Facile solvothermal synthesis of NiFe2O4 nanoparticles for high-performance supercapacitor applications
We report a green and facile approach for the synthesis of NiFe 2 O 4 (NF) nanoparticles with good crystallinity. The prepared materials are studied by various techniques in order to know their phase structure, crystallinity, morphology and elemental state. The BET analysis revealed a high surface a...
Saved in:
Published in | Frontiers of materials science Vol. 14; no. 2; pp. 120 - 132 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Higher Education Press
01.06.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2095-025X 2095-0268 |
DOI | 10.1007/s11706-020-0499-3 |
Cover
Loading…
Abstract | We report a green and facile approach for the synthesis of NiFe
2
O
4
(NF) nanoparticles with good crystallinity. The prepared materials are studied by various techniques in order to know their phase structure, crystallinity, morphology and elemental state. The BET analysis revealed a high surface area of 80.0 m
2
·g
−1
for NF possessing a high pore volume of 0.54 cm
3
·g
−1
, also contributing to the amelioration of the electrochemical performance. The NF sample is studied for its application in supercapacitors in an aqueous 2 mol·L
−1
KOH electrolyte. Electrochemical properties are studied both in the three-electrode method and in a symmetrical supercapacitor cell. Results show a high specific capacitance of 478.0 F·g
−1
from the CV curve at an applied scan rate of 5 mV·s
−1
and 368.0 F·g
−1
from the GCD analysis at a current density of 1 A·g
−1
for the NF electrode. Further, the material exhibited an 88% retention of its specific capacitance after continuous 10000 cycles at a higher applied current density of 8 A·g
−1
. These encouraging properties of NF nanoparticles suggest the practical applicability in high-performance supercapacitors. |
---|---|
AbstractList | We report a green and facile approach for the synthesis of NiFe2O4 (NF) nanoparticles with good crystallinity. The prepared materials are studied by various techniques in order to know their phase structure, crystallinity, morphology and elemental state. The BET analysis revealed a high surface area of 80.0 m2·g−1 for NF possessing a high pore volume of 0.54 cm3·g−1, also contributing to the amelioration of the electrochemical performance. The NF sample is studied for its application in supercapacitors in an aqueous 2 mol·L−1 KOH electrolyte. Electrochemical properties are studied both in the three-electrode method and in a symmetrical supercapacitor cell. Results show a high specific capacitance of 478.0 F·g−1 from the CV curve at an applied scan rate of 5 mV·s−1 and 368.0 F·g−1 from the GCD analysis at a current density of 1 A·g−1 for the NF electrode. Further, the material exhibited an 88% retention of its specific capacitance after continuous 10000 cycles at a higher applied current density of 8 A·g−1. These encouraging properties of NF nanoparticles suggest the practical applicability in high-performance supercapacitors. We report a green and facile approach for the synthesis of NiFe 2 O 4 (NF) nanoparticles with good crystallinity. The prepared materials are studied by various techniques in order to know their phase structure, crystallinity, morphology and elemental state. The BET analysis revealed a high surface area of 80.0 m 2 ·g −1 for NF possessing a high pore volume of 0.54 cm 3 ·g −1 , also contributing to the amelioration of the electrochemical performance. The NF sample is studied for its application in supercapacitors in an aqueous 2 mol·L −1 KOH electrolyte. Electrochemical properties are studied both in the three-electrode method and in a symmetrical supercapacitor cell. Results show a high specific capacitance of 478.0 F·g −1 from the CV curve at an applied scan rate of 5 mV·s −1 and 368.0 F·g −1 from the GCD analysis at a current density of 1 A·g −1 for the NF electrode. Further, the material exhibited an 88% retention of its specific capacitance after continuous 10000 cycles at a higher applied current density of 8 A·g −1 . These encouraging properties of NF nanoparticles suggest the practical applicability in high-performance supercapacitors. |
Author | Sethi, Meenaketan Bhat, D. Krishna Muthu, Selvakumar Shenoy, U. Sandhya |
Author_xml | – sequence: 1 givenname: Meenaketan surname: Sethi fullname: Sethi, Meenaketan organization: Department of Chemistry, National Institute of Technology Karnataka – sequence: 2 givenname: U. Sandhya surname: Shenoy fullname: Shenoy, U. Sandhya organization: Department of Chemistry, College of Engineering and Technology, Srinivas University – sequence: 3 givenname: Selvakumar surname: Muthu fullname: Muthu, Selvakumar organization: Department of Chemistry, Manipal Institute of Technology – sequence: 4 givenname: D. Krishna surname: Bhat fullname: Bhat, D. Krishna email: denthajekb@gmail.com organization: Department of Chemistry, National Institute of Technology Karnataka |
BookMark | eNp9UEFLwzAYDTLBOfcDvBU8V78kTdoeZTgnDHdR8BbSNN0yuqQmnbB_b7aKgqC5fC9f3nt5vEs0ss5qhK4x3GKA_C5gnANPgUAKWVmm9AyNCZQsbngx-sbs7QJNQ9hCPAyzMsNjtJ5LZVqdBNd-uH6j_U62STjYCIMJiWuSZzPXZJUlVlrXSd8b1eqQNM4nG7PepJ32Ee-kVdFkH29KdtGyj--y61qjZG-cDVfovJFt0NOvOUGv84eX2SJdrh6fZvfLVFHM-zSPybKqLooYsea0KjlmNdclzXNckVo1WZNzXlUFIRRYDRyYLBRoJnlW14DpBN0Mvp1373sderF1e2_jl4JkUDCG6YmVDyzlXQheNyImPgXtvTStwCCOxYqhWBGLFcdiBY1K_EvZebOT_vCvhgyaELl2rf1Ppr9Fnwq2jRc |
CitedBy_id | crossref_primary_10_1016_j_colsurfa_2023_132247 crossref_primary_10_1016_j_jallcom_2020_157190 crossref_primary_10_1134_S1063783424601073 crossref_primary_10_1557_s43578_022_00598_y crossref_primary_10_1016_j_chemosphere_2022_134929 crossref_primary_10_1016_j_surfin_2024_105340 crossref_primary_10_1016_j_jallcom_2025_179787 crossref_primary_10_1039_D2NJ05566J crossref_primary_10_1016_j_est_2022_103965 crossref_primary_10_1007_s10854_024_11967_0 crossref_primary_10_1088_1361_6528_ace3c7 crossref_primary_10_1016_j_mssp_2022_107238 crossref_primary_10_1016_j_jallcom_2021_162577 crossref_primary_10_1039_D0NA00440E crossref_primary_10_1016_j_jiec_2022_09_050 crossref_primary_10_1016_j_ccr_2024_216103 crossref_primary_10_1016_j_ceramint_2022_06_276 crossref_primary_10_3390_cryst13111561 crossref_primary_10_1002_adsu_202400244 crossref_primary_10_1016_j_ceramint_2022_04_092 crossref_primary_10_1016_j_est_2021_102821 crossref_primary_10_1016_j_mseb_2022_115845 crossref_primary_10_1016_j_jallcom_2024_174240 crossref_primary_10_1016_j_est_2025_116182 crossref_primary_10_1007_s11706_023_0645_9 crossref_primary_10_1007_s13538_023_01362_1 crossref_primary_10_1016_j_physb_2021_412959 crossref_primary_10_1021_acs_energyfuels_3c00135 crossref_primary_10_1016_j_heliyon_2023_e18496 crossref_primary_10_1016_j_matchemphys_2021_125313 crossref_primary_10_1007_s11814_024_00249_4 crossref_primary_10_1016_j_est_2024_110757 crossref_primary_10_1016_j_mssp_2021_106078 crossref_primary_10_1016_j_electacta_2022_139914 crossref_primary_10_1007_s10854_023_10796_x crossref_primary_10_1007_s10854_020_04655_2 crossref_primary_10_1016_j_chphi_2024_100460 crossref_primary_10_1016_j_nanoso_2025_101458 crossref_primary_10_2139_ssrn_4184179 crossref_primary_10_1016_j_est_2023_108439 crossref_primary_10_1016_j_ijhydene_2025_03_218 crossref_primary_10_1016_j_surfin_2024_105339 crossref_primary_10_1016_j_jksus_2023_102857 crossref_primary_10_1016_j_jallcom_2022_167305 crossref_primary_10_1007_s13204_022_02741_x crossref_primary_10_1007_s12633_023_02656_4 crossref_primary_10_1016_j_ces_2023_119436 crossref_primary_10_1002_cnma_202400594 crossref_primary_10_1002_er_7680 crossref_primary_10_1186_s12645_023_00179_6 crossref_primary_10_1016_j_ceramint_2022_09_322 crossref_primary_10_1016_j_inoche_2023_110921 crossref_primary_10_1016_j_matchemphys_2024_129072 |
Cites_doi | 10.1039/C9NJ02509J 10.1016/j.electacta.2018.11.054 10.1039/C8RA02559B 10.1021/acs.jpcc.9b06058 10.1016/j.jallcom.2019.152011 10.1016/j.jpowsour.2018.06.019 10.1021/acs.jpcc.6b05930 10.1039/C9TC03932E 10.1039/C9NJ03233A 10.1016/j.jallcom.2017.07.327 10.1016/j.jpcs.2017.05.023 10.1021/acs.jpcc.9b06070 10.1016/j.jallcom.2018.02.127 10.1016/j.cej.2018.11.206 10.1016/j.matchemphys.2018.01.012 10.1039/C4NJ01359J 10.1016/B978-0-12-813447-4.00005-4 10.1039/c3ra44001j 10.1016/j.jallcom.2018.12.143 10.1016/j.jpowsour.2014.11.014 10.1021/acs.jpcc.8b10083 10.1021/acsaem.7b00163 10.1021/acssuschemeng.8b06413 10.1016/j.mtchem.2017.04.003 10.1016/j.ijhydene.2014.05.093 10.1016/j.ceramint.2016.07.099 10.1149/1.3601863 10.1039/C9TC01184F 10.1016/j.matlet.2015.01.039 10.1103/PhysRevLett.77.3865 10.1016/j.jallcom.2019.05.302 10.1039/C9TC06490G 10.1166/jnn.2017.12666 10.1007/s10853-018-2052-7 10.1016/j.apsusc.2017.10.095 |
ContentType | Journal Article |
Copyright | Higher Education Press 2020 Higher Education Press 2020. |
Copyright_xml | – notice: Higher Education Press 2020 – notice: Higher Education Press 2020. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11706-020-0499-3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2095-0268 |
EndPage | 132 |
ExternalDocumentID | 10_1007_s11706_020_0499_3 |
GroupedDBID | -58 -5G -BR -EM -~C .VR 06C 06D 0R~ 0VY 1-T 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 40E 5VS 95- 95. 95~ 96X AAAVM AABHQ AACDK AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ AXYYD B-. BDATZ BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXD I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J P4S P9N PF0 PT4 QOR R89 R9I ROL RSV S16 S3B SAP SCL SCM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TSG TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z7R Z7V Z7X Z85 ZMTXR ~A9 -SB -S~ AAPKM AAXDM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CAJEB CITATION Q-- U1G U5L ABRTQ |
ID | FETCH-LOGICAL-c316t-70054bd88000d63b9615d6e93771b2dcf4f766bb822305d0605a8c0e5a64dd013 |
IEDL.DBID | U2A |
ISSN | 2095-025X |
IngestDate | Fri Jul 25 11:00:24 EDT 2025 Tue Jul 01 02:09:53 EDT 2025 Thu Apr 24 23:11:52 EDT 2025 Fri Feb 21 02:35:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | specific capacitance solvothermal method nanoparticle BET surface area NiFe O supercapacitor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-70054bd88000d63b9615d6e93771b2dcf4f766bb822305d0605a8c0e5a64dd013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2408551301 |
PQPubID | 2044428 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2408551301 crossref_citationtrail_10_1007_s11706_020_0499_3 crossref_primary_10_1007_s11706_020_0499_3 springer_journals_10_1007_s11706_020_0499_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Frontiers of materials science |
PublicationTitleAbbrev | Front. Mater. Sci |
PublicationYear | 2020 |
Publisher | Higher Education Press Springer Nature B.V |
Publisher_xml | – name: Higher Education Press – name: Springer Nature B.V |
References | FuMChenWZhuXOne-step preparation of one dimensional nickel ferrites/graphene composites for supercapacitor electrode with excellent cycling stabilityJournal of Power Sources201839641481:CAS:528:DC%2BC1cXhtVyktbrP10.1016/j.jpowsour.2018.06.019 SharmaVBiswasSSundaramBElectrode materials with highest surface area and specific capacitance cannot be the only deciding factor for applicability in energy storage devices: inference of combined life cycle assessment and electrochemical studiesACS Sustainable Chemistry & Engineering201975538553921:CAS:528:DC%2BC1MXhvFejs74%3D10.1021/acssuschemeng.8b06413 ShenoyU SBantawalHBhatD KBand engineering of SrTiO3: Effect of synthetic technique and site occupancy of doped rhodiumThe Journal of Physical Chemistry C20181224827567275741:CAS:528:DC%2BC1cXit1artbzO10.1021/acs.jpcc.8b10083 Sudhakar Y N, Selvakumar M, Bhat D K. Biopolymer Electrolytes: Fundamentals and Applications in Energy Storage. Elsevier, 2018 DuttaSPalSDeSMixed solvent exfoliated transition metal oxides nanosheets based flexible solid state supercapacitor devices endowed with high energy densityNew Journal of Chemistry2019433112385123951:CAS:528:DC%2BC1MXhtlKksbbE10.1039/C9NJ03233A SadiqM M JShenoyU SBhatD KEnhanced photocatalytic performance of N-doped RGO-FeWO4/Fe3O4 ternary nanocomposite in environmental applicationsMaterials Today Chemistry2017413314110.1016/j.mtchem.2017.04.003 SubramanyaBBhatD KNovel eco-friendly synthesis of graphene directly from graphite using 2,2,6,6-tetramethylpiperidine 1-oxyl and study of its electrochemical propertiesJournal of Power Sources201527590981:CAS:528:DC%2BC2cXhvVOmsLzN10.1016/j.jpowsour.2014.11.014 LiuLSunLLiuJEnhancing the electrochemical properties of NiFe2O4 anode for lithium ion battery through a simple hydrogenation modificationInternational Journal of Hydrogen Energy2014392111258112661:CAS:528:DC%2BC2cXpsl2iur4%3D10.1016/j.ijhydene.2014.05.093 PerdewJ PBurkeKErnzerhofMGeneralized gradient approximation made simplePhysical Review Letters19967718386538681:CAS:528:DyaK28XmsVCgsbs%3D10.1103/PhysRevLett.77.3865 PanCLiuZLiWNiCo2O4@polyaniline nanotubes heterostructure anchored on carbon textiles with enhanced electrochemical performance for supercapacitor applicationThe Journal of Physical Chemistry C20191234225549255581:CAS:528:DC%2BC1MXhvFSju73K10.1021/acs.jpcc.9b06070 ZhaoYXuLYanJFacile preparation of NiFe2O4/MoS2 composite material with synergistic effect for high performance supercapacitorJournal of Alloys and Compounds20177266086171:CAS:528:DC%2BC2sXhtlSrtrzN10.1016/j.jallcom.2017.07.327 SubramanyaBBhatD KNovel one-pot green synthesis of graphene in aqueous medium under microwave irradiation using a regenerative catalyst and the study of its electrochemical propertiesNew Journal of Chemistry20153914204301:CAS:528:DC%2BC2cXhvVGhsr7F10.1039/C4NJ01359J ZhangZLiLQingYManipulation of nanoplate structures in carbonized cellulose nanofibril aerogel for high-performance supercapacitorThe Journal of Physical Chemistry C20191233823374233811:CAS:528:DC%2BC1MXhs1ajtb3P10.1021/acs.jpcc.9b06058 CaoNZouXHuangYPreparation of NiFe2O4 architectures for affinity separation of histidine-tagged proteinsMaterials Letters20151441611641:CAS:528:DC%2BC2MXhsFaht74%3D10.1016/j.matlet.2015.01.039 SadiqM M JShenoyS UBhatD KNovel NRGO-CoWO4-Fe2O3 nanocomposite as an efficient catalyst for dye degradation and reduction of 4-nitrophenolMaterials Chemistry and Physics201820811212210.1016/j.matchemphys.2018.01.012 BandgarS BVadiyarM MLingY CMetal precursor dependent synthesis of NiFe2O4 thin films for high-performance flexible symmetric supercapacitorACS Applied Energy Materials2018126386481:CAS:528:DC%2BC1cXhtVKnsb4%3D10.1021/acsaem.7b00163 SethiMBantawalHShenoyU SEco-friendly synthesis of porous graphene and its utilization as high performance supercapacitor electrode materialJournal of Alloys and Compounds20197992562661:CAS:528:DC%2BC1MXhtFajsLzL10.1016/j.jallcom.2019.05.302 CaiY ZCaoW QZhangY LTailoring rGO-NiFe2O4 hybrids to tune transport of electrons and ions for supercapacitor electrodesJournal of Alloys and Compounds20198111520111:CAS:528:DC%2BC1MXhs12gtrbF10.1016/j.jallcom.2019.152011 BhojanePSharmaAPustyMSynthesis of ammonia-assisted porous nickel ferrite (NiFe2O4) nanostructures as an electrode material for supercapacitorsJournal of Nanoscience and Nanotechnology2017172138713921:CAS:528:DC%2BC2sXhtVCnsbjI10.1166/jnn.2017.12666 GiannozziPBaroniSBoniniNQUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materialsJournal of Physics: Condensed Matter20092139395502 SadiqM M JShenoyS UBhatD KNiWO4-ZnO-NRGO ternary nanocomposite as an efficient photocatalyst for degradation of methylene blue and reduction of 4-nitro phenolJournal of Physics and Chemistry of Solids20171091241331:CAS:528:DC%2BC2sXos1Cju74%3D10.1016/j.jpcs.2017.05.023 GaoHWangXWangGFacile construction of a MgCo2O4@NiMoO4/NF core-shell nanocomposite for highperformance asymmetric supercapacitorsJournal of Materials Chemistry C: Materials for Optical and Electronic Devices201974213267132781:CAS:528:DC%2BC1MXhvVOhs7nK10.1039/C9TC03932E GaoXWangWBiJMorphology-controllable preparation of NiFe2O4 as high performance electrode material for supercapacitorElectrochimica Acta20192961811891:CAS:528:DC%2BC1cXit1WhsL7M10.1016/j.electacta.2018.11.054 BhatD KShenoyU SZn: a versatile resonant dopant for SnTe thermoelectricsMaterials Today Chemistry201911100158 ShenoyU SBhatD KElectronic structure engineering of tin telluride through co-doping of bismuth and indium for high performance thermoelectrics: a synergistic effect leading to a record high room temperature ZT in tin tellurideJournal of Materials Chemistry C: Materials for Optical and Electronic Devices2019716481748211:CAS:528:DC%2BC1MXlslelsbw%3D10.1039/C9TC01184F SethiMBhatD KFacile solvothermal synthesis and high supercapacitor performance of NiCo2O4 nanorodsJournal of Alloys and Compounds2019781101310201:CAS:528:DC%2BC1cXisFCisbzE10.1016/j.jallcom.2018.12.143 HuaMXuLCuiFHexamethylenetetramine-assisted hydrothermal synthesis of octahedral nickel ferrite oxide nanocrystallines with excellent supercapacitive performanceJournal of Materials Science20185310762176361:CAS:528:DC%2BC1cXhvVKhtLk%3D10.1007/s10853-018-2052-7 AnwarSMuthuK SGaneshVA comparative study of electrochemical capacitive behavior of NiFe2O4 synthesized by different routesJournal of the Electrochemical Society20111588A976A9811:CAS:528:DC%2BC3MXotVyhu7o%3D10.1149/1.3601863 ZhangXZhuMOuyangTNiFe2O4 nanocubes anchored on reduced graphene oxide cryogel to achieve a 1.8 V flexible solid-state symmetric supercapacitorChemical Engineering Journal20193601711791:CAS:528:DC%2BC1cXitl2it7fO10.1016/j.cej.2018.11.206 KumarP RMitraSNickel ferrite as a stable, high capacity and high rate anode for Li-ion battery applicationsRSC Advances201334725058250641:CAS:528:DC%2BC3sXhslCrsL7M10.1039/c3ra44001j ShenoyU SBhatD KBi and Zn co-doped SnTe thermoelectrics: interplay of resonance levels and heavy hole band dominance leading to enhanced performance and a record high room temperature ZTJournal of Materials Chemistry C: Materials for Optical and Electronic Devices202086203620421:CAS:528:DC%2BC1MXisVCitLjF10.1039/C9TC06490G ZhangXZhangZSunSA facile one-step hydrothermal approach to synthesize hierarchical core-shell NiFe2O4@NiFe2O4 nanosheet arrays on Ni foam with large specific capacitance for supercapacitorsRSC Advances201882715222152281:CAS:528:DC%2BC1cXotFWgtb8%3D10.1039/C8RA02559B AparnaM LGraceA NSathyanarayananPA comparative study on the supercapacitive behaviour of solvothermally prepared metal ferrite (MFe2O4, M = Fe, Co, Ni, Mn, Cu, Zn) nanoassembliesJournal of Alloys and Compounds20187453853951:CAS:528:DC%2BC1cXjtlyntbk%3D10.1016/j.jallcom.2018.02.127 PengHDaiXSunKA high-performance asymmetric supercapacitor designed with a three-dimensional interconnected porous carbon framework and sphere-like nickel nitride nanosheetsNew Journal of Chemistry2019433212623126291:CAS:528:DC%2BC1MXhtlGgur%2FM10.1039/C9NJ02509J WuFWangXLiMA high capacity NiFe2O4/RGO nanocomposites as superior anode materials for sodium-ion batteriesCeramics International2016421516666166701:CAS:528:DC%2BC28Xht12nurrE10.1016/j.ceramint.2016.07.099 KumarNKumarAHuangG MFacile synthesis of mesoporous NiFe2O4/CNTs nanocomposite cathode material for high performance asymmetric pseudocapacitorsApplied Surface Science2018433110011121:CAS:528:DC%2BC2sXhslajurvJ10.1016/j.apsusc.2017.10.095 FooC YLimH NMahdiM A BHigh-performance supercapacitor based on three-dimensional hierarchical rGO/nickel cobaltite nanostructures as electrode materialsThe Journal of Physical Chemistry C20161203821202212101:CAS:528:DC%2BC28XhsV2ru7bP10.1021/acs.jpcc.6b05930 C Y Foo (499_CR33) 2016; 120 P Bhojane (499_CR13) 2017; 17 S B Bandgar (499_CR11) 2018; 1 P Giannozzi (499_CR18) 2009; 21 M Fu (499_CR37) 2018; 396 X Zhang (499_CR15) 2018; 8 P R Kumar (499_CR9) 2013; 3 B Subramanya (499_CR17) 2015; 275 M M J Sadiq (499_CR2) 2018; 208 S Dutta (499_CR4) 2019; 43 F Wu (499_CR24) 2016; 42 D K Bhat (499_CR29) 2019; 11 M M J Sadiq (499_CR21) 2017; 4 U S Shenoy (499_CR30) 2019; 7 499_CR1 N Cao (499_CR25) 2015; 144 H Gao (499_CR7) 2019; 7 Z Zhang (499_CR28) 2019; 123 M Sethi (499_CR16) 2019; 799 Y Zhao (499_CR22) 2017; 726 J P Perdew (499_CR19) 1996; 77 C Pan (499_CR6) 2019; 123 M Hua (499_CR12) 2018; 53 M Sethi (499_CR5) 2019; 781 N Kumar (499_CR32) 2018; 433 M M J Sadiq (499_CR23) 2017; 109 L Liu (499_CR26) 2014; 39 Y Z Cai (499_CR35) 2019; 811 M L Aparna (499_CR8) 2018; 745 X Gao (499_CR10) 2019; 296 B Subramanya (499_CR27) 2015; 39 S Anwar (499_CR14) 2011; 158 X Zhang (499_CR36) 2018; 8 V Sharma (499_CR38) 2019; 7 H Peng (499_CR3) 2019; 43 U S Shenoy (499_CR31) 2020; 8 U S Shenoy (499_CR20) 2018; 122 X Zhang (499_CR34) 2019; 360 |
References_xml | – reference: GaoHWangXWangGFacile construction of a MgCo2O4@NiMoO4/NF core-shell nanocomposite for highperformance asymmetric supercapacitorsJournal of Materials Chemistry C: Materials for Optical and Electronic Devices201974213267132781:CAS:528:DC%2BC1MXhvVOhs7nK10.1039/C9TC03932E – reference: BandgarS BVadiyarM MLingY CMetal precursor dependent synthesis of NiFe2O4 thin films for high-performance flexible symmetric supercapacitorACS Applied Energy Materials2018126386481:CAS:528:DC%2BC1cXhtVKnsb4%3D10.1021/acsaem.7b00163 – reference: Sudhakar Y N, Selvakumar M, Bhat D K. Biopolymer Electrolytes: Fundamentals and Applications in Energy Storage. Elsevier, 2018 – reference: SubramanyaBBhatD KNovel eco-friendly synthesis of graphene directly from graphite using 2,2,6,6-tetramethylpiperidine 1-oxyl and study of its electrochemical propertiesJournal of Power Sources201527590981:CAS:528:DC%2BC2cXhvVOmsLzN10.1016/j.jpowsour.2014.11.014 – reference: PanCLiuZLiWNiCo2O4@polyaniline nanotubes heterostructure anchored on carbon textiles with enhanced electrochemical performance for supercapacitor applicationThe Journal of Physical Chemistry C20191234225549255581:CAS:528:DC%2BC1MXhvFSju73K10.1021/acs.jpcc.9b06070 – reference: ShenoyU SBhatD KBi and Zn co-doped SnTe thermoelectrics: interplay of resonance levels and heavy hole band dominance leading to enhanced performance and a record high room temperature ZTJournal of Materials Chemistry C: Materials for Optical and Electronic Devices202086203620421:CAS:528:DC%2BC1MXisVCitLjF10.1039/C9TC06490G – reference: SethiMBhatD KFacile solvothermal synthesis and high supercapacitor performance of NiCo2O4 nanorodsJournal of Alloys and Compounds2019781101310201:CAS:528:DC%2BC1cXisFCisbzE10.1016/j.jallcom.2018.12.143 – reference: ZhangXZhuMOuyangTNiFe2O4 nanocubes anchored on reduced graphene oxide cryogel to achieve a 1.8 V flexible solid-state symmetric supercapacitorChemical Engineering Journal20193601711791:CAS:528:DC%2BC1cXitl2it7fO10.1016/j.cej.2018.11.206 – reference: FuMChenWZhuXOne-step preparation of one dimensional nickel ferrites/graphene composites for supercapacitor electrode with excellent cycling stabilityJournal of Power Sources201839641481:CAS:528:DC%2BC1cXhtVyktbrP10.1016/j.jpowsour.2018.06.019 – reference: BhatD KShenoyU SZn: a versatile resonant dopant for SnTe thermoelectricsMaterials Today Chemistry201911100158 – reference: GiannozziPBaroniSBoniniNQUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materialsJournal of Physics: Condensed Matter20092139395502 – reference: ZhaoYXuLYanJFacile preparation of NiFe2O4/MoS2 composite material with synergistic effect for high performance supercapacitorJournal of Alloys and Compounds20177266086171:CAS:528:DC%2BC2sXhtlSrtrzN10.1016/j.jallcom.2017.07.327 – reference: KumarNKumarAHuangG MFacile synthesis of mesoporous NiFe2O4/CNTs nanocomposite cathode material for high performance asymmetric pseudocapacitorsApplied Surface Science2018433110011121:CAS:528:DC%2BC2sXhslajurvJ10.1016/j.apsusc.2017.10.095 – reference: DuttaSPalSDeSMixed solvent exfoliated transition metal oxides nanosheets based flexible solid state supercapacitor devices endowed with high energy densityNew Journal of Chemistry2019433112385123951:CAS:528:DC%2BC1MXhtlKksbbE10.1039/C9NJ03233A – reference: PengHDaiXSunKA high-performance asymmetric supercapacitor designed with a three-dimensional interconnected porous carbon framework and sphere-like nickel nitride nanosheetsNew Journal of Chemistry2019433212623126291:CAS:528:DC%2BC1MXhtlGgur%2FM10.1039/C9NJ02509J – reference: GaoXWangWBiJMorphology-controllable preparation of NiFe2O4 as high performance electrode material for supercapacitorElectrochimica Acta20192961811891:CAS:528:DC%2BC1cXit1WhsL7M10.1016/j.electacta.2018.11.054 – reference: ZhangZLiLQingYManipulation of nanoplate structures in carbonized cellulose nanofibril aerogel for high-performance supercapacitorThe Journal of Physical Chemistry C20191233823374233811:CAS:528:DC%2BC1MXhs1ajtb3P10.1021/acs.jpcc.9b06058 – reference: SethiMBantawalHShenoyU SEco-friendly synthesis of porous graphene and its utilization as high performance supercapacitor electrode materialJournal of Alloys and Compounds20197992562661:CAS:528:DC%2BC1MXhtFajsLzL10.1016/j.jallcom.2019.05.302 – reference: HuaMXuLCuiFHexamethylenetetramine-assisted hydrothermal synthesis of octahedral nickel ferrite oxide nanocrystallines with excellent supercapacitive performanceJournal of Materials Science20185310762176361:CAS:528:DC%2BC1cXhvVKhtLk%3D10.1007/s10853-018-2052-7 – reference: SubramanyaBBhatD KNovel one-pot green synthesis of graphene in aqueous medium under microwave irradiation using a regenerative catalyst and the study of its electrochemical propertiesNew Journal of Chemistry20153914204301:CAS:528:DC%2BC2cXhvVGhsr7F10.1039/C4NJ01359J – reference: SadiqM M JShenoyS UBhatD KNovel NRGO-CoWO4-Fe2O3 nanocomposite as an efficient catalyst for dye degradation and reduction of 4-nitrophenolMaterials Chemistry and Physics201820811212210.1016/j.matchemphys.2018.01.012 – reference: CaiY ZCaoW QZhangY LTailoring rGO-NiFe2O4 hybrids to tune transport of electrons and ions for supercapacitor electrodesJournal of Alloys and Compounds20198111520111:CAS:528:DC%2BC1MXhs12gtrbF10.1016/j.jallcom.2019.152011 – reference: PerdewJ PBurkeKErnzerhofMGeneralized gradient approximation made simplePhysical Review Letters19967718386538681:CAS:528:DyaK28XmsVCgsbs%3D10.1103/PhysRevLett.77.3865 – reference: SadiqM M JShenoyS UBhatD KNiWO4-ZnO-NRGO ternary nanocomposite as an efficient photocatalyst for degradation of methylene blue and reduction of 4-nitro phenolJournal of Physics and Chemistry of Solids20171091241331:CAS:528:DC%2BC2sXos1Cju74%3D10.1016/j.jpcs.2017.05.023 – reference: ShenoyU SBantawalHBhatD KBand engineering of SrTiO3: Effect of synthetic technique and site occupancy of doped rhodiumThe Journal of Physical Chemistry C20181224827567275741:CAS:528:DC%2BC1cXit1artbzO10.1021/acs.jpcc.8b10083 – reference: ZhangXZhangZSunSA facile one-step hydrothermal approach to synthesize hierarchical core-shell NiFe2O4@NiFe2O4 nanosheet arrays on Ni foam with large specific capacitance for supercapacitorsRSC Advances201882715222152281:CAS:528:DC%2BC1cXotFWgtb8%3D10.1039/C8RA02559B – reference: CaoNZouXHuangYPreparation of NiFe2O4 architectures for affinity separation of histidine-tagged proteinsMaterials Letters20151441611641:CAS:528:DC%2BC2MXhsFaht74%3D10.1016/j.matlet.2015.01.039 – reference: WuFWangXLiMA high capacity NiFe2O4/RGO nanocomposites as superior anode materials for sodium-ion batteriesCeramics International2016421516666166701:CAS:528:DC%2BC28Xht12nurrE10.1016/j.ceramint.2016.07.099 – reference: AparnaM LGraceA NSathyanarayananPA comparative study on the supercapacitive behaviour of solvothermally prepared metal ferrite (MFe2O4, M = Fe, Co, Ni, Mn, Cu, Zn) nanoassembliesJournal of Alloys and Compounds20187453853951:CAS:528:DC%2BC1cXjtlyntbk%3D10.1016/j.jallcom.2018.02.127 – reference: FooC YLimH NMahdiM A BHigh-performance supercapacitor based on three-dimensional hierarchical rGO/nickel cobaltite nanostructures as electrode materialsThe Journal of Physical Chemistry C20161203821202212101:CAS:528:DC%2BC28XhsV2ru7bP10.1021/acs.jpcc.6b05930 – reference: KumarP RMitraSNickel ferrite as a stable, high capacity and high rate anode for Li-ion battery applicationsRSC Advances201334725058250641:CAS:528:DC%2BC3sXhslCrsL7M10.1039/c3ra44001j – reference: SadiqM M JShenoyU SBhatD KEnhanced photocatalytic performance of N-doped RGO-FeWO4/Fe3O4 ternary nanocomposite in environmental applicationsMaterials Today Chemistry2017413314110.1016/j.mtchem.2017.04.003 – reference: ShenoyU SBhatD KElectronic structure engineering of tin telluride through co-doping of bismuth and indium for high performance thermoelectrics: a synergistic effect leading to a record high room temperature ZT in tin tellurideJournal of Materials Chemistry C: Materials for Optical and Electronic Devices2019716481748211:CAS:528:DC%2BC1MXlslelsbw%3D10.1039/C9TC01184F – reference: LiuLSunLLiuJEnhancing the electrochemical properties of NiFe2O4 anode for lithium ion battery through a simple hydrogenation modificationInternational Journal of Hydrogen Energy2014392111258112661:CAS:528:DC%2BC2cXpsl2iur4%3D10.1016/j.ijhydene.2014.05.093 – reference: SharmaVBiswasSSundaramBElectrode materials with highest surface area and specific capacitance cannot be the only deciding factor for applicability in energy storage devices: inference of combined life cycle assessment and electrochemical studiesACS Sustainable Chemistry & Engineering201975538553921:CAS:528:DC%2BC1MXhvFejs74%3D10.1021/acssuschemeng.8b06413 – reference: AnwarSMuthuK SGaneshVA comparative study of electrochemical capacitive behavior of NiFe2O4 synthesized by different routesJournal of the Electrochemical Society20111588A976A9811:CAS:528:DC%2BC3MXotVyhu7o%3D10.1149/1.3601863 – reference: BhojanePSharmaAPustyMSynthesis of ammonia-assisted porous nickel ferrite (NiFe2O4) nanostructures as an electrode material for supercapacitorsJournal of Nanoscience and Nanotechnology2017172138713921:CAS:528:DC%2BC2sXhtVCnsbjI10.1166/jnn.2017.12666 – volume: 43 start-page: 12623 issue: 32 year: 2019 ident: 499_CR3 publication-title: New Journal of Chemistry doi: 10.1039/C9NJ02509J – volume: 296 start-page: 181 year: 2019 ident: 499_CR10 publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2018.11.054 – volume: 8 start-page: 15222 issue: 27 year: 2018 ident: 499_CR15 publication-title: RSC Advances doi: 10.1039/C8RA02559B – volume: 123 start-page: 23374 issue: 38 year: 2019 ident: 499_CR28 publication-title: The Journal of Physical Chemistry C doi: 10.1021/acs.jpcc.9b06058 – volume: 811 start-page: 152011 year: 2019 ident: 499_CR35 publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2019.152011 – volume: 396 start-page: 41 year: 2018 ident: 499_CR37 publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2018.06.019 – volume: 120 start-page: 21202 issue: 38 year: 2016 ident: 499_CR33 publication-title: The Journal of Physical Chemistry C doi: 10.1021/acs.jpcc.6b05930 – volume: 7 start-page: 13267 issue: 42 year: 2019 ident: 499_CR7 publication-title: Journal of Materials Chemistry C: Materials for Optical and Electronic Devices doi: 10.1039/C9TC03932E – volume: 43 start-page: 12385 issue: 31 year: 2019 ident: 499_CR4 publication-title: New Journal of Chemistry doi: 10.1039/C9NJ03233A – volume: 726 start-page: 608 year: 2017 ident: 499_CR22 publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2017.07.327 – volume: 109 start-page: 124 year: 2017 ident: 499_CR23 publication-title: Journal of Physics and Chemistry of Solids doi: 10.1016/j.jpcs.2017.05.023 – volume: 123 start-page: 25549 issue: 42 year: 2019 ident: 499_CR6 publication-title: The Journal of Physical Chemistry C doi: 10.1021/acs.jpcc.9b06070 – volume: 745 start-page: 385 year: 2018 ident: 499_CR8 publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2018.02.127 – volume: 360 start-page: 171 year: 2019 ident: 499_CR34 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2018.11.206 – volume: 208 start-page: 112 year: 2018 ident: 499_CR2 publication-title: Materials Chemistry and Physics doi: 10.1016/j.matchemphys.2018.01.012 – volume: 39 start-page: 420 issue: 1 year: 2015 ident: 499_CR27 publication-title: New Journal of Chemistry doi: 10.1039/C4NJ01359J – ident: 499_CR1 doi: 10.1016/B978-0-12-813447-4.00005-4 – volume: 3 start-page: 25058 issue: 47 year: 2013 ident: 499_CR9 publication-title: RSC Advances doi: 10.1039/c3ra44001j – volume: 21 start-page: 395502 issue: 39 year: 2009 ident: 499_CR18 publication-title: Journal of Physics: Condensed Matter – volume: 781 start-page: 1013 year: 2019 ident: 499_CR5 publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2018.12.143 – volume: 275 start-page: 90 year: 2015 ident: 499_CR17 publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2014.11.014 – volume: 122 start-page: 27567 issue: 48 year: 2018 ident: 499_CR20 publication-title: The Journal of Physical Chemistry C doi: 10.1021/acs.jpcc.8b10083 – volume: 1 start-page: 638 issue: 2 year: 2018 ident: 499_CR11 publication-title: ACS Applied Energy Materials doi: 10.1021/acsaem.7b00163 – volume: 7 start-page: 5385 issue: 5 year: 2019 ident: 499_CR38 publication-title: ACS Sustainable Chemistry & Engineering doi: 10.1021/acssuschemeng.8b06413 – volume: 4 start-page: 133 year: 2017 ident: 499_CR21 publication-title: Materials Today Chemistry doi: 10.1016/j.mtchem.2017.04.003 – volume: 39 start-page: 11258 issue: 21 year: 2014 ident: 499_CR26 publication-title: International Journal of Hydrogen Energy doi: 10.1016/j.ijhydene.2014.05.093 – volume: 42 start-page: 16666 issue: 15 year: 2016 ident: 499_CR24 publication-title: Ceramics International doi: 10.1016/j.ceramint.2016.07.099 – volume: 158 start-page: A976 issue: 8 year: 2011 ident: 499_CR14 publication-title: Journal of the Electrochemical Society doi: 10.1149/1.3601863 – volume: 7 start-page: 4817 issue: 16 year: 2019 ident: 499_CR30 publication-title: Journal of Materials Chemistry C: Materials for Optical and Electronic Devices doi: 10.1039/C9TC01184F – volume: 144 start-page: 161 year: 2015 ident: 499_CR25 publication-title: Materials Letters doi: 10.1016/j.matlet.2015.01.039 – volume: 77 start-page: 3865 issue: 18 year: 1996 ident: 499_CR19 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.77.3865 – volume: 799 start-page: 256 year: 2019 ident: 499_CR16 publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2019.05.302 – volume: 11 start-page: 100158 year: 2019 ident: 499_CR29 publication-title: Materials Today Chemistry – volume: 8 start-page: 2036 issue: 6 year: 2020 ident: 499_CR31 publication-title: Journal of Materials Chemistry C: Materials for Optical and Electronic Devices doi: 10.1039/C9TC06490G – volume: 17 start-page: 1387 issue: 2 year: 2017 ident: 499_CR13 publication-title: Journal of Nanoscience and Nanotechnology doi: 10.1166/jnn.2017.12666 – volume: 8 start-page: 15222 issue: 27 year: 2018 ident: 499_CR36 publication-title: RSC Advances doi: 10.1039/C8RA02559B – volume: 53 start-page: 7621 issue: 10 year: 2018 ident: 499_CR12 publication-title: Journal of Materials Science doi: 10.1007/s10853-018-2052-7 – volume: 433 start-page: 1100 year: 2018 ident: 499_CR32 publication-title: Applied Surface Science doi: 10.1016/j.apsusc.2017.10.095 |
SSID | ssj0000515941 |
Score | 2.4220178 |
Snippet | We report a green and facile approach for the synthesis of NiFe
2
O
4
(NF) nanoparticles with good crystallinity. The prepared materials are studied by various... We report a green and facile approach for the synthesis of NiFe2O4 (NF) nanoparticles with good crystallinity. The prepared materials are studied by various... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 120 |
SubjectTerms | Capacitance Chemistry and Materials Science Crystal structure Crystallinity Current density Electrochemical analysis Electrodes Materials Science Morphology Nanoparticles Nickel ferrites Research Article Solid phases Supercapacitors Synthesis |
Title | Facile solvothermal synthesis of NiFe2O4 nanoparticles for high-performance supercapacitor applications |
URI | https://link.springer.com/article/10.1007/s11706-020-0499-3 https://www.proquest.com/docview/2408551301 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXWBAPEWhVB6YQJbysJ10rFBDBaIsVCpT5FdQJUirpkXi33N2k6YgQGJLFNvD-S73nc_3HUKXhjImQgORqjaC0Ez4REipiR8rpcH_hVzaA_2HIR-M6N2Yjcs67qK67V6lJN2fui52s0wvxIY7FqaTcBs1mQ3dQYlHQW99sGKblnRdx8rAc9XHbFxlM39a5as_qkHmt7yoczfJPtorcSLurTb2AG2Z_BDtbrAHHqGXRCiwaQza8-7qqN5gQvGRw2MxKfA0w8NJYoJHinORQ2xcXoHDAFOxZSkms7poABdLeFPgORWY-Bxv5rWP0SjpP90MSNk3gajQ5wsSWRwmNVim52keyi6gFs0NAJHIl4FWGc0izqUEbADWrj2IaESsPMMEp1oDJjxBjXyam1OEqYkFi12XdQAqgRZdISEgjGQmhaEZayGvkl6qSlJx29viNa3pkK3AUxB4agWehi10tZ4yWzFq_DW4XW1JWhpXkTpWNgbO12-h62qb6s-_Lnb2r9HnaCdwamJPXNqosZgvzQUAkIXsoGbv9vm-33GK9wmE0NOA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIpCAQ9MIEt52Ek6VoiqQFuWVupm-RVUCdKqaZH495zdpCkIkNgSxfZw58t95_N9h9C1oYyJ0ECkqo0gNBU-EVJq4idKafB_YSTtgX6vH3WG9HHERkUdd17edi9Tku5PXRW7WaYXYsMdC9NJuIm2AAsk9h7XMGitDlZs05Km61gZeK76mI3KbOZPq3z1RxXI_JYXde6mvY_2CpyIW0vFHqANkx2i3TX2wCP00hYKbBrD7nl3dVRvMCH_yOAxH-d4kuL-uG2CZ4ozkUFsXFyBwwBTsWUpJtOqaADnC3hT4DkVmPgMr-e1j9GwfT-465CibwJRoR_NSWxxmNRgmZ6no1A2AbXoyAAQiX0ZaJXSNI4iKQEbgLVrDyIakSjPMBFRrQETnqBaNsnMKcLUJIIlrss6AJVAi6aQEBDGMpXC0JTVkVdKj6uCVNz2tnjlFR2yFTgHgXMrcB7W0c1qynTJqPHX4EapEl4YV84dKxsD5-vX0W2ppurzr4ud_Wv0FdruDHpd3n3oP52jncBtGXv60kC1-WxhLgCMzOWl23yf_dLU3w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSAgOiKcYDMiBEyhaH2naHSeg4jk4MGm3Kq-iSdBNa4fEv8fJ2nUgQOLWqkkOjl1_juPPCJ1qGgTc1xCpKs0JTblLuBCKuJGUCvyfz4Q50H_oses-vR0Eg7LPaV7ddq9SkrOaBsPSlBXtsUrbdeGbYX0hJvQxkJ34y2gF_sauUeu-150fspgGJh3bvdJzbCVyMKgymz-t8tU31YDzW47Uup54E22UmBF3Z5u8hZZ0to3WF5gEd9BLzCXYNwZNerc1VW8wIf_I4DEf5niU4t4w1t4jxRnPIE4ur8NhgKzYMBaTcV1AgPMpvEnwohLMfYIXc9y7qB9fPV9ck7KHApG-ywoSGkwmFFip4yjmiw4gGMU0gJLQFZ6SKU1DxoQAnACWrxyIbngkHR1wRpUCfLiHGtko0_sIUx3xILId1wG0eIp3uIDgMBSp4JqmQRM5lfQSWRKMmz4Xr0lNjWwEnoDAEyPwxG-is_mU8Yxd46_BrWpLktLQ8sQytAXgiN0mOq-2qf7862IH_xp9glafLuPk_qZ3d4jWPKsx5iCmhRrFZKqPAJcU4tjq3id3ldkb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+solvothermal+synthesis+of+NiFe2O4+nanoparticles+for+high-performance+supercapacitor+applications&rft.jtitle=Frontiers+of+materials+science&rft.au=Sethi+Meenaketan&rft.au=Sandhya%2C+Shenoy+U&rft.au=Selvakumar%2C+Muthu&rft.au=Krishna%2C+Bhat+D&rft.date=2020-06-01&rft.pub=Springer+Nature+B.V&rft.issn=2095-025X&rft.eissn=2095-0268&rft.volume=14&rft.issue=2&rft.spage=120&rft.epage=132&rft_id=info:doi/10.1007%2Fs11706-020-0499-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-025X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-025X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-025X&client=summon |