A step-by-step multiple stimuli-responsive metal-phenolic network prodrug nanoparticles for chemotherapy

Currently, chemotherapy is the main clinical therapy of tumors. Depressingly, most chemotherapeutic drugs such as doxorubicin and paclitaxel (PTX) have poor water solubility, leading to low bioavailability and serious side effects. Till now, although a variety of nanoparticulate drug delivery system...

Full description

Saved in:
Bibliographic Details
Published inNano research Vol. 15; no. 2; pp. 1205 - 1212
Main Authors Yi, Xiaoqing, Zeng, Weijia, Wang, Cui, Chen, Ying, Zheng, Liangyuan, Zhu, Xinlin, Ke, Yuqiu, He, Xiaoyan, Kuang, Ying, Huang, Qitong
Format Journal Article
LanguageEnglish
Published Beijing Tsinghua University Press 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Currently, chemotherapy is the main clinical therapy of tumors. Depressingly, most chemotherapeutic drugs such as doxorubicin and paclitaxel (PTX) have poor water solubility, leading to low bioavailability and serious side effects. Till now, although a variety of nanoparticulate drug delivery systems have been designed to ameliorate the above disadvantage of chemotherapy drugs, their application is still severely limited due to the complex preparation, poor stability, low drug loading, and premature drug release. Herein, a metal phenolic network-based drug delivery system with superior stability, satisfactory drug loading capacity, good biocompatibility, reduced undesired premature release, and excellent anti-tumor ability has been established for achieving step-by-step multiple stimuli-responsive drug delivery. Firstly, the redox-responsive dimeric paclitaxel (diPTX) prodrug was synthesized. Then diPTX@Fe&tannic acid (diPTX@Fe&TA) complex nanoparticles with satisfactory PTX loading capacity were obtained by deposition of Fe&TA network complex on the nanocore of diPTX rapidly with a simple method. The diPTX@Fe&TA nanoparticles have a hydrodynamic diameter of 152.6 ± 1.2 nm, long-term colloidal stability, and high PTX loading content of 24.7%. Besides, diPTX@Fe&TA could expose to the acidic lysosomal environment and the reduction cytoplasmic environment continuously, resulting in the sequential release of diPTX and PTX when it was phagocytosed by tumor cells. Meanwhile, PTX showed almost no release under physiological condition (pH 7.4), which effectively inhibited the undesirable premature release of PTX. More importantly, diPTX@Fe&TA could suppress the growth of tumor effectively in vivo , along with negligible toxicity for organs. This work developed a simple and novel approach for the construction of a stepwise multiple stimuli-responsive drug delivery system with superior stability and satisfactory drug loading capacity to inhibit tumor growth effectively.
AbstractList Currently, chemotherapy is the main clinical therapy of tumors. Depressingly, most chemotherapeutic drugs such as doxorubicin and paclitaxel (PTX) have poor water solubility, leading to low bioavailability and serious side effects. Till now, although a variety of nanoparticulate drug delivery systems have been designed to ameliorate the above disadvantage of chemotherapy drugs, their application is still severely limited due to the complex preparation, poor stability, low drug loading, and premature drug release. Herein, a metal phenolic network-based drug delivery system with superior stability, satisfactory drug loading capacity, good biocompatibility, reduced undesired premature release, and excellent anti-tumor ability has been established for achieving step-by-step multiple stimuli-responsive drug delivery. Firstly, the redox-responsive dimeric paclitaxel (diPTX) prodrug was synthesized. Then diPTX@Fe&tannic acid (diPTX@Fe&TA) complex nanoparticles with satisfactory PTX loading capacity were obtained by deposition of Fe&TA network complex on the nanocore of diPTX rapidly with a simple method. The diPTX@Fe&TA nanoparticles have a hydrodynamic diameter of 152.6 ± 1.2 nm, long-term colloidal stability, and high PTX loading content of 24.7%. Besides, diPTX@Fe&TA could expose to the acidic lysosomal environment and the reduction cytoplasmic environment continuously, resulting in the sequential release of diPTX and PTX when it was phagocytosed by tumor cells. Meanwhile, PTX showed almost no release under physiological condition (pH 7.4), which effectively inhibited the undesirable premature release of PTX. More importantly, diPTX@Fe&TA could suppress the growth of tumor effectively in vivo, along with negligible toxicity for organs. This work developed a simple and novel approach for the construction of a stepwise multiple stimuli-responsive drug delivery system with superior stability and satisfactory drug loading capacity to inhibit tumor growth effectively.
Currently, chemotherapy is the main clinical therapy of tumors. Depressingly, most chemotherapeutic drugs such as doxorubicin and paclitaxel (PTX) have poor water solubility, leading to low bioavailability and serious side effects. Till now, although a variety of nanoparticulate drug delivery systems have been designed to ameliorate the above disadvantage of chemotherapy drugs, their application is still severely limited due to the complex preparation, poor stability, low drug loading, and premature drug release. Herein, a metal phenolic network-based drug delivery system with superior stability, satisfactory drug loading capacity, good biocompatibility, reduced undesired premature release, and excellent anti-tumor ability has been established for achieving step-by-step multiple stimuli-responsive drug delivery. Firstly, the redox-responsive dimeric paclitaxel (diPTX) prodrug was synthesized. Then diPTX@Fe&tannic acid (diPTX@Fe&TA) complex nanoparticles with satisfactory PTX loading capacity were obtained by deposition of Fe&TA network complex on the nanocore of diPTX rapidly with a simple method. The diPTX@Fe&TA nanoparticles have a hydrodynamic diameter of 152.6 ± 1.2 nm, long-term colloidal stability, and high PTX loading content of 24.7%. Besides, diPTX@Fe&TA could expose to the acidic lysosomal environment and the reduction cytoplasmic environment continuously, resulting in the sequential release of diPTX and PTX when it was phagocytosed by tumor cells. Meanwhile, PTX showed almost no release under physiological condition (pH 7.4), which effectively inhibited the undesirable premature release of PTX. More importantly, diPTX@Fe&TA could suppress the growth of tumor effectively in vivo , along with negligible toxicity for organs. This work developed a simple and novel approach for the construction of a stepwise multiple stimuli-responsive drug delivery system with superior stability and satisfactory drug loading capacity to inhibit tumor growth effectively.
Author Zheng, Liangyuan
He, Xiaoyan
Huang, Qitong
Chen, Ying
Zeng, Weijia
Kuang, Ying
Zhu, Xinlin
Yi, Xiaoqing
Ke, Yuqiu
Wang, Cui
Author_xml – sequence: 1
  givenname: Xiaoqing
  surname: Yi
  fullname: Yi, Xiaoqing
  organization: Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University
– sequence: 2
  givenname: Weijia
  surname: Zeng
  fullname: Zeng, Weijia
  organization: Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University
– sequence: 3
  givenname: Cui
  surname: Wang
  fullname: Wang, Cui
  organization: Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University
– sequence: 4
  givenname: Ying
  surname: Chen
  fullname: Chen, Ying
  organization: Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University
– sequence: 5
  givenname: Liangyuan
  surname: Zheng
  fullname: Zheng, Liangyuan
  organization: Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University
– sequence: 6
  givenname: Xinlin
  surname: Zhu
  fullname: Zhu, Xinlin
  organization: Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University
– sequence: 7
  givenname: Yuqiu
  surname: Ke
  fullname: Ke, Yuqiu
  organization: Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology
– sequence: 8
  givenname: Xiaoyan
  surname: He
  fullname: He, Xiaoyan
  email: hexiaoyan@ahmu.edu.cn
  organization: School of Life Sciences, Anhui Medical University
– sequence: 9
  givenname: Ying
  surname: Kuang
  fullname: Kuang, Ying
  email: kuangying199304@163.com
  organization: Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University
– sequence: 10
  givenname: Qitong
  surname: Huang
  fullname: Huang, Qitong
  email: hqtblue@163.com, hqt@gmu.edu.cn
  organization: Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University
BookMark eNp9kE9LAzEQxYNU0KofwNuC52gmu002xyL-A8GLnkN2O9umbpM1SZV-e1NWEQSdyxuG95sZ3pRMnHdIyDmwS2BMXkXgXFaUcaCl4ILyA3IMStWU5Zp898CrIzKNcc2Y4FDVx2Q1L2LCgTY7utdis-2THXrMU5t7SwPGwbto37HYYDI9HVbofG_bwmH68OG1GIJfhO2ycMb5wYRk2x5j0flQtCvc-LTCYIbdKTnsTB_x7EtPyMvtzfP1PX18unu4nj_StgSRqGi7Uta8BmGqboYCKilgAWY2403TlMA7xWXdIYJZNEx1smyVkI1RDSpVSihPyMW4N7_1tsWY9Npvg8snNRes5qJkSmSXHF1t8DEG7HRrk0nWuxSM7TUwvY9Vj7HqHKvex6p5JuEXOQS7MWH3L8NHJmavW2L4-elv6BPjvo4Q
CitedBy_id crossref_primary_10_1039_D2CC05586D
crossref_primary_10_1080_01932691_2024_2348512
crossref_primary_10_1007_s12274_023_6026_y
crossref_primary_10_3389_fbioe_2024_1387969
crossref_primary_10_1021_acsami_2c11574
crossref_primary_10_1039_D3BM00509G
crossref_primary_10_3389_fbioe_2023_1338257
crossref_primary_10_1007_s12668_023_01196_w
crossref_primary_10_3390_molecules29122819
crossref_primary_10_3389_fbioe_2024_1364975
crossref_primary_10_1039_D2NH00070A
crossref_primary_10_1021_acsnano_3c13225
crossref_primary_10_3389_fbioe_2022_952510
crossref_primary_10_1016_j_jcis_2024_08_100
crossref_primary_10_3390_molecules28165955
crossref_primary_10_1002_adhm_202301394
crossref_primary_10_1016_j_foodhyd_2024_110722
crossref_primary_10_3389_fbioe_2023_1251713
crossref_primary_10_3389_fchem_2021_769648
crossref_primary_10_3389_fchem_2022_905475
crossref_primary_10_3389_fbioe_2022_903424
crossref_primary_10_3389_fbioe_2023_1139668
crossref_primary_10_1039_D2BM01460B
crossref_primary_10_3389_fbioe_2022_865682
crossref_primary_10_1063_5_0238257
crossref_primary_10_1016_j_carbpol_2022_119554
crossref_primary_10_1016_j_ejmech_2023_115715
crossref_primary_10_1080_17568919_2025_2463884
crossref_primary_10_3389_fbioe_2022_875034
crossref_primary_10_3389_fbioe_2023_1168192
crossref_primary_10_3390_pharmaceutics15030784
crossref_primary_10_1016_j_ejpb_2024_114349
crossref_primary_10_1080_20550324_2024_2362504
crossref_primary_10_1039_D1TB02638K
crossref_primary_10_3389_fbioe_2022_920213
crossref_primary_10_1007_s42765_022_00198_9
crossref_primary_10_1186_s12951_024_02859_w
crossref_primary_10_2147_IJN_S432112
crossref_primary_10_1007_s13726_023_01267_5
crossref_primary_10_3389_fbioe_2022_907232
crossref_primary_10_1039_D5TB00026B
crossref_primary_10_1016_j_colsurfb_2022_112927
crossref_primary_10_1007_s11947_022_02759_7
crossref_primary_10_3389_fchem_2021_765021
crossref_primary_10_1016_j_slast_2022_10_002
crossref_primary_10_1021_acsanm_3c03417
crossref_primary_10_1016_j_jsamd_2024_100774
crossref_primary_10_29109_gujsc_1262755
crossref_primary_10_3389_fbioe_2022_940511
crossref_primary_10_32604_or_2023_042384
crossref_primary_10_1007_s13233_023_00196_9
crossref_primary_10_3389_fbioe_2023_1137508
crossref_primary_10_3389_fonc_2024_1327851
Cites_doi 10.1016/j.actbio.2015.08.029
10.1039/D0TB00008F
10.1039/C5RA16004A
10.1002/adma.202000512
10.1038/s42003-018-0204-6
10.1021/jacs.7b11462
10.1038/s41565-019-0567-y
10.1021/acs.jafc.9b07908
10.1126/science.1237265
10.1002/adfm.201901896
10.1021/acsnano.8b01456
10.1021/acsnano.5b07276
10.1007/s12274-020-2931-5
10.1007/s12274-020-2736-6
10.1021/ja513034e
10.1007/s12274-020-2980-9
10.1002/adfm.201706945
10.1016/j.apsb.2020.10.009
10.1038/nmat2608
10.1007/s12274-019-2606-2
10.1002/advs.201801688
10.1007/s12274-020-3069-1
10.1016/j.apsb.2018.06.005
10.1016/j.biomaterials.2017.01.002
10.1002/anie.201712027
10.1021/acsbiomaterials.5b00363
10.1007/s12274-020-2800-2
10.1021/acsnano.0c09407
10.1007/s12274-020-2904-8
10.1021/acs.nanolett.7b00021
10.1007/s12274-020-2664-5
10.1002/adfm.201808462
10.1016/j.ijpharm.2019.03.009
10.1016/j.jconrel.2014.03.057
10.1016/j.chempr.2018.04.004
10.1002/anie.201311136
10.1016/j.actbio.2019.06.008
10.1016/j.jare.2018.06.005
10.1038/s41565-020-0759-5
ContentType Journal Article
Copyright Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7QF
7QO
7QQ
7SE
7SR
7U5
7X7
7XB
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H8G
HCIFZ
JG9
K9.
KB.
L7M
LK8
M0S
M7P
P64
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s12274-021-3626-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Corrosion Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Copper Technical Reference Library
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
METADEX
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1998-0000
EndPage 1212
ExternalDocumentID 10_1007_s12274_021_3626_2
GroupedDBID -58
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
123
1N0
29M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
6NX
7X7
8AO
8FE
8FG
8FH
8FI
8FJ
95-
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACCUX
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADFRT
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRJ
FRP
FRRFC
FSGXE
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HH5
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
J-C
JBSCW
JZLTJ
KB.
KOV
LK8
LLZTM
M4Y
M7P
N2Q
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P2P
P9N
PDBOC
PQQKQ
PROAC
PT4
Q2X
QOR
R89
R9I
RNS
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
TGP
7QF
7QO
7QQ
7SE
7SR
7U5
7XB
8BQ
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H8G
JG9
K9.
L7M
P64
PKEHL
PQEST
PQGLB
PQUKI
PUEGO
ID FETCH-LOGICAL-c316t-6cf3782816a4f5e614761d1a552bbb312f9278fee1adb09f73c967ba9be993713
IEDL.DBID 7X7
ISSN 1998-0124
IngestDate Sat Aug 23 14:54:08 EDT 2025
Tue Jul 01 01:47:00 EDT 2025
Thu Apr 24 23:08:51 EDT 2025
Fri Feb 21 02:47:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords step-by-step multiple stimuli-responsive
superior stability
metal-phenolic network
drug delivery
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-6cf3782816a4f5e614761d1a552bbb312f9278fee1adb09f73c967ba9be993713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2608263096
PQPubID 326270
PageCount 8
ParticipantIDs proquest_journals_2608263096
crossref_citationtrail_10_1007_s12274_021_3626_2
crossref_primary_10_1007_s12274_021_3626_2
springer_journals_10_1007_s12274_021_3626_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220200
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Nano research
PublicationTitleAbbrev Nano Res
PublicationYear 2022
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References Yang, Wang, Shi, Dong (CR5) 2020; 13
Zhang, Wang, Xiao, Fang, Hu, Li, Deng, Cheng, Zhu, Cui (CR40) 2019; 94
Yang, Hu, Tong, Liu, Zhou, Qin, Ouyang, Gao (CR26) 2019; 29
Jia, Song, Qu, Peng, Shi, Du, Li, Lin, Qian (CR19) 2020; 13
Lin, Zhang, Zhang, Wang, Tian, Cai, Tang, Chu, Zhou, Mi (CR9) 2020; 13
Chen, Cheng (CR15) 2020; 13
He, Lu, Qi, Zhu, Chen, Wu (CR13) 2019; 9
Abouelmagd, Abd Ellah, Amen, Abdelmoez, Mohamed (CR36) 2019; 562
Lu, Aimetti, Langer, Gu (CR1) 2017; 2
Poon, Kingston, Ouyang, Ngo, Chan (CR6) 2020; 15
Guo, Ping, Ejima, Alt, Meissner, Richardson, Yan, Peter, von Elverfeldt, Hagemeyer (CR31) 2014; 53
Liang, Li, He, Xu, Liu, Li, Chen, Li (CR34) 2016; 2
Liu, Yu, Yang, Umeshappa, Hu, Yu, Qin, Huang, Gao (CR25) 2019; 29
Gao, Wang, Ye, Lin, Ma, He (CR16) 2021; 33
Yang, Zhou, Zeng, Zhang, Zhang, Liang, Xie, Shao, Song, Huang (CR33) 2020; 13
Hossen, Hossain, Basher, Mia, Rahman, Uddin (CR2) 2019; 15
Chen, Li, Huo, Wang, Chen, Chen, Wang (CR10) 2021; 14
Zhang, Chen, Mao, Guo, Hao, Deng, Han, Li, Liao, Yuan (CR27) 2020; 68
van der Meel, Sulheim, Shi, Kiessling, Mulder, Lammers (CR3) 2019; 14
Lin, Song, Song, Ke, Liu, Zhou, Shen, Li, Yang, Tang (CR8) 2018; 57
Shen, Xing, Zhang, Chen, Ma, Yan (CR32) 2016; 10
Kim, Philippot, Fontanay, Duval, Lamouroux, Canilho, Pasc (CR35) 2015; 5
Su, Li, Khan, Clanton, Zhang, Lin, Song, Wang, Fan, Hernandez (CR23) 2018; 140
Xu, Zhao, Owusu, Zhuang, Liu, Wang, Li, Mai (CR7) 2018; 4
Perry, Reuter, Luft, Pecot, Zamboni, DeSimone (CR42) 2017; 17
Liu, Zhang, Liu, Zeng, Song, Yang, Zhang, Feng (CR29) 2018; 12
Zhen, Wang, Li, Luo, Gao, Ng, Goh, Qin, Zhao, Liu (CR41) 2018; 28
Zhai, Hu, Hu, Wu, Xing (CR17) 2017; 121
Horcajada, Chalati, Serre, Gillet, Sebrie, Baati, Eubank, Heurtaux, Clayette, Kreuz (CR11) 2010; 9
Yi, Hu, Dai, Lou, Zhao, Xia, Tang (CR20) 2021; 15
Yin, Huai, Chen, Yang, Zhang, Gan, Wang, Gu, Li (CR39) 2015; 26
Nichols, Bae (CR38) 2014; 190
Ke, Li, Mohammed, Wang, Tou, Liu, Wen, Kinoh, Anraku, Chen (CR12) 2019; 13
Ejima, Richardson, Liang, Best, van Koeverden, Such, Cui, Caruso (CR30) 2013; 341
Cai, He, Song, Yin, Zhang, Uckun, Jiang, Cheng (CR22) 2015; 137
Meng, Chen, Lv, Liu, He, Wang (CR37) 2020; 8
Jiang, Xu, Chen, Zheng, He, Gu (CR14) 2020; 13
Chen, Su, Ge, Zhang, Li, Zhang, Ye, Lin, Song, Yang (CR21) 2020; 13
Huang, Yang, Li, Lu, Oswald, Liu, Zeng, Jin, Peng, Liu (CR4) 2020; 13
Li, Xiao, Richardson, Tardy, Ejima, Huang, Guo, Liao, Shi (CR28) 2019; 6
Lin, Tong, Liu, Xie, Lei, Chen, Yang, Gao, Yu (CR24) 2020; 10
Yi, Dai, Han, Xu, Zhang, Zhen, Zhao, Lou, Xia (CR18) 2018; 1
Y L Chen (3626_CR15) 2020; 13
G Z Shen (3626_CR32) 2016; 10
S D Zhai (3626_CR17) 2017; 121
K Li (3626_CR28) 2019; 6
R J Zhang (3626_CR27) 2020; 68
R van der Meel (3626_CR3) 2019; 14
J W Nichols (3626_CR38) 2014; 190
J L Guo (3626_CR31) 2014; 53
S A Abouelmagd (3626_CR36) 2019; 562
J L Perry (3626_CR42) 2017; 17
R Liu (3626_CR25) 2019; 29
H Huang (3626_CR4) 2020; 13
C C Lin (3626_CR24) 2020; 10
T Liu (3626_CR29) 2018; 12
C Y Gao (3626_CR16) 2021; 33
W Poon (3626_CR6) 2020; 15
Y P Jia (3626_CR19) 2020; 13
T Y Jiang (3626_CR14) 2020; 13
X Q Yi (3626_CR18) 2018; 1
J Yang (3626_CR5) 2020; 13
H S He (3626_CR13) 2019; 9
S J Zhen (3626_CR41) 2018; 28
L Su (3626_CR23) 2018; 140
Y R Zhang (3626_CR40) 2019; 94
K M Cai (3626_CR22) 2015; 137
S Hossen (3626_CR2) 2019; 15
X T Yang (3626_CR26) 2019; 29
T Chen (3626_CR21) 2020; 13
L Xu (3626_CR7) 2018; 4
H Chen (3626_CR10) 2021; 14
W D Ke (3626_CR12) 2019; 13
P Horcajada (3626_CR11) 2010; 9
G Lin (3626_CR9) 2020; 13
Y Lu (3626_CR1) 2017; 2
X Y Meng (3626_CR37) 2020; 8
H S Liang (3626_CR34) 2016; 2
B Yang (3626_CR33) 2020; 13
S Kim (3626_CR35) 2015; 5
X Q Yi (3626_CR20) 2021; 15
H Ejima (3626_CR30) 2013; 341
S P Yin (3626_CR39) 2015; 26
L S Lin (3626_CR8) 2018; 57
References_xml – volume: 190
  start-page: 451
  year: 2014
  end-page: 464
  ident: CR38
  article-title: EPR: Evidence and fallacy
  publication-title: J. Control. Release
– volume: 13
  start-page: 238
  year: 2020
  end-page: 245
  ident: CR9
  article-title: Metal-organic frameworks nanoswitch: Toward photo-controllable endo/lysosomal rupture and release for enhanced cancer RNA interference
  publication-title: Nano Res.
– volume: 13
  start-page: 2617
  year: 2020
  end-page: 2624
  ident: CR15
  article-title: Advances of biological-camouflaged nanoparticles delivery system
  publication-title: Nano Res.
– volume: 28
  start-page: 1706945
  year: 2018
  ident: CR41
  article-title: Efficient red/near-infrared fluorophores based on benzo[1,2- : 4,5- ]Dithiophene 1,1,5,5-Tetraoxide for targeted photodynamic therapy and two-photon fluorescence bioimaging
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 205
  year: 2021
  end-page: 211
  ident: CR10
  article-title: Tumor-responsive copper-activated disulfiram for synergetic nanocatalytic tumor therapy
  publication-title: Nano Res.
– volume: 13
  start-page: 1739
  year: 2020
  end-page: 1748
  ident: CR19
  article-title: Mesoporous PtPd nanoparticles for ligand-mediated and imaging-guided chemo-photothermal therapy of breast cancer
  publication-title: Nano Res.
– volume: 2
  start-page: 22897
  year: 2017
  end-page: 22914
  ident: CR1
  article-title: Bioresponsive materials
  publication-title: Nat. Rev. Mater.
– volume: 2
  start-page: 317
  year: 2016
  end-page: 325
  ident: CR34
  article-title: Engineering multifunctional films based on metal-phenolic networks for rational pH-responsive delivery and cell imaging
  publication-title: ACS Biomater. Sci. Eng.
– volume: 1
  start-page: 202
  year: 2018
  ident: CR18
  article-title: A high therapeutic efficacy of polymeric prodrug nano-assembly for a combination of photodynamic therapy and chemotherapy
  publication-title: Commun. Biol.
– volume: 13
  start-page: 1810
  year: 2020
  end-page: 1824
  ident: CR14
  article-title: Progress in transdermal drug delivery systems for cancer therapy
  publication-title: Nano Res.
– volume: 68
  start-page: 1326
  year: 2020
  end-page: 1336
  ident: CR27
  article-title: Nobiletin triggers reactive oxygen species-mediated pyroptosis through regulating autophagy in ovarian cancer cells
  publication-title: J. Agric. Food Chem.
– volume: 15
  start-page: 3026
  year: 2021
  end-page: 3037
  ident: CR20
  article-title: Self-guiding polymeric prodrug micelles with two aggregation-induced emission photosensitizers for enhanced chemo-photodynamic therapy
  publication-title: ACS Nano
– volume: 10
  start-page: 5720
  year: 2016
  end-page: 5729
  ident: CR32
  article-title: Interfacial cohesion and assembly of bioadhesive molecules for design of long-term stable hydrophobic nanodrugs toward effective anticancer therapy
  publication-title: ACS Nano
– volume: 121
  start-page: 41
  year: 2017
  end-page: 54
  ident: CR17
  article-title: Visible light-induced crosslinking and physiological stabilization of diselenide-rich nanoparticles for redox-responsive drug release and combination chemotherapy
  publication-title: Biomaterials
– volume: 13
  start-page: 3268
  year: 2020
  end-page: 3277
  ident: CR21
  article-title: Dual activated NIR-II fluorescence and photoacoustic imaging-guided cancer chemoradiotherapy using hybrid plasmonic-fluorescent assemblies
  publication-title: Nano
– volume: 13
  start-page: 3105
  year: 2020
  end-page: 3109
  ident: CR4
  article-title: iRGD decorated liposomes: A novel actively penetrating topical ocular drug delivery strategy
  publication-title: Nano Res.
– volume: 13
  start-page: 2595
  year: 2020
  end-page: 2616
  ident: CR5
  article-title: Nanotechnologies for enhancing cancer immunotherapy
  publication-title: Nano Res.
– volume: 29
  start-page: 1808462
  year: 2019
  ident: CR25
  article-title: Linear chimeric triblock molecules self-assembled micelles with controllably transformable property to enhance tumor retention for chemo-photodynamic therapy of breast cancer
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 172
  year: 2010
  end-page: 178
  ident: CR11
  article-title: Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging
  publication-title: Nat. Mater.
– volume: 9
  start-page: 36
  year: 2019
  end-page: 48
  ident: CR13
  article-title: Adapting liposomes for oral drug delivery
  publication-title: Acta Pharm. Sin. B
– volume: 5
  start-page: 90550
  year: 2015
  end-page: 90558
  ident: CR35
  article-title: pH- and glutathione-responsive release of curcumin from mesoporous silica nanoparticles coated using tannic acid-Fe(III) complex
  publication-title: RSC Adv.
– volume: 15
  start-page: 1
  year: 2019
  end-page: 18
  ident: CR2
  article-title: Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review
  publication-title: J. Adv. Res.
– volume: 4
  start-page: 1538
  year: 2018
  end-page: 1559
  ident: CR7
  article-title: Recent advances in nanowire-biosystem interfaces: From chemical conversion, energy production to electrophysiology
  publication-title: Chem
– volume: 140
  start-page: 1438
  year: 2018
  end-page: 1446
  ident: CR23
  article-title: Chemical design of both a glutathione-sensitive dimeric drug guest and a glucose-derived nanocarrier host to achieve enhanced osteosarcoma lung metastatic anticancer selectivity
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1901896
  year: 2019
  ident: CR26
  article-title: Tumor microenvironment-responsive dual drug dimer-loaded PEGylated bilirubin nanoparticles for improved drug delivery and enhanced immune-chemotherapy of breast cancer
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 2348
  year: 2020
  end-page: 2361
  ident: CR24
  article-title: GSH-responsive SN38 dimer-loaded shape-transformable nanoparticles with iRGD for enhancing chemo-photodynamic therapy
  publication-title: Acta Pharm. Sin. B
– volume: 94
  start-page: 295
  year: 2019
  end-page: 305
  ident: CR40
  article-title: An electrospun fiber-covered stent with programmable dual drug release for endothelialization acceleration and lumen stenosis prevention
  publication-title: Acta Biomater.
– volume: 12
  start-page: 3917
  year: 2018
  end-page: 3927
  ident: CR29
  article-title: Metal ion/tannic acid assembly as a versatile photothermal platform in engineering multimodal nanotheranostics for advanced applications
  publication-title: ACS Nano
– volume: 137
  start-page: 3458
  year: 2015
  end-page: 3461
  ident: CR22
  article-title: Dimeric drug polymeric nanoparticles with exceptionally high drug loading and quantitative loading efficiency
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 5546
  year: 2014
  end-page: 5551
  ident: CR31
  article-title: Engineering multifunctional capsules through the assembly of metal-phenolic networks
  publication-title: Angew. Chem., Int. Edit.
– volume: 13
  start-page: 1013
  year: 2020
  end-page: 1019
  ident: CR33
  article-title: Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy
  publication-title: Nano Res
– volume: 15
  start-page: 819
  year: 2020
  end-page: 829
  ident: CR6
  article-title: A framework for designing delivery systems
  publication-title: Nat. Nanotechnol.
– volume: 17
  start-page: 2879
  year: 2017
  end-page: 2886
  ident: CR42
  article-title: Mediating passive tumor accumulation through particle size, tumor type, and location
  publication-title: Nano Lett.
– volume: 6
  start-page: 1801688
  year: 2019
  ident: CR28
  article-title: Targeted therapy against metastatic melanoma based on self-assembled metal-phenolic nanocomplexes comprised of green tea catechin
  publication-title: Adv. Sci
– volume: 14
  start-page: 1007
  year: 2019
  end-page: 1017
  ident: CR3
  article-title: Smart cancer nanomedicine
  publication-title: Nat. Nanotechnol.
– volume: 562
  start-page: 76
  year: 2019
  end-page: 85
  ident: CR36
  article-title: Self-assembled tannic acid complexes for pH-responsive delivery of antibiotics: Role of drug-carrier interactions
  publication-title: Int. J. Pharm.
– volume: 57
  start-page: 4902
  year: 2018
  end-page: 4906
  ident: CR8
  article-title: Simultaneous fenton-like ion delivery and glutathione depletion by MnO -based nanoagent to enhance chemodynamic therapy
  publication-title: Angew. Chem., Int. Ed.
– volume: 33
  start-page: 2000512
  year: 2021
  ident: CR16
  article-title: Biomedical micro-/nanomotors: From overcoming biological barriers to imaging
  publication-title: Adv. Mater.
– volume: 8
  start-page: 2177
  year: 2020
  end-page: 2188
  ident: CR37
  article-title: A metal-phenolic network-based multifunctional nanocomposite with pH-responsive ROS generation and drug release for synergistic chemodynamic/photothermal/chemo-therapy
  publication-title: J. Mat. Chem. B
– volume: 341
  start-page: 154
  year: 2013
  end-page: 157
  ident: CR30
  article-title: One-step assembly of coordination complexes for versatile film and particle engineering
  publication-title: Science
– volume: 13
  start-page: 2357
  year: 2019
  end-page: 2369
  ident: CR12
  article-title: Therapeutic polymersome nanoreactors with tumor-specific activable cascade reactions for cooperative cancer therapy
  publication-title: ACS Nano
– volume: 26
  start-page: 274
  year: 2015
  end-page: 285
  ident: CR39
  article-title: Intracellular delivery and antitumor effects of a redox-responsive polymeric paclitaxel conjugate based on hyaluronic acid
  publication-title: Acta Biomater.
– volume: 13
  start-page: 3268
  year: 2020
  ident: 3626_CR21
  publication-title: Nano
– volume: 26
  start-page: 274
  year: 2015
  ident: 3626_CR39
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2015.08.029
– volume: 8
  start-page: 2177
  year: 2020
  ident: 3626_CR37
  publication-title: J. Mat. Chem. B
  doi: 10.1039/D0TB00008F
– volume: 5
  start-page: 90550
  year: 2015
  ident: 3626_CR35
  publication-title: RSC Adv.
  doi: 10.1039/C5RA16004A
– volume: 33
  start-page: 2000512
  year: 2021
  ident: 3626_CR16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000512
– volume: 1
  start-page: 202
  year: 2018
  ident: 3626_CR18
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-018-0204-6
– volume: 140
  start-page: 1438
  year: 2018
  ident: 3626_CR23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11462
– volume: 14
  start-page: 1007
  year: 2019
  ident: 3626_CR3
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0567-y
– volume: 68
  start-page: 1326
  year: 2020
  ident: 3626_CR27
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.9b07908
– volume: 341
  start-page: 154
  year: 2013
  ident: 3626_CR30
  publication-title: Science
  doi: 10.1126/science.1237265
– volume: 29
  start-page: 1901896
  year: 2019
  ident: 3626_CR26
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901896
– volume: 2
  start-page: 22897
  year: 2017
  ident: 3626_CR1
  publication-title: Nat. Rev. Mater.
– volume: 12
  start-page: 3917
  year: 2018
  ident: 3626_CR29
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01456
– volume: 10
  start-page: 5720
  year: 2016
  ident: 3626_CR32
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07276
– volume: 13
  start-page: 2617
  year: 2020
  ident: 3626_CR15
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2931-5
– volume: 13
  start-page: 1013
  year: 2020
  ident: 3626_CR33
  publication-title: Nano Res
  doi: 10.1007/s12274-020-2736-6
– volume: 13
  start-page: 2357
  year: 2019
  ident: 3626_CR12
  publication-title: ACS Nano
– volume: 137
  start-page: 3458
  year: 2015
  ident: 3626_CR22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja513034e
– volume: 13
  start-page: 3105
  year: 2020
  ident: 3626_CR4
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2980-9
– volume: 28
  start-page: 1706945
  year: 2018
  ident: 3626_CR41
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706945
– volume: 10
  start-page: 2348
  year: 2020
  ident: 3626_CR24
  publication-title: Acta Pharm. Sin. B
  doi: 10.1016/j.apsb.2020.10.009
– volume: 9
  start-page: 172
  year: 2010
  ident: 3626_CR11
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2608
– volume: 13
  start-page: 238
  year: 2020
  ident: 3626_CR9
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2606-2
– volume: 6
  start-page: 1801688
  year: 2019
  ident: 3626_CR28
  publication-title: Adv. Sci
  doi: 10.1002/advs.201801688
– volume: 14
  start-page: 205
  year: 2021
  ident: 3626_CR10
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-3069-1
– volume: 9
  start-page: 36
  year: 2019
  ident: 3626_CR13
  publication-title: Acta Pharm. Sin. B
  doi: 10.1016/j.apsb.2018.06.005
– volume: 121
  start-page: 41
  year: 2017
  ident: 3626_CR17
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.01.002
– volume: 57
  start-page: 4902
  year: 2018
  ident: 3626_CR8
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201712027
– volume: 2
  start-page: 317
  year: 2016
  ident: 3626_CR34
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.5b00363
– volume: 13
  start-page: 1739
  year: 2020
  ident: 3626_CR19
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2800-2
– volume: 15
  start-page: 3026
  year: 2021
  ident: 3626_CR20
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c09407
– volume: 13
  start-page: 2595
  year: 2020
  ident: 3626_CR5
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2904-8
– volume: 17
  start-page: 2879
  year: 2017
  ident: 3626_CR42
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00021
– volume: 13
  start-page: 1810
  year: 2020
  ident: 3626_CR14
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2664-5
– volume: 29
  start-page: 1808462
  year: 2019
  ident: 3626_CR25
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808462
– volume: 562
  start-page: 76
  year: 2019
  ident: 3626_CR36
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2019.03.009
– volume: 190
  start-page: 451
  year: 2014
  ident: 3626_CR38
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2014.03.057
– volume: 4
  start-page: 1538
  year: 2018
  ident: 3626_CR7
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.04.004
– volume: 53
  start-page: 5546
  year: 2014
  ident: 3626_CR31
  publication-title: Angew. Chem., Int. Edit.
  doi: 10.1002/anie.201311136
– volume: 94
  start-page: 295
  year: 2019
  ident: 3626_CR40
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.06.008
– volume: 15
  start-page: 1
  year: 2019
  ident: 3626_CR2
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2018.06.005
– volume: 15
  start-page: 819
  year: 2020
  ident: 3626_CR6
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0759-5
SSID ssj0062148
Score 2.5418108
Snippet Currently, chemotherapy is the main clinical therapy of tumors. Depressingly, most chemotherapeutic drugs such as doxorubicin and paclitaxel (PTX) have poor...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1205
SubjectTerms Atomic/Molecular Structure and Spectra
Bioavailability
Biocompatibility
Biomedicine
Biotechnology
Chemistry and Materials Science
Chemotherapy
Condensed Matter Physics
Doxorubicin
Drug delivery
Drug delivery systems
Iron
Materials Science
Nanoparticles
Nanotechnology
Organs
Paclitaxel
Phenolic compounds
Phenols
Prodrugs
Research Article
Side effects
Stability
Stimuli
Tannic acid
Toxicity
Tumor cells
Tumors
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6yXvQgPnF1lRw8KYFN0qbtcRGXRdCTC3sLnTZRwa3LPoT9907axKqo4KnQpjnMpDPfdL6ZIeQCFGDcICImrRTu102fQZYCAzdvNS0B8nrYxN29Go2j20k88XXci8B2DynJ2lK3xW4CIyjmKAWuhQpDu7sZu9AdD_FYDIL5VYLXI7Oa2jH0XiGV-dMWX51RizC_JUVrXzPcJTseJNJBo9U9smGqfbL9qXXgAXkaUNTPjMGauSsNxEC8--wYT2zuya9vhk4NImzmyFyuCTCtGuY3dbZzvnqkVV5h5OwJchRBLEVFTn1l1vqQjIc3D9cj5qcmsEJytWSqsBLdfspVHtnYoPtNFC95HscCACQXNhNJao3heQn9zCayyFQCeQbGYRUuj0ineq3MMaFxxIvUCiUSZRB2qRxkAqWyuDnimoh3ST-ITxe-pbibbPGi22bITuIaJa6dxLXoksuPV2ZNP42_FveCTrT_tBYaAzAMiSSGXl1yFfTUPv51s5N_rT4lW8IVOtT87B7pLOcrc4bwYwnn9XF7B9430RA
  priority: 102
  providerName: Springer Nature
Title A step-by-step multiple stimuli-responsive metal-phenolic network prodrug nanoparticles for chemotherapy
URI https://link.springer.com/article/10.1007/s12274-021-3626-2
https://www.proquest.com/docview/2608263096
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwEA7qXvRB_InTOfLgkxJckjZtn2TKpigOEQfzqfTaVAWtc05h_713XepUcC8NJG0e7tLcd8l3d4wdgAH0G5QndK4VHd20BEQhCKB6q2EGkJTFJq575qLvXQ78gTtwe3e0ympPLDfq7DWlM_JjxN2IhDUi7pPhm6CqUXS76kpoLLIapS4jSlcw-Ha4jJJl9axpGBkasupWswydU-iPCSIoUEIWoX7bpRnY_HM_Wpqd7hpbdXiRt6cKXmcLtthgKz-yCG6yxzZHVQ0FTAS1vOIIYu8TkZ_EyPFgPy1_sQi2BfG6KB8wL6YkcE7b6OjjgRdJgU6048pxxLMcdfrigrQmW6zf7dydXQhXQEGkWpqxMGmuEQGE0iRe7lu0xIGRmUx8XwGAliqPVBDm1sokg1aUBzqNTABJBJZgi9TbbKl4LewO474n0zBXRgXGIgIzCegAMpPj5AhxPFlnrUp8ceqyi1ORi-d4lheZJB6jxGOSeKzq7PD7k-E0tca8lxuVTmL3l73HszVRZ0eVnmbD_062O3-yPbasKMih5GY32NJ49GH3EXqMoVmuL3yG3fMmq7XP76862J52eje32NtX7S_s1dmW
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB71caA9IApUDRS6B7iAVs3u2mv7gFAFpGmb9NRKvRmPvW6RiJMmKSh_it_IjO1toFJ768mSH3OYnZ35xvvNDMA7tEh5gw6kKY3mXzddiUmMEnnealwgZvWwieGp7Z8HxxfhxQr88bUwTKv0PrF21MU453_k-4S7CQkbQtyfJ9eSp0bx6aofodGYxYlb_KaUbfbp6Cut73ute9_OvvRlO1VA5kbZubR5aSgsxspmQRk6Ck-UyRcqC0ONiEbpMtFRXDqnsgK7SRmZPLERZgk6juXKkNxVWA-MSXhHxb1D7_mtVvW0rqZsjQKnP0WtS_U05X-SCRHcAEbq_-PgEtzeOY-tw1zvGTxt8ak4aAxqC1Zc9Rw2_-la-AKuDgSZxkTiQvJVeE4i3f3BZCs5bXm3v5wYOQL3knlk3H9YVA3pXLDbnt5ciiqrKGlvuXmC8LMgGxq1RWGLl3D-KKrdhrVqXLkdEGGg8rjUVkfWEeKzGZoIC1uScIJUgepA16svzdtu5jxU42e67MPMGk9J4ylrPNUd-HD7yaRp5fHQy7t-TdJ2V8_SpQ124KNfp-Xje4W9eljYHjzpnw0H6eDo9OQ1bGgusKh54buwNp_euDcEe-b4trY1Ad8f27j_AocBERI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkKpyqAqlYoGCD-VSZLG2Eyc5oAoVVlAe4lCkvaWZxAYkCMuytNq_1l_HTB4sIMGNU6Q8fBh_9nwTfzMD8A0tUtygA2m80fzrpisxiVEi91uNC8SsajZxdGz3ToNf_bA_Bf_bXBiWVbZ7YrVRF9c5_yPfJN5NTNgQ4970jSziZKf3Y3AjuYMUn7S27TRqiBy48T8K32639ndorte17u3-_rknmw4DMjfKjqTNvSEXGSubBT505Kooqi9UFoYaEY3SPtFR7J1TWYHdxEcmT2yEWYKO_boyNO47mIlMqHiNRf2HYM9qVXXuqlPYyIm2J6pV2p6mWFCyOIKLwUj91CdOiO6zs9nK5fU-wceGq4rtGlxzMOXKeZh9VMHwM5xvC4LJQOJY8lW0-kS6e8HCKzlsNLh_nbhyRPQla8q4FrEoawG64C18eHcmyqykAL7R6Qni0oLwdNUkiI0X4PRNTPsFpsvr0i2CCAOVx15bHVlH7M9maCIsrKfBiV4FqgPd1nxp3lQ25wYbl-mkJjNbPCWLp2zxVHfg-8Mng7qsx2svr7RzkjYr_Dad4LEDG-08TR6_ONjS64OtwXuCdXq4f3ywDB8051pUEvEVmB4N79xXYkAjXK2gJuDPW2P7Hho1FT8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+step-by-step+multiple+stimuli-responsive+metal-phenolic+network+prodrug+nanoparticles+for+chemotherapy&rft.jtitle=Nano+research&rft.au=Yi%2C+Xiaoqing&rft.au=Zeng%2C+Weijia&rft.au=Wang%2C+Cui&rft.au=Chen%2C+Ying&rft.date=2022-02-01&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=15&rft.issue=2&rft.spage=1205&rft.epage=1212&rft_id=info:doi/10.1007%2Fs12274-021-3626-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12274_021_3626_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1998-0124&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1998-0124&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1998-0124&client=summon