Bounding Averages Rigorously Using Semidefinite Programming: Mean Moments of the Lorenz System
We describe methods for proving bounds on infinite-time averages in differential dynamical systems. The methods rely on the construction of nonnegative polynomials with certain properties, similarly to the way nonlinear stability can be proved using Lyapunov functions. Nonnegativity is enforced by r...
Saved in:
Published in | Journal of nonlinear science Vol. 28; no. 2; pp. 621 - 651 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We describe methods for proving bounds on infinite-time averages in differential dynamical systems. The methods rely on the construction of nonnegative polynomials with certain properties, similarly to the way nonlinear stability can be proved using Lyapunov functions. Nonnegativity is enforced by requiring the polynomials to be sums of squares, a condition which is then formulated as a semidefinite program (SDP) that can be solved computationally. Although such computations are subject to numerical error, we demonstrate two ways to obtain rigorous results: using interval arithmetic to control the error of an approximate SDP solution, and finding exact analytical solutions to relatively small SDPs. Previous formulations are extended to allow for bounds depending analytically on parametric variables. These methods are illustrated using the Lorenz equations, a system with three state variables (
x
,
y
,
z
) and three parameters
(
β
,
σ
,
r
)
. Bounds are reported for infinite-time averages of all eighteen moments
x
l
y
m
z
n
up to quartic degree that are symmetric under
(
x
,
y
)
↦
(
-
x
,
-
y
)
. These bounds apply to all solutions regardless of stability, including chaotic trajectories, periodic orbits, and equilibrium points. The analytical approach yields two novel bounds that are sharp: the mean of
z
3
can be no larger than its value of
(
r
-
1
)
3
at the nonzero equilibria, and the mean of
x
y
3
must be nonnegative. The interval arithmetic approach is applied at the standard chaotic parameters to bound eleven average moments that all appear to be maximized on the shortest periodic orbit. Our best upper bound on each such average exceeds its value on the maximizing orbit by less than 1%. Many bounds reported here are much tighter than would be possible without computer assistance. |
---|---|
AbstractList | We describe methods for proving bounds on infinite-time averages in differential dynamical systems. The methods rely on the construction of nonnegative polynomials with certain properties, similarly to the way nonlinear stability can be proved using Lyapunov functions. Nonnegativity is enforced by requiring the polynomials to be sums of squares, a condition which is then formulated as a semidefinite program (SDP) that can be solved computationally. Although such computations are subject to numerical error, we demonstrate two ways to obtain rigorous results: using interval arithmetic to control the error of an approximate SDP solution, and finding exact analytical solutions to relatively small SDPs. Previous formulations are extended to allow for bounds depending analytically on parametric variables. These methods are illustrated using the Lorenz equations, a system with three state variables (
x
,
y
,
z
) and three parameters
(
β
,
σ
,
r
)
. Bounds are reported for infinite-time averages of all eighteen moments
x
l
y
m
z
n
up to quartic degree that are symmetric under
(
x
,
y
)
↦
(
-
x
,
-
y
)
. These bounds apply to all solutions regardless of stability, including chaotic trajectories, periodic orbits, and equilibrium points. The analytical approach yields two novel bounds that are sharp: the mean of
z
3
can be no larger than its value of
(
r
-
1
)
3
at the nonzero equilibria, and the mean of
x
y
3
must be nonnegative. The interval arithmetic approach is applied at the standard chaotic parameters to bound eleven average moments that all appear to be maximized on the shortest periodic orbit. Our best upper bound on each such average exceeds its value on the maximizing orbit by less than 1%. Many bounds reported here are much tighter than would be possible without computer assistance. We describe methods for proving bounds on infinite-time averages in differential dynamical systems. The methods rely on the construction of nonnegative polynomials with certain properties, similarly to the way nonlinear stability can be proved using Lyapunov functions. Nonnegativity is enforced by requiring the polynomials to be sums of squares, a condition which is then formulated as a semidefinite program (SDP) that can be solved computationally. Although such computations are subject to numerical error, we demonstrate two ways to obtain rigorous results: using interval arithmetic to control the error of an approximate SDP solution, and finding exact analytical solutions to relatively small SDPs. Previous formulations are extended to allow for bounds depending analytically on parametric variables. These methods are illustrated using the Lorenz equations, a system with three state variables (x, y, z) and three parameters (β,σ,r). Bounds are reported for infinite-time averages of all eighteen moments xlymzn up to quartic degree that are symmetric under (x,y)↦(-x,-y). These bounds apply to all solutions regardless of stability, including chaotic trajectories, periodic orbits, and equilibrium points. The analytical approach yields two novel bounds that are sharp: the mean of z3 can be no larger than its value of (r-1)3 at the nonzero equilibria, and the mean of xy3 must be nonnegative. The interval arithmetic approach is applied at the standard chaotic parameters to bound eleven average moments that all appear to be maximized on the shortest periodic orbit. Our best upper bound on each such average exceeds its value on the maximizing orbit by less than 1%. Many bounds reported here are much tighter than would be possible without computer assistance. |
Author | Goluskin, David |
Author_xml | – sequence: 1 givenname: David orcidid: 0000-0003-3109-0830 surname: Goluskin fullname: Goluskin, David email: goluskin@uvic.ca organization: Department of Mathematics and Statistics, University of Victoria, Department of Mathematics, University of Michigan |
BookMark | eNp9kNtKAzEQhoNUsK0-gHcBr1cnmz3FOy2eoKJ4uA7p7uya0k1qkgr1aXwWn8yUCoKgVwPzzzczfCMyMNYgIYcMjhlAeeIBOE8TYGUispQl6Q4Zsix2WFaUAzIEwaukEmW2R0bezyEO5jwdEnluV6bRpqNnb-hUh54-6M46u_KLNX32m-QRe91gq40O-Plx72znVN_H5JTeojL01vZogqe2peEF6dQ6NO_0ce0D9vtkt1ULjwffdUyeLy-eJtfJ9O7qZnI2TWrOipAUdcMV48jyHCoOom5QKBDAGy5aXpRcZcBarqpczBAx5nVbYFXCDJqaZy0fk6Pt3qWzryv0Qc7typl4UqYQDYk8jVvGhG2name9d9jKpdO9cmvJQG48yq1HGfXIjUeZRqb8xdQ6qKCtCU7pxb9kuiV9vGI6dD8__Q19AYIuim4 |
CitedBy_id | crossref_primary_10_1098_rspa_2023_0627 crossref_primary_10_3934_mine_2023013 crossref_primary_10_1007_s10589_020_00172_4 crossref_primary_10_1137_19M1267647 crossref_primary_10_1016_j_physd_2020_132748 crossref_primary_10_1088_1361_6544_ad68bb crossref_primary_10_1017_jfm_2020_204 crossref_primary_10_1098_rsta_2021_0040 crossref_primary_10_1017_jfm_2017_858 crossref_primary_10_1098_rspa_2020_0450 crossref_primary_10_1088_1361_6544_ab018b crossref_primary_10_1098_rsta_2021_0044 crossref_primary_10_1137_19M1277953 crossref_primary_10_1007_s00332_020_09658_1 crossref_primary_10_1016_j_physd_2021_133009 crossref_primary_10_1007_s00332_023_09990_2 crossref_primary_10_1007_JHEP03_2025_099 crossref_primary_10_1088_1361_6544_ab8f7b crossref_primary_10_1063_5_0061316 crossref_primary_10_1016_j_ejcon_2022_100619 crossref_primary_10_1103_PhysRevFluids_2_123502 crossref_primary_10_1016_j_physleta_2018_04_035 crossref_primary_10_1017_jfm_2022_662 crossref_primary_10_1103_PhysRevFluids_4_014601 crossref_primary_10_1007_s00332_023_09933_x crossref_primary_10_1098_rsta_2021_0035 crossref_primary_10_1088_1361_6544_acecf5 |
Cites_doi | 10.1137/15M1053347 10.1007/BF01443605 10.1109/CACSD.2004.1393890 10.1007/BF01316970 10.1007/s10107-003-0387-5 10.1007/978-94-017-1247-7_7 10.1145/1390768.1390792 10.1109/TAC.2009.2017144 10.1016/S0022-4049(97)83827-3 10.1017/CBO9780511804441 10.1007/978-1-4612-5767-7 10.1007/BF01009519 10.1080/00029890.2004.11920108 10.1007/BF01020800 10.1109/TAC.2013.2283095 10.1098/rsta.2013.0350 10.1137/15M1036543 10.1016/j.jpaa.2003.12.011 10.3934/dcds.2006.15.197 10.1007/10997703_11 10.1016/j.physd.2003.10.006 10.1007/s10107-002-0347-5 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 10.1016/j.jsc.2011.08.002 10.1016/j.physleta.2017.12.023 10.1007/BF02592948 10.1007/s10107-008-0253-6 10.1016/S0375-9601(01)00109-8 10.1137/090772459 10.1016/j.tcs.2008.09.025 10.1007/978-3-642-22863-6_19 10.1088/0951-7715/16/3/314 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC 2017 Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: Springer Science+Business Media, LLC 2017 – notice: Copyright Springer Science & Business Media 2018 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00332-017-9421-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1432-1467 |
EndPage | 651 |
ExternalDocumentID | 10_1007_s00332_017_9421_2 |
GrantInformation_xml | – fundername: Division of Mathematical Sciences grantid: 1515161 funderid: http://dx.doi.org/10.13039/100000121 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 YLTOR Z45 Z7U Z83 Z8W ZMTXR ZWQNP ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c316t-6cd3a13e15508309cde9a0903d39f3673a401f3a859beee9cdcf6e870b0dc34f3 |
IEDL.DBID | U2A |
ISSN | 0938-8974 |
IngestDate | Fri Jul 25 11:01:58 EDT 2025 Thu Apr 24 22:52:45 EDT 2025 Tue Aug 05 12:06:02 EDT 2025 Fri Feb 21 02:34:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-6cd3a13e15508309cde9a0903d39f3673a401f3a859beee9cdcf6e870b0dc34f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3109-0830 |
PQID | 2010095267 |
PQPubID | 2043730 |
PageCount | 31 |
ParticipantIDs | proquest_journals_2010095267 crossref_primary_10_1007_s00332_017_9421_2 crossref_citationtrail_10_1007_s00332_017_9421_2 springer_journals_10_1007_s00332_017_9421_2 |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of nonlinear science |
PublicationTitleAbbrev | J Nonlinear Sci |
PublicationYear | 2018 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | CvitanovićPArtusoRMainieriRTannerGVattayGChaos: Classical and Quantum, ChaosBook.org2016KøbenhavnNiels Bohr Institute PeyrlHParriloPAComputing sum of squares decompositions with rational coefficientsTheor. Comput. Sci.2008409269281247434110.1016/j.tcs.2008.09.0251156.65062 ViswanathDSymbolic dynamics and periodic orbits of the Lorenz attractorNonlinearity20031610351056197579510.1088/0951-7715/16/3/3141030.37010 ViswanathDThe fractal property of the Lorenz attractorPhys. D Nonlinear Phenom.2004190115128204379510.1016/j.physd.2003.10.0061041.37013 WuMYangZLinWExact asymptotic stability analysis and region-of-attraction estimation for nonlinear systemsAbstr. Appl. Anal.2013201314613730391771271.93128 KaltofenELLiBYangZZhiLExact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficientsJ. Symb. Comput.201247115285484410.1016/j.jsc.2011.08.0021229.90115 MOSEK ApS: The MOSEK optimization toolbox for MATLAB manual. Version 7.1 (Revision 54) (2015) Swinnerton-DyerPBounds for trajectories of the Lorenz equations: an illustration of how to choose Lyapunov functionsPhys. Lett. A2001281161167182263310.1016/S0375-9601(01)00109-80984.37022 LorenzENDeterministic nonperiodic flowJ. Atmos. Sci.19632013014110.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 LückeMStatistical dynamics of the Lorenz modelJ. Stat. Phys.197615645547544380110.1007/BF01020800 SparrowCThe Lorenz Equations: Bifurcations, Chaos, and Strange Attractors1982BerlinSpringer10.1007/978-1-4612-5767-70504.58001 TütüncüRHTohKCToddMJSolving semidefinite-quadratic-linear programs using SDPT3Math. Program.200395189217197647910.1007/s10107-002-0347-51030.90082 ParriloPASemidefinite programming relaxations for semialgebraic problemsMath. Program. Ser. B200396293320199305010.1007/s10107-003-0387-51043.14018 RumpSMCsendesTINTLAB—Interval LaboratoryDevelopments in Reliable Computing1999BerlinKluwer Academic Publishers7710410.1007/978-94-017-1247-7_7 Kaltofen, E., Li, B., Yang, Z., Zhi, L.: Exact certification of global optimality of approximate factorizations via rationalizing sums-of-squares with floating point scalars. In: Proceedings of the Twenty-First International Symposium Symbolic Algebraic Computation (2008) LöfbergJPre- and post-processing sum-of-squares programs in practiceIEEE Trans. Automat. Contr.20095410071011251811310.1109/TAC.2009.20171441367.90002 HenrionDKordaMConvex computation of the region of attraction of polynomial control systemsIEEE Trans. Automat. Contr.201459297312316487610.1109/TAC.2013.22830951360.93601 ParriloPAHenrionDGarulliAExploiting algebraic structure in sum of squares programsPosit. Polynomials Control2005BerlinSpringer18119410.1007/10997703_11 TuckerWThe Lorenz attractor existsC. R. Acad. Sci. Sér.1999I3281197120217013850935.34050 EckhardtBOttGPeriodic orbit analysis of the Lorenz attractorZ. Phys. B199493259266125928410.1007/BF01316970 FantuzziGGoluskinDHuangDChernyshenkoSIBounds for deterministic and stochastic dynamical systems using sum-of-squares optimizationSIAM J. Appl. Dyn. Syst.20161519621988356477710.1137/15M10533471356.34058 ChernyshenkoSIGoulartPHuangDPapachristodoulouAPolynomial sum of squares in fluid dynamics: a review with a look aheadPhilos. Trans. R. Soc. A201437220130350324670910.1098/rsta.2013.03501353.76021 Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004) NieJRanestadKSturmfelsBThe algebraic degree of semidefinite programmingMath. Program. Ser. A2010122379405254633610.1007/s10107-008-0253-61184.90119 JenkinsonOErgodic optimizationDiscrete Contin. Dyn. Syst.200615197224219139310.3934/dcds.2006.15.1971116.37017 Löfberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: IEEE International Conference on Computed Aided Control System and Design, Taipei, Taiwan, pp. 284–289 (2004) Jansson, C.: VSDP: a MATLAB software package for verified semidefinite programming. Technical report, Hamburg University of Technology (2006) MalkusWVRNon-periodic convection at high and low Prandtl numberMém. Soc. R. Sci. Liège Collect. IV19726125128 DoeringCRGibbonJDOn the shape and dimension of the Lorenz attractorDyn. Stab. Syst.199510325526813563220838.34070 WangXA simple proof of Descartes’s rule of signsAm. Math. Mon.200411152552610.1080/00029890.2004.11920108 GatermannKParriloPASymmetry groups, semidefinite programs, and sums of squaresJ. Pure Appl. Algebra200419295128206719010.1016/j.jpaa.2003.12.0111108.13021 KnoblochEOn the statistical dynamics of the Lorenz modelJ. Stat. Phys.19792069570910.1007/BF01009519 HenrionDNaldiSSafey El DinMExact algorithms for linear matrix inequalitiesSIAM J. Optim.20162625122539357459010.1137/15M10365431356.90102 MurtyKGKabadiSNSome NP-complete problems in quadratic and nonlinear programmingMath. Program.19873911712991600110.1007/BF025929480637.90078 Monniaux, D., Corbineau, P.: On the generation of Positivstellensatz witnesses in degenerate cases. In: Proceedings of the Interactive Theorem Proving, pp. 249–264. Springer (2011) PowersVWörmannTAn algorithm for sums of squares of real polynomialsJ. Pure Appl. Algebr.199812799104160949610.1016/S0022-4049(97)83827-30936.11023 HilbertDUeber die Darstellung definiter Formen als Summe von FormenquadratenMath. Ann.188832342350151051710.1007/BF0144360520.0198.02 Tobasco, I., Goluskin, D., Doering, C.R.: Optimal bounds and extremal trajectories for time averages in dynamical systems. arXiv:1705.07096v2 (2017) Safey El DinMZhiLComputing rational points in convex semi-algebraic sets and sos decompositionsSIAM J. Optim.20102028762889273593510.1137/0907724591279.90127 J Löfberg (9421_CR17) 2009; 54 J Nie (9421_CR24) 2010; 122 D Viswanath (9421_CR37) 2004; 190 B Eckhardt (9421_CR5) 1994; 93 SM Rump (9421_CR29) 1999 E Knobloch (9421_CR15) 1979; 20 K Gatermann (9421_CR7) 2004; 192 D Hilbert (9421_CR10) 1888; 32 D Henrion (9421_CR8) 2014; 59 M Lücke (9421_CR19) 1976; 15 PA Parrilo (9421_CR25) 2003; 96 G Fantuzzi (9421_CR6) 2016; 15 RH Tütüncü (9421_CR35) 2003; 95 PA Parrilo (9421_CR26) 2005 P Swinnerton-Dyer (9421_CR32) 2001; 281 WVR Malkus (9421_CR20) 1972; 6 9421_CR21 H Peyrl (9421_CR27) 2008; 409 9421_CR22 X Wang (9421_CR38) 2004; 111 O Jenkinson (9421_CR12) 2006; 15 CR Doering (9421_CR4) 1995; 10 C Sparrow (9421_CR31) 1982 9421_CR1 M Safey El Din (9421_CR30) 2010; 20 W Tucker (9421_CR34) 1999; I M Wu (9421_CR39) 2013; 2013 EL Kaltofen (9421_CR14) 2012; 47 D Viswanath (9421_CR36) 2003; 16 SI Chernyshenko (9421_CR2) 2014; 372 D Henrion (9421_CR9) 2016; 26 9421_CR16 KG Murty (9421_CR23) 1987; 39 EN Lorenz (9421_CR18) 1963; 20 V Powers (9421_CR28) 1998; 127 9421_CR11 9421_CR33 P Cvitanović (9421_CR3) 2016 9421_CR13 |
References_xml | – reference: ChernyshenkoSIGoulartPHuangDPapachristodoulouAPolynomial sum of squares in fluid dynamics: a review with a look aheadPhilos. Trans. R. Soc. A201437220130350324670910.1098/rsta.2013.03501353.76021 – reference: TütüncüRHTohKCToddMJSolving semidefinite-quadratic-linear programs using SDPT3Math. Program.200395189217197647910.1007/s10107-002-0347-51030.90082 – reference: KaltofenELLiBYangZZhiLExact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficientsJ. Symb. Comput.201247115285484410.1016/j.jsc.2011.08.0021229.90115 – reference: LückeMStatistical dynamics of the Lorenz modelJ. Stat. Phys.197615645547544380110.1007/BF01020800 – reference: PowersVWörmannTAn algorithm for sums of squares of real polynomialsJ. Pure Appl. Algebr.199812799104160949610.1016/S0022-4049(97)83827-30936.11023 – reference: MurtyKGKabadiSNSome NP-complete problems in quadratic and nonlinear programmingMath. Program.19873911712991600110.1007/BF025929480637.90078 – reference: Jansson, C.: VSDP: a MATLAB software package for verified semidefinite programming. Technical report, Hamburg University of Technology (2006) – reference: WangXA simple proof of Descartes’s rule of signsAm. Math. Mon.200411152552610.1080/00029890.2004.11920108 – reference: GatermannKParriloPASymmetry groups, semidefinite programs, and sums of squaresJ. Pure Appl. Algebra200419295128206719010.1016/j.jpaa.2003.12.0111108.13021 – reference: Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004) – reference: EckhardtBOttGPeriodic orbit analysis of the Lorenz attractorZ. Phys. B199493259266125928410.1007/BF01316970 – reference: NieJRanestadKSturmfelsBThe algebraic degree of semidefinite programmingMath. Program. Ser. A2010122379405254633610.1007/s10107-008-0253-61184.90119 – reference: Monniaux, D., Corbineau, P.: On the generation of Positivstellensatz witnesses in degenerate cases. In: Proceedings of the Interactive Theorem Proving, pp. 249–264. Springer (2011) – reference: ViswanathDSymbolic dynamics and periodic orbits of the Lorenz attractorNonlinearity20031610351056197579510.1088/0951-7715/16/3/3141030.37010 – reference: MOSEK ApS: The MOSEK optimization toolbox for MATLAB manual. Version 7.1 (Revision 54) (2015) – reference: Tobasco, I., Goluskin, D., Doering, C.R.: Optimal bounds and extremal trajectories for time averages in dynamical systems. arXiv:1705.07096v2 (2017) – reference: JenkinsonOErgodic optimizationDiscrete Contin. Dyn. Syst.200615197224219139310.3934/dcds.2006.15.1971116.37017 – reference: MalkusWVRNon-periodic convection at high and low Prandtl numberMém. Soc. R. Sci. Liège Collect. IV19726125128 – reference: TuckerWThe Lorenz attractor existsC. R. Acad. Sci. Sér.1999I3281197120217013850935.34050 – reference: HenrionDNaldiSSafey El DinMExact algorithms for linear matrix inequalitiesSIAM J. Optim.20162625122539357459010.1137/15M10365431356.90102 – reference: WuMYangZLinWExact asymptotic stability analysis and region-of-attraction estimation for nonlinear systemsAbstr. Appl. Anal.2013201314613730391771271.93128 – reference: Kaltofen, E., Li, B., Yang, Z., Zhi, L.: Exact certification of global optimality of approximate factorizations via rationalizing sums-of-squares with floating point scalars. In: Proceedings of the Twenty-First International Symposium Symbolic Algebraic Computation (2008) – reference: PeyrlHParriloPAComputing sum of squares decompositions with rational coefficientsTheor. Comput. Sci.2008409269281247434110.1016/j.tcs.2008.09.0251156.65062 – reference: Safey El DinMZhiLComputing rational points in convex semi-algebraic sets and sos decompositionsSIAM J. Optim.20102028762889273593510.1137/0907724591279.90127 – reference: LöfbergJPre- and post-processing sum-of-squares programs in practiceIEEE Trans. Automat. Contr.20095410071011251811310.1109/TAC.2009.20171441367.90002 – reference: ParriloPAHenrionDGarulliAExploiting algebraic structure in sum of squares programsPosit. Polynomials Control2005BerlinSpringer18119410.1007/10997703_11 – reference: HilbertDUeber die Darstellung definiter Formen als Summe von FormenquadratenMath. Ann.188832342350151051710.1007/BF0144360520.0198.02 – reference: DoeringCRGibbonJDOn the shape and dimension of the Lorenz attractorDyn. Stab. Syst.199510325526813563220838.34070 – reference: HenrionDKordaMConvex computation of the region of attraction of polynomial control systemsIEEE Trans. Automat. Contr.201459297312316487610.1109/TAC.2013.22830951360.93601 – reference: CvitanovićPArtusoRMainieriRTannerGVattayGChaos: Classical and Quantum, ChaosBook.org2016KøbenhavnNiels Bohr Institute – reference: KnoblochEOn the statistical dynamics of the Lorenz modelJ. Stat. Phys.19792069570910.1007/BF01009519 – reference: LorenzENDeterministic nonperiodic flowJ. Atmos. Sci.19632013014110.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 – reference: Swinnerton-DyerPBounds for trajectories of the Lorenz equations: an illustration of how to choose Lyapunov functionsPhys. Lett. A2001281161167182263310.1016/S0375-9601(01)00109-80984.37022 – reference: RumpSMCsendesTINTLAB—Interval LaboratoryDevelopments in Reliable Computing1999BerlinKluwer Academic Publishers7710410.1007/978-94-017-1247-7_7 – reference: Löfberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: IEEE International Conference on Computed Aided Control System and Design, Taipei, Taiwan, pp. 284–289 (2004) – reference: ViswanathDThe fractal property of the Lorenz attractorPhys. D Nonlinear Phenom.2004190115128204379510.1016/j.physd.2003.10.0061041.37013 – reference: FantuzziGGoluskinDHuangDChernyshenkoSIBounds for deterministic and stochastic dynamical systems using sum-of-squares optimizationSIAM J. Appl. Dyn. Syst.20161519621988356477710.1137/15M10533471356.34058 – reference: SparrowCThe Lorenz Equations: Bifurcations, Chaos, and Strange Attractors1982BerlinSpringer10.1007/978-1-4612-5767-70504.58001 – reference: ParriloPASemidefinite programming relaxations for semialgebraic problemsMath. Program. Ser. B200396293320199305010.1007/s10107-003-0387-51043.14018 – volume: 15 start-page: 1962 year: 2016 ident: 9421_CR6 publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/15M1053347 – volume: 32 start-page: 342 year: 1888 ident: 9421_CR10 publication-title: Math. Ann. doi: 10.1007/BF01443605 – ident: 9421_CR16 doi: 10.1109/CACSD.2004.1393890 – volume: 93 start-page: 259 year: 1994 ident: 9421_CR5 publication-title: Z. Phys. B doi: 10.1007/BF01316970 – volume: 6 start-page: 125 year: 1972 ident: 9421_CR20 publication-title: Mém. Soc. R. Sci. Liège Collect. IV – volume: 96 start-page: 293 year: 2003 ident: 9421_CR25 publication-title: Math. Program. Ser. B doi: 10.1007/s10107-003-0387-5 – start-page: 77 volume-title: Developments in Reliable Computing year: 1999 ident: 9421_CR29 doi: 10.1007/978-94-017-1247-7_7 – volume: 2013 start-page: 146137 year: 2013 ident: 9421_CR39 publication-title: Abstr. Appl. Anal. – ident: 9421_CR13 doi: 10.1145/1390768.1390792 – volume: 54 start-page: 1007 year: 2009 ident: 9421_CR17 publication-title: IEEE Trans. Automat. Contr. doi: 10.1109/TAC.2009.2017144 – ident: 9421_CR22 – volume: 127 start-page: 99 year: 1998 ident: 9421_CR28 publication-title: J. Pure Appl. Algebr. doi: 10.1016/S0022-4049(97)83827-3 – volume: I start-page: 1197 issue: 328 year: 1999 ident: 9421_CR34 publication-title: C. R. Acad. Sci. Sér. – ident: 9421_CR1 doi: 10.1017/CBO9780511804441 – volume-title: Chaos: Classical and Quantum, ChaosBook.org year: 2016 ident: 9421_CR3 – volume-title: The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors year: 1982 ident: 9421_CR31 doi: 10.1007/978-1-4612-5767-7 – volume: 20 start-page: 695 year: 1979 ident: 9421_CR15 publication-title: J. Stat. Phys. doi: 10.1007/BF01009519 – volume: 111 start-page: 525 year: 2004 ident: 9421_CR38 publication-title: Am. Math. Mon. doi: 10.1080/00029890.2004.11920108 – volume: 15 start-page: 455 issue: 6 year: 1976 ident: 9421_CR19 publication-title: J. Stat. Phys. doi: 10.1007/BF01020800 – volume: 59 start-page: 297 year: 2014 ident: 9421_CR8 publication-title: IEEE Trans. Automat. Contr. doi: 10.1109/TAC.2013.2283095 – ident: 9421_CR11 – volume: 372 start-page: 20130350 year: 2014 ident: 9421_CR2 publication-title: Philos. Trans. R. Soc. A doi: 10.1098/rsta.2013.0350 – volume: 26 start-page: 2512 year: 2016 ident: 9421_CR9 publication-title: SIAM J. Optim. doi: 10.1137/15M1036543 – volume: 192 start-page: 95 year: 2004 ident: 9421_CR7 publication-title: J. Pure Appl. Algebra doi: 10.1016/j.jpaa.2003.12.011 – volume: 15 start-page: 197 year: 2006 ident: 9421_CR12 publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2006.15.197 – start-page: 181 volume-title: Posit. Polynomials Control year: 2005 ident: 9421_CR26 doi: 10.1007/10997703_11 – volume: 190 start-page: 115 year: 2004 ident: 9421_CR37 publication-title: Phys. D Nonlinear Phenom. doi: 10.1016/j.physd.2003.10.006 – volume: 95 start-page: 189 year: 2003 ident: 9421_CR35 publication-title: Math. Program. doi: 10.1007/s10107-002-0347-5 – volume: 20 start-page: 130 year: 1963 ident: 9421_CR18 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 – volume: 47 start-page: 1 year: 2012 ident: 9421_CR14 publication-title: J. Symb. Comput. doi: 10.1016/j.jsc.2011.08.002 – ident: 9421_CR33 doi: 10.1016/j.physleta.2017.12.023 – volume: 10 start-page: 255 issue: 3 year: 1995 ident: 9421_CR4 publication-title: Dyn. Stab. Syst. – volume: 39 start-page: 117 year: 1987 ident: 9421_CR23 publication-title: Math. Program. doi: 10.1007/BF02592948 – volume: 122 start-page: 379 year: 2010 ident: 9421_CR24 publication-title: Math. Program. Ser. A doi: 10.1007/s10107-008-0253-6 – volume: 281 start-page: 161 year: 2001 ident: 9421_CR32 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(01)00109-8 – volume: 20 start-page: 2876 year: 2010 ident: 9421_CR30 publication-title: SIAM J. Optim. doi: 10.1137/090772459 – volume: 409 start-page: 269 year: 2008 ident: 9421_CR27 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2008.09.025 – ident: 9421_CR21 doi: 10.1007/978-3-642-22863-6_19 – volume: 16 start-page: 1035 year: 2003 ident: 9421_CR36 publication-title: Nonlinearity doi: 10.1088/0951-7715/16/3/314 |
SSID | ssj0017532 |
Score | 2.39003 |
Snippet | We describe methods for proving bounds on infinite-time averages in differential dynamical systems. The methods rely on the construction of nonnegative... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 621 |
SubjectTerms | Analysis Classical Mechanics Construction methods Economic Theory/Quantitative Economics/Mathematical Methods Formulations Interval arithmetic Liapunov functions Lorenz equations Lorenz system Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Orbital stability Parameters Polynomials Semidefinite programming Stability analysis Theoretical Trajectory analysis Upper bounds |
Title | Bounding Averages Rigorously Using Semidefinite Programming: Mean Moments of the Lorenz System |
URI | https://link.springer.com/article/10.1007/s00332-017-9421-2 https://www.proquest.com/docview/2010095267 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELZQu8DATwFRKJUHJlCkJE6chC2FlgoIQkClMkWOY6NKbYKaMsDT8Cw8Gef8VSBAYspg5yKd7-zv8p3vEDqiVFIIO4Qi3SPNim1TY1yCLTMvUglVuszpguCGDkfW5dgel_e4syrbvaIk8526vuym2o6pNAJH8yzT0GDfbdoqdAcjHpl-TR0A_s6pAw882QW0XFGZP4n4ehgtEeY3UjQ_awabaL0EidgvVnULrYikhTZKwIhLd8xaaC2oi65m2yjsqRZJIBD7YJ-wT2T4bvKUziG2n77iPDcA34vZJBZyopDmx_ttkZw1g5FTHAiW4CDNr7zhVGKQjK_TuUjecFHWfAeNBv2Hs6FW9k_QODHoQqM8JswgQkUhLtE9HguPqf8yMfEkoQ5hEFxJwlzbi4QQMM4lFeDAkR5zYkmyixpJmog9hC1OhSltI3YtbpmR4UlhW4w7tlT6jlkb6ZUiQ14WF1c9LqZhXRY5130Iug-V7kOzjY7rV56Lyhp_Te5UqxOWTpaFisgHhGhSp41OqhVbDv8qbP9fsw_QKnzILbJ1OqixmL-IQwAii6iLmn7vvDdQz4vHq343N8RP4trXqQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsMwELQQHIADjwKiUMAHTqBISZw4CbeCqAo0FYJW6s1yHBtVahPUlAN8Dd_Cl7HOqwIBEmcnG2nttWcz412ETilVFNIOqUn3yHBi1za4ULCWeRBpQZWpcrog7NPu0LkduaPyHndWqd0rSjLfqevLbrrtmJYReEbg2JYB--4KYAFf67iGdrumDgB_59RBAJHsA1quqMyfTHw9jBYI8xspmp81nS20UYJE3C5mdRstyaSBNkvAiMtwzBpoPayLrmY7iF3qFklgELdhfcI-keGH8VM6g9x-8opzbQB-lNNxLNVYI82P9_tCnDWFkQscSp7gMM2vvOFUYbCMe-lMJm-4KGu-i4ad68FV1yj7JxiCWHRuUBETbhGpsxCfmIGIZcD1f5mYBIpQj3BIrhThvhtEUkoYF4pKCODIjAVxFNlDy0mayH2EHUGlrVwr9h3h2JEVKOk6XHiu0v6OeROZlSOZKIuL6x4XE1aXRc59z8D3TPue2U10Vr_yXFTW-OvhVjU7rAyyjGkiHxCiTb0mOq9mbDH8q7GDfz19gla7g7DHejf9u0O0Bh_1C-VOCy3PZy_yCEDJPDrOF-Enr23Xlg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iIHrwLa6umoMnpey2adPW2_pYVt0uoi54C2kesqDtsl0P-mv8Lf4yJ32JooLnpBOYzCTf9JvMIHRAqaYQdihDuseWKz3H4kKDLfMwNglVbZ3TBdGA9obu5b13X_Y5zaps94qSLN40mCpNybQ1lrpVP3wzLchMSoFvha5jW3AGz8FpbBuzHjqdmkYALJ7TCCF4dQDIuaI1fxLx9WL6RJvfCNL83umuoKUSMOJOscOraEYla2i5BI-4dM1sDS1GdQHWbB2xE9MuCQTiDtgqnBkZvhk9pBOI8x9fcJ4ngG_V00gqPTKo8_3tukjUeoKRYxwpnuAozZ-_4VRjkIz76UQlr7gocb6Bht3zu9OeVfZSsASx6dSiQhJuE2UikoC0QyFVyM0_GklCTahPOARamvDAC2OlFIwLTRU4c9yWgriabKLZJE3UFsKuoMrRni0DV7hObIdaeS4XvqeNviVvoHalSCbKQuOm38Ujq0sk57pnoHtmdM-cBjqsPxkXVTb-mtysdoeVDpcxQ-oDWnSo30BH1Y59Dv8qbPtfs_fR_PVZl_UvBlc7aAHWDIokniaanU6e1S7gk2m8l9vgBz8a29I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bounding+Averages+Rigorously+Using+Semidefinite+Programming%3A+Mean+Moments+of+the+Lorenz+System&rft.jtitle=Journal+of+nonlinear+science&rft.au=Goluskin%2C+David&rft.date=2018-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0938-8974&rft.eissn=1432-1467&rft.volume=28&rft.issue=2&rft.spage=621&rft.epage=651&rft_id=info:doi/10.1007%2Fs00332-017-9421-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-8974&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-8974&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-8974&client=summon |