Cayley graphs on abelian groups
Let A be an abelian group and let ι be the automorphism of A defined by: ι: a ↦ a −1 . A Cayley graph Γ = Cay( A,S ) is said to have an automorphism group as small as possible if Aut(Γ)=A⋊<ι>. In this paper, we show that almost all Cayley graphs on abelian groups have automorphism group as sma...
Saved in:
Published in | Combinatorica (Budapest. 1981) Vol. 36; no. 4; pp. 371 - 393 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Let
A
be an abelian group and let ι be the automorphism of
A
defined by: ι: a ↦ a
−1
. A Cayley graph Γ = Cay(
A,S
) is said to have an automorphism group
as small as possible
if Aut(Γ)=A⋊<ι>. In this paper, we show that almost all Cayley graphs on abelian groups have automorphism group as small as possible, proving a conjecture of Babai and Godsil. |
---|---|
AbstractList | Let A be an abelian group and let ι be the automorphism of A defined by: ι: a ↦ a−1. A Cayley graph Γ = Cay(A,S) is said to have an automorphism group as small as possible if Aut(Γ)=A⋊<ι>. In this paper, we show that almost all Cayley graphs on abelian groups have automorphism group as small as possible, proving a conjecture of Babai and Godsil. Let A be an abelian group and let ι be the automorphism of A defined by: ι: a ↦ a −1 . A Cayley graph Γ = Cay( A,S ) is said to have an automorphism group as small as possible if Aut(Γ)=A⋊<ι>. In this paper, we show that almost all Cayley graphs on abelian groups have automorphism group as small as possible, proving a conjecture of Babai and Godsil. |
Author | Verret, Gabriel Spiga, Pablo Dobson, Edward |
Author_xml | – sequence: 1 givenname: Edward surname: Dobson fullname: Dobson, Edward organization: Department of Mathematics and Statistics, Mississippi State University, Inštitut Andrej Marušic, University of Primorska – sequence: 2 givenname: Pablo surname: Spiga fullname: Spiga, Pablo organization: Departimento di Matematica Pura e Applicata, University of Milano-Bicocca – sequence: 3 givenname: Gabriel surname: Verret fullname: Verret, Gabriel email: gabriel.verret@uwa.edu.au organization: Centre for Mathematics of Symmetry and Computation, School of Mathematics and Statistics, The University of Western Australia, University of Primorska, FAMNIT |
BookMark | eNp1kEtLxDAUhYOMYGf0B7iy4Dp6b9K8llJ8wYAbXYe0TccZalqT6aL_3g514cbVhcP5zoVvTVahD56Qa4Q7BFD3CaAwnAIKypFLKs5IhgU3VBpkK5IBA0ON1PyCrFM6AIDmKDJyU7qp81O-i274THkfclf5bu_CnPTjkC7Jeeu65K9-74Z8PD2-ly90-_b8Wj5sac1RHqmspCgEOKdkywuoVc2cAiNdKwy0rlVGSdTGaN1gzbxjTDXc-BoRmooLwzfkdtkdYv89-nS0h36MYX5pUWvQmqtCzC1cWnXsU4q-tUPcf7k4WQR78mAXD3b2YE8e7IlhC5Pmbtj5-Gf5X-gHwrNfHA |
CitedBy_id | crossref_primary_10_1007_s10231_021_01163_w crossref_primary_10_1016_j_disc_2019_111646 crossref_primary_10_1016_j_jctb_2016_06_002 crossref_primary_10_1007_s10801_019_00927_1 crossref_primary_10_1007_s10801_018_0814_6 crossref_primary_10_1016_j_disc_2020_112032 crossref_primary_10_1007_s00373_022_02515_w crossref_primary_10_1016_j_amc_2018_03_054 crossref_primary_10_1007_s10801_024_01310_5 crossref_primary_10_1112_plms_12563 crossref_primary_10_1007_s10801_021_01060_8 crossref_primary_10_1016_j_jctb_2017_05_003 crossref_primary_10_1016_j_dam_2019_09_018 crossref_primary_10_1002_jgt_22605 crossref_primary_10_1016_j_dam_2018_03_047 crossref_primary_10_1112_blms_12177 crossref_primary_10_1016_j_jcta_2017_08_001 crossref_primary_10_1016_j_disc_2020_111913 crossref_primary_10_1016_j_jcta_2022_105606 crossref_primary_10_1016_j_jctb_2019_10_003 crossref_primary_10_1007_s10801_020_00956_1 crossref_primary_10_1007_s11856_021_2150_0 |
Cites_doi | 10.1007/s10801-005-6903-3 10.1007/BF02773471 10.1016/j.ejc.2014.07.003 10.1515/jgt-2014-0015 10.1016/S0195-6698(82)80003-6 10.4153/CJM-1972-101-5 10.1090/gsm/092 10.1016/S0021-9800(68)80086-9 10.1006/jabr.1996.0220 10.1007/BF02107568 10.1007/978-3-642-61804-8 10.1017/S144678870003216X 10.1016/0021-8693(78)90259-4 10.1112/plms/pdr004 10.1007/b97433 10.1007/BF02579330 10.1090/memo/0432 10.26493/1855-3974.120.c55 10.26493/1855-3974.315.868 |
ContentType | Journal Article |
Copyright | János Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg 2015 Copyright Springer Science & Business Media 2016 |
Copyright_xml | – notice: János Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg 2015 – notice: Copyright Springer Science & Business Media 2016 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00493-015-3136-5 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1439-6912 |
EndPage | 393 |
ExternalDocumentID | 10_1007_s00493_015_3136_5 |
GroupedDBID | -52 -5D -5G -BR -EM -ET -Y2 -~C -~X .86 .DC 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6J9 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAGAY AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPOP AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFLOW AFMKY AFNRJ AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGPAZ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MQGED N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9R PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WIP WK8 XFK YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZWQNP ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEARS AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION |
ID | FETCH-LOGICAL-c316t-6b65450aa76f340c7c2a7096af590faf7976189988d1c2ea227d39ec110db3593 |
IEDL.DBID | AGYKE |
ISSN | 0209-9683 |
IngestDate | Thu Oct 10 16:54:13 EDT 2024 Thu Sep 12 18:09:54 EDT 2024 Sat Dec 16 12:00:23 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | 20B25 05E18 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-6b65450aa76f340c7c2a7096af590faf7976189988d1c2ea227d39ec110db3593 |
PQID | 1880883745 |
PQPubID | 2043757 |
PageCount | 23 |
ParticipantIDs | proquest_journals_1880883745 crossref_primary_10_1007_s00493_015_3136_5 springer_journals_10_1007_s00493_015_3136_5 |
PublicationCentury | 2000 |
PublicationDate | 2016-08-01 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Combinatorica (Budapest. 1981) |
PublicationTitleAbbrev | Combinatorica |
PublicationYear | 2016 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Xu (CR27) 1998; 182 Jabara, Spiga (CR14) 2013; 101 Babai (CR2) 1980; 11 Imrich (CR12) 1978 Suzuki (CR26) 1982 Godsil (CR10) 1981; 1 Leung, Man (CR17) 1998; 106 Dobson (CR7) 2010; 3 A. Evdokimov, Ponomarenko (CR8) 2002; 14 Isaacs (CR13) 2008 Nowitz, Watkins (CR24) 1972; 24 Yoshida (CR28) 1978; 52 Bhoumik, Dobson, Morris (CR4) 2014; 7 Casolo, Jabara, Spiga (CR5) 2014; 17 Li (CR18) 2005; 21 H. Conway, Curtis, Norton, Parker, Wilson (CR6) 1985 Leung, Man (CR16) 1996; 183 Liebeck, Praeger, Saxl (CR20) 1988; 44 CR25 Babai (CR1) 1978; 37 Godsil (CR9) 1981 Li, Zhang (CR19) 2011; 103 Morris, Spiga, Verret (CR22) 2015; 43 CR21 Hetzel (CR11) 1976 Kurzweil, Stellmacher (CR15) 2004 Babai, Godsil (CR3) 1982; 3 Nowitz (CR23) 1968; 4 J H. Conway (3136_CR6) 1985 K H Leung (3136_CR16) 1996; 183 L Babai (3136_CR1) 1978; 37 W Imrich (3136_CR12) 1978 C H Li (3136_CR18) 2005; 21 M W Liebeck (3136_CR20) 1988; 44 M Isaacs (3136_CR13) 2008 C D Godsil (3136_CR9) 1981 H Kurzweil (3136_CR15) 2004 C Casolo (3136_CR5) 2014; 17 S A. Evdokimov (3136_CR8) 2002; 14 D Hetzel (3136_CR11) 1976 L A Nowitz (3136_CR24) 1972; 24 L Babai (3136_CR3) 1982; 3 K H Leung (3136_CR17) 1998; 106 L A Nowitz (3136_CR23) 1968; 4 L Babai (3136_CR2) 1980; 11 C D Godsil (3136_CR10) 1981; 1 J Morris (3136_CR22) 2015; 43 MY Xu (3136_CR27) 1998; 182 M Suzuki (3136_CR26) 1982 E Dobson (3136_CR7) 2010; 3 3136_CR25 S Bhoumik (3136_CR4) 2014; 7 3136_CR21 C H Li (3136_CR19) 2011; 103 T Yoshida (3136_CR28) 1978; 52 E Jabara (3136_CR14) 2013; 101 |
References_xml | – volume: 21 start-page: 131 year: 2005 end-page: 136 ident: CR18 article-title: Permutation groups with a cyclic regular subgroup and arc-transitive circulants publication-title: J. Algebraic Combin. doi: 10.1007/s10801-005-6903-3 contributor: fullname: Li – volume: 106 start-page: 251 year: 1998 end-page: 267 ident: CR17 article-title: On Schur rings over cyclic groups publication-title: Israel J. Math. doi: 10.1007/BF02773471 contributor: fullname: Man – volume: 43 start-page: 68 year: 2015 end-page: 81 ident: CR22 article-title: Automorphisms of Cayley graphs on generaliseddicyclic groups publication-title: European J. Combin. doi: 10.1016/j.ejc.2014.07.003 contributor: fullname: Verret – volume: 17 start-page: 911 year: 2014 end-page: 924 ident: CR5 article-title: On the Fitting height of factorised solublegroups publication-title: J. Group Theory doi: 10.1515/jgt-2014-0015 contributor: fullname: Spiga – volume: 182 start-page: 309 year: 1998 end-page: 319 ident: CR27 article-title: Automorphism groups and isomorphisms of Cayley digraphs publication-title: DiscreteMath contributor: fullname: Xu – volume: 3 start-page: 9 year: 1982 end-page: 15 ident: CR3 article-title: On the automorphism groups of almost all Cayleygraphs publication-title: European J. Combin. doi: 10.1016/S0195-6698(82)80003-6 contributor: fullname: Godsil – volume: 7 start-page: 487 year: 2014 end-page: 506 ident: CR4 article-title: On The Automorphism Groups of AlmostAll Circulant Graphs and Digraphs publication-title: Ars Math. Contemp. contributor: fullname: Morris – volume: 24 start-page: 993 year: 1972 end-page: 1008 and 1009–1018 ident: CR24 article-title: Graphical regular representations of non-abeliangroups I-II publication-title: Canad. J. Math. doi: 10.4153/CJM-1972-101-5 contributor: fullname: Watkins – year: 2008 ident: CR13 publication-title: Finite Group Theory doi: 10.1090/gsm/092 contributor: fullname: Isaacs – volume: 4 start-page: 49 year: 1968 end-page: 51 ident: CR23 article-title: On the non-existence of graphs with transitive generalized dicyclicgroups publication-title: J. Combinatorial Theory doi: 10.1016/S0021-9800(68)80086-9 contributor: fullname: Nowitz – volume: 183 start-page: 273 year: 1996 end-page: 285 ident: CR16 article-title: On Schur rings over cyclic groups. II publication-title: J. Algebra doi: 10.1006/jabr.1996.0220 contributor: fullname: Man – ident: CR25 – volume: 11 start-page: 257 year: 1980 end-page: 270 ident: CR2 article-title: Finite digraphs with given regular automorphism groups publication-title: Period. Math.Hungar. doi: 10.1007/BF02107568 contributor: fullname: Babai – year: 1982 ident: CR26 publication-title: Group Theory I doi: 10.1007/978-3-642-61804-8 contributor: fullname: Suzuki – start-page: 611 year: 1978 end-page: 621 ident: CR12 publication-title: Graphical regular representations of groups of odd order, Combinatorics(Proc. Colloq., Keszthely, 1976), Bolyai-North-Holland contributor: fullname: Imrich – ident: CR21 – volume: 14 start-page: 11 year: 2002 end-page: 55 ident: CR8 article-title: Characterization of cyclotomic schemesand normal Schur rings over a cyclic group publication-title: Algebra i Analiz contributor: fullname: Ponomarenko – volume: 101 start-page: 301 year: 2013 end-page: 307 ident: CR14 publication-title: Abelian Carter subgroups in finite permutation groups,Arch. Math. contributor: fullname: Spiga – year: 1985 ident: CR6 publication-title: Atlas of Finite Groups contributor: fullname: Wilson – volume: 44 start-page: 389 year: 1988 end-page: 396 ident: CR20 article-title: On the O'Nan-Scott theorem forfinite primitive permutation groups publication-title: J. Austral. Math. Soc. Ser. A doi: 10.1017/S144678870003216X contributor: fullname: Saxl – volume: 52 start-page: 1 year: 1978 end-page: 38 ident: CR28 article-title: Character theoretic transfer publication-title: J. Algebra doi: 10.1016/0021-8693(78)90259-4 contributor: fullname: Yoshida – volume: 103 start-page: 441 year: 2011 end-page: 472 ident: CR19 article-title: The finite primitive groups with soluble stabilizers, and theedge-primitive s-arc transitive graphs publication-title: Proc. London Math. Soc. doi: 10.1112/plms/pdr004 contributor: fullname: Zhang – volume: 3 start-page: 200 year: 2010 end-page: 213 ident: CR7 article-title: Asymptotic automorphism groups of Cayley digraphs and graphs ofabelian groups of prime-power order publication-title: Ars Math. Contemp. contributor: fullname: Dobson – start-page: 221 year: 1981 end-page: 239 ident: CR9 publication-title: GRRs for nonsolvable groups, Algebraic methods in graph theory contributor: fullname: Godsil – year: 2004 ident: CR15 publication-title: The Theory of Finite Groups, An Introduction doi: 10.1007/b97433 contributor: fullname: Stellmacher – volume: 1 start-page: 243 year: 1981 end-page: 256 ident: CR10 article-title: On the full automorphism group of a graph publication-title: Combinatorica doi: 10.1007/BF02579330 contributor: fullname: Godsil – volume: 37 start-page: 291 year: 1978 end-page: 296 ident: CR1 article-title: On a conjecture of M. E. Watkins on graphical regular representations offinite groups publication-title: Compositio Math contributor: fullname: Babai – year: 1976 ident: CR11 publication-title: über regulare graphische Darstellungen von auosbaren Gruppen contributor: fullname: Hetzel – volume: 11 start-page: 257 year: 1980 ident: 3136_CR2 publication-title: Period. Math.Hungar. doi: 10.1007/BF02107568 contributor: fullname: L Babai – start-page: 611 volume-title: Graphical regular representations of groups of odd order, Combinatorics(Proc. Colloq., Keszthely, 1976), Bolyai-North-Holland year: 1978 ident: 3136_CR12 contributor: fullname: W Imrich – start-page: 221 volume-title: GRRs for nonsolvable groups, Algebraic methods in graph theory year: 1981 ident: 3136_CR9 contributor: fullname: C D Godsil – volume-title: Group Theory I year: 1982 ident: 3136_CR26 doi: 10.1007/978-3-642-61804-8 contributor: fullname: M Suzuki – volume: 44 start-page: 389 year: 1988 ident: 3136_CR20 publication-title: J. Austral. Math. Soc. Ser. A doi: 10.1017/S144678870003216X contributor: fullname: M W Liebeck – volume: 101 start-page: 301 year: 2013 ident: 3136_CR14 publication-title: Abelian Carter subgroups in finite permutation groups,Arch. Math. contributor: fullname: E Jabara – volume: 106 start-page: 251 year: 1998 ident: 3136_CR17 publication-title: Israel J. Math. doi: 10.1007/BF02773471 contributor: fullname: K H Leung – volume-title: über regulare graphische Darstellungen von auosbaren Gruppen year: 1976 ident: 3136_CR11 contributor: fullname: D Hetzel – volume: 21 start-page: 131 year: 2005 ident: 3136_CR18 publication-title: J. Algebraic Combin. doi: 10.1007/s10801-005-6903-3 contributor: fullname: C H Li – ident: 3136_CR25 – volume: 52 start-page: 1 year: 1978 ident: 3136_CR28 publication-title: J. Algebra doi: 10.1016/0021-8693(78)90259-4 contributor: fullname: T Yoshida – volume: 17 start-page: 911 year: 2014 ident: 3136_CR5 publication-title: J. Group Theory doi: 10.1515/jgt-2014-0015 contributor: fullname: C Casolo – volume-title: Atlas of Finite Groups year: 1985 ident: 3136_CR6 contributor: fullname: J H. Conway – ident: 3136_CR21 doi: 10.1090/memo/0432 – volume: 3 start-page: 9 year: 1982 ident: 3136_CR3 publication-title: European J. Combin. doi: 10.1016/S0195-6698(82)80003-6 contributor: fullname: L Babai – volume: 1 start-page: 243 year: 1981 ident: 3136_CR10 publication-title: Combinatorica doi: 10.1007/BF02579330 contributor: fullname: C D Godsil – volume-title: The Theory of Finite Groups, An Introduction year: 2004 ident: 3136_CR15 doi: 10.1007/b97433 contributor: fullname: H Kurzweil – volume: 43 start-page: 68 year: 2015 ident: 3136_CR22 publication-title: European J. Combin. doi: 10.1016/j.ejc.2014.07.003 contributor: fullname: J Morris – volume: 37 start-page: 291 year: 1978 ident: 3136_CR1 publication-title: Compositio Math contributor: fullname: L Babai – volume: 3 start-page: 200 year: 2010 ident: 3136_CR7 publication-title: Ars Math. Contemp. doi: 10.26493/1855-3974.120.c55 contributor: fullname: E Dobson – volume: 183 start-page: 273 year: 1996 ident: 3136_CR16 publication-title: J. Algebra doi: 10.1006/jabr.1996.0220 contributor: fullname: K H Leung – volume: 4 start-page: 49 year: 1968 ident: 3136_CR23 publication-title: J. Combinatorial Theory doi: 10.1016/S0021-9800(68)80086-9 contributor: fullname: L A Nowitz – volume: 182 start-page: 309 year: 1998 ident: 3136_CR27 publication-title: DiscreteMath contributor: fullname: MY Xu – volume-title: Finite Group Theory year: 2008 ident: 3136_CR13 doi: 10.1090/gsm/092 contributor: fullname: M Isaacs – volume: 7 start-page: 487 year: 2014 ident: 3136_CR4 publication-title: Ars Math. Contemp. doi: 10.26493/1855-3974.315.868 contributor: fullname: S Bhoumik – volume: 24 start-page: 993 year: 1972 ident: 3136_CR24 publication-title: Canad. J. Math. doi: 10.4153/CJM-1972-101-5 contributor: fullname: L A Nowitz – volume: 14 start-page: 11 year: 2002 ident: 3136_CR8 publication-title: Algebra i Analiz contributor: fullname: S A. Evdokimov – volume: 103 start-page: 441 year: 2011 ident: 3136_CR19 publication-title: Proc. London Math. Soc. doi: 10.1112/plms/pdr004 contributor: fullname: C H Li |
SSID | ssj0008315 |
Score | 2.345248 |
Snippet | Let
A
be an abelian group and let ι be the automorphism of
A
defined by: ι: a ↦ a
−1
. A Cayley graph Γ = Cay(
A,S
) is said to have an automorphism group
as... Let A be an abelian group and let ι be the automorphism of A defined by: ι: a ↦ a−1. A Cayley graph Γ = Cay(A,S) is said to have an automorphism group as small... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 371 |
SubjectTerms | Combinatorics Graphs Mathematics Mathematics and Statistics Original Paper |
Title | Cayley graphs on abelian groups |
URI | https://link.springer.com/article/10.1007/s00493-015-3136-5 https://www.proquest.com/docview/1880883745 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELb6WGDgjXiUkoEJ5MrxK87YVi0VqJ2oVKbIdpylUopIOsCvx06T8B4627J0p_Pdd767zwDcoBhRSRWDgRYMUhvCoMJCQkkTTEksSei7aeTpjE_m9GHBFg2A66eLdNmrKpKFo65n3RyWda0_rnBLOGRN0C7nTtv9--fHUe1_RflvAUaOe1KQqpb51yHfo9EnxPxRFS2CzXh_MwCYFRyFrsdk2VvnqqfffzM4biHHAdgrsafX3xjLIWiY9AjsTmvi1uwYXA9tBm_evILHOvNWqSeVcS8hXjH-kZ2A-Xj0NJzA8g8FqInPc8gVtxgJSRnwhFCkA41lYNMWmbAQJTIJLBzxXc4lYl9jIzEOYhIabVFBrAgLySlopavUnAEvZKHQ1NdCUutepZIowZIpnxvCEqTZObitdBm9bKgyopoUuZA6slJHTurIbu5U2o7KW5NFjhtO2IyZ2uW7Sntflv877GKr3Zdgx6Ievuni64BW_ro2VxZZ5KprTWk8GMy6pUl1QXOO-x9p5cLw |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIpHoRmYQJYcv-KMVUVVoO3USt2ss-OMKSJh4N9jp0l4CAZmW5b82br7znf3GaFbkhEO3AicWCUw9y4MG6oAA88pZxmwNA7dyLO5nCz500qsmj7usq12b1OStaXumt0CmQ21PyFzyyQW22gnyKsHwfwlHXbmVzXfFlASpCcVa1OZvy3x3Rl9MswfSdHa14wP0UFDEqPh5lSP0JYrjtH-rFNYLU_QYORDbfce1YLTZbQuIjAuPFlEdZ9GeYqW44fFaIKbzw6wZbGssDTSkxkCkMiccWITSyHx8QXkIiU55InnDXEIjlQWW-qA0iRjqbPefWeGiZSdoV6xLtw5ilKRKstjq4B7OwgGSE5BmFg6JnJixQW6a3etXzaaFrpTL64h0h4iHSDSfnK_xUU317vUQcRN-dCW--H7Fqsvw38tdvmv2QO0O1nMpnr6OH--QnueqshN6V0f9arXN3ft6UBlburj_wCOk6eg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTwMhFCZaE6MH4xqXaufgSUNk2IY5NtWmLm082KQ3Agwcp40zHvz3wmwu0YNnCAkfhPc93nvfA-ASZYgqqhlMjGCQehMGNRYKKuowJZkiaRyqkaczPpnThwVbNH1OizbbvQ1J1jUNQaUpL29WmbvpCt8CsQ15QCGKSzhk62DDWyIScvrmeNg9xaJpYYBRkKEUpA1r_rbEd8P0yTZ_BEgruzPeBTsNYYyG9QnvgTWb74Ptaae2WhyAwci73fY9qsSni2iZR0rb8H0RVTUbxSGYj-9eRhPYND6AhsS8hFxzT2yQUgl3hCKTGKwS72sox1LklEs8h4iDoySy2GCrME4yklrjTXmmCUvJEejly9wegyhlqTA0NkJR_yYqrZDDiumYW8IcMuwEXLW7lqta30J2SsYVRNJDJANE0k_ut7jI5qoXMgi6Ce_mUj983WL1ZfivxU7_NXsANp9vx_LpfvZ4BrY8a-F1Fl4f9MrXN3vumUGpL6rT_wD4-Kvl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cayley+graphs+on+abelian+groups&rft.jtitle=Combinatorica+%28Budapest.+1981%29&rft.au=Dobson%2C+Edward&rft.au=Spiga%2C+Pablo&rft.au=Verret%2C+Gabriel&rft.date=2016-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0209-9683&rft.eissn=1439-6912&rft.volume=36&rft.issue=4&rft.spage=371&rft.epage=393&rft_id=info:doi/10.1007%2Fs00493-015-3136-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0209-9683&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0209-9683&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0209-9683&client=summon |