Facile solvothermal synthesis of NiFe2O4 nanoparticles for high-performance supercapacitor applications

We report a green and facile approach for the synthesis of NiFe 2 O 4 (NF) nanoparticles with good crystallinity. The prepared materials are studied by various techniques in order to know their phase structure, crystallinity, morphology and elemental state. The BET analysis revealed a high surface a...

Full description

Saved in:
Bibliographic Details
Published inFrontiers of materials science Vol. 14; no. 2; pp. 120 - 132
Main Authors Sethi, Meenaketan, Shenoy, U. Sandhya, Muthu, Selvakumar, Bhat, D. Krishna
Format Journal Article
LanguageEnglish
Published Beijing Higher Education Press 01.06.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2095-025X
2095-0268
DOI10.1007/s11706-020-0499-3

Cover

Loading…
Abstract We report a green and facile approach for the synthesis of NiFe 2 O 4 (NF) nanoparticles with good crystallinity. The prepared materials are studied by various techniques in order to know their phase structure, crystallinity, morphology and elemental state. The BET analysis revealed a high surface area of 80.0 m 2 ·g −1 for NF possessing a high pore volume of 0.54 cm 3 ·g −1 , also contributing to the amelioration of the electrochemical performance. The NF sample is studied for its application in supercapacitors in an aqueous 2 mol·L −1 KOH electrolyte. Electrochemical properties are studied both in the three-electrode method and in a symmetrical supercapacitor cell. Results show a high specific capacitance of 478.0 F·g −1 from the CV curve at an applied scan rate of 5 mV·s −1 and 368.0 F·g −1 from the GCD analysis at a current density of 1 A·g −1 for the NF electrode. Further, the material exhibited an 88% retention of its specific capacitance after continuous 10000 cycles at a higher applied current density of 8 A·g −1 . These encouraging properties of NF nanoparticles suggest the practical applicability in high-performance supercapacitors.
AbstractList We report a green and facile approach for the synthesis of NiFe2O4 (NF) nanoparticles with good crystallinity. The prepared materials are studied by various techniques in order to know their phase structure, crystallinity, morphology and elemental state. The BET analysis revealed a high surface area of 80.0 m2·g−1 for NF possessing a high pore volume of 0.54 cm3·g−1, also contributing to the amelioration of the electrochemical performance. The NF sample is studied for its application in supercapacitors in an aqueous 2 mol·L−1 KOH electrolyte. Electrochemical properties are studied both in the three-electrode method and in a symmetrical supercapacitor cell. Results show a high specific capacitance of 478.0 F·g−1 from the CV curve at an applied scan rate of 5 mV·s−1 and 368.0 F·g−1 from the GCD analysis at a current density of 1 A·g−1 for the NF electrode. Further, the material exhibited an 88% retention of its specific capacitance after continuous 10000 cycles at a higher applied current density of 8 A·g−1. These encouraging properties of NF nanoparticles suggest the practical applicability in high-performance supercapacitors.
We report a green and facile approach for the synthesis of NiFe 2 O 4 (NF) nanoparticles with good crystallinity. The prepared materials are studied by various techniques in order to know their phase structure, crystallinity, morphology and elemental state. The BET analysis revealed a high surface area of 80.0 m 2 ·g −1 for NF possessing a high pore volume of 0.54 cm 3 ·g −1 , also contributing to the amelioration of the electrochemical performance. The NF sample is studied for its application in supercapacitors in an aqueous 2 mol·L −1 KOH electrolyte. Electrochemical properties are studied both in the three-electrode method and in a symmetrical supercapacitor cell. Results show a high specific capacitance of 478.0 F·g −1 from the CV curve at an applied scan rate of 5 mV·s −1 and 368.0 F·g −1 from the GCD analysis at a current density of 1 A·g −1 for the NF electrode. Further, the material exhibited an 88% retention of its specific capacitance after continuous 10000 cycles at a higher applied current density of 8 A·g −1 . These encouraging properties of NF nanoparticles suggest the practical applicability in high-performance supercapacitors.
Author Sethi, Meenaketan
Bhat, D. Krishna
Muthu, Selvakumar
Shenoy, U. Sandhya
Author_xml – sequence: 1
  givenname: Meenaketan
  surname: Sethi
  fullname: Sethi, Meenaketan
  organization: Department of Chemistry, National Institute of Technology Karnataka
– sequence: 2
  givenname: U. Sandhya
  surname: Shenoy
  fullname: Shenoy, U. Sandhya
  organization: Department of Chemistry, College of Engineering and Technology, Srinivas University
– sequence: 3
  givenname: Selvakumar
  surname: Muthu
  fullname: Muthu, Selvakumar
  organization: Department of Chemistry, Manipal Institute of Technology
– sequence: 4
  givenname: D. Krishna
  surname: Bhat
  fullname: Bhat, D. Krishna
  email: denthajekb@gmail.com
  organization: Department of Chemistry, National Institute of Technology Karnataka
BookMark eNp9UEFLwzAYDTLBOfcDvBU8V78kTdoeZTgnDHdR8BbSNN0yuqQmnbB_b7aKgqC5fC9f3nt5vEs0ss5qhK4x3GKA_C5gnANPgUAKWVmm9AyNCZQsbngx-sbs7QJNQ9hCPAyzMsNjtJ5LZVqdBNd-uH6j_U62STjYCIMJiWuSZzPXZJUlVlrXSd8b1eqQNM4nG7PepJ32Ee-kVdFkH29KdtGyj--y61qjZG-cDVfovJFt0NOvOUGv84eX2SJdrh6fZvfLVFHM-zSPybKqLooYsea0KjlmNdclzXNckVo1WZNzXlUFIRRYDRyYLBRoJnlW14DpBN0Mvp1373sderF1e2_jl4JkUDCG6YmVDyzlXQheNyImPgXtvTStwCCOxYqhWBGLFcdiBY1K_EvZebOT_vCvhgyaELl2rf1Ppr9Fnwq2jRc
CitedBy_id crossref_primary_10_1016_j_colsurfa_2023_132247
crossref_primary_10_1016_j_jallcom_2020_157190
crossref_primary_10_1134_S1063783424601073
crossref_primary_10_1557_s43578_022_00598_y
crossref_primary_10_1016_j_chemosphere_2022_134929
crossref_primary_10_1016_j_surfin_2024_105340
crossref_primary_10_1016_j_jallcom_2025_179787
crossref_primary_10_1039_D2NJ05566J
crossref_primary_10_1016_j_est_2022_103965
crossref_primary_10_1007_s10854_024_11967_0
crossref_primary_10_1088_1361_6528_ace3c7
crossref_primary_10_1016_j_mssp_2022_107238
crossref_primary_10_1016_j_jallcom_2021_162577
crossref_primary_10_1039_D0NA00440E
crossref_primary_10_1016_j_jiec_2022_09_050
crossref_primary_10_1016_j_ccr_2024_216103
crossref_primary_10_1016_j_ceramint_2022_06_276
crossref_primary_10_3390_cryst13111561
crossref_primary_10_1002_adsu_202400244
crossref_primary_10_1016_j_ceramint_2022_04_092
crossref_primary_10_1016_j_est_2021_102821
crossref_primary_10_1016_j_mseb_2022_115845
crossref_primary_10_1016_j_jallcom_2024_174240
crossref_primary_10_1016_j_est_2025_116182
crossref_primary_10_1007_s11706_023_0645_9
crossref_primary_10_1007_s13538_023_01362_1
crossref_primary_10_1016_j_physb_2021_412959
crossref_primary_10_1021_acs_energyfuels_3c00135
crossref_primary_10_1016_j_heliyon_2023_e18496
crossref_primary_10_1016_j_matchemphys_2021_125313
crossref_primary_10_1007_s11814_024_00249_4
crossref_primary_10_1016_j_est_2024_110757
crossref_primary_10_1016_j_mssp_2021_106078
crossref_primary_10_1016_j_electacta_2022_139914
crossref_primary_10_1007_s10854_023_10796_x
crossref_primary_10_1007_s10854_020_04655_2
crossref_primary_10_1016_j_chphi_2024_100460
crossref_primary_10_1016_j_nanoso_2025_101458
crossref_primary_10_2139_ssrn_4184179
crossref_primary_10_1016_j_est_2023_108439
crossref_primary_10_1016_j_ijhydene_2025_03_218
crossref_primary_10_1016_j_surfin_2024_105339
crossref_primary_10_1016_j_jksus_2023_102857
crossref_primary_10_1016_j_jallcom_2022_167305
crossref_primary_10_1007_s13204_022_02741_x
crossref_primary_10_1007_s12633_023_02656_4
crossref_primary_10_1016_j_ces_2023_119436
crossref_primary_10_1002_cnma_202400594
crossref_primary_10_1002_er_7680
crossref_primary_10_1186_s12645_023_00179_6
crossref_primary_10_1016_j_ceramint_2022_09_322
crossref_primary_10_1016_j_inoche_2023_110921
crossref_primary_10_1016_j_matchemphys_2024_129072
Cites_doi 10.1039/C9NJ02509J
10.1016/j.electacta.2018.11.054
10.1039/C8RA02559B
10.1021/acs.jpcc.9b06058
10.1016/j.jallcom.2019.152011
10.1016/j.jpowsour.2018.06.019
10.1021/acs.jpcc.6b05930
10.1039/C9TC03932E
10.1039/C9NJ03233A
10.1016/j.jallcom.2017.07.327
10.1016/j.jpcs.2017.05.023
10.1021/acs.jpcc.9b06070
10.1016/j.jallcom.2018.02.127
10.1016/j.cej.2018.11.206
10.1016/j.matchemphys.2018.01.012
10.1039/C4NJ01359J
10.1016/B978-0-12-813447-4.00005-4
10.1039/c3ra44001j
10.1016/j.jallcom.2018.12.143
10.1016/j.jpowsour.2014.11.014
10.1021/acs.jpcc.8b10083
10.1021/acsaem.7b00163
10.1021/acssuschemeng.8b06413
10.1016/j.mtchem.2017.04.003
10.1016/j.ijhydene.2014.05.093
10.1016/j.ceramint.2016.07.099
10.1149/1.3601863
10.1039/C9TC01184F
10.1016/j.matlet.2015.01.039
10.1103/PhysRevLett.77.3865
10.1016/j.jallcom.2019.05.302
10.1039/C9TC06490G
10.1166/jnn.2017.12666
10.1007/s10853-018-2052-7
10.1016/j.apsusc.2017.10.095
ContentType Journal Article
Copyright Higher Education Press 2020
Higher Education Press 2020.
Copyright_xml – notice: Higher Education Press 2020
– notice: Higher Education Press 2020.
DBID AAYXX
CITATION
DOI 10.1007/s11706-020-0499-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2095-0268
EndPage 132
ExternalDocumentID 10_1007_s11706_020_0499_3
GroupedDBID -58
-5G
-BR
-EM
-~C
.VR
06C
06D
0R~
0VY
1-T
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
40E
5VS
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
B-.
BDATZ
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P4S
P9N
PF0
PT4
QOR
R89
R9I
ROL
RSV
S16
S3B
SAP
SCL
SCM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z7R
Z7V
Z7X
Z85
ZMTXR
~A9
-SB
-S~
AAPKM
AAXDM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CAJEB
CITATION
Q--
U1G
U5L
ABRTQ
ID FETCH-LOGICAL-c316t-70054bd88000d63b9615d6e93771b2dcf4f766bb822305d0605a8c0e5a64dd013
IEDL.DBID U2A
ISSN 2095-025X
IngestDate Fri Jul 25 11:00:24 EDT 2025
Tue Jul 01 02:09:53 EDT 2025
Thu Apr 24 23:11:52 EDT 2025
Fri Feb 21 02:35:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords specific capacitance
solvothermal method
nanoparticle
BET surface area
NiFe
O
supercapacitor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-70054bd88000d63b9615d6e93771b2dcf4f766bb822305d0605a8c0e5a64dd013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2408551301
PQPubID 2044428
PageCount 13
ParticipantIDs proquest_journals_2408551301
crossref_citationtrail_10_1007_s11706_020_0499_3
crossref_primary_10_1007_s11706_020_0499_3
springer_journals_10_1007_s11706_020_0499_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Frontiers of materials science
PublicationTitleAbbrev Front. Mater. Sci
PublicationYear 2020
Publisher Higher Education Press
Springer Nature B.V
Publisher_xml – name: Higher Education Press
– name: Springer Nature B.V
References FuMChenWZhuXOne-step preparation of one dimensional nickel ferrites/graphene composites for supercapacitor electrode with excellent cycling stabilityJournal of Power Sources201839641481:CAS:528:DC%2BC1cXhtVyktbrP10.1016/j.jpowsour.2018.06.019
SharmaVBiswasSSundaramBElectrode materials with highest surface area and specific capacitance cannot be the only deciding factor for applicability in energy storage devices: inference of combined life cycle assessment and electrochemical studiesACS Sustainable Chemistry & Engineering201975538553921:CAS:528:DC%2BC1MXhvFejs74%3D10.1021/acssuschemeng.8b06413
ShenoyU SBantawalHBhatD KBand engineering of SrTiO3: Effect of synthetic technique and site occupancy of doped rhodiumThe Journal of Physical Chemistry C20181224827567275741:CAS:528:DC%2BC1cXit1artbzO10.1021/acs.jpcc.8b10083
Sudhakar Y N, Selvakumar M, Bhat D K. Biopolymer Electrolytes: Fundamentals and Applications in Energy Storage. Elsevier, 2018
DuttaSPalSDeSMixed solvent exfoliated transition metal oxides nanosheets based flexible solid state supercapacitor devices endowed with high energy densityNew Journal of Chemistry2019433112385123951:CAS:528:DC%2BC1MXhtlKksbbE10.1039/C9NJ03233A
SadiqM M JShenoyU SBhatD KEnhanced photocatalytic performance of N-doped RGO-FeWO4/Fe3O4 ternary nanocomposite in environmental applicationsMaterials Today Chemistry2017413314110.1016/j.mtchem.2017.04.003
SubramanyaBBhatD KNovel eco-friendly synthesis of graphene directly from graphite using 2,2,6,6-tetramethylpiperidine 1-oxyl and study of its electrochemical propertiesJournal of Power Sources201527590981:CAS:528:DC%2BC2cXhvVOmsLzN10.1016/j.jpowsour.2014.11.014
LiuLSunLLiuJEnhancing the electrochemical properties of NiFe2O4 anode for lithium ion battery through a simple hydrogenation modificationInternational Journal of Hydrogen Energy2014392111258112661:CAS:528:DC%2BC2cXpsl2iur4%3D10.1016/j.ijhydene.2014.05.093
PerdewJ PBurkeKErnzerhofMGeneralized gradient approximation made simplePhysical Review Letters19967718386538681:CAS:528:DyaK28XmsVCgsbs%3D10.1103/PhysRevLett.77.3865
PanCLiuZLiWNiCo2O4@polyaniline nanotubes heterostructure anchored on carbon textiles with enhanced electrochemical performance for supercapacitor applicationThe Journal of Physical Chemistry C20191234225549255581:CAS:528:DC%2BC1MXhvFSju73K10.1021/acs.jpcc.9b06070
ZhaoYXuLYanJFacile preparation of NiFe2O4/MoS2 composite material with synergistic effect for high performance supercapacitorJournal of Alloys and Compounds20177266086171:CAS:528:DC%2BC2sXhtlSrtrzN10.1016/j.jallcom.2017.07.327
SubramanyaBBhatD KNovel one-pot green synthesis of graphene in aqueous medium under microwave irradiation using a regenerative catalyst and the study of its electrochemical propertiesNew Journal of Chemistry20153914204301:CAS:528:DC%2BC2cXhvVGhsr7F10.1039/C4NJ01359J
ZhangZLiLQingYManipulation of nanoplate structures in carbonized cellulose nanofibril aerogel for high-performance supercapacitorThe Journal of Physical Chemistry C20191233823374233811:CAS:528:DC%2BC1MXhs1ajtb3P10.1021/acs.jpcc.9b06058
CaoNZouXHuangYPreparation of NiFe2O4 architectures for affinity separation of histidine-tagged proteinsMaterials Letters20151441611641:CAS:528:DC%2BC2MXhsFaht74%3D10.1016/j.matlet.2015.01.039
SadiqM M JShenoyS UBhatD KNovel NRGO-CoWO4-Fe2O3 nanocomposite as an efficient catalyst for dye degradation and reduction of 4-nitrophenolMaterials Chemistry and Physics201820811212210.1016/j.matchemphys.2018.01.012
BandgarS BVadiyarM MLingY CMetal precursor dependent synthesis of NiFe2O4 thin films for high-performance flexible symmetric supercapacitorACS Applied Energy Materials2018126386481:CAS:528:DC%2BC1cXhtVKnsb4%3D10.1021/acsaem.7b00163
SethiMBantawalHShenoyU SEco-friendly synthesis of porous graphene and its utilization as high performance supercapacitor electrode materialJournal of Alloys and Compounds20197992562661:CAS:528:DC%2BC1MXhtFajsLzL10.1016/j.jallcom.2019.05.302
CaiY ZCaoW QZhangY LTailoring rGO-NiFe2O4 hybrids to tune transport of electrons and ions for supercapacitor electrodesJournal of Alloys and Compounds20198111520111:CAS:528:DC%2BC1MXhs12gtrbF10.1016/j.jallcom.2019.152011
BhojanePSharmaAPustyMSynthesis of ammonia-assisted porous nickel ferrite (NiFe2O4) nanostructures as an electrode material for supercapacitorsJournal of Nanoscience and Nanotechnology2017172138713921:CAS:528:DC%2BC2sXhtVCnsbjI10.1166/jnn.2017.12666
GiannozziPBaroniSBoniniNQUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materialsJournal of Physics: Condensed Matter20092139395502
SadiqM M JShenoyS UBhatD KNiWO4-ZnO-NRGO ternary nanocomposite as an efficient photocatalyst for degradation of methylene blue and reduction of 4-nitro phenolJournal of Physics and Chemistry of Solids20171091241331:CAS:528:DC%2BC2sXos1Cju74%3D10.1016/j.jpcs.2017.05.023
GaoHWangXWangGFacile construction of a MgCo2O4@NiMoO4/NF core-shell nanocomposite for highperformance asymmetric supercapacitorsJournal of Materials Chemistry C: Materials for Optical and Electronic Devices201974213267132781:CAS:528:DC%2BC1MXhvVOhs7nK10.1039/C9TC03932E
GaoXWangWBiJMorphology-controllable preparation of NiFe2O4 as high performance electrode material for supercapacitorElectrochimica Acta20192961811891:CAS:528:DC%2BC1cXit1WhsL7M10.1016/j.electacta.2018.11.054
BhatD KShenoyU SZn: a versatile resonant dopant for SnTe thermoelectricsMaterials Today Chemistry201911100158
ShenoyU SBhatD KElectronic structure engineering of tin telluride through co-doping of bismuth and indium for high performance thermoelectrics: a synergistic effect leading to a record high room temperature ZT in tin tellurideJournal of Materials Chemistry C: Materials for Optical and Electronic Devices2019716481748211:CAS:528:DC%2BC1MXlslelsbw%3D10.1039/C9TC01184F
SethiMBhatD KFacile solvothermal synthesis and high supercapacitor performance of NiCo2O4 nanorodsJournal of Alloys and Compounds2019781101310201:CAS:528:DC%2BC1cXisFCisbzE10.1016/j.jallcom.2018.12.143
HuaMXuLCuiFHexamethylenetetramine-assisted hydrothermal synthesis of octahedral nickel ferrite oxide nanocrystallines with excellent supercapacitive performanceJournal of Materials Science20185310762176361:CAS:528:DC%2BC1cXhvVKhtLk%3D10.1007/s10853-018-2052-7
AnwarSMuthuK SGaneshVA comparative study of electrochemical capacitive behavior of NiFe2O4 synthesized by different routesJournal of the Electrochemical Society20111588A976A9811:CAS:528:DC%2BC3MXotVyhu7o%3D10.1149/1.3601863
ZhangXZhuMOuyangTNiFe2O4 nanocubes anchored on reduced graphene oxide cryogel to achieve a 1.8 V flexible solid-state symmetric supercapacitorChemical Engineering Journal20193601711791:CAS:528:DC%2BC1cXitl2it7fO10.1016/j.cej.2018.11.206
KumarP RMitraSNickel ferrite as a stable, high capacity and high rate anode for Li-ion battery applicationsRSC Advances201334725058250641:CAS:528:DC%2BC3sXhslCrsL7M10.1039/c3ra44001j
ShenoyU SBhatD KBi and Zn co-doped SnTe thermoelectrics: interplay of resonance levels and heavy hole band dominance leading to enhanced performance and a record high room temperature ZTJournal of Materials Chemistry C: Materials for Optical and Electronic Devices202086203620421:CAS:528:DC%2BC1MXisVCitLjF10.1039/C9TC06490G
ZhangXZhangZSunSA facile one-step hydrothermal approach to synthesize hierarchical core-shell NiFe2O4@NiFe2O4 nanosheet arrays on Ni foam with large specific capacitance for supercapacitorsRSC Advances201882715222152281:CAS:528:DC%2BC1cXotFWgtb8%3D10.1039/C8RA02559B
AparnaM LGraceA NSathyanarayananPA comparative study on the supercapacitive behaviour of solvothermally prepared metal ferrite (MFe2O4, M = Fe, Co, Ni, Mn, Cu, Zn) nanoassembliesJournal of Alloys and Compounds20187453853951:CAS:528:DC%2BC1cXjtlyntbk%3D10.1016/j.jallcom.2018.02.127
PengHDaiXSunKA high-performance asymmetric supercapacitor designed with a three-dimensional interconnected porous carbon framework and sphere-like nickel nitride nanosheetsNew Journal of Chemistry2019433212623126291:CAS:528:DC%2BC1MXhtlGgur%2FM10.1039/C9NJ02509J
WuFWangXLiMA high capacity NiFe2O4/RGO nanocomposites as superior anode materials for sodium-ion batteriesCeramics International2016421516666166701:CAS:528:DC%2BC28Xht12nurrE10.1016/j.ceramint.2016.07.099
KumarNKumarAHuangG MFacile synthesis of mesoporous NiFe2O4/CNTs nanocomposite cathode material for high performance asymmetric pseudocapacitorsApplied Surface Science2018433110011121:CAS:528:DC%2BC2sXhslajurvJ10.1016/j.apsusc.2017.10.095
FooC YLimH NMahdiM A BHigh-performance supercapacitor based on three-dimensional hierarchical rGO/nickel cobaltite nanostructures as electrode materialsThe Journal of Physical Chemistry C20161203821202212101:CAS:528:DC%2BC28XhsV2ru7bP10.1021/acs.jpcc.6b05930
C Y Foo (499_CR33) 2016; 120
P Bhojane (499_CR13) 2017; 17
S B Bandgar (499_CR11) 2018; 1
P Giannozzi (499_CR18) 2009; 21
M Fu (499_CR37) 2018; 396
X Zhang (499_CR15) 2018; 8
P R Kumar (499_CR9) 2013; 3
B Subramanya (499_CR17) 2015; 275
M M J Sadiq (499_CR2) 2018; 208
S Dutta (499_CR4) 2019; 43
F Wu (499_CR24) 2016; 42
D K Bhat (499_CR29) 2019; 11
M M J Sadiq (499_CR21) 2017; 4
U S Shenoy (499_CR30) 2019; 7
499_CR1
N Cao (499_CR25) 2015; 144
H Gao (499_CR7) 2019; 7
Z Zhang (499_CR28) 2019; 123
M Sethi (499_CR16) 2019; 799
Y Zhao (499_CR22) 2017; 726
J P Perdew (499_CR19) 1996; 77
C Pan (499_CR6) 2019; 123
M Hua (499_CR12) 2018; 53
M Sethi (499_CR5) 2019; 781
N Kumar (499_CR32) 2018; 433
M M J Sadiq (499_CR23) 2017; 109
L Liu (499_CR26) 2014; 39
Y Z Cai (499_CR35) 2019; 811
M L Aparna (499_CR8) 2018; 745
X Gao (499_CR10) 2019; 296
B Subramanya (499_CR27) 2015; 39
S Anwar (499_CR14) 2011; 158
X Zhang (499_CR36) 2018; 8
V Sharma (499_CR38) 2019; 7
H Peng (499_CR3) 2019; 43
U S Shenoy (499_CR31) 2020; 8
U S Shenoy (499_CR20) 2018; 122
X Zhang (499_CR34) 2019; 360
References_xml – reference: GaoHWangXWangGFacile construction of a MgCo2O4@NiMoO4/NF core-shell nanocomposite for highperformance asymmetric supercapacitorsJournal of Materials Chemistry C: Materials for Optical and Electronic Devices201974213267132781:CAS:528:DC%2BC1MXhvVOhs7nK10.1039/C9TC03932E
– reference: BandgarS BVadiyarM MLingY CMetal precursor dependent synthesis of NiFe2O4 thin films for high-performance flexible symmetric supercapacitorACS Applied Energy Materials2018126386481:CAS:528:DC%2BC1cXhtVKnsb4%3D10.1021/acsaem.7b00163
– reference: Sudhakar Y N, Selvakumar M, Bhat D K. Biopolymer Electrolytes: Fundamentals and Applications in Energy Storage. Elsevier, 2018
– reference: SubramanyaBBhatD KNovel eco-friendly synthesis of graphene directly from graphite using 2,2,6,6-tetramethylpiperidine 1-oxyl and study of its electrochemical propertiesJournal of Power Sources201527590981:CAS:528:DC%2BC2cXhvVOmsLzN10.1016/j.jpowsour.2014.11.014
– reference: PanCLiuZLiWNiCo2O4@polyaniline nanotubes heterostructure anchored on carbon textiles with enhanced electrochemical performance for supercapacitor applicationThe Journal of Physical Chemistry C20191234225549255581:CAS:528:DC%2BC1MXhvFSju73K10.1021/acs.jpcc.9b06070
– reference: ShenoyU SBhatD KBi and Zn co-doped SnTe thermoelectrics: interplay of resonance levels and heavy hole band dominance leading to enhanced performance and a record high room temperature ZTJournal of Materials Chemistry C: Materials for Optical and Electronic Devices202086203620421:CAS:528:DC%2BC1MXisVCitLjF10.1039/C9TC06490G
– reference: SethiMBhatD KFacile solvothermal synthesis and high supercapacitor performance of NiCo2O4 nanorodsJournal of Alloys and Compounds2019781101310201:CAS:528:DC%2BC1cXisFCisbzE10.1016/j.jallcom.2018.12.143
– reference: ZhangXZhuMOuyangTNiFe2O4 nanocubes anchored on reduced graphene oxide cryogel to achieve a 1.8 V flexible solid-state symmetric supercapacitorChemical Engineering Journal20193601711791:CAS:528:DC%2BC1cXitl2it7fO10.1016/j.cej.2018.11.206
– reference: FuMChenWZhuXOne-step preparation of one dimensional nickel ferrites/graphene composites for supercapacitor electrode with excellent cycling stabilityJournal of Power Sources201839641481:CAS:528:DC%2BC1cXhtVyktbrP10.1016/j.jpowsour.2018.06.019
– reference: BhatD KShenoyU SZn: a versatile resonant dopant for SnTe thermoelectricsMaterials Today Chemistry201911100158
– reference: GiannozziPBaroniSBoniniNQUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materialsJournal of Physics: Condensed Matter20092139395502
– reference: ZhaoYXuLYanJFacile preparation of NiFe2O4/MoS2 composite material with synergistic effect for high performance supercapacitorJournal of Alloys and Compounds20177266086171:CAS:528:DC%2BC2sXhtlSrtrzN10.1016/j.jallcom.2017.07.327
– reference: KumarNKumarAHuangG MFacile synthesis of mesoporous NiFe2O4/CNTs nanocomposite cathode material for high performance asymmetric pseudocapacitorsApplied Surface Science2018433110011121:CAS:528:DC%2BC2sXhslajurvJ10.1016/j.apsusc.2017.10.095
– reference: DuttaSPalSDeSMixed solvent exfoliated transition metal oxides nanosheets based flexible solid state supercapacitor devices endowed with high energy densityNew Journal of Chemistry2019433112385123951:CAS:528:DC%2BC1MXhtlKksbbE10.1039/C9NJ03233A
– reference: PengHDaiXSunKA high-performance asymmetric supercapacitor designed with a three-dimensional interconnected porous carbon framework and sphere-like nickel nitride nanosheetsNew Journal of Chemistry2019433212623126291:CAS:528:DC%2BC1MXhtlGgur%2FM10.1039/C9NJ02509J
– reference: GaoXWangWBiJMorphology-controllable preparation of NiFe2O4 as high performance electrode material for supercapacitorElectrochimica Acta20192961811891:CAS:528:DC%2BC1cXit1WhsL7M10.1016/j.electacta.2018.11.054
– reference: ZhangZLiLQingYManipulation of nanoplate structures in carbonized cellulose nanofibril aerogel for high-performance supercapacitorThe Journal of Physical Chemistry C20191233823374233811:CAS:528:DC%2BC1MXhs1ajtb3P10.1021/acs.jpcc.9b06058
– reference: SethiMBantawalHShenoyU SEco-friendly synthesis of porous graphene and its utilization as high performance supercapacitor electrode materialJournal of Alloys and Compounds20197992562661:CAS:528:DC%2BC1MXhtFajsLzL10.1016/j.jallcom.2019.05.302
– reference: HuaMXuLCuiFHexamethylenetetramine-assisted hydrothermal synthesis of octahedral nickel ferrite oxide nanocrystallines with excellent supercapacitive performanceJournal of Materials Science20185310762176361:CAS:528:DC%2BC1cXhvVKhtLk%3D10.1007/s10853-018-2052-7
– reference: SubramanyaBBhatD KNovel one-pot green synthesis of graphene in aqueous medium under microwave irradiation using a regenerative catalyst and the study of its electrochemical propertiesNew Journal of Chemistry20153914204301:CAS:528:DC%2BC2cXhvVGhsr7F10.1039/C4NJ01359J
– reference: SadiqM M JShenoyS UBhatD KNovel NRGO-CoWO4-Fe2O3 nanocomposite as an efficient catalyst for dye degradation and reduction of 4-nitrophenolMaterials Chemistry and Physics201820811212210.1016/j.matchemphys.2018.01.012
– reference: CaiY ZCaoW QZhangY LTailoring rGO-NiFe2O4 hybrids to tune transport of electrons and ions for supercapacitor electrodesJournal of Alloys and Compounds20198111520111:CAS:528:DC%2BC1MXhs12gtrbF10.1016/j.jallcom.2019.152011
– reference: PerdewJ PBurkeKErnzerhofMGeneralized gradient approximation made simplePhysical Review Letters19967718386538681:CAS:528:DyaK28XmsVCgsbs%3D10.1103/PhysRevLett.77.3865
– reference: SadiqM M JShenoyS UBhatD KNiWO4-ZnO-NRGO ternary nanocomposite as an efficient photocatalyst for degradation of methylene blue and reduction of 4-nitro phenolJournal of Physics and Chemistry of Solids20171091241331:CAS:528:DC%2BC2sXos1Cju74%3D10.1016/j.jpcs.2017.05.023
– reference: ShenoyU SBantawalHBhatD KBand engineering of SrTiO3: Effect of synthetic technique and site occupancy of doped rhodiumThe Journal of Physical Chemistry C20181224827567275741:CAS:528:DC%2BC1cXit1artbzO10.1021/acs.jpcc.8b10083
– reference: ZhangXZhangZSunSA facile one-step hydrothermal approach to synthesize hierarchical core-shell NiFe2O4@NiFe2O4 nanosheet arrays on Ni foam with large specific capacitance for supercapacitorsRSC Advances201882715222152281:CAS:528:DC%2BC1cXotFWgtb8%3D10.1039/C8RA02559B
– reference: CaoNZouXHuangYPreparation of NiFe2O4 architectures for affinity separation of histidine-tagged proteinsMaterials Letters20151441611641:CAS:528:DC%2BC2MXhsFaht74%3D10.1016/j.matlet.2015.01.039
– reference: WuFWangXLiMA high capacity NiFe2O4/RGO nanocomposites as superior anode materials for sodium-ion batteriesCeramics International2016421516666166701:CAS:528:DC%2BC28Xht12nurrE10.1016/j.ceramint.2016.07.099
– reference: AparnaM LGraceA NSathyanarayananPA comparative study on the supercapacitive behaviour of solvothermally prepared metal ferrite (MFe2O4, M = Fe, Co, Ni, Mn, Cu, Zn) nanoassembliesJournal of Alloys and Compounds20187453853951:CAS:528:DC%2BC1cXjtlyntbk%3D10.1016/j.jallcom.2018.02.127
– reference: FooC YLimH NMahdiM A BHigh-performance supercapacitor based on three-dimensional hierarchical rGO/nickel cobaltite nanostructures as electrode materialsThe Journal of Physical Chemistry C20161203821202212101:CAS:528:DC%2BC28XhsV2ru7bP10.1021/acs.jpcc.6b05930
– reference: KumarP RMitraSNickel ferrite as a stable, high capacity and high rate anode for Li-ion battery applicationsRSC Advances201334725058250641:CAS:528:DC%2BC3sXhslCrsL7M10.1039/c3ra44001j
– reference: SadiqM M JShenoyU SBhatD KEnhanced photocatalytic performance of N-doped RGO-FeWO4/Fe3O4 ternary nanocomposite in environmental applicationsMaterials Today Chemistry2017413314110.1016/j.mtchem.2017.04.003
– reference: ShenoyU SBhatD KElectronic structure engineering of tin telluride through co-doping of bismuth and indium for high performance thermoelectrics: a synergistic effect leading to a record high room temperature ZT in tin tellurideJournal of Materials Chemistry C: Materials for Optical and Electronic Devices2019716481748211:CAS:528:DC%2BC1MXlslelsbw%3D10.1039/C9TC01184F
– reference: LiuLSunLLiuJEnhancing the electrochemical properties of NiFe2O4 anode for lithium ion battery through a simple hydrogenation modificationInternational Journal of Hydrogen Energy2014392111258112661:CAS:528:DC%2BC2cXpsl2iur4%3D10.1016/j.ijhydene.2014.05.093
– reference: SharmaVBiswasSSundaramBElectrode materials with highest surface area and specific capacitance cannot be the only deciding factor for applicability in energy storage devices: inference of combined life cycle assessment and electrochemical studiesACS Sustainable Chemistry & Engineering201975538553921:CAS:528:DC%2BC1MXhvFejs74%3D10.1021/acssuschemeng.8b06413
– reference: AnwarSMuthuK SGaneshVA comparative study of electrochemical capacitive behavior of NiFe2O4 synthesized by different routesJournal of the Electrochemical Society20111588A976A9811:CAS:528:DC%2BC3MXotVyhu7o%3D10.1149/1.3601863
– reference: BhojanePSharmaAPustyMSynthesis of ammonia-assisted porous nickel ferrite (NiFe2O4) nanostructures as an electrode material for supercapacitorsJournal of Nanoscience and Nanotechnology2017172138713921:CAS:528:DC%2BC2sXhtVCnsbjI10.1166/jnn.2017.12666
– volume: 43
  start-page: 12623
  issue: 32
  year: 2019
  ident: 499_CR3
  publication-title: New Journal of Chemistry
  doi: 10.1039/C9NJ02509J
– volume: 296
  start-page: 181
  year: 2019
  ident: 499_CR10
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2018.11.054
– volume: 8
  start-page: 15222
  issue: 27
  year: 2018
  ident: 499_CR15
  publication-title: RSC Advances
  doi: 10.1039/C8RA02559B
– volume: 123
  start-page: 23374
  issue: 38
  year: 2019
  ident: 499_CR28
  publication-title: The Journal of Physical Chemistry C
  doi: 10.1021/acs.jpcc.9b06058
– volume: 811
  start-page: 152011
  year: 2019
  ident: 499_CR35
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2019.152011
– volume: 396
  start-page: 41
  year: 2018
  ident: 499_CR37
  publication-title: Journal of Power Sources
  doi: 10.1016/j.jpowsour.2018.06.019
– volume: 120
  start-page: 21202
  issue: 38
  year: 2016
  ident: 499_CR33
  publication-title: The Journal of Physical Chemistry C
  doi: 10.1021/acs.jpcc.6b05930
– volume: 7
  start-page: 13267
  issue: 42
  year: 2019
  ident: 499_CR7
  publication-title: Journal of Materials Chemistry C: Materials for Optical and Electronic Devices
  doi: 10.1039/C9TC03932E
– volume: 43
  start-page: 12385
  issue: 31
  year: 2019
  ident: 499_CR4
  publication-title: New Journal of Chemistry
  doi: 10.1039/C9NJ03233A
– volume: 726
  start-page: 608
  year: 2017
  ident: 499_CR22
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2017.07.327
– volume: 109
  start-page: 124
  year: 2017
  ident: 499_CR23
  publication-title: Journal of Physics and Chemistry of Solids
  doi: 10.1016/j.jpcs.2017.05.023
– volume: 123
  start-page: 25549
  issue: 42
  year: 2019
  ident: 499_CR6
  publication-title: The Journal of Physical Chemistry C
  doi: 10.1021/acs.jpcc.9b06070
– volume: 745
  start-page: 385
  year: 2018
  ident: 499_CR8
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2018.02.127
– volume: 360
  start-page: 171
  year: 2019
  ident: 499_CR34
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2018.11.206
– volume: 208
  start-page: 112
  year: 2018
  ident: 499_CR2
  publication-title: Materials Chemistry and Physics
  doi: 10.1016/j.matchemphys.2018.01.012
– volume: 39
  start-page: 420
  issue: 1
  year: 2015
  ident: 499_CR27
  publication-title: New Journal of Chemistry
  doi: 10.1039/C4NJ01359J
– ident: 499_CR1
  doi: 10.1016/B978-0-12-813447-4.00005-4
– volume: 3
  start-page: 25058
  issue: 47
  year: 2013
  ident: 499_CR9
  publication-title: RSC Advances
  doi: 10.1039/c3ra44001j
– volume: 21
  start-page: 395502
  issue: 39
  year: 2009
  ident: 499_CR18
  publication-title: Journal of Physics: Condensed Matter
– volume: 781
  start-page: 1013
  year: 2019
  ident: 499_CR5
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2018.12.143
– volume: 275
  start-page: 90
  year: 2015
  ident: 499_CR17
  publication-title: Journal of Power Sources
  doi: 10.1016/j.jpowsour.2014.11.014
– volume: 122
  start-page: 27567
  issue: 48
  year: 2018
  ident: 499_CR20
  publication-title: The Journal of Physical Chemistry C
  doi: 10.1021/acs.jpcc.8b10083
– volume: 1
  start-page: 638
  issue: 2
  year: 2018
  ident: 499_CR11
  publication-title: ACS Applied Energy Materials
  doi: 10.1021/acsaem.7b00163
– volume: 7
  start-page: 5385
  issue: 5
  year: 2019
  ident: 499_CR38
  publication-title: ACS Sustainable Chemistry & Engineering
  doi: 10.1021/acssuschemeng.8b06413
– volume: 4
  start-page: 133
  year: 2017
  ident: 499_CR21
  publication-title: Materials Today Chemistry
  doi: 10.1016/j.mtchem.2017.04.003
– volume: 39
  start-page: 11258
  issue: 21
  year: 2014
  ident: 499_CR26
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.05.093
– volume: 42
  start-page: 16666
  issue: 15
  year: 2016
  ident: 499_CR24
  publication-title: Ceramics International
  doi: 10.1016/j.ceramint.2016.07.099
– volume: 158
  start-page: A976
  issue: 8
  year: 2011
  ident: 499_CR14
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/1.3601863
– volume: 7
  start-page: 4817
  issue: 16
  year: 2019
  ident: 499_CR30
  publication-title: Journal of Materials Chemistry C: Materials for Optical and Electronic Devices
  doi: 10.1039/C9TC01184F
– volume: 144
  start-page: 161
  year: 2015
  ident: 499_CR25
  publication-title: Materials Letters
  doi: 10.1016/j.matlet.2015.01.039
– volume: 77
  start-page: 3865
  issue: 18
  year: 1996
  ident: 499_CR19
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.77.3865
– volume: 799
  start-page: 256
  year: 2019
  ident: 499_CR16
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2019.05.302
– volume: 11
  start-page: 100158
  year: 2019
  ident: 499_CR29
  publication-title: Materials Today Chemistry
– volume: 8
  start-page: 2036
  issue: 6
  year: 2020
  ident: 499_CR31
  publication-title: Journal of Materials Chemistry C: Materials for Optical and Electronic Devices
  doi: 10.1039/C9TC06490G
– volume: 17
  start-page: 1387
  issue: 2
  year: 2017
  ident: 499_CR13
  publication-title: Journal of Nanoscience and Nanotechnology
  doi: 10.1166/jnn.2017.12666
– volume: 8
  start-page: 15222
  issue: 27
  year: 2018
  ident: 499_CR36
  publication-title: RSC Advances
  doi: 10.1039/C8RA02559B
– volume: 53
  start-page: 7621
  issue: 10
  year: 2018
  ident: 499_CR12
  publication-title: Journal of Materials Science
  doi: 10.1007/s10853-018-2052-7
– volume: 433
  start-page: 1100
  year: 2018
  ident: 499_CR32
  publication-title: Applied Surface Science
  doi: 10.1016/j.apsusc.2017.10.095
SSID ssj0000515941
Score 2.4220178
Snippet We report a green and facile approach for the synthesis of NiFe 2 O 4 (NF) nanoparticles with good crystallinity. The prepared materials are studied by various...
We report a green and facile approach for the synthesis of NiFe2O4 (NF) nanoparticles with good crystallinity. The prepared materials are studied by various...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 120
SubjectTerms Capacitance
Chemistry and Materials Science
Crystal structure
Crystallinity
Current density
Electrochemical analysis
Electrodes
Materials Science
Morphology
Nanoparticles
Nickel ferrites
Research Article
Solid phases
Supercapacitors
Synthesis
Title Facile solvothermal synthesis of NiFe2O4 nanoparticles for high-performance supercapacitor applications
URI https://link.springer.com/article/10.1007/s11706-020-0499-3
https://www.proquest.com/docview/2408551301
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXWBAPEWhVB6YQJbysJ10rFBDBaIsVCpT5FdQJUirpkXi33N2k6YgQGJLFNvD-S73nc_3HUKXhjImQgORqjaC0Ez4REipiR8rpcH_hVzaA_2HIR-M6N2Yjcs67qK67V6lJN2fui52s0wvxIY7FqaTcBs1mQ3dQYlHQW99sGKblnRdx8rAc9XHbFxlM39a5as_qkHmt7yoczfJPtorcSLurTb2AG2Z_BDtbrAHHqGXRCiwaQza8-7qqN5gQvGRw2MxKfA0w8NJYoJHinORQ2xcXoHDAFOxZSkms7poABdLeFPgORWY-Bxv5rWP0SjpP90MSNk3gajQ5wsSWRwmNVim52keyi6gFs0NAJHIl4FWGc0izqUEbADWrj2IaESsPMMEp1oDJjxBjXyam1OEqYkFi12XdQAqgRZdISEgjGQmhaEZayGvkl6qSlJx29viNa3pkK3AUxB4agWehi10tZ4yWzFq_DW4XW1JWhpXkTpWNgbO12-h62qb6s-_Lnb2r9HnaCdwamJPXNqosZgvzQUAkIXsoGbv9vm-33GK9wmE0NOA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIpCAQ9MIEt52Ek6VoiqQFuWVupm-RVUCdKqaZH495zdpCkIkNgSxfZw58t95_N9h9C1oYyJ0ECkqo0gNBU-EVJq4idKafB_YSTtgX6vH3WG9HHERkUdd17edi9Tku5PXRW7WaYXYsMdC9NJuIm2AAsk9h7XMGitDlZs05Km61gZeK76mI3KbOZPq3z1RxXI_JYXde6mvY_2CpyIW0vFHqANkx2i3TX2wCP00hYKbBrD7nl3dVRvMCH_yOAxH-d4kuL-uG2CZ4ozkUFsXFyBwwBTsWUpJtOqaADnC3hT4DkVmPgMr-e1j9GwfT-465CibwJRoR_NSWxxmNRgmZ6no1A2AbXoyAAQiX0ZaJXSNI4iKQEbgLVrDyIakSjPMBFRrQETnqBaNsnMKcLUJIIlrss6AJVAi6aQEBDGMpXC0JTVkVdKj6uCVNz2tnjlFR2yFTgHgXMrcB7W0c1qynTJqPHX4EapEl4YV84dKxsD5-vX0W2ppurzr4ud_Wv0FdruDHpd3n3oP52jncBtGXv60kC1-WxhLgCMzOWl23yf_dLU3w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSAgOiKcYDMiBEyhaH2naHSeg4jk4MGm3Kq-iSdBNa4fEv8fJ2nUgQOLWqkkOjl1_juPPCJ1qGgTc1xCpKs0JTblLuBCKuJGUCvyfz4Q50H_oses-vR0Eg7LPaV7ddq9SkrOaBsPSlBXtsUrbdeGbYX0hJvQxkJ34y2gF_sauUeu-150fspgGJh3bvdJzbCVyMKgymz-t8tU31YDzW47Uup54E22UmBF3Z5u8hZZ0to3WF5gEd9BLzCXYNwZNerc1VW8wIf_I4DEf5niU4t4w1t4jxRnPIE4ur8NhgKzYMBaTcV1AgPMpvEnwohLMfYIXc9y7qB9fPV9ck7KHApG-ywoSGkwmFFip4yjmiw4gGMU0gJLQFZ6SKU1DxoQAnACWrxyIbngkHR1wRpUCfLiHGtko0_sIUx3xILId1wG0eIp3uIDgMBSp4JqmQRM5lfQSWRKMmz4Xr0lNjWwEnoDAEyPwxG-is_mU8Yxd46_BrWpLktLQ8sQytAXgiN0mOq-2qf7862IH_xp9glafLuPk_qZ3d4jWPKsx5iCmhRrFZKqPAJcU4tjq3id3ldkb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+solvothermal+synthesis+of+NiFe2O4+nanoparticles+for+high-performance+supercapacitor+applications&rft.jtitle=Frontiers+of+materials+science&rft.au=Sethi+Meenaketan&rft.au=Sandhya%2C+Shenoy+U&rft.au=Selvakumar%2C+Muthu&rft.au=Krishna%2C+Bhat+D&rft.date=2020-06-01&rft.pub=Springer+Nature+B.V&rft.issn=2095-025X&rft.eissn=2095-0268&rft.volume=14&rft.issue=2&rft.spage=120&rft.epage=132&rft_id=info:doi/10.1007%2Fs11706-020-0499-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-025X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-025X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-025X&client=summon