On a Property of Rearrangement Invariant Spaces whose Second Köthe Dual is Nonseparable

We study the family of rearrangement invariant spaces E containing subspaces on which the E -norm is equivalent to the L 1 -norm and a certain geometric characteristic related to the Kadec–Pełcziński alternative is extremal. We prove that, after passing to an equivalent norm, any space with nonsepar...

Full description

Saved in:
Bibliographic Details
Published inMathematical Notes Vol. 107; no. 1-2; pp. 10 - 19
Main Authors Astashkin, S. V., Semenov, E. M.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study the family of rearrangement invariant spaces E containing subspaces on which the E -norm is equivalent to the L 1 -norm and a certain geometric characteristic related to the Kadec–Pełcziński alternative is extremal. We prove that, after passing to an equivalent norm, any space with nonseparable second Köthe dual belongs to this family. In the course of the proof, we show that every nonseparable rearrangement invariant space E can be equipped with an equivalent norm with respect to which E contains a nonzero function orthogonal to the separable part of E .
AbstractList We study the family of rearrangement invariant spaces E containing subspaces on which the E -norm is equivalent to the L 1 -norm and a certain geometric characteristic related to the Kadec–Pełcziński alternative is extremal. We prove that, after passing to an equivalent norm, any space with nonseparable second Köthe dual belongs to this family. In the course of the proof, we show that every nonseparable rearrangement invariant space E can be equipped with an equivalent norm with respect to which E contains a nonzero function orthogonal to the separable part of E .
We study the family of rearrangement invariant spaces E containing subspaces on which the E-norm is equivalent to the L1-norm and a certain geometric characteristic related to the Kadec–Pełcziński alternative is extremal. We prove that, after passing to an equivalent norm, any space with nonseparable second Köthe dual belongs to this family. In the course of the proof, we show that every nonseparable rearrangement invariant space E can be equipped with an equivalent norm with respect to which E contains a nonzero function orthogonal to the separable part of E.
Author Semenov, E. M.
Astashkin, S. V.
Author_xml – sequence: 1
  givenname: S. V.
  surname: Astashkin
  fullname: Astashkin, S. V.
  email: astash56@mail.ru
  organization: Korolev Samara National Research University
– sequence: 2
  givenname: E. M.
  surname: Semenov
  fullname: Semenov, E. M.
  email: nadezhka_ssm@geophys.vsu.ru
  organization: Voronezh State University
BookMark eNp1kM1KAzEQx4NUsK0-gLeA59VMdpPsHqV-FYuKVfC2ZLOztqVN1mSr9MV8AV_MlAoexNPM8P8Y-A1IzzqLhBwDOwVIs7MpYwyyNJM8TsY43yN9ECpN8lzJHulv5WSrH5BBCIt4gQTWJy_3lmr64F2LvttQ19BH1N5r-4ortB0d23ft5zpu01YbDPRj5gLSKRpna3r79dnNkF6s9ZLOA71zNmCrva6WeEj2G70MePQzh-T56vJpdJNM7q_Ho_NJYlKQXaIqRMGYFFLWoCvFK6MAa5GiqetKaDBCYVFpIZRghRGyASah5nmW8irPeTokJ7ve1ru3NYauXLi1t_FlyVNZFKAigOiCnct4F4LHpmz9fKX9pgRWbgGWfwDGDN9lQvRGHv63-f_QN2eYc2Q
CitedBy_id crossref_primary_10_1007_s00209_023_03255_0
crossref_primary_10_4213_sm9543
crossref_primary_10_1134_S0001434622030142
crossref_primary_10_1134_S1064562420060058
crossref_primary_10_18287_2541_7525_2021_27_2_25_32
Cites_doi 10.1007/978-3-662-35347-9
10.1016/j.jfa.2014.02.011
10.1007/BF01429812
10.1016/0021-9045(75)90023-4
10.1215/ijm/1255986545
10.4064/sm-71-3-297-304
10.4064/sm-21-2-161-176
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2020
2020© Pleiades Publishing, Ltd. 2020
Copyright_xml – notice: Pleiades Publishing, Ltd. 2020
– notice: 2020© Pleiades Publishing, Ltd. 2020
DBID AAYXX
CITATION
DOI 10.1134/S0001434620010022
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8876
EndPage 19
ExternalDocumentID 10_1134_S0001434620010022
GroupedDBID -EM
-~C
-~X
.86
.VR
06D
0R~
1SB
2J2
2JN
2JY
2KG
2KM
2LR
30V
4.4
408
409
40D
40E
5QI
5VS
642
67Z
6NX
8UJ
95-
95.
95~
96X
AABHQ
ABTAH
ACIWK
AEFIE
AEGNC
AEXYK
AFFNX
AHYZX
AIIXL
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
ARMRJ
ASPBG
AVWKF
AZFZN
B-.
B0M
BA0
CAG
COF
DL5
EAD
EAP
EBS
EJD
EMK
EPL
ESBYG
ESX
FNLPD
FWDCC
GGRSB
GJIRD
GQ6
GQ8
GXS
HG6
HMJXF
HQYDN
HRMNR
HZ~
H~9
IHE
IXC
IXD
IXE
IZIGR
I~X
I~Z
JBSCW
JCJTX
KOV
KOW
LAK
MA-
N2Q
NB0
NU0
O9-
O93
O9G
O9I
O9J
OVD
P19
P9R
PF0
PT5
QOK
QOS
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S3B
SAP
SDD
SDH
SHX
SMT
SNE
SNX
SOJ
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
VC2
W23
WK8
XU3
ZY4
~A9
~EX
AAYXX
CITATION
ID FETCH-LOGICAL-c316t-7bee5006566d1ab72bc71ed53ecddb5a1c57e9ba557509c56f1061d28432b8823
IEDL.DBID AGYKE
ISSN 0001-4346
1067-9073
IngestDate Thu Oct 10 18:52:44 EDT 2024
Thu Sep 26 16:36:19 EDT 2024
Sat Dec 16 12:03:15 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords subspace
Marcinkiewicz space
Köthe dual space
rearrangement invariant space
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-7bee5006566d1ab72bc71ed53ecddb5a1c57e9ba557509c56f1061d28432b8823
PQID 2369917876
PQPubID 2043561
PageCount 10
ParticipantIDs proquest_journals_2369917876
crossref_primary_10_1134_S0001434620010022
springer_journals_10_1134_S0001434620010022
PublicationCentury 2000
PublicationDate 1-2020
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 1-2020
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Mathematical Notes
PublicationTitleAbbrev Math Notes
PublicationYear 2020
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References AstashkinS VRademacher System in Function Spaces2017MoscowFizmatlit1387.46028[in Russian]
AstashkinS VSukochevF ASequences of independent identically distributed functions in rearrangement invariant spacesBanach Center Publ., Vol. 79: Function Spaces VIII2008WarszawaPolish Acad. Sci. Inst. Math.2737
VakhaniyaN NTarieladzeV IChobanyanS AProbability Distributions in Banach Spaces1985MoscowNauka0572.60003[in Russian]
KreinS GPetuninJu ISemenovE MInterpolation of Linear Operators1978MoscowNaukaAm. Math. Soc., Providence, RI, 2002
Ya. LozanovskiiGMath. Notes19684151451610.1007/BF01429812
AlbiacFKaltonN JTopics in Banach Space Theory, in Grad. Texts in Math.2006New YorkSpringer1094.46002Vol. 233
LindenstraussJTzafririLClassical Banach Spaces. II. Function Spaces1979BerlinSpringer-Verlag10.1007/978-3-662-35347-9
FigielTJohnsonW BTzafririLOn Banach lattices and spaces having local unconditional structure with applications to Lorentz function spacesJ. Approximation Theory19751339541236762410.1016/0021-9045(75)90023-4
BennettCSharpleyRInterpolation of OperatorsPure Appl. Math.1988BostonAcademic PressVol. 129
TokarevE VSubspaces of certain rearrangement invariant spacesTeor. Funktsii Funktsional. Anal. iPrilozhen197524156161Kharkov
KadecM IPełczyńskiABases, lacunary sequences and complemented subspaces in the spaces LpStudia Math.19622116117610.4064/sm-21-2-161-176
AstashkinS VΛ(p)-spacesJ. Funct. Anal.2014266851745198317733410.1016/j.jfa.2014.02.011
NovikovS YaSemenovE MTokarevE VSoviet Math. Dokl.197920760761
Ya. LozanovskiiGProjectors in certain Banach latticesMat. Zametki1968414144235402
AldousD JFremlinD HColacunary sequences in L-spacesStud. Math.19827129730466731810.4064/sm-71-3-297-304
S. Ya. Novikov, E. M. Semenov, and E. V. Tokarev, “The structure of subspaces of the spaces Λp(μ),” in Teor. Funktsii Funktsional. Anal. i Prilozhen, Vol. 42 (Kharkov, 1984), pp. 91–97.
NovikovS YaSemenovE MTokarevE VThe structure of subspaces of the space Λp(φ)Dokl. Akad. Nauk SSSR19792473552554545690
P. P. Zabreiko, “Ideal function spaces. I,” Vestn. Yaroslavl. Gos. Univ., No. 8, 12–52 (1974).
S. Ya. Novikov, Geometric Properties of Symmetric Spaces, Cand. Sci. (Phys.–Math.) Dissertation (Voronezh, 1980) [in Russian].
RaynaudYComplemented Hilbertian subspaces in rearrangement invariant function spacesIllinois J. Math.1995392212250131653410.1215/ijm/1255986545
G Ya. Lozanovskii (1246_CR15) 1968; 4
M I Kadec (1246_CR3) 1962; 21
S V Astashkin (1246_CR13) 2017
S G Krein (1246_CR1) 1978
S V Astashkin (1246_CR10) 2014; 266
1246_CR16
J Lindenstrauss (1246_CR8) 1979
Y Raynaud (1246_CR20) 1995; 39
S V Astashkin (1246_CR17) 2008
C Bennett (1246_CR12) 1988
D J Aldous (1246_CR19) 1982; 71
1246_CR11
T Figiel (1246_CR7) 1975; 13
F Albiac (1246_CR9) 2006
G Ya. Lozanovskii (1246_CR14) 1968; 4
E V Tokarev (1246_CR2) 1975; 24
S Ya Novikov (1246_CR4) 1979; 247
1246_CR6
S Ya Novikov (1246_CR5) 1979; 20
N N Vakhaniya (1246_CR18) 1985
References_xml – volume-title: Classical Banach Spaces. II. Function Spaces
  year: 1979
  ident: 1246_CR8
  doi: 10.1007/978-3-662-35347-9
  contributor:
    fullname: J Lindenstrauss
– volume-title: Rademacher System in Function Spaces
  year: 2017
  ident: 1246_CR13
  contributor:
    fullname: S V Astashkin
– volume-title: Probability Distributions in Banach Spaces
  year: 1985
  ident: 1246_CR18
  contributor:
    fullname: N N Vakhaniya
– start-page: 27
  volume-title: Banach Center Publ., Vol. 79: Function Spaces VIII
  year: 2008
  ident: 1246_CR17
  contributor:
    fullname: S V Astashkin
– volume-title: Topics in Banach Space Theory, in Grad. Texts in Math.
  year: 2006
  ident: 1246_CR9
  contributor:
    fullname: F Albiac
– volume-title: Interpolation of Linear Operators
  year: 1978
  ident: 1246_CR1
  contributor:
    fullname: S G Krein
– volume: 266
  start-page: 5174
  issue: 8
  year: 2014
  ident: 1246_CR10
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2014.02.011
  contributor:
    fullname: S V Astashkin
– volume: 24
  start-page: 156
  year: 1975
  ident: 1246_CR2
  publication-title: Teor. Funktsii Funktsional. Anal. iPrilozhen
  contributor:
    fullname: E V Tokarev
– ident: 1246_CR16
– ident: 1246_CR6
– volume: 4
  start-page: 41
  issue: 1
  year: 1968
  ident: 1246_CR14
  publication-title: Mat. Zametki
  contributor:
    fullname: G Ya. Lozanovskii
– volume: 4
  start-page: 514
  issue: 1
  year: 1968
  ident: 1246_CR15
  publication-title: Math. Notes
  doi: 10.1007/BF01429812
  contributor:
    fullname: G Ya. Lozanovskii
– ident: 1246_CR11
– volume: 247
  start-page: 552
  issue: 3
  year: 1979
  ident: 1246_CR4
  publication-title: Dokl. Akad. Nauk SSSR
  contributor:
    fullname: S Ya Novikov
– volume-title: Pure Appl. Math.
  year: 1988
  ident: 1246_CR12
  contributor:
    fullname: C Bennett
– volume: 13
  start-page: 395
  year: 1975
  ident: 1246_CR7
  publication-title: J. Approximation Theory
  doi: 10.1016/0021-9045(75)90023-4
  contributor:
    fullname: T Figiel
– volume: 39
  start-page: 212
  issue: 2
  year: 1995
  ident: 1246_CR20
  publication-title: Illinois J. Math.
  doi: 10.1215/ijm/1255986545
  contributor:
    fullname: Y Raynaud
– volume: 71
  start-page: 297
  year: 1982
  ident: 1246_CR19
  publication-title: Stud. Math.
  doi: 10.4064/sm-71-3-297-304
  contributor:
    fullname: D J Aldous
– volume: 21
  start-page: 161
  year: 1962
  ident: 1246_CR3
  publication-title: Studia Math.
  doi: 10.4064/sm-21-2-161-176
  contributor:
    fullname: M I Kadec
– volume: 20
  start-page: 760
  year: 1979
  ident: 1246_CR5
  publication-title: Soviet Math. Dokl.
  contributor:
    fullname: S Ya Novikov
SSID ssj0011610
ssj0039783
Score 2.2160614
Snippet We study the family of rearrangement invariant spaces E containing subspaces on which the E -norm is equivalent to the L 1 -norm and a certain geometric...
We study the family of rearrangement invariant spaces E containing subspaces on which the E-norm is equivalent to the L1-norm and a certain geometric...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 10
SubjectTerms Equivalence
Invariants
Mathematics
Mathematics and Statistics
Subspaces
Title On a Property of Rearrangement Invariant Spaces whose Second Köthe Dual is Nonseparable
URI https://link.springer.com/article/10.1134/S0001434620010022
https://www.proquest.com/docview/2369917876
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB0VuMCBHVEolQ-cQKma2E7KsYWWTRQEVCqnKHYcgUApIikIPowf4MeYSdIitkOPUWJH8Tgz781mgG3TsFHjedyKBHIT0dANSxkVWNKNhES4GwmTJch23aOeOOnLfgmcsesivq-NIpKZos6PHRFU0kut6IRLSUBkeaZgpqg7nWke3py2x7EDO0ME-QUnz0aOgJEq4egisPnnjN9N0xfe_BEizSxPZyGvBkyyhoWUcHJfG6aqpt9-t3Oc4KMWYb4AoqyZ75wlKJl4GebOxl1ckxXon8csYBfkrn9KX9kgYpeU2UvlCORTZMfxMzJtFA27eqTMLvZyO0gMuyKOHbLTj3ecix0M8S13CetS2jY1GlcPZhV6nfb1_pFVnMRgaW67qeUpYyShFdcN7UB5jtKebULJjQ5DJQNbS8_sqUBKAiAaBU1MM0TTxx2FGJ6vwXQ8iM06MGU8EwVaozIwQgVKNXAAj7RX19qu87AMOyMh-I95ww0_Iypc-L-WqwyVkZj84t9LfIe7CHpREbll2B0t-9ftfyfbmOjpTZh1iHpn3pgKTKdPQ7OF-CRVVdyQnVarWy02ZhWmek7zE1ao2fs
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgHIADYhWFAj5wAkVq4iXhWAFVSxcQbaXeothxBBJKqyYF8WP8AD_GTBYqtgPHKLEjje2Z92YzIafGs0HjucyKOHAT7mnPUkYFlpARFwB3I26yBNm-bI34zViMizrupMx2L0OSmabO7x3hWNOLvei4xCwgND3LZAXbq2PD_JHT-Awd2BkgyB8YOjZyAAxMCcYWcc1f5_tqmRZw81uENDM8zU2yUSBG2siXeIssmXibrPc-260mO2R8G9OA3qFffZa-0klE7zEFF-sG0PlH2_EzUGKQIR1MMQWLvjxMEkMHSIZD2nl_g7no1Rz-8pjQPuZXY0dw9WR2yah5PbxsWcWVCZZmtkwtVxkjEFZIGdqBch2lXduEghkdhkoEthauuVCBEIgUNKwIUsIQbBRzFIBttkcq8SQ2-4Qq45oo0BpOreEqUMqDASzSbl1ru87CKjkrxeVP884YfsYoGPd_yLZKaqVA_eKQJL7DJKBT0BiySs5LIS9e_znZwb--PiGrrWGv63fb_c4hWXOQL2culBqppLO5OQJQkarjbBN9AIh6vtA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60guhBfGK16h48KUGT3U3isVhLa7UWa6G3kH0EBUlLkyr-Mf-Af8yZPFp8HTyGZDcw-5jvm_l2lpBj49uw43nMijhwE-4r35JGhpZwIy4A7kbcZALZrtsa8OuhGBb3nCal2r1MSeZnGrBKU5yejXVU3EHC8Xwv1qXjLiqC0A0tkiXwRAw1fQOnPksj2Bk4yB8YBjlyMAysCdoWOc5f-_vqpebQ81u2NHNCzXWyVqBHWs-He4MsmHiTrN7OSq8mW2R4F9OQ9jDGPknf6Cii9yjHxTMEGAik7fgF6DHYk_bHKMeir4-jxNA-EmNNOx_v0BdtTOEvTwntotYaq4PLZ7NNBs2rh8uWVVyfYClmu6nlSWMEQgzX1XYoPUcqzzZaMKO0liK0lfDMhQyFQNSgYHSQHmrwV8yRALzZDqnEo9jsEiqNZ6JQKVjBhstQSh8asEh550rZ50xXyUlprmCcV8kIMnbBePDDtlVSKw0aFAsmCRzmAlKF3cOtktPSyPPXf3a296-vj8hyr9EMbtrdzj5ZcZA6Z9GUGqmkk6k5AHyRysNsDn0CH6_DFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+a+Property+of+Rearrangement+Invariant+Spaces+whose+Second+K%C3%B6the+Dual+is+Nonseparable&rft.jtitle=Mathematical+Notes&rft.au=Astashkin%2C+S.+V.&rft.au=Semenov%2C+E.+M.&rft.date=2020-01-01&rft.issn=0001-4346&rft.eissn=1573-8876&rft.volume=107&rft.issue=1-2&rft.spage=10&rft.epage=19&rft_id=info:doi/10.1134%2FS0001434620010022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S0001434620010022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4346&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4346&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4346&client=summon