Theoretical Study on Methylated Resveratrol Analogues towards the Antioxidant Activity and Mechanisms: Understanding the Structure–Activity Relationship

Theoretically, the antioxidant properties of substances are usually evaluated by three working mechanisms, including H-atom transfer (HAT), single-electron transfer-proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET). In this paper, the antioxidant activity of resveratrol...

Full description

Saved in:
Bibliographic Details
Published inRussian Journal of Physical Chemistry A Vol. 97; no. 6; pp. 1121 - 1127
Main Author Pei, Ling
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0036-0244
1531-863X
DOI10.1134/S0036024423060171

Cover

Loading…
Abstract Theoretically, the antioxidant properties of substances are usually evaluated by three working mechanisms, including H-atom transfer (HAT), single-electron transfer-proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET). In this paper, the antioxidant activity of resveratrol and methyl derivatives (1-4,4-methylresveratrol) in the gas phase and solvents were investigated by using density functional theory (DFT). Results show that 4'-OH is still the most crutical active site of resveratrol and its derivatives. The increased number of methyl groups can enhance the antioxidant activity of resveratrol. It was also found that in the gas phase and non-polar solvents, HAT was the dominant reaction mechanism. In polar solvents, SPLET is the dominant reaction mechanism.
AbstractList Theoretically, the antioxidant properties of substances are usually evaluated by three working mechanisms, including H-atom transfer (HAT), single-electron transfer-proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET). In this paper, the antioxidant activity of resveratrol and methyl derivatives (1-4,4-methylresveratrol) in the gas phase and solvents were investigated by using density functional theory (DFT). Results show that 4'-OH is still the most crutical active site of resveratrol and its derivatives. The increased number of methyl groups can enhance the antioxidant activity of resveratrol. It was also found that in the gas phase and non-polar solvents, HAT was the dominant reaction mechanism. In polar solvents, SPLET is the dominant reaction mechanism.
Author Pei, Ling
Author_xml – sequence: 1
  givenname: Ling
  surname: Pei
  fullname: Pei, Ling
  email: peiling1201@163.com
  organization: Department of Chemical Engineering and Safety, Binzhou University
BookMark eNp9kctKLDEQhoMoOF4ewF3AdR-TTqYv7gbxqKAIjoK7JiY105E2GZNqdXa-gzsf7zzJyTiioOiiKKj6v7pukFXnHRCyw9kfzoXcGzMmCpZLmQtWMF7yFTLgQ8GzqhDXq2SwSGeL_DrZiPGWMSkllwPyetmCD4BWq46OsTdz6h09A2znnUIw9ALiAwSFwXd05FTnpz1Eiv5RBZN8CymK1j9ZoxzSkUb7YHFOlTOpim6Vs_Eu7tMrZyBETGHrpm_YGEOvsQ_w7_nlA7uA1NV6F1s72yJrE9VF2H73m-Tq7-HlwXF2en50cjA6zbTgBWaF4TecKSOGUIlcClWXi0tAzUAC07kQFS8mRg9Lw3Q9qUxdCTFUsmb5jSiSbZLdZd1Z8PdpOWxufR_SqrHJK8HrumSsSqpyqdLBxxhg0miLb7NiULZrOGsWj2i-PSKR_As5C_ZOhfmvTL5kYtK6KYTPmX6G_gOPgp71
CitedBy_id crossref_primary_10_1016_j_molliq_2025_127196
Cites_doi 10.1002/qua.24060
10.1021/tx7003008
10.1039/b600025h
10.1016/j.foodchem.2014.08.106
10.1016/j.comptc.2014.03.016
10.1021/j100076a029
10.1016/j.foodchem.2012.05.043
10.1016/j.foodres.2012.05.014
10.1002/qua.24046
10.1351/pac199971081609
10.1007/978-3-642-85135-3
10.1016/j.dyepig.2013.12.015
10.1016/j.theochem.2010.04.002
10.1016/j.theochem.2010.04.005
10.1016/j.biocel.2009.08.005
10.1016/S0960-894X(03)00283-X
10.1016/j.ejmech.2009.11.044
10.1021/ja002455u
10.1021/jo0497860
10.1016/j.comptc.2011.03.006
10.3390/nu9111188
10.1016/j.comptc.2011.12.020
10.1021/jo3002134
10.1016/j.biochi.2011.11.001
10.1016/j.foodchem.2013.11.064
10.1016/j.bcp.2004.12.001
10.1021/jf048794e
10.1021/jf0108765
10.1016/j.freeradbiomed.2012.03.014
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2023. ISSN 0036-0244, Russian Journal of Physical Chemistry A, 2023, Vol. 97, No. 6, pp. 1121–1127. © Pleiades Publishing, Ltd., 2023.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2023. ISSN 0036-0244, Russian Journal of Physical Chemistry A, 2023, Vol. 97, No. 6, pp. 1121–1127. © Pleiades Publishing, Ltd., 2023.
DBID AAYXX
CITATION
DOI 10.1134/S0036024423060171
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1531-863X
EndPage 1127
ExternalDocumentID 10_1134_S0036024423060171
GroupedDBID -58
-5G
-BR
-EM
-Y2
-~C
.VR
06C
06D
0R~
0VY
29P
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
408
40D
40E
5VS
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HG6
HLICF
HMJXF
HRMNR
HVGLF
H~9
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9J
P9N
PF0
PT4
QOR
QOS
R89
R9I
ROL
RSV
S16
S1Z
S3B
SAP
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TSG
TUC
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z5O
Z7V
Z7X
Z7Y
Z7Z
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
ID FETCH-LOGICAL-c316t-6d1b10ad35e83243a973602e90e4e0c233816fdc57d0c9f8d98335a4902b362b3
IEDL.DBID AGYKE
ISSN 0036-0244
IngestDate Fri Jul 25 10:55:29 EDT 2025
Thu Apr 24 22:53:16 EDT 2025
Tue Jul 01 01:09:42 EDT 2025
Fri Feb 21 02:42:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords SPLET
HAT
SET-PT
resveratrol analogues
antioxidant activity and mechanism
density functional theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-6d1b10ad35e83243a973602e90e4e0c233816fdc57d0c9f8d98335a4902b362b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2831997008
PQPubID 2044176
PageCount 7
ParticipantIDs proquest_journals_2831997008
crossref_citationtrail_10_1134_S0036024423060171
crossref_primary_10_1134_S0036024423060171
springer_journals_10_1134_S0036024423060171
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Heidelberg
PublicationSubtitle Focus on Chemistry
PublicationTitle Russian Journal of Physical Chemistry A
PublicationTitleAbbrev Russ. J. Phys. Chem
PublicationYear 2023
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References JeffreyG. A.SaengerW.Hydrogen Bonding in Biological Structures1991BerlinSpringer10.1007/978-3-642-85135-3
ParkerV. D.J. Am. Chem. Soc.19921141458
MikulskiD.GorniakR.MolskiM.Eur. J. Med. Chem.20104510151:CAS:528:DC%2BC3cXhvF2rurc%3D10.1016/j.ejmech.2009.11.04420004046
NawazW.ZhouZ.DengS.Nutrients20179118810.3390/nu9111188291093745707660
NodaY.KaneyukiT.MoriA.PackerL.J. Agric. Food. Chem.2002501661:CAS:528:DC%2BD3MXoslWktbs%3D10.1021/jf010876511754562
IugaC.Alvarez-IdaboyJ. R.RussoN.J. Org. Chem.20127738681:CAS:528:DC%2BC38XltVWksbg%3D10.1021/jo300213422475027
CaoH.PanX.LiC.Bioorg. Med. Chem. Lett.20031318691:CAS:528:DC%2BD3sXjs1ers7Y%3D10.1016/S0960-894X(03)00283-X12749887
LiX. Z.WeiX.ZhangC. J.Food Chem.201213512391:CAS:528:DC%2BC38XhtlSmtLbF10.1016/j.foodchem.2012.05.04322953849
RimarčíkJ.LukešV.KleinE.IlčinM.J. Mol. Struct.: THEOCHEM20109522510.1016/j.theochem.2010.04.002
XueY.ZhengY.AnL.Comput. Theor. Chem.2012982741:CAS:528:DC%2BC38XhsFGlurk%3D10.1016/j.comptc.2011.12.020
XueY.ZhengY.AnL.Food Chem.20141511981:CAS:528:DC%2BC2cXpvFSisg%3D%3D10.1016/j.foodchem.2013.11.06424423521
AmoratiR.LucariniM.MugnainiV.J. Org. Chem.20046971011:CAS:528:DC%2BD2cXns1Wju7w%3D10.1021/jo049786015471458
BartmessJ. E.J. Phys. Chem. US19949864201:CAS:528:DyaK2cXktF2nu7s%3D10.1021/j100076a029
MuriasM.JagerW.HandlerN.Biochem. Pharmacol.2005699031:CAS:528:DC%2BD2MXhvVCiu70%3D10.1016/j.bcp.2004.12.00115748702
FrombaumM.Le ClancheS.Bonnefont-RousselotD.BorderieD.Biochimie2012942691:CAS:528:DC%2BC38XovFCktg%3D%3D10.1016/j.biochi.2011.11.00122133615
CarusoF.TanskiJ.Villegas-EstradaA.RossiM.J. Agric. Food. Chem.20045272791:CAS:528:DC%2BD2cXptFCgsro%3D10.1021/jf048794e15563207
SavioM.CoppaT.BianchiL.Int. J. Biochem. Cell Biol.20094124931:CAS:528:DC%2BD1MXhtlGhsrrP10.1016/j.biocel.2009.08.00519679195
LuL.QiangM.LiF.Dyes Pigm.20141031751:CAS:528:DC%2BC2cXhtlKjurg%3D10.1016/j.dyepig.2013.12.015
WangG.XueY.AnL.Food Chem.2015171891:CAS:528:DC%2BC2cXhsV2mtLjJ10.1016/j.foodchem.2014.08.10625308647
NenadisN.TsimidouM. Z.Food Res. Int.2012485381:CAS:528:DC%2BC38XhtlOnsLvE10.1016/j.foodres.2012.05.014
Pérez-GonzálezA.GalanoA.Int. J. Quantum Chem.2012112344110.1002/qua.24046
ZhangH. Y.JiH. F.New J. Chem.2006305031:CAS:528:DC%2BD28XjtFSrtLs%3D10.1039/b600025h
LiM.LiuW.PengC.Int. J. Quantum Chem.20131139661:CAS:528:DC%2BC38XjvVajtrs%3D10.1002/qua.24060
WrightJ. S.JohnsonE. R.di LabioG. A.J. Am. Chem. Soc.200112311731:CAS:528:DC%2BD3MXltlGluw%3D%3D10.1021/ja002455u11456671
MikulskiD.SzelągM.MolskiM.GórniakR.J. Mol. Struct.: THEOCHEM2010951371:CAS:528:DC%2BC3cXmtlKlt7g%3D10.1016/j.theochem.2010.04.005
FukuharaK.NakanishiI.MatsuokaA.Chem. Res. Toxicol.2008212821:CAS:528:DC%2BD1cXisV2ntQ%3D%3D10.1021/tx700300818177016
BenayahoumA.Amira-GuebailiaH.HouacheO.Comput. Theor. Chem.2014103711:CAS:528:DC%2BC2cXotF2htLw%3D10.1016/j.comptc.2014.03.016
BizarroM. M.Costa CabralB. J.Borges dos SantosR. M.Martinho SimoěsJ. A.Pure Appl. Chem.19997112491:CAS:528:DyaK1MXnsVajtLk%3D10.1351/pac199971081609
Mikula-PietrasikJ.KuczmarskaA.RubisB.Free Rad. Biol. Med.20125222341:CAS:528:DC%2BC38XosFCgs7g%3D10.1016/j.freeradbiomed.2012.03.01422579575
FifenJ. J.NsangouM.DhaouadiZ.Comput. Theor. Chem.20119662321:CAS:528:DC%2BC3MXlvVWlsLo%3D10.1016/j.comptc.2011.03.006
W. Nawaz (5162_CR11) 2017; 9
G. A. Jeffrey (5162_CR24) 1991
Y. Noda (5162_CR1) 2002; 50
H. Y. Zhang (5162_CR30) 2006; 30
D. Mikulski (5162_CR6) 2010; 951
A. Pérez-González (5162_CR27) 2012; 112
M. Savio (5162_CR13) 2009; 41
M. Murias (5162_CR12) 2005; 69
N. Nenadis (5162_CR16) 2012; 48
K. Fukuhara (5162_CR15) 2008; 21
C. Iuga (5162_CR8) 2012; 77
H. Cao (5162_CR4) 2003; 13
Y. Xue (5162_CR26) 2012; 982
M. Frombaum (5162_CR3) 2012; 94
A. Benayahoum (5162_CR10) 2014; 1037
X. Z. Li (5162_CR14) 2012; 135
D. Mikulski (5162_CR9) 2010; 45
G. Wang (5162_CR18) 2015; 171
Y. Xue (5162_CR19) 2014; 151
J. E. Bartmess (5162_CR21) 1994; 98
J. Rimarčík (5162_CR22) 2010; 952
V. D. Parker (5162_CR20) 1992; 114
M. Li (5162_CR28) 2013; 113
F. Caruso (5162_CR2) 2004; 52
J. J. Fifen (5162_CR29) 2011; 966
L. Lu (5162_CR17) 2014; 103
R. Amorati (5162_CR7) 2004; 69
M. M. Bizarro (5162_CR23) 1999; 71
J. S. Wright (5162_CR25) 2001; 123
J. Mikula-Pietrasik (5162_CR5) 2012; 52
References_xml – reference: XueY.ZhengY.AnL.Comput. Theor. Chem.2012982741:CAS:528:DC%2BC38XhsFGlurk%3D10.1016/j.comptc.2011.12.020
– reference: FrombaumM.Le ClancheS.Bonnefont-RousselotD.BorderieD.Biochimie2012942691:CAS:528:DC%2BC38XovFCktg%3D%3D10.1016/j.biochi.2011.11.00122133615
– reference: XueY.ZhengY.AnL.Food Chem.20141511981:CAS:528:DC%2BC2cXpvFSisg%3D%3D10.1016/j.foodchem.2013.11.06424423521
– reference: BenayahoumA.Amira-GuebailiaH.HouacheO.Comput. Theor. Chem.2014103711:CAS:528:DC%2BC2cXotF2htLw%3D10.1016/j.comptc.2014.03.016
– reference: NawazW.ZhouZ.DengS.Nutrients20179118810.3390/nu9111188291093745707660
– reference: CaoH.PanX.LiC.Bioorg. Med. Chem. Lett.20031318691:CAS:528:DC%2BD3sXjs1ers7Y%3D10.1016/S0960-894X(03)00283-X12749887
– reference: WrightJ. S.JohnsonE. R.di LabioG. A.J. Am. Chem. Soc.200112311731:CAS:528:DC%2BD3MXltlGluw%3D%3D10.1021/ja002455u11456671
– reference: NodaY.KaneyukiT.MoriA.PackerL.J. Agric. Food. Chem.2002501661:CAS:528:DC%2BD3MXoslWktbs%3D10.1021/jf010876511754562
– reference: MikulskiD.SzelągM.MolskiM.GórniakR.J. Mol. Struct.: THEOCHEM2010951371:CAS:528:DC%2BC3cXmtlKlt7g%3D10.1016/j.theochem.2010.04.005
– reference: ZhangH. Y.JiH. F.New J. Chem.2006305031:CAS:528:DC%2BD28XjtFSrtLs%3D10.1039/b600025h
– reference: NenadisN.TsimidouM. Z.Food Res. Int.2012485381:CAS:528:DC%2BC38XhtlOnsLvE10.1016/j.foodres.2012.05.014
– reference: MikulskiD.GorniakR.MolskiM.Eur. J. Med. Chem.20104510151:CAS:528:DC%2BC3cXhvF2rurc%3D10.1016/j.ejmech.2009.11.04420004046
– reference: BizarroM. M.Costa CabralB. J.Borges dos SantosR. M.Martinho SimoěsJ. A.Pure Appl. Chem.19997112491:CAS:528:DyaK1MXnsVajtLk%3D10.1351/pac199971081609
– reference: CarusoF.TanskiJ.Villegas-EstradaA.RossiM.J. Agric. Food. Chem.20045272791:CAS:528:DC%2BD2cXptFCgsro%3D10.1021/jf048794e15563207
– reference: Mikula-PietrasikJ.KuczmarskaA.RubisB.Free Rad. Biol. Med.20125222341:CAS:528:DC%2BC38XosFCgs7g%3D10.1016/j.freeradbiomed.2012.03.01422579575
– reference: LiX. Z.WeiX.ZhangC. J.Food Chem.201213512391:CAS:528:DC%2BC38XhtlSmtLbF10.1016/j.foodchem.2012.05.04322953849
– reference: Pérez-GonzálezA.GalanoA.Int. J. Quantum Chem.2012112344110.1002/qua.24046
– reference: LiM.LiuW.PengC.Int. J. Quantum Chem.20131139661:CAS:528:DC%2BC38XjvVajtrs%3D10.1002/qua.24060
– reference: WangG.XueY.AnL.Food Chem.2015171891:CAS:528:DC%2BC2cXhsV2mtLjJ10.1016/j.foodchem.2014.08.10625308647
– reference: BartmessJ. E.J. Phys. Chem. US19949864201:CAS:528:DyaK2cXktF2nu7s%3D10.1021/j100076a029
– reference: RimarčíkJ.LukešV.KleinE.IlčinM.J. Mol. Struct.: THEOCHEM20109522510.1016/j.theochem.2010.04.002
– reference: FukuharaK.NakanishiI.MatsuokaA.Chem. Res. Toxicol.2008212821:CAS:528:DC%2BD1cXisV2ntQ%3D%3D10.1021/tx700300818177016
– reference: LuL.QiangM.LiF.Dyes Pigm.20141031751:CAS:528:DC%2BC2cXhtlKjurg%3D10.1016/j.dyepig.2013.12.015
– reference: ParkerV. D.J. Am. Chem. Soc.19921141458
– reference: MuriasM.JagerW.HandlerN.Biochem. Pharmacol.2005699031:CAS:528:DC%2BD2MXhvVCiu70%3D10.1016/j.bcp.2004.12.00115748702
– reference: FifenJ. J.NsangouM.DhaouadiZ.Comput. Theor. Chem.20119662321:CAS:528:DC%2BC3MXlvVWlsLo%3D10.1016/j.comptc.2011.03.006
– reference: SavioM.CoppaT.BianchiL.Int. J. Biochem. Cell Biol.20094124931:CAS:528:DC%2BD1MXhtlGhsrrP10.1016/j.biocel.2009.08.00519679195
– reference: JeffreyG. A.SaengerW.Hydrogen Bonding in Biological Structures1991BerlinSpringer10.1007/978-3-642-85135-3
– reference: IugaC.Alvarez-IdaboyJ. R.RussoN.J. Org. Chem.20127738681:CAS:528:DC%2BC38XltVWksbg%3D10.1021/jo300213422475027
– reference: AmoratiR.LucariniM.MugnainiV.J. Org. Chem.20046971011:CAS:528:DC%2BD2cXns1Wju7w%3D10.1021/jo049786015471458
– volume: 113
  start-page: 966
  year: 2013
  ident: 5162_CR28
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.24060
– volume: 21
  start-page: 282
  year: 2008
  ident: 5162_CR15
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx7003008
– volume: 30
  start-page: 503
  year: 2006
  ident: 5162_CR30
  publication-title: New J. Chem.
  doi: 10.1039/b600025h
– volume: 171
  start-page: 89
  year: 2015
  ident: 5162_CR18
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2014.08.106
– volume: 1037
  start-page: 1
  year: 2014
  ident: 5162_CR10
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2014.03.016
– volume: 114
  start-page: 1458
  year: 1992
  ident: 5162_CR20
  publication-title: J. Am. Chem. Soc.
– volume: 98
  start-page: 6420
  year: 1994
  ident: 5162_CR21
  publication-title: J. Phys. Chem. US
  doi: 10.1021/j100076a029
– volume: 135
  start-page: 1239
  year: 2012
  ident: 5162_CR14
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2012.05.043
– volume: 48
  start-page: 538
  year: 2012
  ident: 5162_CR16
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2012.05.014
– volume: 112
  start-page: 3441
  year: 2012
  ident: 5162_CR27
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.24046
– volume: 71
  start-page: 1249
  year: 1999
  ident: 5162_CR23
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac199971081609
– volume-title: Hydrogen Bonding in Biological Structures
  year: 1991
  ident: 5162_CR24
  doi: 10.1007/978-3-642-85135-3
– volume: 103
  start-page: 175
  year: 2014
  ident: 5162_CR17
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2013.12.015
– volume: 952
  start-page: 25
  year: 2010
  ident: 5162_CR22
  publication-title: J. Mol. Struct.: THEOCHEM
  doi: 10.1016/j.theochem.2010.04.002
– volume: 951
  start-page: 37
  year: 2010
  ident: 5162_CR6
  publication-title: J. Mol. Struct.: THEOCHEM
  doi: 10.1016/j.theochem.2010.04.005
– volume: 41
  start-page: 2493
  year: 2009
  ident: 5162_CR13
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2009.08.005
– volume: 13
  start-page: 1869
  year: 2003
  ident: 5162_CR4
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/S0960-894X(03)00283-X
– volume: 45
  start-page: 1015
  year: 2010
  ident: 5162_CR9
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2009.11.044
– volume: 123
  start-page: 1173
  year: 2001
  ident: 5162_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja002455u
– volume: 69
  start-page: 7101
  year: 2004
  ident: 5162_CR7
  publication-title: J. Org. Chem.
  doi: 10.1021/jo0497860
– volume: 966
  start-page: 232
  year: 2011
  ident: 5162_CR29
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2011.03.006
– volume: 9
  start-page: 1188
  year: 2017
  ident: 5162_CR11
  publication-title: Nutrients
  doi: 10.3390/nu9111188
– volume: 982
  start-page: 74
  year: 2012
  ident: 5162_CR26
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2011.12.020
– volume: 77
  start-page: 3868
  year: 2012
  ident: 5162_CR8
  publication-title: J. Org. Chem.
  doi: 10.1021/jo3002134
– volume: 94
  start-page: 269
  year: 2012
  ident: 5162_CR3
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2011.11.001
– volume: 151
  start-page: 198
  year: 2014
  ident: 5162_CR19
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2013.11.064
– volume: 69
  start-page: 903
  year: 2005
  ident: 5162_CR12
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2004.12.001
– volume: 52
  start-page: 7279
  year: 2004
  ident: 5162_CR2
  publication-title: J. Agric. Food. Chem.
  doi: 10.1021/jf048794e
– volume: 50
  start-page: 166
  year: 2002
  ident: 5162_CR1
  publication-title: J. Agric. Food. Chem.
  doi: 10.1021/jf0108765
– volume: 52
  start-page: 2234
  year: 2012
  ident: 5162_CR5
  publication-title: Free Rad. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2012.03.014
SSID ssj0044414
ssj0062791
Score 2.2802253
Snippet Theoretically, the antioxidant properties of substances are usually evaluated by three working mechanisms, including H-atom transfer (HAT), single-electron...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1121
SubjectTerms Antioxidants
Chemical Kinetics and Catalysis
Chemistry
Chemistry and Materials Science
Density functional theory
Electron transfer
Physical Chemistry
Protons
Reaction mechanisms
Single electrons
Solvents
Vapor phases
Title Theoretical Study on Methylated Resveratrol Analogues towards the Antioxidant Activity and Mechanisms: Understanding the Structure–Activity Relationship
URI https://link.springer.com/article/10.1134/S0036024423060171
https://www.proquest.com/docview/2831997008
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB7B9gAXfgqoC6XygVOrVE7sOGtu26pLRdUe6K5UTpFjT9RV22zVbBFw4h248Xg8CeMk3oUClXqKktijOGNnvni-mQF4ozBOlLEqMjxNI2lSEQ1S7SJtU8RCpziwfr_j8EjtT-T7k_Ski-OuA9s9uCSbL3Vbd0T6mF6hyKJID5p9lpf7sELwg8serAzffTzYCx9gSRZehhOVZF3VPOHJtlJ2ns1_SvzTNi0B5w0faWN6Ro9hHB66ZZycbV_Pi2379UY-xzuO6gk86qAoG7Zz5yncw2oVHuyGCnDP4Md4GeXIPOHwC5tV7BBJt-cEUR37gPUnn5T5akZiqnYbqGbzholLx1Okq6T4z1NH-mND21aqYKZyJMWHHE_ri_otm_weYNN0O26y2l5f4c9v3xfdFry90-nlc5iM9sa7-1FXyyGyIlbzSLm4iLlxgrRPGE4Ynflxo-YokdtEeAdm6WyaOW51OXDaR4MZqXlSkI0txAvoVbMK14CVJSbCoc7KBGUSC2NixWleiWzg_cq6DzxoMbddonNfb-M8b354hMz_eul92Fx0uWyzfNzWeD1Mjbxb8HVOKM1TdghR9WEraHp5-7_CXt6p9St46Mvdt1S1deiRMvA1gaJ5sUGLYLSzc7TRLYZfp-MCZQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RONBLW_pQl_LwoadWQUnsOGtuKwRdHsuh3ZXoKXLsiViVZhFZUMup_6G3_rz-EsZJvAv0IXGKktijODP2fPa8AN5KjGKpjQx0mCSB0AkPuomygTIJYq4S7Bp33jE4lv2RODhJTto47sp7u3uTZL1SN3VHhIvp5ZI0inCg2WV5eQRLgrbgJNZLvQ-fD3f9AixIwwt_I-O0rZrHnbOtEK1l868U7-qmOeC8ZyOtVc_eUxj6j248Tr5sXU7zLXN9L5_jA0f1DJ60UJT1GtlZgQUsn8Pyjq8A9wJ-DedRjsw5HH5nk5INkHh7RhDVso9YXbmkzBcTIlM2x0AVm9aeuHQ9RXpKjP82tsQ_1jNNpQqmS0tUXMjxuPpabbPR7QCbutunOqvt5QX-_vFz1m3mt3c6Pn8Jo73d4U4_aGs5BIZHchpIG-VRqC0n7hOG41qlbtyoQhQYmpg7A2ZhTZLa0Kiia5WLBtNChXFOOjbnr2CxnJT4GlhRYMwtqrSIUcQR1zqSIckVT7vOrqw6EHouZqZNdO7qbZxl9YaHi-yPn96Bd7Mu502Wj_81XvOikbUTvsoIpTmXHUJUHXjvOT1__U9iqw9qvQnL_eHgKDvaPz58A49jAlyN29oaLBJjcJ0A0jTfaCfEDdZwA9g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9RAEJ_okagvIirhEHUfeNIU2-52e-vbBTgRhBjlEnwq291tuAi9Cy1GeeI78ObH85Mw2-7eKf5JDE9N291JtjPt_LrzmxmAVW6imEvFAxkmScBkQoNeInQgVGJMLhLTU3a_Y3ePbw3Z9kFy4PqcVp7t7kOSbU6DrdJU1q8munA9SJjN76UcvQuzANpWfLkNc8yWtuvAXP_Np51N_zFm6O2ZP-Fx6jroUUu8ZcxFOf8o8Vc_NQOf1-KljRsazMOhX0DLPvm8dlbna-r8Wm3HG6zwAdx3EJX0W5tagFumfAh3131nuEfwfX-W_UgsEfEbGZdk16DOjxG6avLBVF9ssebTMYop2-2hitQNQxePRwavokF8HWnUK-mrtoMFkaVGKTYVeVSdVK_J8OfEm2bax6ba7dmp-XFxOZ025fMdjSaPYTjY3F_fClyPh0DRiNcB11EehVJTtArEdlSK1K7biNAwE6qY2sBmoVWS6lCJoqeFzRKTTIRxjr43p4vQKcelWQJSFCam2oi0iA2LIyplxEO0N5r2bLxZdCH0Gs2UK4Bu-3AcZ82PEGXZbw-9Cy-mUyZt9Y9_DV7xZpK5D0GVIXqzVB5EWl146bU-u_1XYcv_Nfo53Hm_Mcjevd3beQL3YsRhLZttBTqoF_MUcVOdP3PvxhXa-Qy8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+Study+on+Methylated+Resveratrol+Analogues+towards+the+Antioxidant+Activity+and+Mechanisms%3A+Understanding+the+Structure%E2%80%93Activity+Relationship&rft.jtitle=Russian+Journal+of+Physical+Chemistry.+A&rft.au=Ling%2C+Pei&rft.date=2023-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0036-0244&rft.eissn=1531-863X&rft.volume=97&rft.issue=6&rft.spage=1121&rft.epage=1127&rft_id=info:doi/10.1134%2FS0036024423060171&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-0244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-0244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-0244&client=summon