Bounding Averages Rigorously Using Semidefinite Programming: Mean Moments of the Lorenz System

We describe methods for proving bounds on infinite-time averages in differential dynamical systems. The methods rely on the construction of nonnegative polynomials with certain properties, similarly to the way nonlinear stability can be proved using Lyapunov functions. Nonnegativity is enforced by r...

Full description

Saved in:
Bibliographic Details
Published inJournal of nonlinear science Vol. 28; no. 2; pp. 621 - 651
Main Author Goluskin, David
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We describe methods for proving bounds on infinite-time averages in differential dynamical systems. The methods rely on the construction of nonnegative polynomials with certain properties, similarly to the way nonlinear stability can be proved using Lyapunov functions. Nonnegativity is enforced by requiring the polynomials to be sums of squares, a condition which is then formulated as a semidefinite program (SDP) that can be solved computationally. Although such computations are subject to numerical error, we demonstrate two ways to obtain rigorous results: using interval arithmetic to control the error of an approximate SDP solution, and finding exact analytical solutions to relatively small SDPs. Previous formulations are extended to allow for bounds depending analytically on parametric variables. These methods are illustrated using the Lorenz equations, a system with three state variables ( x ,  y ,  z ) and three parameters ( β , σ , r ) . Bounds are reported for infinite-time averages of all eighteen moments x l y m z n up to quartic degree that are symmetric under ( x , y ) ↦ ( - x , - y ) . These bounds apply to all solutions regardless of stability, including chaotic trajectories, periodic orbits, and equilibrium points. The analytical approach yields two novel bounds that are sharp: the mean of z 3 can be no larger than its value of ( r - 1 ) 3 at the nonzero equilibria, and the mean of x y 3 must be nonnegative. The interval arithmetic approach is applied at the standard chaotic parameters to bound eleven average moments that all appear to be maximized on the shortest periodic orbit. Our best upper bound on each such average exceeds its value on the maximizing orbit by less than 1%. Many bounds reported here are much tighter than would be possible without computer assistance.
AbstractList We describe methods for proving bounds on infinite-time averages in differential dynamical systems. The methods rely on the construction of nonnegative polynomials with certain properties, similarly to the way nonlinear stability can be proved using Lyapunov functions. Nonnegativity is enforced by requiring the polynomials to be sums of squares, a condition which is then formulated as a semidefinite program (SDP) that can be solved computationally. Although such computations are subject to numerical error, we demonstrate two ways to obtain rigorous results: using interval arithmetic to control the error of an approximate SDP solution, and finding exact analytical solutions to relatively small SDPs. Previous formulations are extended to allow for bounds depending analytically on parametric variables. These methods are illustrated using the Lorenz equations, a system with three state variables ( x ,  y ,  z ) and three parameters ( β , σ , r ) . Bounds are reported for infinite-time averages of all eighteen moments x l y m z n up to quartic degree that are symmetric under ( x , y ) ↦ ( - x , - y ) . These bounds apply to all solutions regardless of stability, including chaotic trajectories, periodic orbits, and equilibrium points. The analytical approach yields two novel bounds that are sharp: the mean of z 3 can be no larger than its value of ( r - 1 ) 3 at the nonzero equilibria, and the mean of x y 3 must be nonnegative. The interval arithmetic approach is applied at the standard chaotic parameters to bound eleven average moments that all appear to be maximized on the shortest periodic orbit. Our best upper bound on each such average exceeds its value on the maximizing orbit by less than 1%. Many bounds reported here are much tighter than would be possible without computer assistance.
We describe methods for proving bounds on infinite-time averages in differential dynamical systems. The methods rely on the construction of nonnegative polynomials with certain properties, similarly to the way nonlinear stability can be proved using Lyapunov functions. Nonnegativity is enforced by requiring the polynomials to be sums of squares, a condition which is then formulated as a semidefinite program (SDP) that can be solved computationally. Although such computations are subject to numerical error, we demonstrate two ways to obtain rigorous results: using interval arithmetic to control the error of an approximate SDP solution, and finding exact analytical solutions to relatively small SDPs. Previous formulations are extended to allow for bounds depending analytically on parametric variables. These methods are illustrated using the Lorenz equations, a system with three state variables (x, y, z) and three parameters (β,σ,r). Bounds are reported for infinite-time averages of all eighteen moments xlymzn up to quartic degree that are symmetric under (x,y)↦(-x,-y). These bounds apply to all solutions regardless of stability, including chaotic trajectories, periodic orbits, and equilibrium points. The analytical approach yields two novel bounds that are sharp: the mean of z3 can be no larger than its value of (r-1)3 at the nonzero equilibria, and the mean of xy3 must be nonnegative. The interval arithmetic approach is applied at the standard chaotic parameters to bound eleven average moments that all appear to be maximized on the shortest periodic orbit. Our best upper bound on each such average exceeds its value on the maximizing orbit by less than 1%. Many bounds reported here are much tighter than would be possible without computer assistance.
Author Goluskin, David
Author_xml – sequence: 1
  givenname: David
  orcidid: 0000-0003-3109-0830
  surname: Goluskin
  fullname: Goluskin, David
  email: goluskin@uvic.ca
  organization: Department of Mathematics and Statistics, University of Victoria, Department of Mathematics, University of Michigan
BookMark eNp9kNtKAzEQhoNUsK0-gHcBr1cnmz3FOy2eoKJ4uA7p7uya0k1qkgr1aXwWn8yUCoKgVwPzzzczfCMyMNYgIYcMjhlAeeIBOE8TYGUispQl6Q4Zsix2WFaUAzIEwaukEmW2R0bezyEO5jwdEnluV6bRpqNnb-hUh54-6M46u_KLNX32m-QRe91gq40O-Plx72znVN_H5JTeojL01vZogqe2peEF6dQ6NO_0ce0D9vtkt1ULjwffdUyeLy-eJtfJ9O7qZnI2TWrOipAUdcMV48jyHCoOom5QKBDAGy5aXpRcZcBarqpczBAx5nVbYFXCDJqaZy0fk6Pt3qWzryv0Qc7typl4UqYQDYk8jVvGhG2name9d9jKpdO9cmvJQG48yq1HGfXIjUeZRqb8xdQ6qKCtCU7pxb9kuiV9vGI6dD8__Q19AYIuim4
CitedBy_id crossref_primary_10_1098_rspa_2023_0627
crossref_primary_10_3934_mine_2023013
crossref_primary_10_1007_s10589_020_00172_4
crossref_primary_10_1137_19M1267647
crossref_primary_10_1016_j_physd_2020_132748
crossref_primary_10_1088_1361_6544_ad68bb
crossref_primary_10_1017_jfm_2020_204
crossref_primary_10_1098_rsta_2021_0040
crossref_primary_10_1017_jfm_2017_858
crossref_primary_10_1098_rspa_2020_0450
crossref_primary_10_1088_1361_6544_ab018b
crossref_primary_10_1098_rsta_2021_0044
crossref_primary_10_1137_19M1277953
crossref_primary_10_1007_s00332_020_09658_1
crossref_primary_10_1016_j_physd_2021_133009
crossref_primary_10_1007_s00332_023_09990_2
crossref_primary_10_1007_JHEP03_2025_099
crossref_primary_10_1088_1361_6544_ab8f7b
crossref_primary_10_1063_5_0061316
crossref_primary_10_1016_j_ejcon_2022_100619
crossref_primary_10_1103_PhysRevFluids_2_123502
crossref_primary_10_1016_j_physleta_2018_04_035
crossref_primary_10_1017_jfm_2022_662
crossref_primary_10_1103_PhysRevFluids_4_014601
crossref_primary_10_1007_s00332_023_09933_x
crossref_primary_10_1098_rsta_2021_0035
crossref_primary_10_1088_1361_6544_acecf5
Cites_doi 10.1137/15M1053347
10.1007/BF01443605
10.1109/CACSD.2004.1393890
10.1007/BF01316970
10.1007/s10107-003-0387-5
10.1007/978-94-017-1247-7_7
10.1145/1390768.1390792
10.1109/TAC.2009.2017144
10.1016/S0022-4049(97)83827-3
10.1017/CBO9780511804441
10.1007/978-1-4612-5767-7
10.1007/BF01009519
10.1080/00029890.2004.11920108
10.1007/BF01020800
10.1109/TAC.2013.2283095
10.1098/rsta.2013.0350
10.1137/15M1036543
10.1016/j.jpaa.2003.12.011
10.3934/dcds.2006.15.197
10.1007/10997703_11
10.1016/j.physd.2003.10.006
10.1007/s10107-002-0347-5
10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
10.1016/j.jsc.2011.08.002
10.1016/j.physleta.2017.12.023
10.1007/BF02592948
10.1007/s10107-008-0253-6
10.1016/S0375-9601(01)00109-8
10.1137/090772459
10.1016/j.tcs.2008.09.025
10.1007/978-3-642-22863-6_19
10.1088/0951-7715/16/3/314
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2017
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Springer Science+Business Media, LLC 2017
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
DOI 10.1007/s00332-017-9421-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1432-1467
EndPage 651
ExternalDocumentID 10_1007_s00332_017_9421_2
GrantInformation_xml – fundername: Division of Mathematical Sciences
  grantid: 1515161
  funderid: http://dx.doi.org/10.13039/100000121
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7U
Z83
Z8W
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c316t-6cd3a13e15508309cde9a0903d39f3673a401f3a859beee9cdcf6e870b0dc34f3
IEDL.DBID U2A
ISSN 0938-8974
IngestDate Fri Jul 25 11:01:58 EDT 2025
Thu Apr 24 22:52:45 EDT 2025
Tue Aug 05 12:06:02 EDT 2025
Fri Feb 21 02:34:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-6cd3a13e15508309cde9a0903d39f3673a401f3a859beee9cdcf6e870b0dc34f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3109-0830
PQID 2010095267
PQPubID 2043730
PageCount 31
ParticipantIDs proquest_journals_2010095267
crossref_primary_10_1007_s00332_017_9421_2
crossref_citationtrail_10_1007_s00332_017_9421_2
springer_journals_10_1007_s00332_017_9421_2
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of nonlinear science
PublicationTitleAbbrev J Nonlinear Sci
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CvitanovićPArtusoRMainieriRTannerGVattayGChaos: Classical and Quantum, ChaosBook.org2016KøbenhavnNiels Bohr Institute
PeyrlHParriloPAComputing sum of squares decompositions with rational coefficientsTheor. Comput. Sci.2008409269281247434110.1016/j.tcs.2008.09.0251156.65062
ViswanathDSymbolic dynamics and periodic orbits of the Lorenz attractorNonlinearity20031610351056197579510.1088/0951-7715/16/3/3141030.37010
ViswanathDThe fractal property of the Lorenz attractorPhys. D Nonlinear Phenom.2004190115128204379510.1016/j.physd.2003.10.0061041.37013
WuMYangZLinWExact asymptotic stability analysis and region-of-attraction estimation for nonlinear systemsAbstr. Appl. Anal.2013201314613730391771271.93128
KaltofenELLiBYangZZhiLExact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficientsJ. Symb. Comput.201247115285484410.1016/j.jsc.2011.08.0021229.90115
MOSEK ApS: The MOSEK optimization toolbox for MATLAB manual. Version 7.1 (Revision 54) (2015)
Swinnerton-DyerPBounds for trajectories of the Lorenz equations: an illustration of how to choose Lyapunov functionsPhys. Lett. A2001281161167182263310.1016/S0375-9601(01)00109-80984.37022
LorenzENDeterministic nonperiodic flowJ. Atmos. Sci.19632013014110.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
LückeMStatistical dynamics of the Lorenz modelJ. Stat. Phys.197615645547544380110.1007/BF01020800
SparrowCThe Lorenz Equations: Bifurcations, Chaos, and Strange Attractors1982BerlinSpringer10.1007/978-1-4612-5767-70504.58001
TütüncüRHTohKCToddMJSolving semidefinite-quadratic-linear programs using SDPT3Math. Program.200395189217197647910.1007/s10107-002-0347-51030.90082
ParriloPASemidefinite programming relaxations for semialgebraic problemsMath. Program. Ser. B200396293320199305010.1007/s10107-003-0387-51043.14018
RumpSMCsendesTINTLAB—Interval LaboratoryDevelopments in Reliable Computing1999BerlinKluwer Academic Publishers7710410.1007/978-94-017-1247-7_7
Kaltofen, E., Li, B., Yang, Z., Zhi, L.: Exact certification of global optimality of approximate factorizations via rationalizing sums-of-squares with floating point scalars. In: Proceedings of the Twenty-First International Symposium Symbolic Algebraic Computation (2008)
LöfbergJPre- and post-processing sum-of-squares programs in practiceIEEE Trans. Automat. Contr.20095410071011251811310.1109/TAC.2009.20171441367.90002
HenrionDKordaMConvex computation of the region of attraction of polynomial control systemsIEEE Trans. Automat. Contr.201459297312316487610.1109/TAC.2013.22830951360.93601
ParriloPAHenrionDGarulliAExploiting algebraic structure in sum of squares programsPosit. Polynomials Control2005BerlinSpringer18119410.1007/10997703_11
TuckerWThe Lorenz attractor existsC. R. Acad. Sci. Sér.1999I3281197120217013850935.34050
EckhardtBOttGPeriodic orbit analysis of the Lorenz attractorZ. Phys. B199493259266125928410.1007/BF01316970
FantuzziGGoluskinDHuangDChernyshenkoSIBounds for deterministic and stochastic dynamical systems using sum-of-squares optimizationSIAM J. Appl. Dyn. Syst.20161519621988356477710.1137/15M10533471356.34058
ChernyshenkoSIGoulartPHuangDPapachristodoulouAPolynomial sum of squares in fluid dynamics: a review with a look aheadPhilos. Trans. R. Soc. A201437220130350324670910.1098/rsta.2013.03501353.76021
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
NieJRanestadKSturmfelsBThe algebraic degree of semidefinite programmingMath. Program. Ser. A2010122379405254633610.1007/s10107-008-0253-61184.90119
JenkinsonOErgodic optimizationDiscrete Contin. Dyn. Syst.200615197224219139310.3934/dcds.2006.15.1971116.37017
Löfberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: IEEE International Conference on Computed Aided Control System and Design, Taipei, Taiwan, pp. 284–289 (2004)
Jansson, C.: VSDP: a MATLAB software package for verified semidefinite programming. Technical report, Hamburg University of Technology (2006)
MalkusWVRNon-periodic convection at high and low Prandtl numberMém. Soc. R. Sci. Liège Collect. IV19726125128
DoeringCRGibbonJDOn the shape and dimension of the Lorenz attractorDyn. Stab. Syst.199510325526813563220838.34070
WangXA simple proof of Descartes’s rule of signsAm. Math. Mon.200411152552610.1080/00029890.2004.11920108
GatermannKParriloPASymmetry groups, semidefinite programs, and sums of squaresJ. Pure Appl. Algebra200419295128206719010.1016/j.jpaa.2003.12.0111108.13021
KnoblochEOn the statistical dynamics of the Lorenz modelJ. Stat. Phys.19792069570910.1007/BF01009519
HenrionDNaldiSSafey El DinMExact algorithms for linear matrix inequalitiesSIAM J. Optim.20162625122539357459010.1137/15M10365431356.90102
MurtyKGKabadiSNSome NP-complete problems in quadratic and nonlinear programmingMath. Program.19873911712991600110.1007/BF025929480637.90078
Monniaux, D., Corbineau, P.: On the generation of Positivstellensatz witnesses in degenerate cases. In: Proceedings of the Interactive Theorem Proving, pp. 249–264. Springer (2011)
PowersVWörmannTAn algorithm for sums of squares of real polynomialsJ. Pure Appl. Algebr.199812799104160949610.1016/S0022-4049(97)83827-30936.11023
HilbertDUeber die Darstellung definiter Formen als Summe von FormenquadratenMath. Ann.188832342350151051710.1007/BF0144360520.0198.02
Tobasco, I., Goluskin, D., Doering, C.R.: Optimal bounds and extremal trajectories for time averages in dynamical systems. arXiv:1705.07096v2 (2017)
Safey El DinMZhiLComputing rational points in convex semi-algebraic sets and sos decompositionsSIAM J. Optim.20102028762889273593510.1137/0907724591279.90127
J Löfberg (9421_CR17) 2009; 54
J Nie (9421_CR24) 2010; 122
D Viswanath (9421_CR37) 2004; 190
B Eckhardt (9421_CR5) 1994; 93
SM Rump (9421_CR29) 1999
E Knobloch (9421_CR15) 1979; 20
K Gatermann (9421_CR7) 2004; 192
D Hilbert (9421_CR10) 1888; 32
D Henrion (9421_CR8) 2014; 59
M Lücke (9421_CR19) 1976; 15
PA Parrilo (9421_CR25) 2003; 96
G Fantuzzi (9421_CR6) 2016; 15
RH Tütüncü (9421_CR35) 2003; 95
PA Parrilo (9421_CR26) 2005
P Swinnerton-Dyer (9421_CR32) 2001; 281
WVR Malkus (9421_CR20) 1972; 6
9421_CR21
H Peyrl (9421_CR27) 2008; 409
9421_CR22
X Wang (9421_CR38) 2004; 111
O Jenkinson (9421_CR12) 2006; 15
CR Doering (9421_CR4) 1995; 10
C Sparrow (9421_CR31) 1982
9421_CR1
M Safey El Din (9421_CR30) 2010; 20
W Tucker (9421_CR34) 1999; I
M Wu (9421_CR39) 2013; 2013
EL Kaltofen (9421_CR14) 2012; 47
D Viswanath (9421_CR36) 2003; 16
SI Chernyshenko (9421_CR2) 2014; 372
D Henrion (9421_CR9) 2016; 26
9421_CR16
KG Murty (9421_CR23) 1987; 39
EN Lorenz (9421_CR18) 1963; 20
V Powers (9421_CR28) 1998; 127
9421_CR11
9421_CR33
P Cvitanović (9421_CR3) 2016
9421_CR13
References_xml – reference: ChernyshenkoSIGoulartPHuangDPapachristodoulouAPolynomial sum of squares in fluid dynamics: a review with a look aheadPhilos. Trans. R. Soc. A201437220130350324670910.1098/rsta.2013.03501353.76021
– reference: TütüncüRHTohKCToddMJSolving semidefinite-quadratic-linear programs using SDPT3Math. Program.200395189217197647910.1007/s10107-002-0347-51030.90082
– reference: KaltofenELLiBYangZZhiLExact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficientsJ. Symb. Comput.201247115285484410.1016/j.jsc.2011.08.0021229.90115
– reference: LückeMStatistical dynamics of the Lorenz modelJ. Stat. Phys.197615645547544380110.1007/BF01020800
– reference: PowersVWörmannTAn algorithm for sums of squares of real polynomialsJ. Pure Appl. Algebr.199812799104160949610.1016/S0022-4049(97)83827-30936.11023
– reference: MurtyKGKabadiSNSome NP-complete problems in quadratic and nonlinear programmingMath. Program.19873911712991600110.1007/BF025929480637.90078
– reference: Jansson, C.: VSDP: a MATLAB software package for verified semidefinite programming. Technical report, Hamburg University of Technology (2006)
– reference: WangXA simple proof of Descartes’s rule of signsAm. Math. Mon.200411152552610.1080/00029890.2004.11920108
– reference: GatermannKParriloPASymmetry groups, semidefinite programs, and sums of squaresJ. Pure Appl. Algebra200419295128206719010.1016/j.jpaa.2003.12.0111108.13021
– reference: Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
– reference: EckhardtBOttGPeriodic orbit analysis of the Lorenz attractorZ. Phys. B199493259266125928410.1007/BF01316970
– reference: NieJRanestadKSturmfelsBThe algebraic degree of semidefinite programmingMath. Program. Ser. A2010122379405254633610.1007/s10107-008-0253-61184.90119
– reference: Monniaux, D., Corbineau, P.: On the generation of Positivstellensatz witnesses in degenerate cases. In: Proceedings of the Interactive Theorem Proving, pp. 249–264. Springer (2011)
– reference: ViswanathDSymbolic dynamics and periodic orbits of the Lorenz attractorNonlinearity20031610351056197579510.1088/0951-7715/16/3/3141030.37010
– reference: MOSEK ApS: The MOSEK optimization toolbox for MATLAB manual. Version 7.1 (Revision 54) (2015)
– reference: Tobasco, I., Goluskin, D., Doering, C.R.: Optimal bounds and extremal trajectories for time averages in dynamical systems. arXiv:1705.07096v2 (2017)
– reference: JenkinsonOErgodic optimizationDiscrete Contin. Dyn. Syst.200615197224219139310.3934/dcds.2006.15.1971116.37017
– reference: MalkusWVRNon-periodic convection at high and low Prandtl numberMém. Soc. R. Sci. Liège Collect. IV19726125128
– reference: TuckerWThe Lorenz attractor existsC. R. Acad. Sci. Sér.1999I3281197120217013850935.34050
– reference: HenrionDNaldiSSafey El DinMExact algorithms for linear matrix inequalitiesSIAM J. Optim.20162625122539357459010.1137/15M10365431356.90102
– reference: WuMYangZLinWExact asymptotic stability analysis and region-of-attraction estimation for nonlinear systemsAbstr. Appl. Anal.2013201314613730391771271.93128
– reference: Kaltofen, E., Li, B., Yang, Z., Zhi, L.: Exact certification of global optimality of approximate factorizations via rationalizing sums-of-squares with floating point scalars. In: Proceedings of the Twenty-First International Symposium Symbolic Algebraic Computation (2008)
– reference: PeyrlHParriloPAComputing sum of squares decompositions with rational coefficientsTheor. Comput. Sci.2008409269281247434110.1016/j.tcs.2008.09.0251156.65062
– reference: Safey El DinMZhiLComputing rational points in convex semi-algebraic sets and sos decompositionsSIAM J. Optim.20102028762889273593510.1137/0907724591279.90127
– reference: LöfbergJPre- and post-processing sum-of-squares programs in practiceIEEE Trans. Automat. Contr.20095410071011251811310.1109/TAC.2009.20171441367.90002
– reference: ParriloPAHenrionDGarulliAExploiting algebraic structure in sum of squares programsPosit. Polynomials Control2005BerlinSpringer18119410.1007/10997703_11
– reference: HilbertDUeber die Darstellung definiter Formen als Summe von FormenquadratenMath. Ann.188832342350151051710.1007/BF0144360520.0198.02
– reference: DoeringCRGibbonJDOn the shape and dimension of the Lorenz attractorDyn. Stab. Syst.199510325526813563220838.34070
– reference: HenrionDKordaMConvex computation of the region of attraction of polynomial control systemsIEEE Trans. Automat. Contr.201459297312316487610.1109/TAC.2013.22830951360.93601
– reference: CvitanovićPArtusoRMainieriRTannerGVattayGChaos: Classical and Quantum, ChaosBook.org2016KøbenhavnNiels Bohr Institute
– reference: KnoblochEOn the statistical dynamics of the Lorenz modelJ. Stat. Phys.19792069570910.1007/BF01009519
– reference: LorenzENDeterministic nonperiodic flowJ. Atmos. Sci.19632013014110.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
– reference: Swinnerton-DyerPBounds for trajectories of the Lorenz equations: an illustration of how to choose Lyapunov functionsPhys. Lett. A2001281161167182263310.1016/S0375-9601(01)00109-80984.37022
– reference: RumpSMCsendesTINTLAB—Interval LaboratoryDevelopments in Reliable Computing1999BerlinKluwer Academic Publishers7710410.1007/978-94-017-1247-7_7
– reference: Löfberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: IEEE International Conference on Computed Aided Control System and Design, Taipei, Taiwan, pp. 284–289 (2004)
– reference: ViswanathDThe fractal property of the Lorenz attractorPhys. D Nonlinear Phenom.2004190115128204379510.1016/j.physd.2003.10.0061041.37013
– reference: FantuzziGGoluskinDHuangDChernyshenkoSIBounds for deterministic and stochastic dynamical systems using sum-of-squares optimizationSIAM J. Appl. Dyn. Syst.20161519621988356477710.1137/15M10533471356.34058
– reference: SparrowCThe Lorenz Equations: Bifurcations, Chaos, and Strange Attractors1982BerlinSpringer10.1007/978-1-4612-5767-70504.58001
– reference: ParriloPASemidefinite programming relaxations for semialgebraic problemsMath. Program. Ser. B200396293320199305010.1007/s10107-003-0387-51043.14018
– volume: 15
  start-page: 1962
  year: 2016
  ident: 9421_CR6
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/15M1053347
– volume: 32
  start-page: 342
  year: 1888
  ident: 9421_CR10
  publication-title: Math. Ann.
  doi: 10.1007/BF01443605
– ident: 9421_CR16
  doi: 10.1109/CACSD.2004.1393890
– volume: 93
  start-page: 259
  year: 1994
  ident: 9421_CR5
  publication-title: Z. Phys. B
  doi: 10.1007/BF01316970
– volume: 6
  start-page: 125
  year: 1972
  ident: 9421_CR20
  publication-title: Mém. Soc. R. Sci. Liège Collect. IV
– volume: 96
  start-page: 293
  year: 2003
  ident: 9421_CR25
  publication-title: Math. Program. Ser. B
  doi: 10.1007/s10107-003-0387-5
– start-page: 77
  volume-title: Developments in Reliable Computing
  year: 1999
  ident: 9421_CR29
  doi: 10.1007/978-94-017-1247-7_7
– volume: 2013
  start-page: 146137
  year: 2013
  ident: 9421_CR39
  publication-title: Abstr. Appl. Anal.
– ident: 9421_CR13
  doi: 10.1145/1390768.1390792
– volume: 54
  start-page: 1007
  year: 2009
  ident: 9421_CR17
  publication-title: IEEE Trans. Automat. Contr.
  doi: 10.1109/TAC.2009.2017144
– ident: 9421_CR22
– volume: 127
  start-page: 99
  year: 1998
  ident: 9421_CR28
  publication-title: J. Pure Appl. Algebr.
  doi: 10.1016/S0022-4049(97)83827-3
– volume: I
  start-page: 1197
  issue: 328
  year: 1999
  ident: 9421_CR34
  publication-title: C. R. Acad. Sci. Sér.
– ident: 9421_CR1
  doi: 10.1017/CBO9780511804441
– volume-title: Chaos: Classical and Quantum, ChaosBook.org
  year: 2016
  ident: 9421_CR3
– volume-title: The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors
  year: 1982
  ident: 9421_CR31
  doi: 10.1007/978-1-4612-5767-7
– volume: 20
  start-page: 695
  year: 1979
  ident: 9421_CR15
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01009519
– volume: 111
  start-page: 525
  year: 2004
  ident: 9421_CR38
  publication-title: Am. Math. Mon.
  doi: 10.1080/00029890.2004.11920108
– volume: 15
  start-page: 455
  issue: 6
  year: 1976
  ident: 9421_CR19
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01020800
– volume: 59
  start-page: 297
  year: 2014
  ident: 9421_CR8
  publication-title: IEEE Trans. Automat. Contr.
  doi: 10.1109/TAC.2013.2283095
– ident: 9421_CR11
– volume: 372
  start-page: 20130350
  year: 2014
  ident: 9421_CR2
  publication-title: Philos. Trans. R. Soc. A
  doi: 10.1098/rsta.2013.0350
– volume: 26
  start-page: 2512
  year: 2016
  ident: 9421_CR9
  publication-title: SIAM J. Optim.
  doi: 10.1137/15M1036543
– volume: 192
  start-page: 95
  year: 2004
  ident: 9421_CR7
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/j.jpaa.2003.12.011
– volume: 15
  start-page: 197
  year: 2006
  ident: 9421_CR12
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2006.15.197
– start-page: 181
  volume-title: Posit. Polynomials Control
  year: 2005
  ident: 9421_CR26
  doi: 10.1007/10997703_11
– volume: 190
  start-page: 115
  year: 2004
  ident: 9421_CR37
  publication-title: Phys. D Nonlinear Phenom.
  doi: 10.1016/j.physd.2003.10.006
– volume: 95
  start-page: 189
  year: 2003
  ident: 9421_CR35
  publication-title: Math. Program.
  doi: 10.1007/s10107-002-0347-5
– volume: 20
  start-page: 130
  year: 1963
  ident: 9421_CR18
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
– volume: 47
  start-page: 1
  year: 2012
  ident: 9421_CR14
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2011.08.002
– ident: 9421_CR33
  doi: 10.1016/j.physleta.2017.12.023
– volume: 10
  start-page: 255
  issue: 3
  year: 1995
  ident: 9421_CR4
  publication-title: Dyn. Stab. Syst.
– volume: 39
  start-page: 117
  year: 1987
  ident: 9421_CR23
  publication-title: Math. Program.
  doi: 10.1007/BF02592948
– volume: 122
  start-page: 379
  year: 2010
  ident: 9421_CR24
  publication-title: Math. Program. Ser. A
  doi: 10.1007/s10107-008-0253-6
– volume: 281
  start-page: 161
  year: 2001
  ident: 9421_CR32
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(01)00109-8
– volume: 20
  start-page: 2876
  year: 2010
  ident: 9421_CR30
  publication-title: SIAM J. Optim.
  doi: 10.1137/090772459
– volume: 409
  start-page: 269
  year: 2008
  ident: 9421_CR27
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2008.09.025
– ident: 9421_CR21
  doi: 10.1007/978-3-642-22863-6_19
– volume: 16
  start-page: 1035
  year: 2003
  ident: 9421_CR36
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/16/3/314
SSID ssj0017532
Score 2.39003
Snippet We describe methods for proving bounds on infinite-time averages in differential dynamical systems. The methods rely on the construction of nonnegative...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 621
SubjectTerms Analysis
Classical Mechanics
Construction methods
Economic Theory/Quantitative Economics/Mathematical Methods
Formulations
Interval arithmetic
Liapunov functions
Lorenz equations
Lorenz system
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Orbital stability
Parameters
Polynomials
Semidefinite programming
Stability analysis
Theoretical
Trajectory analysis
Upper bounds
Title Bounding Averages Rigorously Using Semidefinite Programming: Mean Moments of the Lorenz System
URI https://link.springer.com/article/10.1007/s00332-017-9421-2
https://www.proquest.com/docview/2010095267
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELZQu8DATwFRKJUHJlCkJE6chC2FlgoIQkClMkWOY6NKbYKaMsDT8Cw8Gef8VSBAYspg5yKd7-zv8p3vEDqiVFIIO4Qi3SPNim1TY1yCLTMvUglVuszpguCGDkfW5dgel_e4syrbvaIk8526vuym2o6pNAJH8yzT0GDfbdoqdAcjHpl-TR0A_s6pAw882QW0XFGZP4n4ehgtEeY3UjQ_awabaL0EidgvVnULrYikhTZKwIhLd8xaaC2oi65m2yjsqRZJIBD7YJ-wT2T4bvKUziG2n77iPDcA34vZJBZyopDmx_ttkZw1g5FTHAiW4CDNr7zhVGKQjK_TuUjecFHWfAeNBv2Hs6FW9k_QODHoQqM8JswgQkUhLtE9HguPqf8yMfEkoQ5hEFxJwlzbi4QQMM4lFeDAkR5zYkmyixpJmog9hC1OhSltI3YtbpmR4UlhW4w7tlT6jlkb6ZUiQ14WF1c9LqZhXRY5130Iug-V7kOzjY7rV56Lyhp_Te5UqxOWTpaFisgHhGhSp41OqhVbDv8qbP9fsw_QKnzILbJ1OqixmL-IQwAii6iLmn7vvDdQz4vHq343N8RP4trXqQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsMwELQQHIADjwKiUMAHTqBISZw4CbeCqAo0FYJW6s1yHBtVahPUlAN8Dd_Cl7HOqwIBEmcnG2nttWcz412ETilVFNIOqUn3yHBi1za4ULCWeRBpQZWpcrog7NPu0LkduaPyHndWqd0rSjLfqevLbrrtmJYReEbg2JYB--4KYAFf67iGdrumDgB_59RBAJHsA1quqMyfTHw9jBYI8xspmp81nS20UYJE3C5mdRstyaSBNkvAiMtwzBpoPayLrmY7iF3qFklgELdhfcI-keGH8VM6g9x-8opzbQB-lNNxLNVYI82P9_tCnDWFkQscSp7gMM2vvOFUYbCMe-lMJm-4KGu-i4ad68FV1yj7JxiCWHRuUBETbhGpsxCfmIGIZcD1f5mYBIpQj3BIrhThvhtEUkoYF4pKCODIjAVxFNlDy0mayH2EHUGlrVwr9h3h2JEVKOk6XHiu0v6OeROZlSOZKIuL6x4XE1aXRc59z8D3TPue2U10Vr_yXFTW-OvhVjU7rAyyjGkiHxCiTb0mOq9mbDH8q7GDfz19gla7g7DHejf9u0O0Bh_1C-VOCy3PZy_yCEDJPDrOF-Enr23Xlg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iIHrwLa6umoMnpey2adPW2_pYVt0uoi54C2kesqDtsl0P-mv8Lf4yJ32JooLnpBOYzCTf9JvMIHRAqaYQdihDuseWKz3H4kKDLfMwNglVbZ3TBdGA9obu5b13X_Y5zaps94qSLN40mCpNybQ1lrpVP3wzLchMSoFvha5jW3AGz8FpbBuzHjqdmkYALJ7TCCF4dQDIuaI1fxLx9WL6RJvfCNL83umuoKUSMOJOscOraEYla2i5BI-4dM1sDS1GdQHWbB2xE9MuCQTiDtgqnBkZvhk9pBOI8x9fcJ4ngG_V00gqPTKo8_3tukjUeoKRYxwpnuAozZ-_4VRjkIz76UQlr7gocb6Bht3zu9OeVfZSsASx6dSiQhJuE2UikoC0QyFVyM0_GklCTahPOARamvDAC2OlFIwLTRU4c9yWgriabKLZJE3UFsKuoMrRni0DV7hObIdaeS4XvqeNviVvoHalSCbKQuOm38Ujq0sk57pnoHtmdM-cBjqsPxkXVTb-mtysdoeVDpcxQ-oDWnSo30BH1Y59Dv8qbPtfs_fR_PVZl_UvBlc7aAHWDIokniaanU6e1S7gk2m8l9vgBz8a29I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bounding+Averages+Rigorously+Using+Semidefinite+Programming%3A+Mean+Moments+of+the+Lorenz+System&rft.jtitle=Journal+of+nonlinear+science&rft.au=Goluskin%2C+David&rft.date=2018-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0938-8974&rft.eissn=1432-1467&rft.volume=28&rft.issue=2&rft.spage=621&rft.epage=651&rft_id=info:doi/10.1007%2Fs00332-017-9421-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-8974&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-8974&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-8974&client=summon