crossref_primary_10_1090_tran_9182
crossref_primary_10_1088_1361_6544_ab8021
crossref_primary_10_1007_s10884_021_10057_7
crossref_primary_10_1017_etds_2021_61
crossref_primary_10_1017_etds_2021_83
crossref_primary_10_1307_mmj_1549681300
crossref_primary_10_1007_s00220_018_3265_y
crossref_primary_10_1007_s00023_021_01113_5
crossref_primary_10_1016_j_jde_2019_01_010
crossref_primary_10_1090_memo_1511
crossref_primary_10_1080_14689367_2020_1837079
crossref_primary_10_1016_j_aim_2021_107564
crossref_primary_10_1090_jams_939
crossref_primary_10_1007_s00220_019_03350_6
crossref_primary_10_1007_s00220_025_05260_2
crossref_primary_10_1080_14689367_2021_1933914
crossref_primary_10_1017_etds_2024_6
crossref_primary_10_1090_proc_17079
crossref_primary_10_1007_s00220_021_04062_6
crossref_primary_10_1007_s10114_021_0465_8
crossref_primary_10_1112_jlms_12517
crossref_primary_10_1080_14689367_2023_2229752
crossref_primary_10_1088_1361_6544_ab5c06
crossref_primary_10_1007_s11856_022_2436_x
crossref_primary_10_1017_etds_2020_80
crossref_primary_10_5802_ahl_209
crossref_primary_10_1080_14689367_2021_1978394
Cites_doi 10.3934/dcds.1996.2.153
10.1016/j.aim.2016.07.029
10.1307/mmj/1028998009
10.1112/jlms/s2-24.2.351
10.1007/BF01456836
10.1007/978-1-4612-5775-2
10.2307/1971492
10.1007/BFb0082850
10.4310/jdg/1214434219
10.4310/jdg/1214425216
10.1090/S0002-9947-1973-0314084-0
10.1112/jlms/s2-46.3.471
10.2307/2373927
10.1007/BF01389848
10.2307/120995
10.1007/978-3-0348-9240-7_4
10.3934/dcds.2014.34.1841
10.2307/1971373
10.1088/0951-7715/27/7/1575
10.1088/1361-6544/aab1cd
10.1007/BF01762666
10.4171/CMH/378
10.1017/CBO9780511809187
10.4171/JEMS/834
10.1017/S0013091518000160
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Springer Nature Switzerland AG 2018
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
DOI 10.1007/s00039-018-0465-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1420-8970
EndPage 1259
ExternalDocumentID 10_1007_s00039_018_0465_8
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
29H
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
LO0
M4Y
MA-
MBV
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OK1
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RNI
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c316t-7fad0f24b08e9ab47065a1de43d3ccaca0c940cc902bcbb6e35c315ec033f8bc3
IEDL.DBID U2A
ISSN 1016-443X
IngestDate Fri Jul 25 11:06:28 EDT 2025
Tue Jul 01 02:31:06 EDT 2025
Thu Apr 24 23:16:01 EDT 2025
Fri Feb 21 02:32:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 37C40
37D40
Equilibrium states
37D35
37D25
Topological pressure
Geodesic flow
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-7fad0f24b08e9ab47065a1de43d3ccaca0c940cc902bcbb6e35c315ec033f8bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2110887855
PQPubID 2044207
PageCount 51
ParticipantIDs proquest_journals_2110887855
crossref_primary_10_1007_s00039_018_0465_8
crossref_citationtrail_10_1007_s00039_018_0465_8
springer_journals_10_1007_s00039_018_0465_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationSubtitle GAFA
PublicationTitle Geometric and functional analysis
PublicationTitleAbbrev Geom. Funct. Anal
PublicationYear 2018
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Heintze, Im Hof (CR19) 1977; 12
Katok, Hasselblatt (CR20) 1995
Bhatia (CR4) 1997
Ballmann (CR2) 1995
Bowen (CR5) 1974; 8
Pollicott (CR28) 1996; 2
Climenhaga, Fisher, Thompson (CR8) 2018; 31
CR15
Climenhaga, Thompson (CR9) 2016; 303
CR13
CR12
Franco (CR14) 1977; 99
Newhouse (CR25) 1989; 129
Green (CR18) 1958; 5
Walters (CR30) 1992; 46
Manning (CR24) 1981; 24
Parry (CR27) 1988
Burns, Gelfert (CR7) 2014; 34
Ballmann (CR1) 1982; 259
Knieper (CR21) 1998; 148
Eberlein (CR11) 1973; 178
Ballmann, Brin, Eberlein (CR3) 1985; 122
CR26
CR23
Walters (CR29) 1982
Coppel (CR10) 1971
Gerber, Wilkinson (CR17) 1999; 52
Bowen, Ruelle (CR6) 1975; 29
Gelfert, Schapira (CR16) 2014; 27
Ledrappier, Lima, Sarig (CR22) 2016; 91
W. A. Coppel (465_CR10) 1971
465_CR12
M. Pollicott (465_CR28) 1996; 2
465_CR13
465_CR15
Rufus Bowen (465_CR5) 1974; 8
E. Franco (465_CR14) 1977; 99
K. Gelfert (465_CR16) 2014; 27
V. Climenhaga (465_CR9) 2016; 303
P. Walters (465_CR29) 1982
K. Burns (465_CR7) 2014; 34
W. Ballmann (465_CR3) 1985; 122
William Parry (465_CR27) 1988
R. Bowen (465_CR6) 1975; 29
R. Bhatia (465_CR4) 1997
V. Climenhaga (465_CR8) 2018; 31
Ernst Heintze (465_CR19) 1977; 12
465_CR23
S. E. Newhouse (465_CR25) 1989; 129
A. Manning (465_CR24) 1981; 24
M. Gerber (465_CR17) 1999; 52
465_CR26
Werner Ballmann (465_CR2) 1995
W. Ballmann (465_CR1) 1982; 259
F. Ledrappier (465_CR22) 2016; 91
L. W. Green (465_CR18) 1958; 5
A. Katok (465_CR20) 1995
P. Eberlein (465_CR11) 1973; 178
P. Walters (465_CR30) 1992; 46
G. Knieper (465_CR21) 1998; 148
References_xml – volume: 2
  start-page: 153
  issue: 2
  year: 1996
  end-page: 161
  ident: CR28
  article-title: Closed geodesic distribution for manifolds of non-positive curvature
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.1996.2.153
– volume: 303
  start-page: 745
  year: 2016
  end-page: 799
  ident: CR9
  article-title: Unique equilibrium states for flows and homeomorphisms with non-uniform structure
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2016.07.029
– volume: 5
  start-page: 31
  year: 1958
  end-page: 34
  ident: CR18
  article-title: A theorem of E. Hopf
  publication-title: Michigan Math. J.
  doi: 10.1307/mmj/1028998009
– volume: 24
  start-page: 351
  issue: 2
  year: 1981
  end-page: 357
  ident: CR24
  article-title: Curvature bounds for the entropy of the geodesic flow on a surface
  publication-title: J. Lond. Math. Soc. (2)
  doi: 10.1112/jlms/s2-24.2.351
– volume: 259
  start-page: 131
  issue: 1
  year: 1982
  end-page: 144
  ident: CR1
  article-title: Axial isometries of manifolds of nonpositive curvature
  publication-title: Math. Ann.
  doi: 10.1007/BF01456836
– year: 1971
  ident: CR10
  publication-title: Disconjugacy, Lecture Notes in Mathematics Vol. 220
– ident: CR12
– year: 1982
  ident: CR29
  publication-title: An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Vol. 79
  doi: 10.1007/978-1-4612-5775-2
– volume: 129
  start-page: 215
  issue: 2
  year: 1989
  end-page: 235
  ident: CR25
  article-title: Continuity properties of entropy
  publication-title: Ann. Math. (2)
  doi: 10.2307/1971492
– start-page: 617
  year: 1988
  end-page: 625
  ident: CR27
  article-title: Equilibrium states and weighted uniform distribution of closed orbits
  publication-title: Dynamical Systems
  doi: 10.1007/BFb0082850
– volume: 12
  start-page: 481
  issue: 4
  year: 1977
  end-page: 491
  ident: CR19
  article-title: Geometry of horospheres
  publication-title: Journal of Differential Geometry
  doi: 10.4310/jdg/1214434219
– volume: 52
  start-page: 41
  issue: 1
  year: 1999
  end-page: 72
  ident: CR17
  article-title: Hölder regularity of horocycle foliations
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1214425216
– ident: CR23
– volume: 178
  start-page: 57
  year: 1973
  end-page: 82
  ident: CR11
  article-title: Geodesic flows on negatively curved manifolds II
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1973-0314084-0
– volume: 46
  start-page: 471
  issue: 3
  year: 1992
  end-page: 481
  ident: CR30
  article-title: Differentiability properties of the pressure of a continuous transformation on a compact metric space
  publication-title: J. Lond. Math. Soc. (2)
  doi: 10.1112/jlms/s2-46.3.471
– volume: 99
  start-page: 486
  issue: 3
  year: 1977
  end-page: 514
  ident: CR14
  article-title: Flows with unique equilibrium states
  publication-title: Am. J. Math.
  doi: 10.2307/2373927
– volume: 29
  start-page: 181
  issue: 3
  year: 1975
  end-page: 202
  ident: CR6
  article-title: The ergodic theory of Axiom A flows
  publication-title: Invent. Math.
  doi: 10.1007/BF01389848
– volume: 148
  start-page: 291
  issue: 1
  year: 1998
  end-page: 314
  ident: CR21
  article-title: The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds
  publication-title: Ann. of Math. (2)
  doi: 10.2307/120995
– start-page: 43
  year: 1995
  end-page: 59
  ident: CR2
  article-title: Weak Hyperbolicity
  publication-title: Lectures on Spaces of Nonpositive Curvature
  doi: 10.1007/978-3-0348-9240-7_4
– ident: CR15
– year: 1997
  ident: CR4
  publication-title: Matrix Analysis, Graduate Texts in Mathematics, Vol. 169
– ident: CR13
– volume: 34
  start-page: 1841
  issue: 5
  year: 2014
  end-page: 1872
  ident: CR7
  article-title: Lyapunov spectrum for geodesic flows of rank 1 surfaces
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2014.34.1841
– volume: 122
  start-page: 171
  issue: 1
  year: 1985
  end-page: 203
  ident: CR3
  article-title: Structure of manifolds of nonpositive curvature
  publication-title: I, Ann. Math. (2)
  doi: 10.2307/1971373
– volume: 27
  start-page: 1575
  issue: 7
  year: 2014
  end-page: 1594
  ident: CR16
  article-title: Pressures for geodesic flows of rank one manifolds
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/27/7/1575
– volume: 31
  start-page: 2532
  issue: 6
  year: 2018
  ident: CR8
  article-title: Unique equilibrium states for Bonatti–Viana diffeomorphisms
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/aab1cd
– volume: 8
  start-page: 193
  issue: 3
  year: 1974
  end-page: 202
  ident: CR5
  article-title: Some systems with unique equilibrium states
  publication-title: Mathematical Systems Theory
  doi: 10.1007/BF01762666
– volume: 91
  start-page: 65
  issue: 1
  year: 2016
  end-page: 106
  ident: CR22
  article-title: Ergodic properties of equilibrium measures for smooth three dimensional flows
  publication-title: Comment. Math. Helv.
  doi: 10.4171/CMH/378
– year: 1995
  ident: CR20
  publication-title: Introduction to the Modern Theory of Dynamical Systems Encyclopedia of Mathematics and Its Applications Vol. 54
  doi: 10.1017/CBO9780511809187
– ident: CR26
– volume: 34
  start-page: 1841
  issue: 5
  year: 2014
  ident: 465_CR7
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2014.34.1841
– ident: 465_CR13
– volume-title: An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Vol. 79
  year: 1982
  ident: 465_CR29
  doi: 10.1007/978-1-4612-5775-2
– volume: 29
  start-page: 181
  issue: 3
  year: 1975
  ident: 465_CR6
  publication-title: Invent. Math.
  doi: 10.1007/BF01389848
– start-page: 617
  volume-title: Dynamical Systems
  year: 1988
  ident: 465_CR27
  doi: 10.1007/BFb0082850
– ident: 465_CR23
  doi: 10.4171/JEMS/834
– volume: 259
  start-page: 131
  issue: 1
  year: 1982
  ident: 465_CR1
  publication-title: Math. Ann.
  doi: 10.1007/BF01456836
– volume: 12
  start-page: 481
  issue: 4
  year: 1977
  ident: 465_CR19
  publication-title: Journal of Differential Geometry
  doi: 10.4310/jdg/1214434219
– ident: 465_CR15
  doi: 10.1017/S0013091518000160
– volume: 122
  start-page: 171
  issue: 1
  year: 1985
  ident: 465_CR3
  publication-title: I, Ann. Math. (2)
  doi: 10.2307/1971373
– volume: 5
  start-page: 31
  year: 1958
  ident: 465_CR18
  publication-title: Michigan Math. J.
  doi: 10.1307/mmj/1028998009
– volume: 129
  start-page: 215
  issue: 2
  year: 1989
  ident: 465_CR25
  publication-title: Ann. Math. (2)
  doi: 10.2307/1971492
– volume: 91
  start-page: 65
  issue: 1
  year: 2016
  ident: 465_CR22
  publication-title: Comment. Math. Helv.
  doi: 10.4171/CMH/378
– volume: 31
  start-page: 2532
  issue: 6
  year: 2018
  ident: 465_CR8
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/aab1cd
– volume: 2
  start-page: 153
  issue: 2
  year: 1996
  ident: 465_CR28
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.1996.2.153
– volume-title: Introduction to the Modern Theory of Dynamical Systems Encyclopedia of Mathematics and Its Applications Vol. 54
  year: 1995
  ident: 465_CR20
  doi: 10.1017/CBO9780511809187
– volume: 52
  start-page: 41
  issue: 1
  year: 1999
  ident: 465_CR17
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1214425216
– volume: 8
  start-page: 193
  issue: 3
  year: 1974
  ident: 465_CR5
  publication-title: Mathematical Systems Theory
  doi: 10.1007/BF01762666
– volume-title: Disconjugacy, Lecture Notes in Mathematics Vol. 220
  year: 1971
  ident: 465_CR10
– ident: 465_CR26
– volume: 27
  start-page: 1575
  issue: 7
  year: 2014
  ident: 465_CR16
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/27/7/1575
– volume: 99
  start-page: 486
  issue: 3
  year: 1977
  ident: 465_CR14
  publication-title: Am. J. Math.
  doi: 10.2307/2373927
– volume: 46
  start-page: 471
  issue: 3
  year: 1992
  ident: 465_CR30
  publication-title: J. Lond. Math. Soc. (2)
  doi: 10.1112/jlms/s2-46.3.471
– start-page: 43
  volume-title: Lectures on Spaces of Nonpositive Curvature
  year: 1995
  ident: 465_CR2
  doi: 10.1007/978-3-0348-9240-7_4
– volume-title: Matrix Analysis, Graduate Texts in Mathematics, Vol. 169
  year: 1997
  ident: 465_CR4
– volume: 148
  start-page: 291
  issue: 1
  year: 1998
  ident: 465_CR21
  publication-title: Ann. of Math. (2)
  doi: 10.2307/120995
– volume: 24
  start-page: 351
  issue: 2
  year: 1981
  ident: 465_CR24
  publication-title: J. Lond. Math. Soc. (2)
  doi: 10.1112/jlms/s2-24.2.351
– volume: 303
  start-page: 745
  year: 2016
  ident: 465_CR9
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2016.07.029
– ident: 465_CR12
– volume: 178
  start-page: 57
  year: 1973
  ident: 465_CR11
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1973-0314084-0
SSID ssj0005545
Score 2.4630034
Snippet We study geodesic flows over compact rank 1 manifolds and prove that sufficiently regular potential functions have unique equilibrium states if the singular...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1209
SubjectTerms Analysis
Curvature
Mathematics
Mathematics and Statistics
Silicon
Uniqueness
Title Unique equilibrium states for geodesic flows in nonpositive curvature
URI https://link.springer.com/article/10.1007/s00039-018-0465-8
https://www.proquest.com/docview/2110887855
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RuOjBD9SIIunBk6ZJt7bQHcGARAMnl-BpWbvOkCgoY_rv25ZtRKMmnnboV_Lea9_v7X0BXIoutWrBx1RKjZnqBDhIjSxL31M8kGbE9QYcTzqjkN1N-bTI487KaPfSJele6irZzeWRGtNX2HBEjsU21Lk13Y0Qh35vE9fBXWdia5Vixui0dGX-tMVXZbRBmN-cok7XDA9grwCJqLfm6iFs6XkD9gvAiIrrmDVgd1wVXc2OYBC6YqxIv-UzF8mfvyCXL5Qhg0zRk14k2vAEpc-LjwzN5shY_uuYrXeNVG5_zuZLfQzhcPBwM8JFlwSsqNdZ4W4aJyT1mSRCB7Fk1m8Ze4lmNKGGPSomKmBEqYD4UknZ0ZSbhVwrQmkqpKInUDPn6VNABit6wpo0fmKAnE1JZXFi-Ue0JAlRTSAluSJVlBC3nSyeo6r4saNwZCgcWQpHoglX1ZLXdf2Mvya3Sh5ExVXKImuhmpdQcN6E65Ivm-FfNzv71-xz2PGtXLgwvRbUVstcXxi4sZJtqPeG_f7Efm8f7wdtJ26fFRHN0w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIADjwFiMCAHTqBKaZN06XFCQwO2nTZpt6hJUzRpbLCu8PdJsrYTCJA451HJdpLP9Wcb4Jq3iH0WAo9IqT2qwsiLUmPLMvAVi6QZcb0B-4OwO6KPYzYu8rizku1ehiTdTV0lu7k8UuP6cktHZB7fhC2DBbjlcY2C9prXwVxnYuuVepSScRnK_GmLr4_RGmF-C4q6t-b-APYKkIjaK60ewoae1WG_AIyoOI5ZHXb7VdHV7Ag6I1eMFem3fOKY_PkLcvlCGTLIFD3reaKNTlA6nX9kaDJDxvNfcbbeNVK5_TmbL_QxjO47w7uuV3RJ8BTxw6XXSuMEpwGVmOsoltTGLWM_0ZQkxKhHxVhFFCsV4UAqKUNNmFnItMKEpFwqcgI18z19CshgRZ9blyZIDJCzKak0Tqz-sJY4waoBuBSXUEUJcdvJYiqq4sdOwsJIWFgJC96Am2rJ66p-xl-Tm6UORHGUMmE9VHMTcsYacFvqZT3862Zn_5p9BdvdYb8neg-Dp3PYCayNOMpeE2rLRa4vDPRYyktnap8HwM22
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOPAaIwYAcOIGqpU3atccJNo3HJg5U2q1q0hRNGt1YW_j7JOljAgES5zwq2U7yubY_A1y6XaKeBcsgjAmDcsczvFjaMrNMbntMjujegKOxM_Tp_cSelH1O0yrbvQpJFjUNiqUpyTqLKO7UhW-6plS6wa5KTbQNdx025G1sKrP2rd4qx8PWXYqVh2pQSiZVWPOnLb4-TCu0-S1Aqt-dwR7slIAR9QoN78OaSJqwW4JHVB7NtAnbo5qANT2Avq-JWZF4y6c6qz9_Rbp2KEUSpaIXMY-E1A-KZ_OPFE0TlMyTIn_rXSCeqx-1-VIcgj_oP98MjbJjgsGJ6WRGNw4jHFuUYVd4IaMqhhmakaAkIlJVPMTco5hzD1uMM-YIYsuFtuCYkNhlnBxBQ35PHAOSuNF0lXtjRRLUqfJUGkZKl1gwHGHeAlyJK-AlnbjqajELaiJkLeFASjhQEg7cFlzVSxYFl8Zfk9uVDoLyWKWB8lblrejadguuK72shn_d7ORfsy9g8-l2EDzejR9OYctSJqKz99rQyJa5OJMoJGPn2tI-ASS70fI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unique+equilibrium+states+for+geodesic+flows+in+nonpositive+curvature&rft.jtitle=Geometric+and+functional+analysis&rft.au=Burns%2C+K.&rft.au=Climenhaga%2C+V.&rft.au=Fisher%2C+T.&rft.au=Thompson%2C+D.+J.&rft.date=2018-10-01&rft.pub=Springer+International+Publishing&rft.issn=1016-443X&rft.eissn=1420-8970&rft.volume=28&rft.issue=5&rft.spage=1209&rft.epage=1259&rft_id=info:doi/10.1007%2Fs00039-018-0465-8&rft.externalDocID=10_1007_s00039_018_0465_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-443X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-443X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-443X&client=summon