A new hybrid data-driven model for event-based rainfall–runoff simulation

A new hybrid data-driven model named PBK has been proposed to improve the event-based rainfall–runoff simulation. The PBK is developed by coupling partial mutual information-based input variable selection (IVS), ensemble back-propagation neural network (EBPNN)-based discharge forecasting and K -near...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 28; no. 9; pp. 2519 - 2534
Main Authors Kan, Guangyuan, Li, Jiren, Zhang, Xingnan, Ding, Liuqian, He, Xiaoyan, Liang, Ke, Jiang, Xiaoming, Ren, Minglei, Li, Hui, Wang, Fan, Zhang, Zhongbo, Hu, Youbing
Format Journal Article
LanguageEnglish
Published London Springer London 01.09.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new hybrid data-driven model named PBK has been proposed to improve the event-based rainfall–runoff simulation. The PBK is developed by coupling partial mutual information-based input variable selection (IVS), ensemble back-propagation neural network (EBPNN)-based discharge forecasting and K -nearest neighbor algorithm-based discharge error forecasting. This model is proposed for solving the hard problem of how to implement non-updating rainfall–runoff simulation by data-driven models. For the purpose of solving the hard problems, the PBK model has the following innovations and improvements: (1) a newly proposed non-updating modeling approach without the using of the real-time information and can obtain higher simulation accuracy; (2) a newly proposed IVS scheme and a newly proposed candidate rainfall input set to ensure the adequacy and parsimony of the rainfall and antecedent discharge input variables; and (3) a newly proposed calibration method for the EBPNN to ensure higher simulation accuracy and better generalization property. This method is a combination of the NGSA-II, Levenberg–Marquardt algorithm, and the AIC-based combination weights generating method. For the purpose of comparing simulation accuracy with traditional non-updating data-driven models, a back-propagation neural network model (PB_R) and a linear model (CLS) were also studied. This study utilized event flood data of Dongwan catchment for intercomparisons between different models. The simulation results indicated that the PBK model outperforms other data-driven models and has higher accuracy and better forecasting capability.
AbstractList A new hybrid data-driven model named PBK has been proposed to improve the event-based rainfall–runoff simulation. The PBK is developed by coupling partial mutual information-based input variable selection (IVS), ensemble back-propagation neural network (EBPNN)-based discharge forecasting and K-nearest neighbor algorithm-based discharge error forecasting. This model is proposed for solving the hard problem of how to implement non-updating rainfall–runoff simulation by data-driven models. For the purpose of solving the hard problems, the PBK model has the following innovations and improvements: (1) a newly proposed non-updating modeling approach without the using of the real-time information and can obtain higher simulation accuracy; (2) a newly proposed IVS scheme and a newly proposed candidate rainfall input set to ensure the adequacy and parsimony of the rainfall and antecedent discharge input variables; and (3) a newly proposed calibration method for the EBPNN to ensure higher simulation accuracy and better generalization property. This method is a combination of the NGSA-II, Levenberg–Marquardt algorithm, and the AIC-based combination weights generating method. For the purpose of comparing simulation accuracy with traditional non-updating data-driven models, a back-propagation neural network model (PB_R) and a linear model (CLS) were also studied. This study utilized event flood data of Dongwan catchment for intercomparisons between different models. The simulation results indicated that the PBK model outperforms other data-driven models and has higher accuracy and better forecasting capability.
A new hybrid data-driven model named PBK has been proposed to improve the event-based rainfall–runoff simulation. The PBK is developed by coupling partial mutual information-based input variable selection (IVS), ensemble back-propagation neural network (EBPNN)-based discharge forecasting and K -nearest neighbor algorithm-based discharge error forecasting. This model is proposed for solving the hard problem of how to implement non-updating rainfall–runoff simulation by data-driven models. For the purpose of solving the hard problems, the PBK model has the following innovations and improvements: (1) a newly proposed non-updating modeling approach without the using of the real-time information and can obtain higher simulation accuracy; (2) a newly proposed IVS scheme and a newly proposed candidate rainfall input set to ensure the adequacy and parsimony of the rainfall and antecedent discharge input variables; and (3) a newly proposed calibration method for the EBPNN to ensure higher simulation accuracy and better generalization property. This method is a combination of the NGSA-II, Levenberg–Marquardt algorithm, and the AIC-based combination weights generating method. For the purpose of comparing simulation accuracy with traditional non-updating data-driven models, a back-propagation neural network model (PB_R) and a linear model (CLS) were also studied. This study utilized event flood data of Dongwan catchment for intercomparisons between different models. The simulation results indicated that the PBK model outperforms other data-driven models and has higher accuracy and better forecasting capability.
Author Hu, Youbing
Kan, Guangyuan
Zhang, Zhongbo
Li, Jiren
He, Xiaoyan
Liang, Ke
Jiang, Xiaoming
Ren, Minglei
Li, Hui
Ding, Liuqian
Wang, Fan
Zhang, Xingnan
Author_xml – sequence: 1
  givenname: Guangyuan
  surname: Kan
  fullname: Kan, Guangyuan
  email: kanguangyuan@126.com
  organization: State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Research Center on Flood and Drought Disaster Reduction of the Ministry of Water Resources, China Institute of Water Resources and Hydropower Research
– sequence: 2
  givenname: Jiren
  surname: Li
  fullname: Li, Jiren
  organization: State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Research Center on Flood and Drought Disaster Reduction of the Ministry of Water Resources, China Institute of Water Resources and Hydropower Research
– sequence: 3
  givenname: Xingnan
  surname: Zhang
  fullname: Zhang, Xingnan
  organization: Cooperative Innovation Center for Water Safety and Hydro-Science of Hohai University
– sequence: 4
  givenname: Liuqian
  surname: Ding
  fullname: Ding, Liuqian
  organization: State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Research Center on Flood and Drought Disaster Reduction of the Ministry of Water Resources, China Institute of Water Resources and Hydropower Research
– sequence: 5
  givenname: Xiaoyan
  surname: He
  fullname: He, Xiaoyan
  organization: State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Research Center on Flood and Drought Disaster Reduction of the Ministry of Water Resources, China Institute of Water Resources and Hydropower Research
– sequence: 6
  givenname: Ke
  surname: Liang
  fullname: Liang, Ke
  organization: College of Hydrology and Water Resources, Hohai University
– sequence: 7
  givenname: Xiaoming
  surname: Jiang
  fullname: Jiang, Xiaoming
  organization: State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Research Center on Flood and Drought Disaster Reduction of the Ministry of Water Resources, China Institute of Water Resources and Hydropower Research
– sequence: 8
  givenname: Minglei
  surname: Ren
  fullname: Ren, Minglei
  organization: State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Research Center on Flood and Drought Disaster Reduction of the Ministry of Water Resources, China Institute of Water Resources and Hydropower Research
– sequence: 9
  givenname: Hui
  surname: Li
  fullname: Li, Hui
  organization: State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Research Center on Flood and Drought Disaster Reduction of the Ministry of Water Resources, China Institute of Water Resources and Hydropower Research
– sequence: 10
  givenname: Fan
  surname: Wang
  fullname: Wang, Fan
  organization: State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Research Center on Flood and Drought Disaster Reduction of the Ministry of Water Resources, China Institute of Water Resources and Hydropower Research
– sequence: 11
  givenname: Zhongbo
  surname: Zhang
  fullname: Zhang, Zhongbo
  organization: State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Research Center on Flood and Drought Disaster Reduction of the Ministry of Water Resources, China Institute of Water Resources and Hydropower Research
– sequence: 12
  givenname: Youbing
  surname: Hu
  fullname: Hu, Youbing
  organization: Hydrologic Bureau (Information Center) of the Huaihe River Commission
BookMark eNp1kLlOAzEQhi0UJJLAA9BZojaMj73KKOISkWigtrw-YKONHewNKB3vwBvyJDhaChqq0cx_jPTN0MQHbxE6p3BJAaqrBFAwSoCWhDEAIo7QlArOCYeinqApNCKrpeAnaJbSGgBEWRdT9LDA3n7g130bO4ONGhQxsXu3Hm-CsT12IWKb14G0KlmDo-q8U33__fkVdz44h1O32fVq6II_RcdZSvbsd87R88310_KOrB5v75eLFdGclgMpC6HrygjgrlWurYu2bFprqKUCinyvNFeqqcFQXTHNoKmcalTjiqqyRjvN5-hi7N3G8LazaZDrsIs-v5S0YQXjglGWXXR06RhSitbJbew2Ku4lBXlgJkdmMjOTB2ZS5AwbMyl7_YuNf5r_Df0AIfRxow
CitedBy_id crossref_primary_10_1007_s11831_017_9224_5
crossref_primary_10_3389_feart_2020_00014
crossref_primary_10_3390_w15173140
crossref_primary_10_3390_w12020440
crossref_primary_10_1109_ACCESS_2024_3384066
crossref_primary_10_1515_geo_2020_0166
crossref_primary_10_1016_j_jhydrol_2020_125014
crossref_primary_10_3390_w15152700
crossref_primary_10_1016_j_asej_2022_101732
crossref_primary_10_1007_s00521_016_2534_y
crossref_primary_10_1007_s12145_021_00644_z
crossref_primary_10_1002_clen_202300341
crossref_primary_10_2139_ssrn_4200148
crossref_primary_10_3390_w9100719
crossref_primary_10_1016_j_tcrr_2021_12_001
crossref_primary_10_1080_02626667_2024_2321332
crossref_primary_10_1007_s00366_018_0685_4
crossref_primary_10_3390_w12010175
crossref_primary_10_3390_su13031336
crossref_primary_10_3389_feart_2021_621780
crossref_primary_10_1016_j_scitotenv_2019_02_422
crossref_primary_10_12677_CSA_2020_103053
crossref_primary_10_2478_johh_2020_0006
crossref_primary_10_1016_j_asoc_2023_110722
crossref_primary_10_1109_TPDS_2016_2575822
crossref_primary_10_3390_w10111543
Cites_doi 10.2166/hydro.2012.143
10.1061/(ASCE)1084-0699(2003)8:2(93)
10.1016/j.jhydrol.2008.05.015
10.1080/02626669009492406
10.1007/s10462-011-9208-z
10.1016/j.jhydrol.2012.10.019
10.1016/j.jhydrol.2011.01.024
10.1016/S0022-1694(00)00346-2
10.1016/j.engappai.2008.02.007
10.1061/(ASCE)1084-0699(2000)5:2(156)
10.1111/j.1467-9892.1987.tb00435.x
10.2166/hydro.2013.245
10.1007/s00521-011-0560-3
10.1061/(ASCE)HE.1943-5584.0000958
10.1016/j.jhydrol.2004.06.020
10.2166/hydro.2011.044
10.1016/j.jhydrol.2003.12.033
10.1016/j.jhydrol.2004.06.021
10.1016/j.envsoft.2008.03.008
10.1007/s11269-006-9144-x
10.1162/evco.1994.2.3.221
10.1061/(ASCE)0733-9429(2006)132:12(1321)
10.5194/adgeo-5-89-2005
10.1016/0022-1694(95)02833-1
10.1080/02626669609491511
10.1016/S0022-1694(00)00214-6
10.1109/TAC.1974.1100705
10.1016/S0022-1694(00)00348-6
10.1109/TIT.1974.1055306
10.1016/0022-1694(70)90255-6
10.1029/WR023i007p01300
10.1109/4235.996017
10.1002/hyp.5581
10.1016/j.neucom.2007.10.013
10.1016/j.neucom.2008.12.032
10.1016/j.neunet.2006.01.009
10.1007/s00477-015-1040-6
ContentType Journal Article
Copyright The Natural Computing Applications Forum 2016
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: The Natural Computing Applications Forum 2016
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
DOI 10.1007/s00521-016-2200-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 2534
ExternalDocumentID 10_1007_s00521_016_2200_4
GrantInformation_xml – fundername: the Mayor Seismic-Geological Disaster Chains Process and Disaster Risk Comprehensive Assessment - supported by National Sci-Tech Support Plan
  grantid: 2012bak10b03-02
– fundername: the Third Sub-Project - Flood Forecasting, Controlling and Flood Prevention Aided Software Development - Flood Control Early Warning Communication System and Flood Forecasting, Controlling and Flood Prevention Aided Software Development for Poyang Lake Area of Jiangxi Province
  grantid: 0628-136006104242, JZ0205A432013, SLXMB200902
– fundername: the IWHR Scientific Research Projects of Outstanding Young Scientists "Research and applicaiton on the fast global optimization method for the Xinanjiang model parameters based on the high performance heterogeneous computing"
– fundername: the Numerical Simulation Technology of Flash Flood based on Godunov Scheme and Its Mechanism Study by Experiment
  grantid: 51509263
– fundername: the IWHR Special Dynamic Investigation Project on International Water Resources and Hydropower Technology Development - Progress Summary and Comment on the Research of Dynamic Control of Reservoir Water Level During Flood Season
  grantid: JZ0145C102015
– fundername: We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research
– fundername: the NNSF of China, Estimation of regional evapotranspiration using remotely sensed data based on the theoretical VFC/LST trapezoid space
  grantid: 41501415
– fundername: the Study on Mass-Energy Balance Coupling Scheme on Hill-Slope and Its Application to Distributed Hydrological Models
  grantid: 51420105014
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAOBN
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWWR
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADGRI
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYWE
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
AAYZH
ID FETCH-LOGICAL-c316t-654c87d403fbafb85b69bed1e14057d47c3aa980d1c72c2097fa9a9f577edcfc3
IEDL.DBID AGYKE
ISSN 0941-0643
IngestDate Wed Nov 06 08:50:11 EST 2024
Thu Sep 12 19:01:46 EDT 2024
Sat Dec 16 12:02:31 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Rainfall–runoff simulation
PBK model
Non-updating
Data-driven
Event-based
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-654c87d403fbafb85b69bed1e14057d47c3aa980d1c72c2097fa9a9f577edcfc3
PQID 1925234212
PQPubID 2043988
PageCount 16
ParticipantIDs proquest_journals_1925234212
crossref_primary_10_1007_s00521_016_2200_4
springer_journals_10_1007_s00521_016_2200_4
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2017
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Karlsson, Yakowitz (CR20) 1987; 23
Li, Kan, Yao, Liu, Li, Yu (CR25) 2014; 19
Akaike (CR2) 1974; 19
Chua, Wong, Sriramula (CR6) 2008; 357
Loghmanian, Ahmad, Khalid (CR26) 2012; 21
Galeati (CR14) 1990; 35
Piotrowski, Napiorkowski (CR32) 2013; 476
CR30
Vahid, Masoumeh (CR44) 2013; 141
Deb, IEEE, Pratap, Agarwal, Meyarivan (CR12) 2002; 6
Seckin (CR33) 2010; 046
He, Valeo, Chu, Neumann (CR15) 2011; 400
Yakowitz (CR48) 1987; 8
Dastorani, Koochi, Darani, Talebi, Rahimian (CR8) 2013; 245
Nash, Sutcliffe (CR29) 1970; 10
Yu, Wang, Xi (CR49) 2008; 71
Karran, Morin, Adamowski (CR21) 2013; 042
Tiwari, Song, Chatterjee, Gupta (CR41) 2012; 130
Lee, Hung, Meng (CR24) 2008; 22
CR42
Dawson, See, Abrahart, Heppenstall (CR9) 2006; 19
May, Dandy, Maier, Nixon (CR27) 2008; 23
Kan, Yao, Li, Li, Yu, Liu, Ding, He, Liang (CR18) 2015
Zhao, Zhang, Liao (CR51) 2008; 21
Adamowski, Chan, Prasher, Sharda (CR1) 2012; 044
Tokar, Markus (CR43) 2000; 5
Wang, Zhang, Xu (CR46) 1987; 7
Jain, Indurthy (CR16) 2003; 8
Shamseldin, O’Connor (CR34) 1996; 179
Panchal, Ganatra, Kosta (CR31) 2010; 1
Coulibaly, Anctil, Bobée (CR7) 2000; 230
Deb (CR11) 2001
Dawson, Mount, Abrahart, Louis (CR10) 2013; 222
Chiang, Chang, Chang (CR5) 2004; 290
Srinivas, Deb (CR39) 1994; 2
Ju, Yu, Hao, Ou, Zhao, Liu (CR17) 2009; 72
Kanal (CR19) 1974; 20
Soroosh, Arash (CR38) 2012; 026
Krause, Boyle, Bäse (CR22) 2005; 5
Bowden, Maier, Dandy (CR4) 2005; 301
Sharma (CR35) 2000; 239
Wang, Zhang, Xu (CR45) 1985; 1
Wei, Zuo, Song (CR47) 2012; 143
Sharma (CR36) 2000; 239
Kumar, Sudheer, Jain, Agarwal (CR23) 2005; 19
Ding, Su, Yu (CR13) 2011; 36
Tayfur, Singh (CR40) 2006; 132
Minns, Hall (CR28) 1996; 41
Sollich, Krogh, Touretzky, Mozer, Hasselmo (CR37) 1996
Zhang, Cai (CR50) 2003; 15
Bowden, Dandy, Maier (CR3) 2005; 301
A Sharma (2200_CR35) 2000; 239
P Krause (2200_CR22) 2005; 5
Z Li (2200_CR25) 2014; 19
N Vahid (2200_CR44) 2013; 141
2200_CR42
N Srinivas (2200_CR39) 1994; 2
GJ Bowden (2200_CR4) 2005; 301
G Galeati (2200_CR14) 1990; 35
D Zhang (2200_CR50) 2003; 15
S Ding (2200_CR13) 2011; 36
DJ Karran (2200_CR21) 2013; 042
G Kan (2200_CR18) 2015
Y Chiang (2200_CR5) 2004; 290
MK Tiwari (2200_CR41) 2012; 130
S Wei (2200_CR47) 2012; 143
J Adamowski (2200_CR1) 2012; 044
J He (2200_CR15) 2011; 400
P Sollich (2200_CR37) 1996
MT Dastorani (2200_CR8) 2013; 245
RJ May (2200_CR27) 2008; 23
AS Tokar (2200_CR43) 2000; 5
H Akaike (2200_CR2) 1974; 19
AW Minns (2200_CR28) 1996; 41
Z Zhao (2200_CR51) 2008; 21
S Soroosh (2200_CR38) 2012; 026
J Wang (2200_CR46) 1987; 7
S Yakowitz (2200_CR48) 1987; 8
N Seckin (2200_CR33) 2010; 046
CW Dawson (2200_CR9) 2006; 19
Q Ju (2200_CR17) 2009; 72
A Sharma (2200_CR36) 2000; 239
J Yu (2200_CR49) 2008; 71
AY Shamseldin (2200_CR34) 1996; 179
ARS Kumar (2200_CR23) 2005; 19
L Kanal (2200_CR19) 1974; 20
P Coulibaly (2200_CR7) 2000; 230
K Deb (2200_CR11) 2001
J Wang (2200_CR45) 1985; 1
HCL Chua (2200_CR6) 2008; 357
A Jain (2200_CR16) 2003; 8
JE Nash (2200_CR29) 1970; 10
2200_CR30
SMR Loghmanian (2200_CR26) 2012; 21
GJ Bowden (2200_CR3) 2005; 301
K Deb (2200_CR12) 2002; 6
G Tayfur (2200_CR40) 2006; 132
CW Dawson (2200_CR10) 2013; 222
M Karlsson (2200_CR20) 1987; 23
G Panchal (2200_CR31) 2010; 1
AP Piotrowski (2200_CR32) 2013; 476
KT Lee (2200_CR24) 2008; 22
References_xml – volume: 143
  start-page: 974
  year: 2012
  end-page: 991
  ident: CR47
  article-title: Improving prediction accuracy of river discharge time series using a Wavelet-NAR artificial neural network
  publication-title: J Hydroinform
  doi: 10.2166/hydro.2012.143
  contributor:
    fullname: Song
– volume: 8
  start-page: 93
  issue: 2
  year: 2003
  end-page: 98
  ident: CR16
  article-title: Comparative analysis of event-based rainfall–runoff modeling techniques—deterministic, statistical and artificial neural networks
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)1084-0699(2003)8:2(93)
  contributor:
    fullname: Indurthy
– volume: 357
  start-page: 337
  year: 2008
  end-page: 348
  ident: CR6
  article-title: Comparison between kinematic wave and artificial neural network models in event-based runoff simulation for an overland plane
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2008.05.015
  contributor:
    fullname: Sriramula
– start-page: 190
  year: 1996
  end-page: 196
  ident: CR37
  article-title: Learning with ensembles: how over-fitting can be useful
  publication-title: Advances in neural information processing systems
  contributor:
    fullname: Hasselmo
– volume: 35
  start-page: 79
  issue: 1
  year: 1990
  end-page: 94
  ident: CR14
  article-title: A comparison of parametric and non-parametric methods for runoff forecasting
  publication-title: Hydrol Sci J
  doi: 10.1080/02626669009492406
  contributor:
    fullname: Galeati
– volume: 36
  start-page: 153
  year: 2011
  end-page: 162
  ident: CR13
  article-title: An optimizing BP neural network algorithm based on genetic algorithm
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-011-9208-z
  contributor:
    fullname: Yu
– volume: 476
  start-page: 97
  year: 2013
  end-page: 111
  ident: CR32
  article-title: A comparison of methods to avoid overfitting in neural networks training in the case of catchment runoff modeling
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2012.10.019
  contributor:
    fullname: Napiorkowski
– ident: CR42
– year: 2001
  ident: CR11
  publication-title: Multi-objective optimization using evolutionary algorithms
  contributor:
    fullname: Deb
– volume: 400
  start-page: 10
  year: 2011
  end-page: 23
  ident: CR15
  article-title: Prediction of event-based stormwater runoff quantity and quality by ANNs developed using PMI-based input selection
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2011.01.024
  contributor:
    fullname: Neumann
– volume: 239
  start-page: 232
  issue: 1–4
  year: 2000
  end-page: 239
  ident: CR35
  article-title: Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: part 1—a strategy for system predictor identification
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(00)00346-2
  contributor:
    fullname: Sharma
– volume: 21
  start-page: 1182
  year: 2008
  end-page: 1188
  ident: CR51
  article-title: Design of ensemble neural network using the Akaike information criterion
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2008.02.007
  contributor:
    fullname: Liao
– volume: 5
  start-page: 156
  issue: 2
  year: 2000
  end-page: 161
  ident: CR43
  article-title: Rainfall–runoff modeling using artificial neural networks and conceptual models
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(156)
  contributor:
    fullname: Markus
– volume: 8
  start-page: 235
  issue: 2
  year: 1987
  end-page: 247
  ident: CR48
  article-title: Nearest neighbor methods for time series analysis
  publication-title: J Time Ser Anal
  doi: 10.1111/j.1467-9892.1987.tb00435.x
  contributor:
    fullname: Yakowitz
– volume: 1
  start-page: 975
  issue: 5
  year: 2010
  end-page: 8887
  ident: CR31
  article-title: Searching most efficient neural network architecture using Akaike’s information criterion (AIC)
  publication-title: Int J Comput Appl
  contributor:
    fullname: Kosta
– volume: 245
  start-page: 1089
  year: 2013
  end-page: 1098
  ident: CR8
  article-title: River instantaneous peak flow estimation using daily flow data and machine-learning-based models
  publication-title: J Hydroinform
  doi: 10.2166/hydro.2013.245
  contributor:
    fullname: Rahimian
– year: 2015
  ident: CR18
  article-title: Improving event-based rainfall–runoff simulation using an ensemble artificial neural network based hybrid data-driven model
  publication-title: Stoch Environ Res Risk Assess
  contributor:
    fullname: Liang
– volume: 21
  start-page: 1281
  year: 2012
  end-page: 1295
  ident: CR26
  article-title: Structure optimization of neural network for dynamic system modeling using multi-objective genetic algorithm
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-011-0560-3
  contributor:
    fullname: Khalid
– volume: 19
  start-page: 04014019-1
  issue: 10
  year: 2014
  end-page: 04014019-17
  ident: CR25
  article-title: An improved neural network model and its application in hydrological simulation
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)HE.1943-5584.0000958
  contributor:
    fullname: Yu
– volume: 301
  start-page: 93
  issue: 1–4
  year: 2005
  end-page: 107
  ident: CR4
  article-title: Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2004.06.020
  contributor:
    fullname: Dandy
– volume: 044
  start-page: 731
  year: 2012
  end-page: 744
  ident: CR1
  article-title: Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data
  publication-title: J Hydroinform
  doi: 10.2166/hydro.2011.044
  contributor:
    fullname: Sharda
– volume: 290
  start-page: 297
  year: 2004
  end-page: 311
  ident: CR5
  article-title: Comparison of static-feedforward and dynamic feedback neural networks for rainfall–runoff modeling
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2003.12.033
  contributor:
    fullname: Chang
– volume: 15
  start-page: 1088
  issue: 8
  year: 2003
  end-page: 1090
  ident: CR50
  article-title: A genetic-algorithm-based two-stage learning scheme for neural networks
  publication-title: J Syst Sin
  contributor:
    fullname: Cai
– volume: 301
  start-page: 75
  year: 2005
  end-page: 92
  ident: CR3
  article-title: Input determination for neural network models in water resources applications. Part 1—background and methodology
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2004.06.021
  contributor:
    fullname: Maier
– volume: 7
  start-page: 1
  year: 1987
  end-page: 9
  ident: CR46
  article-title: Synthesized constrained linear system
  publication-title: J Hydraul Eng ASCE
  contributor:
    fullname: Xu
– ident: CR30
– volume: 130
  start-page: 486
  year: 2012
  end-page: 502
  ident: CR41
  article-title: Improving reliability of river flow forecasting using neural networks, wavelets and self-organising maps
  publication-title: J Hydroinform
  contributor:
    fullname: Gupta
– volume: 23
  start-page: 1289
  issue: 10–11
  year: 2008
  end-page: 1299
  ident: CR27
  article-title: Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2008.03.008
  contributor:
    fullname: Nixon
– volume: 026
  start-page: 697
  year: 2012
  end-page: 715
  ident: CR38
  article-title: A novel hybrid mechanistic-data-driven model identification framework using NSGA-II
  publication-title: J Hydroinform
  contributor:
    fullname: Arash
– volume: 222
  start-page: 407
  year: 2013
  end-page: 424
  ident: CR10
  article-title: Sensitivity analysis for comparison, validation and physical legitimacy of neural network-based hydrological models
  publication-title: J Hydroinform
  contributor:
    fullname: Louis
– volume: 22
  start-page: 67
  year: 2008
  end-page: 82
  ident: CR24
  article-title: Deterministic insight into ANN model performance for storm runoff simulation
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-006-9144-x
  contributor:
    fullname: Meng
– volume: 2
  start-page: 221
  issue: 3
  year: 1994
  end-page: 248
  ident: CR39
  article-title: Multi-objective optimization using non-dominated sorting in genetic algorithms
  publication-title: Evol Comput
  doi: 10.1162/evco.1994.2.3.221
  contributor:
    fullname: Deb
– volume: 132
  start-page: 1321
  issue: 12
  year: 2006
  end-page: 1330
  ident: CR40
  article-title: ANN and fuzzy logic models for simulating event-based rainfall–runoff
  publication-title: J Hydraul Eng ASCE
  doi: 10.1061/(ASCE)0733-9429(2006)132:12(1321)
  contributor:
    fullname: Singh
– volume: 5
  start-page: 89
  year: 2005
  end-page: 97
  ident: CR22
  article-title: Comparison of different efficiency criteria for hydrological model assessment
  publication-title: Adv Geosci
  doi: 10.5194/adgeo-5-89-2005
  contributor:
    fullname: Bäse
– volume: 179
  start-page: 352
  year: 1996
  end-page: 375
  ident: CR34
  article-title: A nearest neighbour linear perturbation model for river flow forecasting
  publication-title: J Hydrol
  doi: 10.1016/0022-1694(95)02833-1
  contributor:
    fullname: O’Connor
– volume: 41
  start-page: 399
  issue: 3
  year: 1996
  end-page: 417
  ident: CR28
  article-title: Artificial neural networks as rainfall–runoff models
  publication-title: Hydrol Sci J
  doi: 10.1080/02626669609491511
  contributor:
    fullname: Hall
– volume: 230
  start-page: 244
  year: 2000
  end-page: 257
  ident: CR7
  article-title: Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(00)00214-6
  contributor:
    fullname: Bobée
– volume: 19
  start-page: 716
  year: 1974
  end-page: 723
  ident: CR2
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.1974.1100705
  contributor:
    fullname: Akaike
– volume: 239
  start-page: 249
  issue: 1–4
  year: 2000
  end-page: 258
  ident: CR36
  article-title: Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: part 3—a nonparametric probabilistic forecast model
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(00)00348-6
  contributor:
    fullname: Sharma
– volume: 20
  start-page: 697
  year: 1974
  end-page: 722
  ident: CR19
  article-title: Patterns in pattern recognition
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1974.1055306
  contributor:
    fullname: Kanal
– volume: 10
  start-page: 282
  year: 1970
  end-page: 290
  ident: CR29
  article-title: River flow forecasting through conceptual models; part I—a discussion of principles
  publication-title: J Hydrol
  doi: 10.1016/0022-1694(70)90255-6
  contributor:
    fullname: Sutcliffe
– volume: 23
  start-page: 1300
  issue: 7
  year: 1987
  end-page: 1308
  ident: CR20
  article-title: Nearest neighbour methods for non-parametric rainfall runoff forecasting
  publication-title: Water Resour Res
  doi: 10.1029/WR023i007p01300
  contributor:
    fullname: Yakowitz
– volume: 042
  start-page: 671
  year: 2013
  end-page: 709
  ident: CR21
  article-title: Multi-step streamflow forecasting using data-driven non-linear methods in contrasting climate regimes
  publication-title: J Hydroinform
  contributor:
    fullname: Adamowski
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  end-page: 197
  ident: CR12
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
  contributor:
    fullname: Meyarivan
– volume: 19
  start-page: 1277
  year: 2005
  end-page: 1291
  ident: CR23
  article-title: Rainfall–runoff modeling using artificial neural networks: comparison of network types
  publication-title: Hydrol Process
  doi: 10.1002/hyp.5581
  contributor:
    fullname: Agarwal
– volume: 71
  start-page: 1054
  year: 2008
  end-page: 1060
  ident: CR49
  article-title: Evolving artificial neural networks using an improved PSO and DPSO
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.10.013
  contributor:
    fullname: Xi
– volume: 72
  start-page: 2873
  year: 2009
  end-page: 2883
  ident: CR17
  article-title: Division-based rainfall–runoff simulations with BP neural networks and Xinanjiang model
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.12.032
  contributor:
    fullname: Liu
– volume: 141
  start-page: 829
  year: 2013
  end-page: 848
  ident: CR44
  article-title: Conjunction of SOM-based feature extraction method and hybrid wavelet-ANN approach for rainfall–runoff modeling
  publication-title: J Hydroinform
  contributor:
    fullname: Masoumeh
– volume: 19
  start-page: 236
  issue: 2
  year: 2006
  end-page: 247
  ident: CR9
  article-title: Symbiotic adaptive neuron-evolution applied to rainfall–runoff modelling in northern England
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2006.01.009
  contributor:
    fullname: Heppenstall
– volume: 046
  start-page: 842
  year: 2010
  end-page: 849
  ident: CR33
  article-title: Modeling flood discharge at ungauged sites across Turkey using neuro-fuzzy and neural networks
  publication-title: J Hydroinform
  contributor:
    fullname: Seckin
– volume: 1
  start-page: 8
  year: 1985
  end-page: 16
  ident: CR45
  article-title: Constrained linear system model and its application in flood forecasting of the Han River
  publication-title: J China Hydrol
  contributor:
    fullname: Xu
– volume: 357
  start-page: 337
  year: 2008
  ident: 2200_CR6
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2008.05.015
  contributor:
    fullname: HCL Chua
– ident: 2200_CR42
– volume: 36
  start-page: 153
  year: 2011
  ident: 2200_CR13
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-011-9208-z
  contributor:
    fullname: S Ding
– volume: 143
  start-page: 974
  year: 2012
  ident: 2200_CR47
  publication-title: J Hydroinform
  doi: 10.2166/hydro.2012.143
  contributor:
    fullname: S Wei
– volume: 179
  start-page: 352
  year: 1996
  ident: 2200_CR34
  publication-title: J Hydrol
  doi: 10.1016/0022-1694(95)02833-1
  contributor:
    fullname: AY Shamseldin
– volume: 5
  start-page: 89
  year: 2005
  ident: 2200_CR22
  publication-title: Adv Geosci
  doi: 10.5194/adgeo-5-89-2005
  contributor:
    fullname: P Krause
– volume: 476
  start-page: 97
  year: 2013
  ident: 2200_CR32
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2012.10.019
  contributor:
    fullname: AP Piotrowski
– volume: 10
  start-page: 282
  year: 1970
  ident: 2200_CR29
  publication-title: J Hydrol
  doi: 10.1016/0022-1694(70)90255-6
  contributor:
    fullname: JE Nash
– volume: 71
  start-page: 1054
  year: 2008
  ident: 2200_CR49
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.10.013
  contributor:
    fullname: J Yu
– volume: 19
  start-page: 716
  year: 1974
  ident: 2200_CR2
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.1974.1100705
  contributor:
    fullname: H Akaike
– volume: 301
  start-page: 75
  year: 2005
  ident: 2200_CR3
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2004.06.021
  contributor:
    fullname: GJ Bowden
– volume: 026
  start-page: 697
  year: 2012
  ident: 2200_CR38
  publication-title: J Hydroinform
  contributor:
    fullname: S Soroosh
– volume: 35
  start-page: 79
  issue: 1
  year: 1990
  ident: 2200_CR14
  publication-title: Hydrol Sci J
  doi: 10.1080/02626669009492406
  contributor:
    fullname: G Galeati
– volume: 7
  start-page: 1
  year: 1987
  ident: 2200_CR46
  publication-title: J Hydraul Eng ASCE
  contributor:
    fullname: J Wang
– volume: 72
  start-page: 2873
  year: 2009
  ident: 2200_CR17
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.12.032
  contributor:
    fullname: Q Ju
– volume: 23
  start-page: 1300
  issue: 7
  year: 1987
  ident: 2200_CR20
  publication-title: Water Resour Res
  doi: 10.1029/WR023i007p01300
  contributor:
    fullname: M Karlsson
– volume: 15
  start-page: 1088
  issue: 8
  year: 2003
  ident: 2200_CR50
  publication-title: J Syst Sin
  contributor:
    fullname: D Zhang
– volume: 1
  start-page: 975
  issue: 5
  year: 2010
  ident: 2200_CR31
  publication-title: Int J Comput Appl
  contributor:
    fullname: G Panchal
– volume: 222
  start-page: 407
  year: 2013
  ident: 2200_CR10
  publication-title: J Hydroinform
  contributor:
    fullname: CW Dawson
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 2200_CR12
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
  contributor:
    fullname: K Deb
– volume-title: Multi-objective optimization using evolutionary algorithms
  year: 2001
  ident: 2200_CR11
  contributor:
    fullname: K Deb
– volume: 132
  start-page: 1321
  issue: 12
  year: 2006
  ident: 2200_CR40
  publication-title: J Hydraul Eng ASCE
  doi: 10.1061/(ASCE)0733-9429(2006)132:12(1321)
  contributor:
    fullname: G Tayfur
– volume: 239
  start-page: 232
  issue: 1–4
  year: 2000
  ident: 2200_CR35
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(00)00346-2
  contributor:
    fullname: A Sharma
– volume: 21
  start-page: 1182
  year: 2008
  ident: 2200_CR51
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2008.02.007
  contributor:
    fullname: Z Zhao
– volume: 8
  start-page: 235
  issue: 2
  year: 1987
  ident: 2200_CR48
  publication-title: J Time Ser Anal
  doi: 10.1111/j.1467-9892.1987.tb00435.x
  contributor:
    fullname: S Yakowitz
– volume: 301
  start-page: 93
  issue: 1–4
  year: 2005
  ident: 2200_CR4
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2004.06.020
  contributor:
    fullname: GJ Bowden
– volume: 2
  start-page: 221
  issue: 3
  year: 1994
  ident: 2200_CR39
  publication-title: Evol Comput
  doi: 10.1162/evco.1994.2.3.221
  contributor:
    fullname: N Srinivas
– volume: 19
  start-page: 04014019-1
  issue: 10
  year: 2014
  ident: 2200_CR25
  publication-title: J Hydrol Eng
  contributor:
    fullname: Z Li
– volume: 239
  start-page: 249
  issue: 1–4
  year: 2000
  ident: 2200_CR36
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(00)00348-6
  contributor:
    fullname: A Sharma
– volume: 22
  start-page: 67
  year: 2008
  ident: 2200_CR24
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-006-9144-x
  contributor:
    fullname: KT Lee
– volume: 19
  start-page: 236
  issue: 2
  year: 2006
  ident: 2200_CR9
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2006.01.009
  contributor:
    fullname: CW Dawson
– volume: 042
  start-page: 671
  year: 2013
  ident: 2200_CR21
  publication-title: J Hydroinform
  contributor:
    fullname: DJ Karran
– volume: 130
  start-page: 486
  year: 2012
  ident: 2200_CR41
  publication-title: J Hydroinform
  contributor:
    fullname: MK Tiwari
– volume: 400
  start-page: 10
  year: 2011
  ident: 2200_CR15
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2011.01.024
  contributor:
    fullname: J He
– volume: 046
  start-page: 842
  year: 2010
  ident: 2200_CR33
  publication-title: J Hydroinform
  contributor:
    fullname: N Seckin
– volume: 8
  start-page: 93
  issue: 2
  year: 2003
  ident: 2200_CR16
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)1084-0699(2003)8:2(93)
  contributor:
    fullname: A Jain
– volume: 20
  start-page: 697
  year: 1974
  ident: 2200_CR19
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1974.1055306
  contributor:
    fullname: L Kanal
– volume: 230
  start-page: 244
  year: 2000
  ident: 2200_CR7
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(00)00214-6
  contributor:
    fullname: P Coulibaly
– year: 2015
  ident: 2200_CR18
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-015-1040-6
  contributor:
    fullname: G Kan
– volume: 41
  start-page: 399
  issue: 3
  year: 1996
  ident: 2200_CR28
  publication-title: Hydrol Sci J
  doi: 10.1080/02626669609491511
  contributor:
    fullname: AW Minns
– volume: 1
  start-page: 8
  year: 1985
  ident: 2200_CR45
  publication-title: J China Hydrol
  contributor:
    fullname: J Wang
– volume: 044
  start-page: 731
  year: 2012
  ident: 2200_CR1
  publication-title: J Hydroinform
  doi: 10.2166/hydro.2011.044
  contributor:
    fullname: J Adamowski
– volume: 245
  start-page: 1089
  year: 2013
  ident: 2200_CR8
  publication-title: J Hydroinform
  doi: 10.2166/hydro.2013.245
  contributor:
    fullname: MT Dastorani
– volume: 290
  start-page: 297
  year: 2004
  ident: 2200_CR5
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2003.12.033
  contributor:
    fullname: Y Chiang
– volume: 23
  start-page: 1289
  issue: 10–11
  year: 2008
  ident: 2200_CR27
  publication-title: Environ Model Softw
  contributor:
    fullname: RJ May
– ident: 2200_CR30
– volume: 5
  start-page: 156
  issue: 2
  year: 2000
  ident: 2200_CR43
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(156)
  contributor:
    fullname: AS Tokar
– volume: 141
  start-page: 829
  year: 2013
  ident: 2200_CR44
  publication-title: J Hydroinform
  contributor:
    fullname: N Vahid
– start-page: 190
  volume-title: Advances in neural information processing systems
  year: 1996
  ident: 2200_CR37
  contributor:
    fullname: P Sollich
– volume: 21
  start-page: 1281
  year: 2012
  ident: 2200_CR26
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-011-0560-3
  contributor:
    fullname: SMR Loghmanian
– volume: 19
  start-page: 1277
  year: 2005
  ident: 2200_CR23
  publication-title: Hydrol Process
  doi: 10.1002/hyp.5581
  contributor:
    fullname: ARS Kumar
SSID ssj0004685
Score 2.3475049
Snippet A new hybrid data-driven model named PBK has been proposed to improve the event-based rainfall–runoff simulation. The PBK is developed by coupling partial...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 2519
SubjectTerms Accuracy
Adequacy
Artificial Intelligence
Back propagation
Back propagation networks
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Computer simulation
Data Mining and Knowledge Discovery
Discharge
Forecasting
Image Processing and Computer Vision
Mathematical models
Neural networks
Original Article
Probability and Statistics in Computer Science
Rainfall
Runoff
Title A new hybrid data-driven model for event-based rainfall–runoff simulation
URI https://link.springer.com/article/10.1007/s00521-016-2200-4
https://www.proquest.com/docview/1925234212
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB11uXChrKJQKh84gVxlceLkWFBLRUWFEJXKKXLsWKCWFHU5wIl_4A_5Emw3KWU79ORDLEuZsT1vPMsDOBE-V1bIEZiEkmMiqYUDPw6xZ7mCSIvZ0nAsXff8Tp9cDbxBAZzl00U6bOQRSXNRL2vd9AOm9nx97CjNYlKEclZ3Wm5e3ndbK9WQhohT-S06p4e4eSzzr0W-W6MviPkjKmqMTbuyKACcmh6FOsdk2JjP4gZ__d3BcY3_2ILNDHui5mKzbEMhSXegkvM6oOyY70K3iRTYRg8vupoL6RxSLCb6VkSGNwcpnItM4yesbaBAmmVCstHo4-19Mk_HUqLp41NGC7YH_Xbr7qKDM9IFzF3bn2HfIzyggliujJmMAy_2wzgRdmJraCcI5S5jYWAJm1OHO1ZIJQtZKD1KE8Eld_ehlI7T5ABQIJhNqAKQAXEIZ8qzSpR_JWNBQ6WlxKvCaS786HnRWyNadlE2Yop0_pkWU0SqUMvVE2XHbBopeKocaR3UrsJZLu6Vz_8tdrjW7CPYcLQxN5llNSjNJvPkWEGRWVzP9p4az1u9m9s6FPtO8xNLA9bS
link.rule.ids 315,783,787,27936,27937,33756,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFL2CMsDCG1Eo4IEJZClxnDgeK0RV6GNqpW6R44dAKinqY2DjH_hDvgTbTaAgGJgTeTiOfc_NvfccgEuVSBuFiMKUG4mpYQFOk5zjOIgUNYEIjfdY6vWT9pDej-JROcc9q7rdq5Kkv6k_h93cH0yX-iaY2K3FdB02nLy6E8wfkubKMKT34bRpi2vpoVFVyvxtie_B6Ith_iiK-ljT2oXtkiSi5nJX92BNF_uwUxkwoPI8HkCniSwrRg8vbuwKuWZPrKbu-kLe4AZZQoq8QhN2wUohZwdhxHj8_vo2XRQTY9Ds8an07zqEYet2cNPGpTsCllGYzHESU5kyRYPI5MLkaZwnPNcq1KHjYIoyGQnB00CFkhFJAs6M4IKbmDGtpJHREdSKSaGPAaVKhJRZppdSQqWwKZC2iZDJFeMWTx3X4aqCKXteimBkn3LHHtPMNYo5TDNah0YFZFaeh1lmeaTNeF31uQ7XFbgrj_9a7ORfb1_AZnvQ62bdu37nFLaIi8C-HawBtfl0oc8sf5jn5_57-QANWrt1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFL2CIiEW3ohCAQ9MIKt5OHE8VkAFFCoGKnWLHD8EUkmrNh3Y-Af-kC_BdpNSEAzMiTwcxz7n5j4OwKmMhWGhQGLCtMBEUw8nccZw5IWSaI_72nks3Xfj6x657Uf90ud0UlW7VynJWU-DndKUF82R1M1545v9m2nD4BgHZpsxWYYVw0ShrenrBa2FxkjnyWlCGFveQ8IqrfnbEt-J6Utt_kiQOt5pb8J6KRhRa7bDW7Ck8m3YqMwYUHk2d6DTQkYho6dX24KFbOEnlmN7lSFndoOMOEVuWhO2xCWRtYbQfDD4eHsfT_Oh1mjy_FJ6ee1Cr331eHGNS6cELEI_LnAcEZFQSbxQZ1xnSZTFLFPSV77VY5JQEXLOEk_6ggYi8BjVnHGmI0qVFFqEe1DLh7naB5RI7hNqVF9CAiK4CYeUCYp0JikzeKqoDmcVTOloNhAjnY8-dpimtmjMYpqSOjQqINPybExSoylN9Gsz0XU4r8BdePzXYgf_evsEVh8u2-ndTbdzCGuBJWNXGdaAWjGeqiMjJYrs2H0un0g0v7o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+hybrid+data-driven+model+for+event-based+rainfall%E2%80%93runoff+simulation&rft.jtitle=Neural+computing+%26+applications&rft.au=Kan%2C+Guangyuan&rft.au=Li%2C+Jiren&rft.au=Zhang%2C+Xingnan&rft.au=Ding%2C+Liuqian&rft.date=2017-09-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=28&rft.issue=9&rft.spage=2519&rft.epage=2534&rft_id=info:doi/10.1007%2Fs00521-016-2200-4&rft.externalDocID=10_1007_s00521_016_2200_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon