A new hybrid data-driven model for event-based rainfall–runoff simulation
A new hybrid data-driven model named PBK has been proposed to improve the event-based rainfall–runoff simulation. The PBK is developed by coupling partial mutual information-based input variable selection (IVS), ensemble back-propagation neural network (EBPNN)-based discharge forecasting and K -near...
Saved in:
Published in | Neural computing & applications Vol. 28; no. 9; pp. 2519 - 2534 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.09.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new hybrid data-driven model named PBK has been proposed to improve the event-based rainfall–runoff simulation. The PBK is developed by coupling partial mutual information-based input variable selection (IVS), ensemble back-propagation neural network (EBPNN)-based discharge forecasting and
K
-nearest neighbor algorithm-based discharge error forecasting. This model is proposed for solving the hard problem of how to implement non-updating rainfall–runoff simulation by data-driven models. For the purpose of solving the hard problems, the PBK model has the following innovations and improvements: (1) a newly proposed non-updating modeling approach without the using of the real-time information and can obtain higher simulation accuracy; (2) a newly proposed IVS scheme and a newly proposed candidate rainfall input set to ensure the adequacy and parsimony of the rainfall and antecedent discharge input variables; and (3) a newly proposed calibration method for the EBPNN to ensure higher simulation accuracy and better generalization property. This method is a combination of the NGSA-II, Levenberg–Marquardt algorithm, and the AIC-based combination weights generating method. For the purpose of comparing simulation accuracy with traditional non-updating data-driven models, a back-propagation neural network model (PB_R) and a linear model (CLS) were also studied. This study utilized event flood data of Dongwan catchment for intercomparisons between different models. The simulation results indicated that the PBK model outperforms other data-driven models and has higher accuracy and better forecasting capability. |
---|---|
AbstractList | A new hybrid data-driven model named PBK has been proposed to improve the event-based rainfall–runoff simulation. The PBK is developed by coupling partial mutual information-based input variable selection (IVS), ensemble back-propagation neural network (EBPNN)-based discharge forecasting and K-nearest neighbor algorithm-based discharge error forecasting. This model is proposed for solving the hard problem of how to implement non-updating rainfall–runoff simulation by data-driven models. For the purpose of solving the hard problems, the PBK model has the following innovations and improvements: (1) a newly proposed non-updating modeling approach without the using of the real-time information and can obtain higher simulation accuracy; (2) a newly proposed IVS scheme and a newly proposed candidate rainfall input set to ensure the adequacy and parsimony of the rainfall and antecedent discharge input variables; and (3) a newly proposed calibration method for the EBPNN to ensure higher simulation accuracy and better generalization property. This method is a combination of the NGSA-II, Levenberg–Marquardt algorithm, and the AIC-based combination weights generating method. For the purpose of comparing simulation accuracy with traditional non-updating data-driven models, a back-propagation neural network model (PB_R) and a linear model (CLS) were also studied. This study utilized event flood data of Dongwan catchment for intercomparisons between different models. The simulation results indicated that the PBK model outperforms other data-driven models and has higher accuracy and better forecasting capability. A new hybrid data-driven model named PBK has been proposed to improve the event-based rainfall–runoff simulation. The PBK is developed by coupling partial mutual information-based input variable selection (IVS), ensemble back-propagation neural network (EBPNN)-based discharge forecasting and K -nearest neighbor algorithm-based discharge error forecasting. This model is proposed for solving the hard problem of how to implement non-updating rainfall–runoff simulation by data-driven models. For the purpose of solving the hard problems, the PBK model has the following innovations and improvements: (1) a newly proposed non-updating modeling approach without the using of the real-time information and can obtain higher simulation accuracy; (2) a newly proposed IVS scheme and a newly proposed candidate rainfall input set to ensure the adequacy and parsimony of the rainfall and antecedent discharge input variables; and (3) a newly proposed calibration method for the EBPNN to ensure higher simulation accuracy and better generalization property. This method is a combination of the NGSA-II, Levenberg–Marquardt algorithm, and the AIC-based combination weights generating method. For the purpose of comparing simulation accuracy with traditional non-updating data-driven models, a back-propagation neural network model (PB_R) and a linear model (CLS) were also studied. This study utilized event flood data of Dongwan catchment for intercomparisons between different models. The simulation results indicated that the PBK model outperforms other data-driven models and has higher accuracy and better forecasting capability. |
Author | Hu, Youbing Kan, Guangyuan Zhang, Zhongbo Li, Jiren He, Xiaoyan Liang, Ke Jiang, Xiaoming Ren, Minglei Li, Hui Ding, Liuqian Wang, Fan Zhang, Xingnan |
Author_xml | – sequence: 1 givenname: Guangyuan surname: Kan fullname: Kan, Guangyuan email: kanguangyuan@126.com organization: State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Research Center on Flood and Drought Disaster Reduction of the Ministry of Water Resources, China Institute of Water Resources and Hydropower Research – sequence: 2 givenname: Jiren surname: Li fullname: Li, Jiren organization: State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Research Center on Flood and Drought Disaster Reduction of the Ministry of Water Resources, China Institute of Water Resources and Hydropower Research – sequence: 3 givenname: Xingnan surname: Zhang fullname: Zhang, Xingnan organization: Cooperative Innovation Center for Water Safety and Hydro-Science of Hohai University – sequence: 4 givenname: Liuqian surname: Ding fullname: Ding, Liuqian organization: State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Research Center on Flood and Drought Disaster Reduction of the Ministry of Water Resources, China Institute of Water Resources and Hydropower Research – sequence: 5 givenname: Xiaoyan surname: He fullname: He, Xiaoyan organization: State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Research Center on Flood and Drought Disaster Reduction of the Ministry of Water Resources, China Institute of Water Resources and Hydropower Research – sequence: 6 givenname: Ke surname: Liang fullname: Liang, Ke organization: College of Hydrology and Water Resources, Hohai University – sequence: 7 givenname: Xiaoming surname: Jiang fullname: Jiang, Xiaoming organization: State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Research Center on Flood and Drought Disaster Reduction of the Ministry of Water Resources, China Institute of Water Resources and Hydropower Research – sequence: 8 givenname: Minglei surname: Ren fullname: Ren, Minglei organization: State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Research Center on Flood and Drought Disaster Reduction of the Ministry of Water Resources, China Institute of Water Resources and Hydropower Research – sequence: 9 givenname: Hui surname: Li fullname: Li, Hui organization: State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Research Center on Flood and Drought Disaster Reduction of the Ministry of Water Resources, China Institute of Water Resources and Hydropower Research – sequence: 10 givenname: Fan surname: Wang fullname: Wang, Fan organization: State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Research Center on Flood and Drought Disaster Reduction of the Ministry of Water Resources, China Institute of Water Resources and Hydropower Research – sequence: 11 givenname: Zhongbo surname: Zhang fullname: Zhang, Zhongbo organization: State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Research Center on Flood and Drought Disaster Reduction of the Ministry of Water Resources, China Institute of Water Resources and Hydropower Research – sequence: 12 givenname: Youbing surname: Hu fullname: Hu, Youbing organization: Hydrologic Bureau (Information Center) of the Huaihe River Commission |
BookMark | eNp1kLlOAzEQhi0UJJLAA9BZojaMj73KKOISkWigtrw-YKONHewNKB3vwBvyJDhaChqq0cx_jPTN0MQHbxE6p3BJAaqrBFAwSoCWhDEAIo7QlArOCYeinqApNCKrpeAnaJbSGgBEWRdT9LDA3n7g130bO4ONGhQxsXu3Hm-CsT12IWKb14G0KlmDo-q8U33__fkVdz44h1O32fVq6II_RcdZSvbsd87R88310_KOrB5v75eLFdGclgMpC6HrygjgrlWurYu2bFprqKUCinyvNFeqqcFQXTHNoKmcalTjiqqyRjvN5-hi7N3G8LazaZDrsIs-v5S0YQXjglGWXXR06RhSitbJbew2Ku4lBXlgJkdmMjOTB2ZS5AwbMyl7_YuNf5r_Df0AIfRxow |
CitedBy_id | crossref_primary_10_1007_s11831_017_9224_5 crossref_primary_10_3389_feart_2020_00014 crossref_primary_10_3390_w15173140 crossref_primary_10_3390_w12020440 crossref_primary_10_1109_ACCESS_2024_3384066 crossref_primary_10_1515_geo_2020_0166 crossref_primary_10_1016_j_jhydrol_2020_125014 crossref_primary_10_3390_w15152700 crossref_primary_10_1016_j_asej_2022_101732 crossref_primary_10_1007_s00521_016_2534_y crossref_primary_10_1007_s12145_021_00644_z crossref_primary_10_1002_clen_202300341 crossref_primary_10_2139_ssrn_4200148 crossref_primary_10_3390_w9100719 crossref_primary_10_1016_j_tcrr_2021_12_001 crossref_primary_10_1080_02626667_2024_2321332 crossref_primary_10_1007_s00366_018_0685_4 crossref_primary_10_3390_w12010175 crossref_primary_10_3390_su13031336 crossref_primary_10_3389_feart_2021_621780 crossref_primary_10_1016_j_scitotenv_2019_02_422 crossref_primary_10_12677_CSA_2020_103053 crossref_primary_10_2478_johh_2020_0006 crossref_primary_10_1016_j_asoc_2023_110722 crossref_primary_10_1109_TPDS_2016_2575822 crossref_primary_10_3390_w10111543 |
Cites_doi | 10.2166/hydro.2012.143 10.1061/(ASCE)1084-0699(2003)8:2(93) 10.1016/j.jhydrol.2008.05.015 10.1080/02626669009492406 10.1007/s10462-011-9208-z 10.1016/j.jhydrol.2012.10.019 10.1016/j.jhydrol.2011.01.024 10.1016/S0022-1694(00)00346-2 10.1016/j.engappai.2008.02.007 10.1061/(ASCE)1084-0699(2000)5:2(156) 10.1111/j.1467-9892.1987.tb00435.x 10.2166/hydro.2013.245 10.1007/s00521-011-0560-3 10.1061/(ASCE)HE.1943-5584.0000958 10.1016/j.jhydrol.2004.06.020 10.2166/hydro.2011.044 10.1016/j.jhydrol.2003.12.033 10.1016/j.jhydrol.2004.06.021 10.1016/j.envsoft.2008.03.008 10.1007/s11269-006-9144-x 10.1162/evco.1994.2.3.221 10.1061/(ASCE)0733-9429(2006)132:12(1321) 10.5194/adgeo-5-89-2005 10.1016/0022-1694(95)02833-1 10.1080/02626669609491511 10.1016/S0022-1694(00)00214-6 10.1109/TAC.1974.1100705 10.1016/S0022-1694(00)00348-6 10.1109/TIT.1974.1055306 10.1016/0022-1694(70)90255-6 10.1029/WR023i007p01300 10.1109/4235.996017 10.1002/hyp.5581 10.1016/j.neucom.2007.10.013 10.1016/j.neucom.2008.12.032 10.1016/j.neunet.2006.01.009 10.1007/s00477-015-1040-6 |
ContentType | Journal Article |
Copyright | The Natural Computing Applications Forum 2016 Copyright Springer Science & Business Media 2017 |
Copyright_xml | – notice: The Natural Computing Applications Forum 2016 – notice: Copyright Springer Science & Business Media 2017 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00521-016-2200-4 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-3058 |
EndPage | 2534 |
ExternalDocumentID | 10_1007_s00521_016_2200_4 |
GrantInformation_xml | – fundername: the Mayor Seismic-Geological Disaster Chains Process and Disaster Risk Comprehensive Assessment - supported by National Sci-Tech Support Plan grantid: 2012bak10b03-02 – fundername: the Third Sub-Project - Flood Forecasting, Controlling and Flood Prevention Aided Software Development - Flood Control Early Warning Communication System and Flood Forecasting, Controlling and Flood Prevention Aided Software Development for Poyang Lake Area of Jiangxi Province grantid: 0628-136006104242, JZ0205A432013, SLXMB200902 – fundername: the IWHR Scientific Research Projects of Outstanding Young Scientists "Research and applicaiton on the fast global optimization method for the Xinanjiang model parameters based on the high performance heterogeneous computing" – fundername: the Numerical Simulation Technology of Flash Flood based on Godunov Scheme and Its Mechanism Study by Experiment grantid: 51509263 – fundername: the IWHR Special Dynamic Investigation Project on International Water Resources and Hydropower Technology Development - Progress Summary and Comment on the Research of Dynamic Control of Reservoir Water Level During Flood Season grantid: JZ0145C102015 – fundername: We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research – fundername: the NNSF of China, Estimation of regional evapotranspiration using remotely sensed data based on the theoretical VFC/LST trapezoid space grantid: 41501415 – fundername: the Study on Mass-Energy Balance Coupling Scheme on Hill-Slope and Its Application to Distributed Hydrological Models grantid: 51420105014 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAOBN AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAWWR AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADGRI ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYWE AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 AAYZH |
ID | FETCH-LOGICAL-c316t-654c87d403fbafb85b69bed1e14057d47c3aa980d1c72c2097fa9a9f577edcfc3 |
IEDL.DBID | AGYKE |
ISSN | 0941-0643 |
IngestDate | Wed Nov 06 08:50:11 EST 2024 Thu Sep 12 19:01:46 EDT 2024 Sat Dec 16 12:02:31 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Rainfall–runoff simulation PBK model Non-updating Data-driven Event-based |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-654c87d403fbafb85b69bed1e14057d47c3aa980d1c72c2097fa9a9f577edcfc3 |
PQID | 1925234212 |
PQPubID | 2043988 |
PageCount | 16 |
ParticipantIDs | proquest_journals_1925234212 crossref_primary_10_1007_s00521_016_2200_4 springer_journals_10_1007_s00521_016_2200_4 |
PublicationCentury | 2000 |
PublicationDate | 2017-09-01 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Neural computing & applications |
PublicationTitleAbbrev | Neural Comput & Applic |
PublicationYear | 2017 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Karlsson, Yakowitz (CR20) 1987; 23 Li, Kan, Yao, Liu, Li, Yu (CR25) 2014; 19 Akaike (CR2) 1974; 19 Chua, Wong, Sriramula (CR6) 2008; 357 Loghmanian, Ahmad, Khalid (CR26) 2012; 21 Galeati (CR14) 1990; 35 Piotrowski, Napiorkowski (CR32) 2013; 476 CR30 Vahid, Masoumeh (CR44) 2013; 141 Deb, IEEE, Pratap, Agarwal, Meyarivan (CR12) 2002; 6 Seckin (CR33) 2010; 046 He, Valeo, Chu, Neumann (CR15) 2011; 400 Yakowitz (CR48) 1987; 8 Dastorani, Koochi, Darani, Talebi, Rahimian (CR8) 2013; 245 Nash, Sutcliffe (CR29) 1970; 10 Yu, Wang, Xi (CR49) 2008; 71 Karran, Morin, Adamowski (CR21) 2013; 042 Tiwari, Song, Chatterjee, Gupta (CR41) 2012; 130 Lee, Hung, Meng (CR24) 2008; 22 CR42 Dawson, See, Abrahart, Heppenstall (CR9) 2006; 19 May, Dandy, Maier, Nixon (CR27) 2008; 23 Kan, Yao, Li, Li, Yu, Liu, Ding, He, Liang (CR18) 2015 Zhao, Zhang, Liao (CR51) 2008; 21 Adamowski, Chan, Prasher, Sharda (CR1) 2012; 044 Tokar, Markus (CR43) 2000; 5 Wang, Zhang, Xu (CR46) 1987; 7 Jain, Indurthy (CR16) 2003; 8 Shamseldin, O’Connor (CR34) 1996; 179 Panchal, Ganatra, Kosta (CR31) 2010; 1 Coulibaly, Anctil, Bobée (CR7) 2000; 230 Deb (CR11) 2001 Dawson, Mount, Abrahart, Louis (CR10) 2013; 222 Chiang, Chang, Chang (CR5) 2004; 290 Srinivas, Deb (CR39) 1994; 2 Ju, Yu, Hao, Ou, Zhao, Liu (CR17) 2009; 72 Kanal (CR19) 1974; 20 Soroosh, Arash (CR38) 2012; 026 Krause, Boyle, Bäse (CR22) 2005; 5 Bowden, Maier, Dandy (CR4) 2005; 301 Sharma (CR35) 2000; 239 Wang, Zhang, Xu (CR45) 1985; 1 Wei, Zuo, Song (CR47) 2012; 143 Sharma (CR36) 2000; 239 Kumar, Sudheer, Jain, Agarwal (CR23) 2005; 19 Ding, Su, Yu (CR13) 2011; 36 Tayfur, Singh (CR40) 2006; 132 Minns, Hall (CR28) 1996; 41 Sollich, Krogh, Touretzky, Mozer, Hasselmo (CR37) 1996 Zhang, Cai (CR50) 2003; 15 Bowden, Dandy, Maier (CR3) 2005; 301 A Sharma (2200_CR35) 2000; 239 P Krause (2200_CR22) 2005; 5 Z Li (2200_CR25) 2014; 19 N Vahid (2200_CR44) 2013; 141 2200_CR42 N Srinivas (2200_CR39) 1994; 2 GJ Bowden (2200_CR4) 2005; 301 G Galeati (2200_CR14) 1990; 35 D Zhang (2200_CR50) 2003; 15 S Ding (2200_CR13) 2011; 36 DJ Karran (2200_CR21) 2013; 042 G Kan (2200_CR18) 2015 Y Chiang (2200_CR5) 2004; 290 MK Tiwari (2200_CR41) 2012; 130 S Wei (2200_CR47) 2012; 143 J Adamowski (2200_CR1) 2012; 044 J He (2200_CR15) 2011; 400 P Sollich (2200_CR37) 1996 MT Dastorani (2200_CR8) 2013; 245 RJ May (2200_CR27) 2008; 23 AS Tokar (2200_CR43) 2000; 5 H Akaike (2200_CR2) 1974; 19 AW Minns (2200_CR28) 1996; 41 Z Zhao (2200_CR51) 2008; 21 S Soroosh (2200_CR38) 2012; 026 J Wang (2200_CR46) 1987; 7 S Yakowitz (2200_CR48) 1987; 8 N Seckin (2200_CR33) 2010; 046 CW Dawson (2200_CR9) 2006; 19 Q Ju (2200_CR17) 2009; 72 A Sharma (2200_CR36) 2000; 239 J Yu (2200_CR49) 2008; 71 AY Shamseldin (2200_CR34) 1996; 179 ARS Kumar (2200_CR23) 2005; 19 L Kanal (2200_CR19) 1974; 20 P Coulibaly (2200_CR7) 2000; 230 K Deb (2200_CR11) 2001 J Wang (2200_CR45) 1985; 1 HCL Chua (2200_CR6) 2008; 357 A Jain (2200_CR16) 2003; 8 JE Nash (2200_CR29) 1970; 10 2200_CR30 SMR Loghmanian (2200_CR26) 2012; 21 GJ Bowden (2200_CR3) 2005; 301 K Deb (2200_CR12) 2002; 6 G Tayfur (2200_CR40) 2006; 132 CW Dawson (2200_CR10) 2013; 222 M Karlsson (2200_CR20) 1987; 23 G Panchal (2200_CR31) 2010; 1 AP Piotrowski (2200_CR32) 2013; 476 KT Lee (2200_CR24) 2008; 22 |
References_xml | – volume: 143 start-page: 974 year: 2012 end-page: 991 ident: CR47 article-title: Improving prediction accuracy of river discharge time series using a Wavelet-NAR artificial neural network publication-title: J Hydroinform doi: 10.2166/hydro.2012.143 contributor: fullname: Song – volume: 8 start-page: 93 issue: 2 year: 2003 end-page: 98 ident: CR16 article-title: Comparative analysis of event-based rainfall–runoff modeling techniques—deterministic, statistical and artificial neural networks publication-title: J Hydrol Eng doi: 10.1061/(ASCE)1084-0699(2003)8:2(93) contributor: fullname: Indurthy – volume: 357 start-page: 337 year: 2008 end-page: 348 ident: CR6 article-title: Comparison between kinematic wave and artificial neural network models in event-based runoff simulation for an overland plane publication-title: J Hydrol doi: 10.1016/j.jhydrol.2008.05.015 contributor: fullname: Sriramula – start-page: 190 year: 1996 end-page: 196 ident: CR37 article-title: Learning with ensembles: how over-fitting can be useful publication-title: Advances in neural information processing systems contributor: fullname: Hasselmo – volume: 35 start-page: 79 issue: 1 year: 1990 end-page: 94 ident: CR14 article-title: A comparison of parametric and non-parametric methods for runoff forecasting publication-title: Hydrol Sci J doi: 10.1080/02626669009492406 contributor: fullname: Galeati – volume: 36 start-page: 153 year: 2011 end-page: 162 ident: CR13 article-title: An optimizing BP neural network algorithm based on genetic algorithm publication-title: Artif Intell Rev doi: 10.1007/s10462-011-9208-z contributor: fullname: Yu – volume: 476 start-page: 97 year: 2013 end-page: 111 ident: CR32 article-title: A comparison of methods to avoid overfitting in neural networks training in the case of catchment runoff modeling publication-title: J Hydrol doi: 10.1016/j.jhydrol.2012.10.019 contributor: fullname: Napiorkowski – ident: CR42 – year: 2001 ident: CR11 publication-title: Multi-objective optimization using evolutionary algorithms contributor: fullname: Deb – volume: 400 start-page: 10 year: 2011 end-page: 23 ident: CR15 article-title: Prediction of event-based stormwater runoff quantity and quality by ANNs developed using PMI-based input selection publication-title: J Hydrol doi: 10.1016/j.jhydrol.2011.01.024 contributor: fullname: Neumann – volume: 239 start-page: 232 issue: 1–4 year: 2000 end-page: 239 ident: CR35 article-title: Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: part 1—a strategy for system predictor identification publication-title: J Hydrol doi: 10.1016/S0022-1694(00)00346-2 contributor: fullname: Sharma – volume: 21 start-page: 1182 year: 2008 end-page: 1188 ident: CR51 article-title: Design of ensemble neural network using the Akaike information criterion publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2008.02.007 contributor: fullname: Liao – volume: 5 start-page: 156 issue: 2 year: 2000 end-page: 161 ident: CR43 article-title: Rainfall–runoff modeling using artificial neural networks and conceptual models publication-title: J Hydrol Eng doi: 10.1061/(ASCE)1084-0699(2000)5:2(156) contributor: fullname: Markus – volume: 8 start-page: 235 issue: 2 year: 1987 end-page: 247 ident: CR48 article-title: Nearest neighbor methods for time series analysis publication-title: J Time Ser Anal doi: 10.1111/j.1467-9892.1987.tb00435.x contributor: fullname: Yakowitz – volume: 1 start-page: 975 issue: 5 year: 2010 end-page: 8887 ident: CR31 article-title: Searching most efficient neural network architecture using Akaike’s information criterion (AIC) publication-title: Int J Comput Appl contributor: fullname: Kosta – volume: 245 start-page: 1089 year: 2013 end-page: 1098 ident: CR8 article-title: River instantaneous peak flow estimation using daily flow data and machine-learning-based models publication-title: J Hydroinform doi: 10.2166/hydro.2013.245 contributor: fullname: Rahimian – year: 2015 ident: CR18 article-title: Improving event-based rainfall–runoff simulation using an ensemble artificial neural network based hybrid data-driven model publication-title: Stoch Environ Res Risk Assess contributor: fullname: Liang – volume: 21 start-page: 1281 year: 2012 end-page: 1295 ident: CR26 article-title: Structure optimization of neural network for dynamic system modeling using multi-objective genetic algorithm publication-title: Neural Comput Appl doi: 10.1007/s00521-011-0560-3 contributor: fullname: Khalid – volume: 19 start-page: 04014019-1 issue: 10 year: 2014 end-page: 04014019-17 ident: CR25 article-title: An improved neural network model and its application in hydrological simulation publication-title: J Hydrol Eng doi: 10.1061/(ASCE)HE.1943-5584.0000958 contributor: fullname: Yu – volume: 301 start-page: 93 issue: 1–4 year: 2005 end-page: 107 ident: CR4 article-title: Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river publication-title: J Hydrol doi: 10.1016/j.jhydrol.2004.06.020 contributor: fullname: Dandy – volume: 044 start-page: 731 year: 2012 end-page: 744 ident: CR1 article-title: Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data publication-title: J Hydroinform doi: 10.2166/hydro.2011.044 contributor: fullname: Sharda – volume: 290 start-page: 297 year: 2004 end-page: 311 ident: CR5 article-title: Comparison of static-feedforward and dynamic feedback neural networks for rainfall–runoff modeling publication-title: J Hydrol doi: 10.1016/j.jhydrol.2003.12.033 contributor: fullname: Chang – volume: 15 start-page: 1088 issue: 8 year: 2003 end-page: 1090 ident: CR50 article-title: A genetic-algorithm-based two-stage learning scheme for neural networks publication-title: J Syst Sin contributor: fullname: Cai – volume: 301 start-page: 75 year: 2005 end-page: 92 ident: CR3 article-title: Input determination for neural network models in water resources applications. Part 1—background and methodology publication-title: J Hydrol doi: 10.1016/j.jhydrol.2004.06.021 contributor: fullname: Maier – volume: 7 start-page: 1 year: 1987 end-page: 9 ident: CR46 article-title: Synthesized constrained linear system publication-title: J Hydraul Eng ASCE contributor: fullname: Xu – ident: CR30 – volume: 130 start-page: 486 year: 2012 end-page: 502 ident: CR41 article-title: Improving reliability of river flow forecasting using neural networks, wavelets and self-organising maps publication-title: J Hydroinform contributor: fullname: Gupta – volume: 23 start-page: 1289 issue: 10–11 year: 2008 end-page: 1299 ident: CR27 article-title: Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2008.03.008 contributor: fullname: Nixon – volume: 026 start-page: 697 year: 2012 end-page: 715 ident: CR38 article-title: A novel hybrid mechanistic-data-driven model identification framework using NSGA-II publication-title: J Hydroinform contributor: fullname: Arash – volume: 222 start-page: 407 year: 2013 end-page: 424 ident: CR10 article-title: Sensitivity analysis for comparison, validation and physical legitimacy of neural network-based hydrological models publication-title: J Hydroinform contributor: fullname: Louis – volume: 22 start-page: 67 year: 2008 end-page: 82 ident: CR24 article-title: Deterministic insight into ANN model performance for storm runoff simulation publication-title: Water Resour Manag doi: 10.1007/s11269-006-9144-x contributor: fullname: Meng – volume: 2 start-page: 221 issue: 3 year: 1994 end-page: 248 ident: CR39 article-title: Multi-objective optimization using non-dominated sorting in genetic algorithms publication-title: Evol Comput doi: 10.1162/evco.1994.2.3.221 contributor: fullname: Deb – volume: 132 start-page: 1321 issue: 12 year: 2006 end-page: 1330 ident: CR40 article-title: ANN and fuzzy logic models for simulating event-based rainfall–runoff publication-title: J Hydraul Eng ASCE doi: 10.1061/(ASCE)0733-9429(2006)132:12(1321) contributor: fullname: Singh – volume: 5 start-page: 89 year: 2005 end-page: 97 ident: CR22 article-title: Comparison of different efficiency criteria for hydrological model assessment publication-title: Adv Geosci doi: 10.5194/adgeo-5-89-2005 contributor: fullname: Bäse – volume: 179 start-page: 352 year: 1996 end-page: 375 ident: CR34 article-title: A nearest neighbour linear perturbation model for river flow forecasting publication-title: J Hydrol doi: 10.1016/0022-1694(95)02833-1 contributor: fullname: O’Connor – volume: 41 start-page: 399 issue: 3 year: 1996 end-page: 417 ident: CR28 article-title: Artificial neural networks as rainfall–runoff models publication-title: Hydrol Sci J doi: 10.1080/02626669609491511 contributor: fullname: Hall – volume: 230 start-page: 244 year: 2000 end-page: 257 ident: CR7 article-title: Daily reservoir inflow forecasting using artificial neural networks with stopped training approach publication-title: J Hydrol doi: 10.1016/S0022-1694(00)00214-6 contributor: fullname: Bobée – volume: 19 start-page: 716 year: 1974 end-page: 723 ident: CR2 article-title: A new look at the statistical model identification publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.1974.1100705 contributor: fullname: Akaike – volume: 239 start-page: 249 issue: 1–4 year: 2000 end-page: 258 ident: CR36 article-title: Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: part 3—a nonparametric probabilistic forecast model publication-title: J Hydrol doi: 10.1016/S0022-1694(00)00348-6 contributor: fullname: Sharma – volume: 20 start-page: 697 year: 1974 end-page: 722 ident: CR19 article-title: Patterns in pattern recognition publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1974.1055306 contributor: fullname: Kanal – volume: 10 start-page: 282 year: 1970 end-page: 290 ident: CR29 article-title: River flow forecasting through conceptual models; part I—a discussion of principles publication-title: J Hydrol doi: 10.1016/0022-1694(70)90255-6 contributor: fullname: Sutcliffe – volume: 23 start-page: 1300 issue: 7 year: 1987 end-page: 1308 ident: CR20 article-title: Nearest neighbour methods for non-parametric rainfall runoff forecasting publication-title: Water Resour Res doi: 10.1029/WR023i007p01300 contributor: fullname: Yakowitz – volume: 042 start-page: 671 year: 2013 end-page: 709 ident: CR21 article-title: Multi-step streamflow forecasting using data-driven non-linear methods in contrasting climate regimes publication-title: J Hydroinform contributor: fullname: Adamowski – volume: 6 start-page: 182 issue: 2 year: 2002 end-page: 197 ident: CR12 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 contributor: fullname: Meyarivan – volume: 19 start-page: 1277 year: 2005 end-page: 1291 ident: CR23 article-title: Rainfall–runoff modeling using artificial neural networks: comparison of network types publication-title: Hydrol Process doi: 10.1002/hyp.5581 contributor: fullname: Agarwal – volume: 71 start-page: 1054 year: 2008 end-page: 1060 ident: CR49 article-title: Evolving artificial neural networks using an improved PSO and DPSO publication-title: Neurocomputing doi: 10.1016/j.neucom.2007.10.013 contributor: fullname: Xi – volume: 72 start-page: 2873 year: 2009 end-page: 2883 ident: CR17 article-title: Division-based rainfall–runoff simulations with BP neural networks and Xinanjiang model publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.12.032 contributor: fullname: Liu – volume: 141 start-page: 829 year: 2013 end-page: 848 ident: CR44 article-title: Conjunction of SOM-based feature extraction method and hybrid wavelet-ANN approach for rainfall–runoff modeling publication-title: J Hydroinform contributor: fullname: Masoumeh – volume: 19 start-page: 236 issue: 2 year: 2006 end-page: 247 ident: CR9 article-title: Symbiotic adaptive neuron-evolution applied to rainfall–runoff modelling in northern England publication-title: Neural Netw doi: 10.1016/j.neunet.2006.01.009 contributor: fullname: Heppenstall – volume: 046 start-page: 842 year: 2010 end-page: 849 ident: CR33 article-title: Modeling flood discharge at ungauged sites across Turkey using neuro-fuzzy and neural networks publication-title: J Hydroinform contributor: fullname: Seckin – volume: 1 start-page: 8 year: 1985 end-page: 16 ident: CR45 article-title: Constrained linear system model and its application in flood forecasting of the Han River publication-title: J China Hydrol contributor: fullname: Xu – volume: 357 start-page: 337 year: 2008 ident: 2200_CR6 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2008.05.015 contributor: fullname: HCL Chua – ident: 2200_CR42 – volume: 36 start-page: 153 year: 2011 ident: 2200_CR13 publication-title: Artif Intell Rev doi: 10.1007/s10462-011-9208-z contributor: fullname: S Ding – volume: 143 start-page: 974 year: 2012 ident: 2200_CR47 publication-title: J Hydroinform doi: 10.2166/hydro.2012.143 contributor: fullname: S Wei – volume: 179 start-page: 352 year: 1996 ident: 2200_CR34 publication-title: J Hydrol doi: 10.1016/0022-1694(95)02833-1 contributor: fullname: AY Shamseldin – volume: 5 start-page: 89 year: 2005 ident: 2200_CR22 publication-title: Adv Geosci doi: 10.5194/adgeo-5-89-2005 contributor: fullname: P Krause – volume: 476 start-page: 97 year: 2013 ident: 2200_CR32 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2012.10.019 contributor: fullname: AP Piotrowski – volume: 10 start-page: 282 year: 1970 ident: 2200_CR29 publication-title: J Hydrol doi: 10.1016/0022-1694(70)90255-6 contributor: fullname: JE Nash – volume: 71 start-page: 1054 year: 2008 ident: 2200_CR49 publication-title: Neurocomputing doi: 10.1016/j.neucom.2007.10.013 contributor: fullname: J Yu – volume: 19 start-page: 716 year: 1974 ident: 2200_CR2 publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.1974.1100705 contributor: fullname: H Akaike – volume: 301 start-page: 75 year: 2005 ident: 2200_CR3 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2004.06.021 contributor: fullname: GJ Bowden – volume: 026 start-page: 697 year: 2012 ident: 2200_CR38 publication-title: J Hydroinform contributor: fullname: S Soroosh – volume: 35 start-page: 79 issue: 1 year: 1990 ident: 2200_CR14 publication-title: Hydrol Sci J doi: 10.1080/02626669009492406 contributor: fullname: G Galeati – volume: 7 start-page: 1 year: 1987 ident: 2200_CR46 publication-title: J Hydraul Eng ASCE contributor: fullname: J Wang – volume: 72 start-page: 2873 year: 2009 ident: 2200_CR17 publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.12.032 contributor: fullname: Q Ju – volume: 23 start-page: 1300 issue: 7 year: 1987 ident: 2200_CR20 publication-title: Water Resour Res doi: 10.1029/WR023i007p01300 contributor: fullname: M Karlsson – volume: 15 start-page: 1088 issue: 8 year: 2003 ident: 2200_CR50 publication-title: J Syst Sin contributor: fullname: D Zhang – volume: 1 start-page: 975 issue: 5 year: 2010 ident: 2200_CR31 publication-title: Int J Comput Appl contributor: fullname: G Panchal – volume: 222 start-page: 407 year: 2013 ident: 2200_CR10 publication-title: J Hydroinform contributor: fullname: CW Dawson – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 2200_CR12 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 contributor: fullname: K Deb – volume-title: Multi-objective optimization using evolutionary algorithms year: 2001 ident: 2200_CR11 contributor: fullname: K Deb – volume: 132 start-page: 1321 issue: 12 year: 2006 ident: 2200_CR40 publication-title: J Hydraul Eng ASCE doi: 10.1061/(ASCE)0733-9429(2006)132:12(1321) contributor: fullname: G Tayfur – volume: 239 start-page: 232 issue: 1–4 year: 2000 ident: 2200_CR35 publication-title: J Hydrol doi: 10.1016/S0022-1694(00)00346-2 contributor: fullname: A Sharma – volume: 21 start-page: 1182 year: 2008 ident: 2200_CR51 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2008.02.007 contributor: fullname: Z Zhao – volume: 8 start-page: 235 issue: 2 year: 1987 ident: 2200_CR48 publication-title: J Time Ser Anal doi: 10.1111/j.1467-9892.1987.tb00435.x contributor: fullname: S Yakowitz – volume: 301 start-page: 93 issue: 1–4 year: 2005 ident: 2200_CR4 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2004.06.020 contributor: fullname: GJ Bowden – volume: 2 start-page: 221 issue: 3 year: 1994 ident: 2200_CR39 publication-title: Evol Comput doi: 10.1162/evco.1994.2.3.221 contributor: fullname: N Srinivas – volume: 19 start-page: 04014019-1 issue: 10 year: 2014 ident: 2200_CR25 publication-title: J Hydrol Eng contributor: fullname: Z Li – volume: 239 start-page: 249 issue: 1–4 year: 2000 ident: 2200_CR36 publication-title: J Hydrol doi: 10.1016/S0022-1694(00)00348-6 contributor: fullname: A Sharma – volume: 22 start-page: 67 year: 2008 ident: 2200_CR24 publication-title: Water Resour Manag doi: 10.1007/s11269-006-9144-x contributor: fullname: KT Lee – volume: 19 start-page: 236 issue: 2 year: 2006 ident: 2200_CR9 publication-title: Neural Netw doi: 10.1016/j.neunet.2006.01.009 contributor: fullname: CW Dawson – volume: 042 start-page: 671 year: 2013 ident: 2200_CR21 publication-title: J Hydroinform contributor: fullname: DJ Karran – volume: 130 start-page: 486 year: 2012 ident: 2200_CR41 publication-title: J Hydroinform contributor: fullname: MK Tiwari – volume: 400 start-page: 10 year: 2011 ident: 2200_CR15 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2011.01.024 contributor: fullname: J He – volume: 046 start-page: 842 year: 2010 ident: 2200_CR33 publication-title: J Hydroinform contributor: fullname: N Seckin – volume: 8 start-page: 93 issue: 2 year: 2003 ident: 2200_CR16 publication-title: J Hydrol Eng doi: 10.1061/(ASCE)1084-0699(2003)8:2(93) contributor: fullname: A Jain – volume: 20 start-page: 697 year: 1974 ident: 2200_CR19 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1974.1055306 contributor: fullname: L Kanal – volume: 230 start-page: 244 year: 2000 ident: 2200_CR7 publication-title: J Hydrol doi: 10.1016/S0022-1694(00)00214-6 contributor: fullname: P Coulibaly – year: 2015 ident: 2200_CR18 publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-015-1040-6 contributor: fullname: G Kan – volume: 41 start-page: 399 issue: 3 year: 1996 ident: 2200_CR28 publication-title: Hydrol Sci J doi: 10.1080/02626669609491511 contributor: fullname: AW Minns – volume: 1 start-page: 8 year: 1985 ident: 2200_CR45 publication-title: J China Hydrol contributor: fullname: J Wang – volume: 044 start-page: 731 year: 2012 ident: 2200_CR1 publication-title: J Hydroinform doi: 10.2166/hydro.2011.044 contributor: fullname: J Adamowski – volume: 245 start-page: 1089 year: 2013 ident: 2200_CR8 publication-title: J Hydroinform doi: 10.2166/hydro.2013.245 contributor: fullname: MT Dastorani – volume: 290 start-page: 297 year: 2004 ident: 2200_CR5 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2003.12.033 contributor: fullname: Y Chiang – volume: 23 start-page: 1289 issue: 10–11 year: 2008 ident: 2200_CR27 publication-title: Environ Model Softw contributor: fullname: RJ May – ident: 2200_CR30 – volume: 5 start-page: 156 issue: 2 year: 2000 ident: 2200_CR43 publication-title: J Hydrol Eng doi: 10.1061/(ASCE)1084-0699(2000)5:2(156) contributor: fullname: AS Tokar – volume: 141 start-page: 829 year: 2013 ident: 2200_CR44 publication-title: J Hydroinform contributor: fullname: N Vahid – start-page: 190 volume-title: Advances in neural information processing systems year: 1996 ident: 2200_CR37 contributor: fullname: P Sollich – volume: 21 start-page: 1281 year: 2012 ident: 2200_CR26 publication-title: Neural Comput Appl doi: 10.1007/s00521-011-0560-3 contributor: fullname: SMR Loghmanian – volume: 19 start-page: 1277 year: 2005 ident: 2200_CR23 publication-title: Hydrol Process doi: 10.1002/hyp.5581 contributor: fullname: ARS Kumar |
SSID | ssj0004685 |
Score | 2.3475049 |
Snippet | A new hybrid data-driven model named PBK has been proposed to improve the event-based rainfall–runoff simulation. The PBK is developed by coupling partial... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 2519 |
SubjectTerms | Accuracy Adequacy Artificial Intelligence Back propagation Back propagation networks Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Computer simulation Data Mining and Knowledge Discovery Discharge Forecasting Image Processing and Computer Vision Mathematical models Neural networks Original Article Probability and Statistics in Computer Science Rainfall Runoff |
Title | A new hybrid data-driven model for event-based rainfall–runoff simulation |
URI | https://link.springer.com/article/10.1007/s00521-016-2200-4 https://www.proquest.com/docview/1925234212 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB11uXChrKJQKh84gVxlceLkWFBLRUWFEJXKKXLsWKCWFHU5wIl_4A_5Emw3KWU79ORDLEuZsT1vPMsDOBE-V1bIEZiEkmMiqYUDPw6xZ7mCSIvZ0nAsXff8Tp9cDbxBAZzl00U6bOQRSXNRL2vd9AOm9nx97CjNYlKEclZ3Wm5e3ndbK9WQhohT-S06p4e4eSzzr0W-W6MviPkjKmqMTbuyKACcmh6FOsdk2JjP4gZ__d3BcY3_2ILNDHui5mKzbEMhSXegkvM6oOyY70K3iRTYRg8vupoL6RxSLCb6VkSGNwcpnItM4yesbaBAmmVCstHo4-19Mk_HUqLp41NGC7YH_Xbr7qKDM9IFzF3bn2HfIzyggliujJmMAy_2wzgRdmJraCcI5S5jYWAJm1OHO1ZIJQtZKD1KE8Eld_ehlI7T5ABQIJhNqAKQAXEIZ8qzSpR_JWNBQ6WlxKvCaS786HnRWyNadlE2Yop0_pkWU0SqUMvVE2XHbBopeKocaR3UrsJZLu6Vz_8tdrjW7CPYcLQxN5llNSjNJvPkWEGRWVzP9p4az1u9m9s6FPtO8xNLA9bS |
link.rule.ids | 315,783,787,27936,27937,33756,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFL2CMsDCG1Eo4IEJZClxnDgeK0RV6GNqpW6R44dAKinqY2DjH_hDvgTbTaAgGJgTeTiOfc_NvfccgEuVSBuFiMKUG4mpYQFOk5zjOIgUNYEIjfdY6vWT9pDej-JROcc9q7rdq5Kkv6k_h93cH0yX-iaY2K3FdB02nLy6E8wfkubKMKT34bRpi2vpoVFVyvxtie_B6Ith_iiK-ljT2oXtkiSi5nJX92BNF_uwUxkwoPI8HkCniSwrRg8vbuwKuWZPrKbu-kLe4AZZQoq8QhN2wUohZwdhxHj8_vo2XRQTY9Ds8an07zqEYet2cNPGpTsCllGYzHESU5kyRYPI5MLkaZwnPNcq1KHjYIoyGQnB00CFkhFJAs6M4IKbmDGtpJHREdSKSaGPAaVKhJRZppdSQqWwKZC2iZDJFeMWTx3X4aqCKXteimBkn3LHHtPMNYo5TDNah0YFZFaeh1lmeaTNeF31uQ7XFbgrj_9a7ORfb1_AZnvQ62bdu37nFLaIi8C-HawBtfl0oc8sf5jn5_57-QANWrt1 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFL2CIiEW3ohCAQ9MIKt5OHE8VkAFFCoGKnWLHD8EUkmrNh3Y-Af-kC_BdpNSEAzMiTwcxz7n5j4OwKmMhWGhQGLCtMBEUw8nccZw5IWSaI_72nks3Xfj6x657Uf90ud0UlW7VynJWU-DndKUF82R1M1545v9m2nD4BgHZpsxWYYVw0ShrenrBa2FxkjnyWlCGFveQ8IqrfnbEt-J6Utt_kiQOt5pb8J6KRhRa7bDW7Ck8m3YqMwYUHk2d6DTQkYho6dX24KFbOEnlmN7lSFndoOMOEVuWhO2xCWRtYbQfDD4eHsfT_Oh1mjy_FJ6ee1Cr331eHGNS6cELEI_LnAcEZFQSbxQZ1xnSZTFLFPSV77VY5JQEXLOEk_6ggYi8BjVnHGmI0qVFFqEe1DLh7naB5RI7hNqVF9CAiK4CYeUCYp0JikzeKqoDmcVTOloNhAjnY8-dpimtmjMYpqSOjQqINPybExSoylN9Gsz0XU4r8BdePzXYgf_evsEVh8u2-ndTbdzCGuBJWNXGdaAWjGeqiMjJYrs2H0un0g0v7o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+hybrid+data-driven+model+for+event-based+rainfall%E2%80%93runoff+simulation&rft.jtitle=Neural+computing+%26+applications&rft.au=Kan%2C+Guangyuan&rft.au=Li%2C+Jiren&rft.au=Zhang%2C+Xingnan&rft.au=Ding%2C+Liuqian&rft.date=2017-09-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=28&rft.issue=9&rft.spage=2519&rft.epage=2534&rft_id=info:doi/10.1007%2Fs00521-016-2200-4&rft.externalDocID=10_1007_s00521_016_2200_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |