Theoretical Study on Methylated Resveratrol Analogues towards the Antioxidant Activity and Mechanisms: Understanding the Structure–Activity Relationship
Theoretically, the antioxidant properties of substances are usually evaluated by three working mechanisms, including H-atom transfer (HAT), single-electron transfer-proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET). In this paper, the antioxidant activity of resveratrol...
Saved in:
Published in | Russian Journal of Physical Chemistry A Vol. 97; no. 6; pp. 1121 - 1127 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
01.06.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0036-0244 1531-863X |
DOI | 10.1134/S0036024423060171 |
Cover
Loading…
Abstract | Theoretically, the antioxidant properties of substances are usually evaluated by three working mechanisms, including H-atom transfer (HAT), single-electron transfer-proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET). In this paper, the antioxidant activity of resveratrol and methyl derivatives (1-4,4-methylresveratrol) in the gas phase and solvents were investigated by using density functional theory (DFT). Results show that 4'-OH is still the most crutical active site of resveratrol and its derivatives. The increased number of methyl groups can enhance the antioxidant activity of resveratrol. It was also found that in the gas phase and non-polar solvents, HAT was the dominant reaction mechanism. In polar solvents, SPLET is the dominant reaction mechanism. |
---|---|
AbstractList | Theoretically, the antioxidant properties of substances are usually evaluated by three working mechanisms, including H-atom transfer (HAT), single-electron transfer-proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET). In this paper, the antioxidant activity of resveratrol and methyl derivatives (1-4,4-methylresveratrol) in the gas phase and solvents were investigated by using density functional theory (DFT). Results show that 4'-OH is still the most crutical active site of resveratrol and its derivatives. The increased number of methyl groups can enhance the antioxidant activity of resveratrol. It was also found that in the gas phase and non-polar solvents, HAT was the dominant reaction mechanism. In polar solvents, SPLET is the dominant reaction mechanism. |
Author | Pei, Ling |
Author_xml | – sequence: 1 givenname: Ling surname: Pei fullname: Pei, Ling email: peiling1201@163.com organization: Department of Chemical Engineering and Safety, Binzhou University |
BookMark | eNp9kctKLDEQhoMoOF4ewF3AdR-TTqYv7gbxqKAIjoK7JiY105E2GZNqdXa-gzsf7zzJyTiioOiiKKj6v7pukFXnHRCyw9kfzoXcGzMmCpZLmQtWMF7yFTLgQ8GzqhDXq2SwSGeL_DrZiPGWMSkllwPyetmCD4BWq46OsTdz6h09A2znnUIw9ALiAwSFwXd05FTnpz1Eiv5RBZN8CymK1j9ZoxzSkUb7YHFOlTOpim6Vs_Eu7tMrZyBETGHrpm_YGEOvsQ_w7_nlA7uA1NV6F1s72yJrE9VF2H73m-Tq7-HlwXF2en50cjA6zbTgBWaF4TecKSOGUIlcClWXi0tAzUAC07kQFS8mRg9Lw3Q9qUxdCTFUsmb5jSiSbZLdZd1Z8PdpOWxufR_SqrHJK8HrumSsSqpyqdLBxxhg0miLb7NiULZrOGsWj2i-PSKR_As5C_ZOhfmvTL5kYtK6KYTPmX6G_gOPgp71 |
CitedBy_id | crossref_primary_10_1016_j_molliq_2025_127196 |
Cites_doi | 10.1002/qua.24060 10.1021/tx7003008 10.1039/b600025h 10.1016/j.foodchem.2014.08.106 10.1016/j.comptc.2014.03.016 10.1021/j100076a029 10.1016/j.foodchem.2012.05.043 10.1016/j.foodres.2012.05.014 10.1002/qua.24046 10.1351/pac199971081609 10.1007/978-3-642-85135-3 10.1016/j.dyepig.2013.12.015 10.1016/j.theochem.2010.04.002 10.1016/j.theochem.2010.04.005 10.1016/j.biocel.2009.08.005 10.1016/S0960-894X(03)00283-X 10.1016/j.ejmech.2009.11.044 10.1021/ja002455u 10.1021/jo0497860 10.1016/j.comptc.2011.03.006 10.3390/nu9111188 10.1016/j.comptc.2011.12.020 10.1021/jo3002134 10.1016/j.biochi.2011.11.001 10.1016/j.foodchem.2013.11.064 10.1016/j.bcp.2004.12.001 10.1021/jf048794e 10.1021/jf0108765 10.1016/j.freeradbiomed.2012.03.014 |
ContentType | Journal Article |
Copyright | Pleiades Publishing, Ltd. 2023. ISSN 0036-0244, Russian Journal of Physical Chemistry A, 2023, Vol. 97, No. 6, pp. 1121–1127. © Pleiades Publishing, Ltd., 2023. |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2023. ISSN 0036-0244, Russian Journal of Physical Chemistry A, 2023, Vol. 97, No. 6, pp. 1121–1127. © Pleiades Publishing, Ltd., 2023. |
DBID | AAYXX CITATION |
DOI | 10.1134/S0036024423060171 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1531-863X |
EndPage | 1127 |
ExternalDocumentID | 10_1134_S0036024423060171 |
GroupedDBID | -58 -5G -BR -EM -Y2 -~C .VR 06C 06D 0R~ 0VY 29P 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 408 40D 40E 5VS 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BDATZ BGNMA BSONS CSCUP DDRTE DNIVK DPUIP DU5 EBLON EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HG6 HLICF HMJXF HRMNR HVGLF H~9 IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O93 O9J P9N PF0 PT4 QOR QOS R89 R9I ROL RSV S16 S1Z S3B SAP SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TSG TUC UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z5O Z7V Z7X Z7Y Z7Z ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION ABRTQ |
ID | FETCH-LOGICAL-c316t-6d1b10ad35e83243a973602e90e4e0c233816fdc57d0c9f8d98335a4902b362b3 |
IEDL.DBID | AGYKE |
ISSN | 0036-0244 |
IngestDate | Fri Jul 25 10:55:29 EDT 2025 Thu Apr 24 22:53:16 EDT 2025 Tue Jul 01 01:09:42 EDT 2025 Fri Feb 21 02:42:52 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | SPLET HAT SET-PT resveratrol analogues antioxidant activity and mechanism density functional theory |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-6d1b10ad35e83243a973602e90e4e0c233816fdc57d0c9f8d98335a4902b362b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2831997008 |
PQPubID | 2044176 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2831997008 crossref_citationtrail_10_1134_S0036024423060171 crossref_primary_10_1134_S0036024423060171 springer_journals_10_1134_S0036024423060171 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: Heidelberg |
PublicationSubtitle | Focus on Chemistry |
PublicationTitle | Russian Journal of Physical Chemistry A |
PublicationTitleAbbrev | Russ. J. Phys. Chem |
PublicationYear | 2023 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | JeffreyG. A.SaengerW.Hydrogen Bonding in Biological Structures1991BerlinSpringer10.1007/978-3-642-85135-3 ParkerV. D.J. Am. Chem. Soc.19921141458 MikulskiD.GorniakR.MolskiM.Eur. J. Med. Chem.20104510151:CAS:528:DC%2BC3cXhvF2rurc%3D10.1016/j.ejmech.2009.11.04420004046 NawazW.ZhouZ.DengS.Nutrients20179118810.3390/nu9111188291093745707660 NodaY.KaneyukiT.MoriA.PackerL.J. Agric. Food. Chem.2002501661:CAS:528:DC%2BD3MXoslWktbs%3D10.1021/jf010876511754562 IugaC.Alvarez-IdaboyJ. R.RussoN.J. Org. Chem.20127738681:CAS:528:DC%2BC38XltVWksbg%3D10.1021/jo300213422475027 CaoH.PanX.LiC.Bioorg. Med. Chem. Lett.20031318691:CAS:528:DC%2BD3sXjs1ers7Y%3D10.1016/S0960-894X(03)00283-X12749887 LiX. Z.WeiX.ZhangC. J.Food Chem.201213512391:CAS:528:DC%2BC38XhtlSmtLbF10.1016/j.foodchem.2012.05.04322953849 RimarčíkJ.LukešV.KleinE.IlčinM.J. Mol. Struct.: THEOCHEM20109522510.1016/j.theochem.2010.04.002 XueY.ZhengY.AnL.Comput. Theor. Chem.2012982741:CAS:528:DC%2BC38XhsFGlurk%3D10.1016/j.comptc.2011.12.020 XueY.ZhengY.AnL.Food Chem.20141511981:CAS:528:DC%2BC2cXpvFSisg%3D%3D10.1016/j.foodchem.2013.11.06424423521 AmoratiR.LucariniM.MugnainiV.J. Org. Chem.20046971011:CAS:528:DC%2BD2cXns1Wju7w%3D10.1021/jo049786015471458 BartmessJ. E.J. Phys. Chem. US19949864201:CAS:528:DyaK2cXktF2nu7s%3D10.1021/j100076a029 MuriasM.JagerW.HandlerN.Biochem. Pharmacol.2005699031:CAS:528:DC%2BD2MXhvVCiu70%3D10.1016/j.bcp.2004.12.00115748702 FrombaumM.Le ClancheS.Bonnefont-RousselotD.BorderieD.Biochimie2012942691:CAS:528:DC%2BC38XovFCktg%3D%3D10.1016/j.biochi.2011.11.00122133615 CarusoF.TanskiJ.Villegas-EstradaA.RossiM.J. Agric. Food. Chem.20045272791:CAS:528:DC%2BD2cXptFCgsro%3D10.1021/jf048794e15563207 SavioM.CoppaT.BianchiL.Int. J. Biochem. Cell Biol.20094124931:CAS:528:DC%2BD1MXhtlGhsrrP10.1016/j.biocel.2009.08.00519679195 LuL.QiangM.LiF.Dyes Pigm.20141031751:CAS:528:DC%2BC2cXhtlKjurg%3D10.1016/j.dyepig.2013.12.015 WangG.XueY.AnL.Food Chem.2015171891:CAS:528:DC%2BC2cXhsV2mtLjJ10.1016/j.foodchem.2014.08.10625308647 NenadisN.TsimidouM. Z.Food Res. Int.2012485381:CAS:528:DC%2BC38XhtlOnsLvE10.1016/j.foodres.2012.05.014 Pérez-GonzálezA.GalanoA.Int. J. Quantum Chem.2012112344110.1002/qua.24046 ZhangH. Y.JiH. F.New J. Chem.2006305031:CAS:528:DC%2BD28XjtFSrtLs%3D10.1039/b600025h LiM.LiuW.PengC.Int. J. Quantum Chem.20131139661:CAS:528:DC%2BC38XjvVajtrs%3D10.1002/qua.24060 WrightJ. S.JohnsonE. R.di LabioG. A.J. Am. Chem. Soc.200112311731:CAS:528:DC%2BD3MXltlGluw%3D%3D10.1021/ja002455u11456671 MikulskiD.SzelągM.MolskiM.GórniakR.J. Mol. Struct.: THEOCHEM2010951371:CAS:528:DC%2BC3cXmtlKlt7g%3D10.1016/j.theochem.2010.04.005 FukuharaK.NakanishiI.MatsuokaA.Chem. Res. Toxicol.2008212821:CAS:528:DC%2BD1cXisV2ntQ%3D%3D10.1021/tx700300818177016 BenayahoumA.Amira-GuebailiaH.HouacheO.Comput. Theor. Chem.2014103711:CAS:528:DC%2BC2cXotF2htLw%3D10.1016/j.comptc.2014.03.016 BizarroM. M.Costa CabralB. J.Borges dos SantosR. M.Martinho SimoěsJ. A.Pure Appl. Chem.19997112491:CAS:528:DyaK1MXnsVajtLk%3D10.1351/pac199971081609 Mikula-PietrasikJ.KuczmarskaA.RubisB.Free Rad. Biol. Med.20125222341:CAS:528:DC%2BC38XosFCgs7g%3D10.1016/j.freeradbiomed.2012.03.01422579575 FifenJ. J.NsangouM.DhaouadiZ.Comput. Theor. Chem.20119662321:CAS:528:DC%2BC3MXlvVWlsLo%3D10.1016/j.comptc.2011.03.006 W. Nawaz (5162_CR11) 2017; 9 G. A. Jeffrey (5162_CR24) 1991 Y. Noda (5162_CR1) 2002; 50 H. Y. Zhang (5162_CR30) 2006; 30 D. Mikulski (5162_CR6) 2010; 951 A. Pérez-González (5162_CR27) 2012; 112 M. Savio (5162_CR13) 2009; 41 M. Murias (5162_CR12) 2005; 69 N. Nenadis (5162_CR16) 2012; 48 K. Fukuhara (5162_CR15) 2008; 21 C. Iuga (5162_CR8) 2012; 77 H. Cao (5162_CR4) 2003; 13 Y. Xue (5162_CR26) 2012; 982 M. Frombaum (5162_CR3) 2012; 94 A. Benayahoum (5162_CR10) 2014; 1037 X. Z. Li (5162_CR14) 2012; 135 D. Mikulski (5162_CR9) 2010; 45 G. Wang (5162_CR18) 2015; 171 Y. Xue (5162_CR19) 2014; 151 J. E. Bartmess (5162_CR21) 1994; 98 J. Rimarčík (5162_CR22) 2010; 952 V. D. Parker (5162_CR20) 1992; 114 M. Li (5162_CR28) 2013; 113 F. Caruso (5162_CR2) 2004; 52 J. J. Fifen (5162_CR29) 2011; 966 L. Lu (5162_CR17) 2014; 103 R. Amorati (5162_CR7) 2004; 69 M. M. Bizarro (5162_CR23) 1999; 71 J. S. Wright (5162_CR25) 2001; 123 J. Mikula-Pietrasik (5162_CR5) 2012; 52 |
References_xml | – reference: XueY.ZhengY.AnL.Comput. Theor. Chem.2012982741:CAS:528:DC%2BC38XhsFGlurk%3D10.1016/j.comptc.2011.12.020 – reference: FrombaumM.Le ClancheS.Bonnefont-RousselotD.BorderieD.Biochimie2012942691:CAS:528:DC%2BC38XovFCktg%3D%3D10.1016/j.biochi.2011.11.00122133615 – reference: XueY.ZhengY.AnL.Food Chem.20141511981:CAS:528:DC%2BC2cXpvFSisg%3D%3D10.1016/j.foodchem.2013.11.06424423521 – reference: BenayahoumA.Amira-GuebailiaH.HouacheO.Comput. Theor. Chem.2014103711:CAS:528:DC%2BC2cXotF2htLw%3D10.1016/j.comptc.2014.03.016 – reference: NawazW.ZhouZ.DengS.Nutrients20179118810.3390/nu9111188291093745707660 – reference: CaoH.PanX.LiC.Bioorg. Med. Chem. Lett.20031318691:CAS:528:DC%2BD3sXjs1ers7Y%3D10.1016/S0960-894X(03)00283-X12749887 – reference: WrightJ. S.JohnsonE. R.di LabioG. A.J. Am. Chem. Soc.200112311731:CAS:528:DC%2BD3MXltlGluw%3D%3D10.1021/ja002455u11456671 – reference: NodaY.KaneyukiT.MoriA.PackerL.J. Agric. Food. Chem.2002501661:CAS:528:DC%2BD3MXoslWktbs%3D10.1021/jf010876511754562 – reference: MikulskiD.SzelągM.MolskiM.GórniakR.J. Mol. Struct.: THEOCHEM2010951371:CAS:528:DC%2BC3cXmtlKlt7g%3D10.1016/j.theochem.2010.04.005 – reference: ZhangH. Y.JiH. F.New J. Chem.2006305031:CAS:528:DC%2BD28XjtFSrtLs%3D10.1039/b600025h – reference: NenadisN.TsimidouM. Z.Food Res. Int.2012485381:CAS:528:DC%2BC38XhtlOnsLvE10.1016/j.foodres.2012.05.014 – reference: MikulskiD.GorniakR.MolskiM.Eur. J. Med. Chem.20104510151:CAS:528:DC%2BC3cXhvF2rurc%3D10.1016/j.ejmech.2009.11.04420004046 – reference: BizarroM. M.Costa CabralB. J.Borges dos SantosR. M.Martinho SimoěsJ. A.Pure Appl. Chem.19997112491:CAS:528:DyaK1MXnsVajtLk%3D10.1351/pac199971081609 – reference: CarusoF.TanskiJ.Villegas-EstradaA.RossiM.J. Agric. Food. Chem.20045272791:CAS:528:DC%2BD2cXptFCgsro%3D10.1021/jf048794e15563207 – reference: Mikula-PietrasikJ.KuczmarskaA.RubisB.Free Rad. Biol. Med.20125222341:CAS:528:DC%2BC38XosFCgs7g%3D10.1016/j.freeradbiomed.2012.03.01422579575 – reference: LiX. Z.WeiX.ZhangC. J.Food Chem.201213512391:CAS:528:DC%2BC38XhtlSmtLbF10.1016/j.foodchem.2012.05.04322953849 – reference: Pérez-GonzálezA.GalanoA.Int. J. Quantum Chem.2012112344110.1002/qua.24046 – reference: LiM.LiuW.PengC.Int. J. Quantum Chem.20131139661:CAS:528:DC%2BC38XjvVajtrs%3D10.1002/qua.24060 – reference: WangG.XueY.AnL.Food Chem.2015171891:CAS:528:DC%2BC2cXhsV2mtLjJ10.1016/j.foodchem.2014.08.10625308647 – reference: BartmessJ. E.J. Phys. Chem. US19949864201:CAS:528:DyaK2cXktF2nu7s%3D10.1021/j100076a029 – reference: RimarčíkJ.LukešV.KleinE.IlčinM.J. Mol. Struct.: THEOCHEM20109522510.1016/j.theochem.2010.04.002 – reference: FukuharaK.NakanishiI.MatsuokaA.Chem. Res. Toxicol.2008212821:CAS:528:DC%2BD1cXisV2ntQ%3D%3D10.1021/tx700300818177016 – reference: LuL.QiangM.LiF.Dyes Pigm.20141031751:CAS:528:DC%2BC2cXhtlKjurg%3D10.1016/j.dyepig.2013.12.015 – reference: ParkerV. D.J. Am. Chem. Soc.19921141458 – reference: MuriasM.JagerW.HandlerN.Biochem. Pharmacol.2005699031:CAS:528:DC%2BD2MXhvVCiu70%3D10.1016/j.bcp.2004.12.00115748702 – reference: FifenJ. J.NsangouM.DhaouadiZ.Comput. Theor. Chem.20119662321:CAS:528:DC%2BC3MXlvVWlsLo%3D10.1016/j.comptc.2011.03.006 – reference: SavioM.CoppaT.BianchiL.Int. J. Biochem. Cell Biol.20094124931:CAS:528:DC%2BD1MXhtlGhsrrP10.1016/j.biocel.2009.08.00519679195 – reference: JeffreyG. A.SaengerW.Hydrogen Bonding in Biological Structures1991BerlinSpringer10.1007/978-3-642-85135-3 – reference: IugaC.Alvarez-IdaboyJ. R.RussoN.J. Org. Chem.20127738681:CAS:528:DC%2BC38XltVWksbg%3D10.1021/jo300213422475027 – reference: AmoratiR.LucariniM.MugnainiV.J. Org. Chem.20046971011:CAS:528:DC%2BD2cXns1Wju7w%3D10.1021/jo049786015471458 – volume: 113 start-page: 966 year: 2013 ident: 5162_CR28 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.24060 – volume: 21 start-page: 282 year: 2008 ident: 5162_CR15 publication-title: Chem. Res. Toxicol. doi: 10.1021/tx7003008 – volume: 30 start-page: 503 year: 2006 ident: 5162_CR30 publication-title: New J. Chem. doi: 10.1039/b600025h – volume: 171 start-page: 89 year: 2015 ident: 5162_CR18 publication-title: Food Chem. doi: 10.1016/j.foodchem.2014.08.106 – volume: 1037 start-page: 1 year: 2014 ident: 5162_CR10 publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2014.03.016 – volume: 114 start-page: 1458 year: 1992 ident: 5162_CR20 publication-title: J. Am. Chem. Soc. – volume: 98 start-page: 6420 year: 1994 ident: 5162_CR21 publication-title: J. Phys. Chem. US doi: 10.1021/j100076a029 – volume: 135 start-page: 1239 year: 2012 ident: 5162_CR14 publication-title: Food Chem. doi: 10.1016/j.foodchem.2012.05.043 – volume: 48 start-page: 538 year: 2012 ident: 5162_CR16 publication-title: Food Res. Int. doi: 10.1016/j.foodres.2012.05.014 – volume: 112 start-page: 3441 year: 2012 ident: 5162_CR27 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.24046 – volume: 71 start-page: 1249 year: 1999 ident: 5162_CR23 publication-title: Pure Appl. Chem. doi: 10.1351/pac199971081609 – volume-title: Hydrogen Bonding in Biological Structures year: 1991 ident: 5162_CR24 doi: 10.1007/978-3-642-85135-3 – volume: 103 start-page: 175 year: 2014 ident: 5162_CR17 publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2013.12.015 – volume: 952 start-page: 25 year: 2010 ident: 5162_CR22 publication-title: J. Mol. Struct.: THEOCHEM doi: 10.1016/j.theochem.2010.04.002 – volume: 951 start-page: 37 year: 2010 ident: 5162_CR6 publication-title: J. Mol. Struct.: THEOCHEM doi: 10.1016/j.theochem.2010.04.005 – volume: 41 start-page: 2493 year: 2009 ident: 5162_CR13 publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2009.08.005 – volume: 13 start-page: 1869 year: 2003 ident: 5162_CR4 publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/S0960-894X(03)00283-X – volume: 45 start-page: 1015 year: 2010 ident: 5162_CR9 publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2009.11.044 – volume: 123 start-page: 1173 year: 2001 ident: 5162_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja002455u – volume: 69 start-page: 7101 year: 2004 ident: 5162_CR7 publication-title: J. Org. Chem. doi: 10.1021/jo0497860 – volume: 966 start-page: 232 year: 2011 ident: 5162_CR29 publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2011.03.006 – volume: 9 start-page: 1188 year: 2017 ident: 5162_CR11 publication-title: Nutrients doi: 10.3390/nu9111188 – volume: 982 start-page: 74 year: 2012 ident: 5162_CR26 publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2011.12.020 – volume: 77 start-page: 3868 year: 2012 ident: 5162_CR8 publication-title: J. Org. Chem. doi: 10.1021/jo3002134 – volume: 94 start-page: 269 year: 2012 ident: 5162_CR3 publication-title: Biochimie doi: 10.1016/j.biochi.2011.11.001 – volume: 151 start-page: 198 year: 2014 ident: 5162_CR19 publication-title: Food Chem. doi: 10.1016/j.foodchem.2013.11.064 – volume: 69 start-page: 903 year: 2005 ident: 5162_CR12 publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2004.12.001 – volume: 52 start-page: 7279 year: 2004 ident: 5162_CR2 publication-title: J. Agric. Food. Chem. doi: 10.1021/jf048794e – volume: 50 start-page: 166 year: 2002 ident: 5162_CR1 publication-title: J. Agric. Food. Chem. doi: 10.1021/jf0108765 – volume: 52 start-page: 2234 year: 2012 ident: 5162_CR5 publication-title: Free Rad. Biol. Med. doi: 10.1016/j.freeradbiomed.2012.03.014 |
SSID | ssj0044414 ssj0062791 |
Score | 2.2802253 |
Snippet | Theoretically, the antioxidant properties of substances are usually evaluated by three working mechanisms, including H-atom transfer (HAT), single-electron... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1121 |
SubjectTerms | Antioxidants Chemical Kinetics and Catalysis Chemistry Chemistry and Materials Science Density functional theory Electron transfer Physical Chemistry Protons Reaction mechanisms Single electrons Solvents Vapor phases |
Title | Theoretical Study on Methylated Resveratrol Analogues towards the Antioxidant Activity and Mechanisms: Understanding the Structure–Activity Relationship |
URI | https://link.springer.com/article/10.1134/S0036024423060171 https://www.proquest.com/docview/2831997008 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB7B9gAXfgqoC6XygVOrVE7sOGtu26pLRdUe6K5UTpFjT9RV22zVbBFw4h248Xg8CeMk3oUClXqKktijOGNnvni-mQF4ozBOlLEqMjxNI2lSEQ1S7SJtU8RCpziwfr_j8EjtT-T7k_Ski-OuA9s9uCSbL3Vbd0T6mF6hyKJID5p9lpf7sELwg8serAzffTzYCx9gSRZehhOVZF3VPOHJtlJ2ns1_SvzTNi0B5w0faWN6Ro9hHB66ZZycbV_Pi2379UY-xzuO6gk86qAoG7Zz5yncw2oVHuyGCnDP4Md4GeXIPOHwC5tV7BBJt-cEUR37gPUnn5T5akZiqnYbqGbzholLx1Okq6T4z1NH-mND21aqYKZyJMWHHE_ri_otm_weYNN0O26y2l5f4c9v3xfdFry90-nlc5iM9sa7-1FXyyGyIlbzSLm4iLlxgrRPGE4Ynflxo-YokdtEeAdm6WyaOW51OXDaR4MZqXlSkI0txAvoVbMK14CVJSbCoc7KBGUSC2NixWleiWzg_cq6DzxoMbddonNfb-M8b354hMz_eul92Fx0uWyzfNzWeD1Mjbxb8HVOKM1TdghR9WEraHp5-7_CXt6p9St46Mvdt1S1deiRMvA1gaJ5sUGLYLSzc7TRLYZfp-MCZQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RONBLW_pQl_LwoadWQUnsOGtuKwRdHsuh3ZXoKXLsiViVZhFZUMup_6G3_rz-EsZJvAv0IXGKktijODP2fPa8AN5KjGKpjQx0mCSB0AkPuomygTIJYq4S7Bp33jE4lv2RODhJTto47sp7u3uTZL1SN3VHhIvp5ZI0inCg2WV5eQRLgrbgJNZLvQ-fD3f9AixIwwt_I-O0rZrHnbOtEK1l868U7-qmOeC8ZyOtVc_eUxj6j248Tr5sXU7zLXN9L5_jA0f1DJ60UJT1GtlZgQUsn8Pyjq8A9wJ-DedRjsw5HH5nk5INkHh7RhDVso9YXbmkzBcTIlM2x0AVm9aeuHQ9RXpKjP82tsQ_1jNNpQqmS0tUXMjxuPpabbPR7QCbutunOqvt5QX-_vFz1m3mt3c6Pn8Jo73d4U4_aGs5BIZHchpIG-VRqC0n7hOG41qlbtyoQhQYmpg7A2ZhTZLa0Kiia5WLBtNChXFOOjbnr2CxnJT4GlhRYMwtqrSIUcQR1zqSIckVT7vOrqw6EHouZqZNdO7qbZxl9YaHi-yPn96Bd7Mu502Wj_81XvOikbUTvsoIpTmXHUJUHXjvOT1__U9iqw9qvQnL_eHgKDvaPz58A49jAlyN29oaLBJjcJ0A0jTfaCfEDdZwA9g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9RAEJ_okagvIirhEHUfeNIU2-52e-vbBTgRhBjlEnwq291tuAi9Cy1GeeI78ObH85Mw2-7eKf5JDE9N291JtjPt_LrzmxmAVW6imEvFAxkmScBkQoNeInQgVGJMLhLTU3a_Y3ePbw3Z9kFy4PqcVp7t7kOSbU6DrdJU1q8munA9SJjN76UcvQuzANpWfLkNc8yWtuvAXP_Np51N_zFm6O2ZP-Fx6jroUUu8ZcxFOf8o8Vc_NQOf1-KljRsazMOhX0DLPvm8dlbna-r8Wm3HG6zwAdx3EJX0W5tagFumfAh3131nuEfwfX-W_UgsEfEbGZdk16DOjxG6avLBVF9ssebTMYop2-2hitQNQxePRwavokF8HWnUK-mrtoMFkaVGKTYVeVSdVK_J8OfEm2bax6ba7dmp-XFxOZ025fMdjSaPYTjY3F_fClyPh0DRiNcB11EehVJTtArEdlSK1K7biNAwE6qY2sBmoVWS6lCJoqeFzRKTTIRxjr43p4vQKcelWQJSFCam2oi0iA2LIyplxEO0N5r2bLxZdCH0Gs2UK4Bu-3AcZ82PEGXZbw-9Cy-mUyZt9Y9_DV7xZpK5D0GVIXqzVB5EWl146bU-u_1XYcv_Nfo53Hm_Mcjevd3beQL3YsRhLZttBTqoF_MUcVOdP3PvxhXa-Qy8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+Study+on+Methylated+Resveratrol+Analogues+towards+the+Antioxidant+Activity+and+Mechanisms%3A+Understanding+the+Structure%E2%80%93Activity+Relationship&rft.jtitle=Russian+Journal+of+Physical+Chemistry.+A&rft.au=Ling%2C+Pei&rft.date=2023-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0036-0244&rft.eissn=1531-863X&rft.volume=97&rft.issue=6&rft.spage=1121&rft.epage=1127&rft_id=info:doi/10.1134%2FS0036024423060171&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-0244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-0244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-0244&client=summon |