On a Property of Rearrangement Invariant Spaces whose Second Köthe Dual is Nonseparable
We study the family of rearrangement invariant spaces E containing subspaces on which the E -norm is equivalent to the L 1 -norm and a certain geometric characteristic related to the Kadec–Pełcziński alternative is extremal. We prove that, after passing to an equivalent norm, any space with nonsepar...
Saved in:
Published in | Mathematical Notes Vol. 107; no. 1-2; pp. 10 - 19 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We study the family of rearrangement invariant spaces
E
containing subspaces on which the
E
-norm is equivalent to the
L
1
-norm and a certain geometric characteristic related to the Kadec–Pełcziński alternative is extremal. We prove that, after passing to an equivalent norm, any space with nonseparable second Köthe dual belongs to this family. In the course of the proof, we show that every nonseparable rearrangement invariant space
E
can be equipped with an equivalent norm with respect to which
E
contains a nonzero function orthogonal to the separable part of
E
. |
---|---|
AbstractList | We study the family of rearrangement invariant spaces
E
containing subspaces on which the
E
-norm is equivalent to the
L
1
-norm and a certain geometric characteristic related to the Kadec–Pełcziński alternative is extremal. We prove that, after passing to an equivalent norm, any space with nonseparable second Köthe dual belongs to this family. In the course of the proof, we show that every nonseparable rearrangement invariant space
E
can be equipped with an equivalent norm with respect to which
E
contains a nonzero function orthogonal to the separable part of
E
. We study the family of rearrangement invariant spaces E containing subspaces on which the E-norm is equivalent to the L1-norm and a certain geometric characteristic related to the Kadec–Pełcziński alternative is extremal. We prove that, after passing to an equivalent norm, any space with nonseparable second Köthe dual belongs to this family. In the course of the proof, we show that every nonseparable rearrangement invariant space E can be equipped with an equivalent norm with respect to which E contains a nonzero function orthogonal to the separable part of E. |
Author | Semenov, E. M. Astashkin, S. V. |
Author_xml | – sequence: 1 givenname: S. V. surname: Astashkin fullname: Astashkin, S. V. email: astash56@mail.ru organization: Korolev Samara National Research University – sequence: 2 givenname: E. M. surname: Semenov fullname: Semenov, E. M. email: nadezhka_ssm@geophys.vsu.ru organization: Voronezh State University |
BookMark | eNp1kM1KAzEQx4NUsK0-gLeA59VMdpPsHqV-FYuKVfC2ZLOztqVN1mSr9MV8AV_MlAoexNPM8P8Y-A1IzzqLhBwDOwVIs7MpYwyyNJM8TsY43yN9ECpN8lzJHulv5WSrH5BBCIt4gQTWJy_3lmr64F2LvttQ19BH1N5r-4ortB0d23ft5zpu01YbDPRj5gLSKRpna3r79dnNkF6s9ZLOA71zNmCrva6WeEj2G70MePQzh-T56vJpdJNM7q_Ho_NJYlKQXaIqRMGYFFLWoCvFK6MAa5GiqetKaDBCYVFpIZRghRGyASah5nmW8irPeTokJ7ve1ru3NYauXLi1t_FlyVNZFKAigOiCnct4F4LHpmz9fKX9pgRWbgGWfwDGDN9lQvRGHv63-f_QN2eYc2Q |
CitedBy_id | crossref_primary_10_1007_s00209_023_03255_0 crossref_primary_10_4213_sm9543 crossref_primary_10_1134_S0001434622030142 crossref_primary_10_1134_S1064562420060058 crossref_primary_10_18287_2541_7525_2021_27_2_25_32 |
Cites_doi | 10.1007/978-3-662-35347-9 10.1016/j.jfa.2014.02.011 10.1007/BF01429812 10.1016/0021-9045(75)90023-4 10.1215/ijm/1255986545 10.4064/sm-71-3-297-304 10.4064/sm-21-2-161-176 |
ContentType | Journal Article |
Copyright | Pleiades Publishing, Ltd. 2020 2020© Pleiades Publishing, Ltd. 2020 |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2020 – notice: 2020© Pleiades Publishing, Ltd. 2020 |
DBID | AAYXX CITATION |
DOI | 10.1134/S0001434620010022 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1573-8876 |
EndPage | 19 |
ExternalDocumentID | 10_1134_S0001434620010022 |
GroupedDBID | -EM -~C -~X .86 .VR 06D 0R~ 1SB 2J2 2JN 2JY 2KG 2KM 2LR 30V 4.4 408 409 40D 40E 5QI 5VS 642 67Z 6NX 8UJ 95- 95. 95~ 96X AABHQ ABTAH ACIWK AEFIE AEGNC AEXYK AFFNX AHYZX AIIXL AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN ARMRJ ASPBG AVWKF AZFZN B-. B0M BA0 CAG COF DL5 EAD EAP EBS EJD EMK EPL ESBYG ESX FNLPD FWDCC GGRSB GJIRD GQ6 GQ8 GXS HG6 HMJXF HQYDN HRMNR HZ~ H~9 IHE IXC IXD IXE IZIGR I~X I~Z JBSCW JCJTX KOV KOW LAK MA- N2Q NB0 NU0 O9- O93 O9G O9I O9J OVD P19 P9R PF0 PT5 QOK QOS RHV RNI ROL RPX RSV RZC RZE RZK S16 S3B SAP SDD SDH SHX SMT SNE SNX SOJ TN5 TSG TSK TSV TUC TUS U2A UG4 VC2 W23 WK8 XU3 ZY4 ~A9 ~EX AAYXX CITATION |
ID | FETCH-LOGICAL-c316t-7bee5006566d1ab72bc71ed53ecddb5a1c57e9ba557509c56f1061d28432b8823 |
IEDL.DBID | AGYKE |
ISSN | 0001-4346 1067-9073 |
IngestDate | Thu Oct 10 18:52:44 EDT 2024 Thu Sep 26 16:36:19 EDT 2024 Sat Dec 16 12:03:15 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | subspace Marcinkiewicz space Köthe dual space rearrangement invariant space |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-7bee5006566d1ab72bc71ed53ecddb5a1c57e9ba557509c56f1061d28432b8823 |
PQID | 2369917876 |
PQPubID | 2043561 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2369917876 crossref_primary_10_1134_S0001434620010022 springer_journals_10_1134_S0001434620010022 |
PublicationCentury | 2000 |
PublicationDate | 1-2020 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 1-2020 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: New York |
PublicationTitle | Mathematical Notes |
PublicationTitleAbbrev | Math Notes |
PublicationYear | 2020 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | AstashkinS VRademacher System in Function Spaces2017MoscowFizmatlit1387.46028[in Russian] AstashkinS VSukochevF ASequences of independent identically distributed functions in rearrangement invariant spacesBanach Center Publ., Vol. 79: Function Spaces VIII2008WarszawaPolish Acad. Sci. Inst. Math.2737 VakhaniyaN NTarieladzeV IChobanyanS AProbability Distributions in Banach Spaces1985MoscowNauka0572.60003[in Russian] KreinS GPetuninJu ISemenovE MInterpolation of Linear Operators1978MoscowNaukaAm. Math. Soc., Providence, RI, 2002 Ya. LozanovskiiGMath. Notes19684151451610.1007/BF01429812 AlbiacFKaltonN JTopics in Banach Space Theory, in Grad. Texts in Math.2006New YorkSpringer1094.46002Vol. 233 LindenstraussJTzafririLClassical Banach Spaces. II. Function Spaces1979BerlinSpringer-Verlag10.1007/978-3-662-35347-9 FigielTJohnsonW BTzafririLOn Banach lattices and spaces having local unconditional structure with applications to Lorentz function spacesJ. Approximation Theory19751339541236762410.1016/0021-9045(75)90023-4 BennettCSharpleyRInterpolation of OperatorsPure Appl. Math.1988BostonAcademic PressVol. 129 TokarevE VSubspaces of certain rearrangement invariant spacesTeor. Funktsii Funktsional. Anal. iPrilozhen197524156161Kharkov KadecM IPełczyńskiABases, lacunary sequences and complemented subspaces in the spaces LpStudia Math.19622116117610.4064/sm-21-2-161-176 AstashkinS VΛ(p)-spacesJ. Funct. Anal.2014266851745198317733410.1016/j.jfa.2014.02.011 NovikovS YaSemenovE MTokarevE VSoviet Math. Dokl.197920760761 Ya. LozanovskiiGProjectors in certain Banach latticesMat. Zametki1968414144235402 AldousD JFremlinD HColacunary sequences in L-spacesStud. Math.19827129730466731810.4064/sm-71-3-297-304 S. Ya. Novikov, E. M. Semenov, and E. V. Tokarev, “The structure of subspaces of the spaces Λp(μ),” in Teor. Funktsii Funktsional. Anal. i Prilozhen, Vol. 42 (Kharkov, 1984), pp. 91–97. NovikovS YaSemenovE MTokarevE VThe structure of subspaces of the space Λp(φ)Dokl. Akad. Nauk SSSR19792473552554545690 P. P. Zabreiko, “Ideal function spaces. I,” Vestn. Yaroslavl. Gos. Univ., No. 8, 12–52 (1974). S. Ya. Novikov, Geometric Properties of Symmetric Spaces, Cand. Sci. (Phys.–Math.) Dissertation (Voronezh, 1980) [in Russian]. RaynaudYComplemented Hilbertian subspaces in rearrangement invariant function spacesIllinois J. Math.1995392212250131653410.1215/ijm/1255986545 G Ya. Lozanovskii (1246_CR15) 1968; 4 M I Kadec (1246_CR3) 1962; 21 S V Astashkin (1246_CR13) 2017 S G Krein (1246_CR1) 1978 S V Astashkin (1246_CR10) 2014; 266 1246_CR16 J Lindenstrauss (1246_CR8) 1979 Y Raynaud (1246_CR20) 1995; 39 S V Astashkin (1246_CR17) 2008 C Bennett (1246_CR12) 1988 D J Aldous (1246_CR19) 1982; 71 1246_CR11 T Figiel (1246_CR7) 1975; 13 F Albiac (1246_CR9) 2006 G Ya. Lozanovskii (1246_CR14) 1968; 4 E V Tokarev (1246_CR2) 1975; 24 S Ya Novikov (1246_CR4) 1979; 247 1246_CR6 S Ya Novikov (1246_CR5) 1979; 20 N N Vakhaniya (1246_CR18) 1985 |
References_xml | – volume-title: Classical Banach Spaces. II. Function Spaces year: 1979 ident: 1246_CR8 doi: 10.1007/978-3-662-35347-9 contributor: fullname: J Lindenstrauss – volume-title: Rademacher System in Function Spaces year: 2017 ident: 1246_CR13 contributor: fullname: S V Astashkin – volume-title: Probability Distributions in Banach Spaces year: 1985 ident: 1246_CR18 contributor: fullname: N N Vakhaniya – start-page: 27 volume-title: Banach Center Publ., Vol. 79: Function Spaces VIII year: 2008 ident: 1246_CR17 contributor: fullname: S V Astashkin – volume-title: Topics in Banach Space Theory, in Grad. Texts in Math. year: 2006 ident: 1246_CR9 contributor: fullname: F Albiac – volume-title: Interpolation of Linear Operators year: 1978 ident: 1246_CR1 contributor: fullname: S G Krein – volume: 266 start-page: 5174 issue: 8 year: 2014 ident: 1246_CR10 publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2014.02.011 contributor: fullname: S V Astashkin – volume: 24 start-page: 156 year: 1975 ident: 1246_CR2 publication-title: Teor. Funktsii Funktsional. Anal. iPrilozhen contributor: fullname: E V Tokarev – ident: 1246_CR16 – ident: 1246_CR6 – volume: 4 start-page: 41 issue: 1 year: 1968 ident: 1246_CR14 publication-title: Mat. Zametki contributor: fullname: G Ya. Lozanovskii – volume: 4 start-page: 514 issue: 1 year: 1968 ident: 1246_CR15 publication-title: Math. Notes doi: 10.1007/BF01429812 contributor: fullname: G Ya. Lozanovskii – ident: 1246_CR11 – volume: 247 start-page: 552 issue: 3 year: 1979 ident: 1246_CR4 publication-title: Dokl. Akad. Nauk SSSR contributor: fullname: S Ya Novikov – volume-title: Pure Appl. Math. year: 1988 ident: 1246_CR12 contributor: fullname: C Bennett – volume: 13 start-page: 395 year: 1975 ident: 1246_CR7 publication-title: J. Approximation Theory doi: 10.1016/0021-9045(75)90023-4 contributor: fullname: T Figiel – volume: 39 start-page: 212 issue: 2 year: 1995 ident: 1246_CR20 publication-title: Illinois J. Math. doi: 10.1215/ijm/1255986545 contributor: fullname: Y Raynaud – volume: 71 start-page: 297 year: 1982 ident: 1246_CR19 publication-title: Stud. Math. doi: 10.4064/sm-71-3-297-304 contributor: fullname: D J Aldous – volume: 21 start-page: 161 year: 1962 ident: 1246_CR3 publication-title: Studia Math. doi: 10.4064/sm-21-2-161-176 contributor: fullname: M I Kadec – volume: 20 start-page: 760 year: 1979 ident: 1246_CR5 publication-title: Soviet Math. Dokl. contributor: fullname: S Ya Novikov |
SSID | ssj0011610 ssj0039783 |
Score | 2.2160614 |
Snippet | We study the family of rearrangement invariant spaces
E
containing subspaces on which the
E
-norm is equivalent to the
L
1
-norm and a certain geometric... We study the family of rearrangement invariant spaces E containing subspaces on which the E-norm is equivalent to the L1-norm and a certain geometric... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 10 |
SubjectTerms | Equivalence Invariants Mathematics Mathematics and Statistics Subspaces |
Title | On a Property of Rearrangement Invariant Spaces whose Second Köthe Dual is Nonseparable |
URI | https://link.springer.com/article/10.1134/S0001434620010022 https://www.proquest.com/docview/2369917876 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB0VuMCBHVEolQ-cQKma2E7KsYWWTRQEVCqnKHYcgUApIikIPowf4MeYSdIitkOPUWJH8Tgz781mgG3TsFHjedyKBHIT0dANSxkVWNKNhES4GwmTJch23aOeOOnLfgmcsesivq-NIpKZos6PHRFU0kut6IRLSUBkeaZgpqg7nWke3py2x7EDO0ME-QUnz0aOgJEq4egisPnnjN9N0xfe_BEizSxPZyGvBkyyhoWUcHJfG6aqpt9-t3Oc4KMWYb4AoqyZ75wlKJl4GebOxl1ckxXon8csYBfkrn9KX9kgYpeU2UvlCORTZMfxMzJtFA27eqTMLvZyO0gMuyKOHbLTj3ecix0M8S13CetS2jY1GlcPZhV6nfb1_pFVnMRgaW67qeUpYyShFdcN7UB5jtKebULJjQ5DJQNbS8_sqUBKAiAaBU1MM0TTxx2FGJ6vwXQ8iM06MGU8EwVaozIwQgVKNXAAj7RX19qu87AMOyMh-I95ww0_Iypc-L-WqwyVkZj84t9LfIe7CHpREbll2B0t-9ftfyfbmOjpTZh1iHpn3pgKTKdPQ7OF-CRVVdyQnVarWy02ZhWmek7zE1ao2fs |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgHIADYhWFAj5wAkVq4iXhWAFVSxcQbaXeothxBBJKqyYF8WP8AD_GTBYqtgPHKLEjje2Z92YzIafGs0HjucyKOHAT7mnPUkYFlpARFwB3I26yBNm-bI34zViMizrupMx2L0OSmabO7x3hWNOLvei4xCwgND3LZAXbq2PD_JHT-Awd2BkgyB8YOjZyAAxMCcYWcc1f5_tqmRZw81uENDM8zU2yUSBG2siXeIssmXibrPc-260mO2R8G9OA3qFffZa-0klE7zEFF-sG0PlH2_EzUGKQIR1MMQWLvjxMEkMHSIZD2nl_g7no1Rz-8pjQPuZXY0dw9WR2yah5PbxsWcWVCZZmtkwtVxkjEFZIGdqBch2lXduEghkdhkoEthauuVCBEIgUNKwIUsIQbBRzFIBttkcq8SQ2-4Qq45oo0BpOreEqUMqDASzSbl1ru87CKjkrxeVP884YfsYoGPd_yLZKaqVA_eKQJL7DJKBT0BiySs5LIS9e_znZwb--PiGrrWGv63fb_c4hWXOQL2culBqppLO5OQJQkarjbBN9AIh6vtA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60guhBfGK16h48KUGT3U3isVhLa7UWa6G3kH0EBUlLkyr-Mf-Af8yZPFp8HTyGZDcw-5jvm_l2lpBj49uw43nMijhwE-4r35JGhpZwIy4A7kbcZALZrtsa8OuhGBb3nCal2r1MSeZnGrBKU5yejXVU3EHC8Xwv1qXjLiqC0A0tkiXwRAw1fQOnPksj2Bk4yB8YBjlyMAysCdoWOc5f-_vqpebQ81u2NHNCzXWyVqBHWs-He4MsmHiTrN7OSq8mW2R4F9OQ9jDGPknf6Cii9yjHxTMEGAik7fgF6DHYk_bHKMeir4-jxNA-EmNNOx_v0BdtTOEvTwntotYaq4PLZ7NNBs2rh8uWVVyfYClmu6nlSWMEQgzX1XYoPUcqzzZaMKO0liK0lfDMhQyFQNSgYHSQHmrwV8yRALzZDqnEo9jsEiqNZ6JQKVjBhstQSh8asEh550rZ50xXyUlprmCcV8kIMnbBePDDtlVSKw0aFAsmCRzmAlKF3cOtktPSyPPXf3a296-vj8hyr9EMbtrdzj5ZcZA6Z9GUGqmkk6k5AHyRysNsDn0CH6_DFQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+a+Property+of+Rearrangement+Invariant+Spaces+whose+Second+K%C3%B6the+Dual+is+Nonseparable&rft.jtitle=Mathematical+Notes&rft.au=Astashkin%2C+S.+V.&rft.au=Semenov%2C+E.+M.&rft.date=2020-01-01&rft.issn=0001-4346&rft.eissn=1573-8876&rft.volume=107&rft.issue=1-2&rft.spage=10&rft.epage=19&rft_id=info:doi/10.1134%2FS0001434620010022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S0001434620010022 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4346&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4346&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4346&client=summon |