Construction of Optimal Quadrature Formulas Exact for Exponentional-trigonometric Functions by Sobolev’s Method
The paper studies Sard’s problem on construction of optimal quadrature formulas in the space W 2 ( m ,0) by Sobolev’s method. This problem consists of two parts: first calculating the norm of the error functional and then finding the minimum of this norm by coefficients of quadrature formulas. Here...
Saved in:
Published in | Acta mathematica Sinica. English series Vol. 37; no. 7; pp. 1066 - 1088 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society
01.07.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The paper studies Sard’s problem on construction of optimal quadrature formulas in the space
W
2
(
m
,0)
by Sobolev’s method. This problem consists of two parts: first calculating the norm of the error functional and then finding the minimum of this norm by coefficients of quadrature formulas. Here the norm of the error functional is calculated with the help of the extremal function. Then using the method of Lagrange multipliers the system of linear equations for coefficients of the optimal quadrature formulas in the space
W
2
(
m
,0)
is obtained, moreover the existence and uniqueness of the solution of this system are discussed. Next, the discrete analogue
D
m
(
hβ
) of the differential operator
d
2
m
d
x
2
m
−
1
is constructed. Further, Sobolev’s method of construction of optimal quadrature formulas in the space
W
2
(
m
,0)
, which based on the discrete analogue
D
m
(
hβ
), is described. Next, for
m
= 1 and
m
= 3 the optimal quadrature formulas which are exact to exponential-trigonometric functions are obtained. Finally, at the end of the paper the rate of convergence of the optimal quadrature formulas in the space
W
2
(3,0)
for the cases
m
= 1 and
m
= 3 are presented. |
---|---|
AbstractList | The paper studies Sard’s problem on construction of optimal quadrature formulas in the space
W
2
(
m
,0)
by Sobolev’s method. This problem consists of two parts: first calculating the norm of the error functional and then finding the minimum of this norm by coefficients of quadrature formulas. Here the norm of the error functional is calculated with the help of the extremal function. Then using the method of Lagrange multipliers the system of linear equations for coefficients of the optimal quadrature formulas in the space
W
2
(
m
,0)
is obtained, moreover the existence and uniqueness of the solution of this system are discussed. Next, the discrete analogue
D
m
(
hβ
) of the differential operator
d
2
m
d
x
2
m
−
1
is constructed. Further, Sobolev’s method of construction of optimal quadrature formulas in the space
W
2
(
m
,0)
, which based on the discrete analogue
D
m
(
hβ
), is described. Next, for
m
= 1 and
m
= 3 the optimal quadrature formulas which are exact to exponential-trigonometric functions are obtained. Finally, at the end of the paper the rate of convergence of the optimal quadrature formulas in the space
W
2
(3,0)
for the cases
m
= 1 and
m
= 3 are presented. The paper studies Sard’s problem on construction of optimal quadrature formulas in the space W2(m,0) by Sobolev’s method. This problem consists of two parts: first calculating the norm of the error functional and then finding the minimum of this norm by coefficients of quadrature formulas. Here the norm of the error functional is calculated with the help of the extremal function. Then using the method of Lagrange multipliers the system of linear equations for coefficients of the optimal quadrature formulas in the space W2(m,0) is obtained, moreover the existence and uniqueness of the solution of this system are discussed. Next, the discrete analogue Dm(hβ) of the differential operator d2mdx2m−1 is constructed. Further, Sobolev’s method of construction of optimal quadrature formulas in the space W2(m,0), which based on the discrete analogue Dm(hβ), is described. Next, for m = 1 and m = 3 the optimal quadrature formulas which are exact to exponential-trigonometric functions are obtained. Finally, at the end of the paper the rate of convergence of the optimal quadrature formulas in the space W2(3,0) for the cases m = 1 and m = 3 are presented. |
Author | Hayotov, Abdullo Shadimetov, Kholmat Boltaev, Aziz |
Author_xml | – sequence: 1 givenname: Aziz surname: Boltaev fullname: Boltaev, Aziz organization: V. I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences – sequence: 2 givenname: Abdullo surname: Hayotov fullname: Hayotov, Abdullo email: hayotov@mail.ru organization: V. I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences – sequence: 3 givenname: Kholmat surname: Shadimetov fullname: Shadimetov, Kholmat organization: V. I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, Tashkent Railway Engineering Institute |
BookMark | eNp9kMFKwzAcxoNMcJs-gLeA52rSJml7lLGpMBminkOapLOja7okFXfzNXw9n8TUDgRBT_kO3--fj98EjBrTaADOMbrECKVXDiOMSYRiHOUUsYgdgTEmSR6lDKejQ84oZidg4twGIUpzxMZgNzON87aTvjINNCVctb7aiho-dEJZ4Tur4cLYbVcLB-dvQnpYGhtSG_5vekjUkbfV2jRmq0OQcNE139ccLPbw0RSm1q-f7x8O3mv_YtQpOC5F7fTZ4Z2C58X8aXYbLVc3d7PrZSQTzHzEcExJTIhmVBCpEpWjXCFZljKRpSqZljolCmuVEKpkqlim80JloZDSTKkimYKL4W5rza7TzvON6WyY63hMKWWUxXEeWunQktY4Z3XJZeVFP99bUdUcI9775YNfHvzy3i9ngcS_yNYGc3b_LxMPjAvdZq3tz6a_oS_r1ZON |
CitedBy_id | crossref_primary_10_1134_S1995080223100359 crossref_primary_10_3390_math11143114 crossref_primary_10_3390_math12050738 crossref_primary_10_3390_axioms14030220 crossref_primary_10_1186_s13660_024_03111_7 |
Cites_doi | 10.1016/j.cam.2012.11.010 10.1007/s10092-013-0076-6 10.1007/BF02575942 10.1007/s11075-016-0150-7 10.1007/s10986-014-9244-x 10.1137/0703025 10.1007/s11075-010-9440-7 10.3103/S0003701X10010020 10.1016/j.apnum.2012.08.004 10.1002/sapm1950291118 10.1090/S0025-5718-1974-0341825-3 10.1007/978-94-015-8913-0 10.1016/j.amc.2014.07.033 10.11948/2017076 10.1007/s10092-019-0320-9 10.1007/978-3-0348-5836-6 10.1007/978-0-387-34149-1_35 10.17516/1997-1397-2018-11-3-383-396 10.2307/2372095 10.1016/j.amc.2015.12.022 10.1007/s10092-013-0080-x 10.1016/j.cam.2010.07.021 10.1016/j.amc.2015.02.093 10.1090/S0002-9904-1964-11054-5 10.1137/0702012 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany & The Editorial Office of AMS 2021 Springer-Verlag GmbH Germany & The Editorial Office of AMS 2021. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany & The Editorial Office of AMS 2021 – notice: Springer-Verlag GmbH Germany & The Editorial Office of AMS 2021. |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1007/s10114-021-9506-6 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1439-7617 |
EndPage | 1088 |
ExternalDocumentID | 10_1007_s10114_021_9506_6 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 23M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VR 5VS 67Z 6NX 7WY 88I 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. B0M BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCEZO CCPQU CCVFK CHBEP COF CS3 CSCUP CW9 DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG EST ESX F5P FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE GUQSH H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C JBSCW JZLTJ K60 K6V K6~ K7- KDC KOV L6V LAS LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOS R4E R89 R9I ROL RPX RSV S16 S1Z S26 S27 S28 S3B SAP SCL SCLPG SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ZWQNP ~8M ~A9 AAPKM AAYXX ABBRH ABDBE ADHKG AFDZB AFOHR AGQPQ AHPBZ AMVHM ATHPR CITATION PHGZM PHGZT TGP 7SC 7TB 8FD ABRTQ FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c316t-61254244e65a4cd3d909d0cffc3cfdf6ece74d1ed345dc7d68e9bd8cff758ddb3 |
IEDL.DBID | U2A |
ISSN | 1439-8516 |
IngestDate | Fri Jul 25 18:57:42 EDT 2025 Tue Jul 01 03:38:00 EDT 2025 Thu Apr 24 23:11:53 EDT 2025 Fri Feb 21 02:48:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | discrete analogue 65D30 65D32 optimal coefficients the error functional The extremal function 41A15 Sobolev’s method 41A05 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-61254244e65a4cd3d909d0cffc3cfdf6ece74d1ed345dc7d68e9bd8cff758ddb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2555656229 |
PQPubID | 54875 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2555656229 crossref_citationtrail_10_1007_s10114_021_9506_6 crossref_primary_10_1007_s10114_021_9506_6 springer_journals_10_1007_s10114_021_9506_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Acta mathematica Sinica. English series |
PublicationTitleAbbrev | Acta. Math. Sin.-English Ser |
PublicationYear | 2021 |
Publisher | Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society Springer Nature B.V |
Publisher_xml | – name: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society – name: Springer Nature B.V |
References | HayotovA RMilovanovićG VShadimetovK MOn an optimal quadrature formula in the sense of SardNumerical Algorithms2011574487510281945810.1007/s11075-010-9440-7 Zhamalov, Z. Zh.: A difference analogue of the operator d2m/dx2m, In: M. S. Salakhitdinov and T. D. Dzhuraev (Eds.). Direct and Inverse Problems for Partial Differential Equations and Their Applications (in Russian), Fan, Tashkent, 97–108 (1978) Shadimetov, Kh. M., Hayotov, A. R.: Construction of the discrete analogue of the differential operator d2m/dx2m − d2m−2/dx2m−2 (in Russian). Uzbek Math. Zh., no. (2), 85–95 (2004) SobolevS LIntroduction to the Theory of Cubature Formulas (in Russian)1974MoscowNauka Sobolev, S. L.: The coefficients of optimal quadrature formulas. Selected Works of S. L. Sobolev, Springer, 561–566 (2006) ShadimetovK MHayotovA ROptimal quadrature formulas in the sense of Sard in W2(m,m−1)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2^{(m,m - 1)}(0,1)$$\end{document} spaceCalcolo201451211243321015510.1007/s10092-013-0076-6 AhlbergJ HNilsonE NWalshJ LThe Theory of Splines and Their Applications1967New YorkAcademic Press0158.15901 ShadimetovK MHayotovA RNuralievF AOptimal quadrature formulas of Euler-Maclaurin typeApplied Mathematics and Computation2016276340355345202110.1016/j.amc.2015.12.022 BoltaevN DHayotovA RShadimetovK MConstruction of optimal quadrature formulas for Fourier coefficients in Sobolev space L2(m)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2^{(m)}(0,1)$$\end{document}Numererical Algorithms20177430733610.1007/s11075-016-0150-7 AvezovaN RSamievK AHayotovA RModeling of the unsteady temperature conditions of solar greenhouses with a short-term water heat accumulator and its experimental testingApplied Solar Energy2010464710.3103/S0003701X10010020 ComanGMonosplines and optimal quadrature formulae in LpRend. Mat.1972655675770247.41017 HayotovA RConstruction of interpolation splines minimizing the semi-norm in the space K2(Pm)Journal of Siberian Federal University, Mathematics & Physics201811383396382395410.17516/1997-1397-2018-11-3-383-396 LanzaraFOn optimal quadrature formulaeJ. Ineq. Appl.2000520122517852720963.65030 VladimirovV SGeneralized Functions in Mathematical Physics (in Russian)1979MoscowNauka0515.46034 BoltaevN DHayotovA RMilovanovićG VOptimal quadrature formulas for Fourier coefficients in W2(m,m−1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2^{(m,m - 1)}$$\end{document} spaceJournal of Applied Analysis and Computation20177412331266372391810.11948/2017076 HayotovA RThe discrete analogue of a differential operator and its applicationsLithuanian Mathematical Journal2014543290307324097210.1007/s10986-014-9244-x SchoenbergI JOn monosplines of least square deviation and best quadrature formulae IISIAM J. Numer. Anal.1966332132820331710.1137/0703025 HayotovA RMilovanovićG VShadimetovK MInterpolation splines minimizing a semi-normCalcolo201451245260321015610.1007/s10092-013-0080-x Zagirova, F. Ya.: On construction of optimal quadrature formulas with equal spaced nodes (in Russian). Novosibirsk, 28 pp. (Preprint no. 25, Institute of Mathematics SD of AS of USSR) (1982) IonescuD VNumerical Quadratures (in Romanian)1957Editura TehnicăBucuresti ComanGQuadrature formulas of Sard type (in Romanian)Studia Univ. Babeş-Bolyai Ser. Math.-Mech.197217273773783640357.65015 Babaev, S. S., Hayotov, A. R.: Optimal interpolation formulas in the space W2(m,m−1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2^{(m,m - 1)}$$\end{document}. Calcolo, 56(3), Paper No. 23, 25pp. (2019) Shadimetov, Kh. M., Hayotov, A. R.: Computation of coefficients of optimal quadrature formulas in the space W2(m,m−1)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2^{(m,m - 1)}(0,1)$$\end{document} (in Russian). Uzbek. Math. Zh., no. (3), 67–82 (2004) SardABest approximate integration formulas; best approximation formulasAmer. J. Math.19497180912928310.2307/2372095 ShadimetovK MHayotovA RConstruction of interpolation splines minimizing semi-norm in W2(m,m−1)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2^{(m,m - 1)}(0,1)$$\end{document} spaceBIT Numerical Math.2013535455631273.41007 HayotovA RMilovanovićG VShadimetovK MOptimal quadratures in the sense of Sard in a Hilbert spaceApplied Mathematics and Computation2015259637653333840010.1016/j.amc.2015.02.093 BlagaPComanGSome problems on optimal quadratureStud. Univ. Babeş-Bolyai Math.2007524214424293371174.65007 Nikol’skiiS MQuadrature Formulas (in Russian)1988MoscowNauka Shadimetov, Kh. M.: Optimal quadrature formulas in L2M(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2^M(\Omega )$$\end{document} and L2M(R1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2^M({R^1})$$\end{document} (in Russian). Dokl. Akad. Nauk UzSSR, no. 3, 5–8 (1983) ShadimetovK MHayotovA ROptimal quadrature formulas with positive coefficients in L2(m)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2^{(m)}(0,1)$$\end{document} spaceJ. Comput. Appl. Math.201123511141128272805210.1016/j.cam.2010.07.021 ShadimetovK MConstruction of weight optimal quadrature formulas in the space L2(m)(0,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2^{(m)}(0,N)$$\end{document} (in Russian)Siberian J. Comput. Math.200253275293 SchoenbergI JSpline interpolation and best quadrature formulaeBull. Amer. Math. Soc.196470114314815715710.1090/S0002-9904-1964-11054-5 Zhamalov, Z. Zh., Shadimetov, Kh. M.: Optimal quadrature formulas (in Russian). Dokl. Akad. Nauk UzSSR, no. 7, 3–5 (1980) BoltaevA KHayotovA RShadimetovK MAbout coefficients and order of convergence of the optimal quadrature formulaAmerican Journal of Numerical Analysis2014223548 SchoenbergI JOn monosplines of least deviation and best quadrature formulaeJ. Soc. Indust. Appl. Math. Ser. B Numer. Anal.1965214417020230910.1137/0702012 SchoenbergI JSillimanS DOn semicardinal quadrature formulaeMath. Comp.19742848349734182510.1090/S0025-5718-1974-0341825-3 MaljukovA AOrlovI IConstruction of coefficients of the best quadrature formula for the class WL2(2)(M;ON)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{{L_2}}^{(2)}(M;ON)$$\end{document} with equally spaced nodes. Optimization Methods and Operations Research, Applied Mathematics (in Russian)1976IrkutskAkad. Nauk SSSR Sibirsk. Otdel. Sibirsk. Ènerget. Inst.174177191 CatinaşTComanGOptimal quadrature formulas based on the ϕ-function methodStud. Univ. Babeş-Bolyai Math.2006511496422464381120.65028 MeyersL FSardABest approximate integration formulasJ. Math. Physics1950291181233627710.1002/sapm1950291118 Maqsudov, Sh., Salokhitdinov, M. S., Sirojiddinov, S. H.: The Theory of Complex Variable Functions (in Uzbek), Fan, Tashkent, 1976 Boltaev, A. K.: An extremal function of an optimal quadrature formula (in Russian). Uzbek. Math. Zh., no. 2, 57–65 (2011) KöhlerPOn the weights of Sard’s quadrature formulasCalcolo198825169186105375310.1007/BF02575942 BabuškaIOptimal quadrature formulas (in Russian)Dokladi Akad. Nauk SSSR1963149227229 SobolevS LVaskevichV LThe Theory of Cubature Formulas1997DordrechtKluwer Academic Publishers Group10.1007/978-94-015-8913-0 ShadimetovK MHayotovA RNuralievF AOn an optimal quadrature formula in Sobolev space L2(m)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2^{(m)}(0,1)$$\end{document}J. Comput. Appl. Math.201324391112300337510.1016/j.cam.2012.11.010 Nikol’skiiS MTo question about estimation of approximation by quadrature formulas (in Russian)Uspekhi Matem. Nauk195051651770036.323012(36) Shadimetov, Kh. M.: The discrete analogue of the differential operator d2m/dx2m and its construction. Questions of Computations and Applied Mathematics (in Russian), Tashkent, 22–35, (1985), arXiv: 1001.0556 [math.NA] Shadimetov, Kh. M., Hayotov, A. R.: Properties of the discrete analogue of the differential operator d2m/dx2m − d2m−2/dx2m−2 (in Russian). Uzbek Math. Zh., no. (4), 7 A Sard (9506_CR28) 1949; 71 9506_CR36 P Köhler (9506_CR21) 1988; 25 9506_CR33 9506_CR34 K M Shadimetov (9506_CR43) 2013; 243 A R Hayotov (9506_CR19) 2015; 259 A R Hayotov (9506_CR15) 2014; 54 I Babuška (9506_CR4) 1963; 149 N D Boltaev (9506_CR9) 2017; 7 A Cabada (9506_CR10) 2014; 244 K M Shadimetov (9506_CR41) 2013; 53 9506_CR37 9506_CR38 I J Schoenberg (9506_CR31) 1966; 3 9506_CR46 D V Ionescu (9506_CR20) 1957 A R Hayotov (9506_CR16) 2018; 11 I J Schoenberg (9506_CR30) 1965; 2 I J Schoenberg (9506_CR32) 1974; 28 A A Maljukov (9506_CR23) 1976 G Coman (9506_CR12) 1972; 17 9506_CR49 V S Vladimirov (9506_CR48) 1979 N R Avezova (9506_CR2) 2010; 46 A R Hayotov (9506_CR18) 2014; 51 K M Shadimetov (9506_CR44) 2016; 276 N D Boltaev (9506_CR8) 2017; 74 9506_CR50 S M Nikol’skii (9506_CR27) 1988 S L Sobolev (9506_CR45) 1974 K M Shadimetov (9506_CR42) 2014; 51 S L Sobolev (9506_CR47) 1997 9506_CR51 9506_CR6 J H Ahlberg (9506_CR1) 1967 L F Meyers (9506_CR25) 1950; 29 A K Boltaev (9506_CR7) 2014; 2 K M Shadimetov (9506_CR35) 2002; 5 9506_CR3 S M Nikol’skii (9506_CR26) 1950; 5 I J Schoenberg (9506_CR29) 1964; 70 F Lanzara (9506_CR22) 2000; 5 A Ghizzetti (9506_CR14) 1970 9506_CR24 A R Hayotov (9506_CR17) 2011; 57 K M Shadimetov (9506_CR39) 2011; 235 T Catinaş (9506_CR11) 2006; 51 G Coman (9506_CR13) 1972; 6 P Blaga (9506_CR5) 2007; 52 K M Shadimetov (9506_CR40) 2012; 62 |
References_xml | – reference: Babaev, S. S., Hayotov, A. R.: Optimal interpolation formulas in the space W2(m,m−1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2^{(m,m - 1)}$$\end{document}. Calcolo, 56(3), Paper No. 23, 25pp. (2019) – reference: Shadimetov, Kh. M.: Optimal quadrature formulas in L2M(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2^M(\Omega )$$\end{document} and L2M(R1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2^M({R^1})$$\end{document} (in Russian). Dokl. Akad. Nauk UzSSR, no. 3, 5–8 (1983) – reference: AhlbergJ HNilsonE NWalshJ LThe Theory of Splines and Their Applications1967New YorkAcademic Press0158.15901 – reference: IonescuD VNumerical Quadratures (in Romanian)1957Editura TehnicăBucuresti – reference: ShadimetovK MConstruction of weight optimal quadrature formulas in the space L2(m)(0,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2^{(m)}(0,N)$$\end{document} (in Russian)Siberian J. Comput. Math.200253275293 – reference: ShadimetovK MHayotovA ROptimal quadrature formulas in the sense of Sard in W2(m,m−1)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2^{(m,m - 1)}(0,1)$$\end{document} spaceCalcolo201451211243321015510.1007/s10092-013-0076-6 – reference: ShadimetovK MHayotovA RNuralievF AOptimal quadrature formulas of Euler-Maclaurin typeApplied Mathematics and Computation2016276340355345202110.1016/j.amc.2015.12.022 – reference: SobolevS LIntroduction to the Theory of Cubature Formulas (in Russian)1974MoscowNauka – reference: BoltaevN DHayotovA RMilovanovićG VOptimal quadrature formulas for Fourier coefficients in W2(m,m−1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2^{(m,m - 1)}$$\end{document} spaceJournal of Applied Analysis and Computation20177412331266372391810.11948/2017076 – reference: CabadaAHayotovA RShadimetovK MConstruction of Dm-splines in L2(m)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2^{(m)}(0,1)$$\end{document} space by Sobolev methodApplied Mathematics and Computation2014244542551325060010.1016/j.amc.2014.07.033 – reference: Nikol’skiiS MTo question about estimation of approximation by quadrature formulas (in Russian)Uspekhi Matem. Nauk195051651770036.323012(36) – reference: SchoenbergI JSpline interpolation and best quadrature formulaeBull. Amer. Math. Soc.196470114314815715710.1090/S0002-9904-1964-11054-5 – reference: ComanGMonosplines and optimal quadrature formulae in LpRend. Mat.1972655675770247.41017 – reference: SchoenbergI JSillimanS DOn semicardinal quadrature formulaeMath. Comp.19742848349734182510.1090/S0025-5718-1974-0341825-3 – reference: SchoenbergI JOn monosplines of least square deviation and best quadrature formulae IISIAM J. Numer. Anal.1966332132820331710.1137/0703025 – reference: HayotovA RConstruction of interpolation splines minimizing the semi-norm in the space K2(Pm)Journal of Siberian Federal University, Mathematics & Physics201811383396382395410.17516/1997-1397-2018-11-3-383-396 – reference: ShadimetovK MHayotovA RNuralievF AOn an optimal quadrature formula in Sobolev space L2(m)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2^{(m)}(0,1)$$\end{document}J. Comput. Appl. Math.201324391112300337510.1016/j.cam.2012.11.010 – reference: Shadimetov, Kh. M., Hayotov, A. R.: Computation of coefficients of optimal quadrature formulas in the space W2(m,m−1)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2^{(m,m - 1)}(0,1)$$\end{document} (in Russian). Uzbek. Math. Zh., no. (3), 67–82 (2004) – reference: Zhamalov, Z. Zh., Shadimetov, Kh. M.: Optimal quadrature formulas (in Russian). Dokl. Akad. Nauk UzSSR, no. 7, 3–5 (1980) – reference: ShadimetovK MHayotovA RAzamovS SOptimal quadrature formula in K2(P2) spaceApplied Numerical Mathematics20126218931909298074210.1016/j.apnum.2012.08.004 – reference: ComanGQuadrature formulas of Sard type (in Romanian)Studia Univ. Babeş-Bolyai Ser. Math.-Mech.197217273773783640357.65015 – reference: Shadimetov, Kh. M.: The discrete analogue of the differential operator d2m/dx2m and its construction. Questions of Computations and Applied Mathematics (in Russian), Tashkent, 22–35, (1985), arXiv: 1001.0556 [math.NA] – reference: Shadimetov, Kh. M., Hayotov, A. R.: Construction of the discrete analogue of the differential operator d2m/dx2m − d2m−2/dx2m−2 (in Russian). Uzbek Math. Zh., no. (2), 85–95 (2004) – reference: BlagaPComanGSome problems on optimal quadratureStud. Univ. Babeş-Bolyai Math.2007524214424293371174.65007 – reference: BoltaevA KHayotovA RShadimetovK MAbout coefficients and order of convergence of the optimal quadrature formulaAmerican Journal of Numerical Analysis2014223548 – reference: VladimirovV SGeneralized Functions in Mathematical Physics (in Russian)1979MoscowNauka0515.46034 – reference: BoltaevN DHayotovA RShadimetovK MConstruction of optimal quadrature formulas for Fourier coefficients in Sobolev space L2(m)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2^{(m)}(0,1)$$\end{document}Numererical Algorithms20177430733610.1007/s11075-016-0150-7 – reference: HayotovA RThe discrete analogue of a differential operator and its applicationsLithuanian Mathematical Journal2014543290307324097210.1007/s10986-014-9244-x – reference: SchoenbergI JOn monosplines of least deviation and best quadrature formulaeJ. Soc. Indust. Appl. Math. Ser. B Numer. Anal.1965214417020230910.1137/0702012 – reference: BabuškaIOptimal quadrature formulas (in Russian)Dokladi Akad. Nauk SSSR1963149227229 – reference: MeyersL FSardABest approximate integration formulasJ. Math. Physics1950291181233627710.1002/sapm1950291118 – reference: HayotovA RMilovanovićG VShadimetovK MOn an optimal quadrature formula in the sense of SardNumerical Algorithms2011574487510281945810.1007/s11075-010-9440-7 – reference: MaljukovA AOrlovI IConstruction of coefficients of the best quadrature formula for the class WL2(2)(M;ON)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{{L_2}}^{(2)}(M;ON)$$\end{document} with equally spaced nodes. Optimization Methods and Operations Research, Applied Mathematics (in Russian)1976IrkutskAkad. Nauk SSSR Sibirsk. Otdel. Sibirsk. Ènerget. Inst.174177191 – reference: HayotovA RMilovanovićG VShadimetovK MInterpolation splines minimizing a semi-normCalcolo201451245260321015610.1007/s10092-013-0080-x – reference: HayotovA RMilovanovićG VShadimetovK MOptimal quadratures in the sense of Sard in a Hilbert spaceApplied Mathematics and Computation2015259637653333840010.1016/j.amc.2015.02.093 – reference: Nikol’skiiS MQuadrature Formulas (in Russian)1988MoscowNauka – reference: SardABest approximate integration formulas; best approximation formulasAmer. J. Math.19497180912928310.2307/2372095 – reference: ShadimetovK MHayotovA ROptimal quadrature formulas with positive coefficients in L2(m)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2^{(m)}(0,1)$$\end{document} spaceJ. Comput. Appl. Math.201123511141128272805210.1016/j.cam.2010.07.021 – reference: ShadimetovK MHayotovA RConstruction of interpolation splines minimizing semi-norm in W2(m,m−1)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2^{(m,m - 1)}(0,1)$$\end{document} spaceBIT Numerical Math.2013535455631273.41007 – reference: Shadimetov, Kh. M., Hayotov, A. R.: Properties of the discrete analogue of the differential operator d2m/dx2m − d2m−2/dx2m−2 (in Russian). Uzbek Math. Zh., no. (4), 72–83 (2004) – reference: Boltaev, A. K.: An extremal function of an optimal quadrature formula (in Russian). Uzbek. Math. Zh., no. 2, 57–65 (2011) – reference: GhizzettiAOssiciniAQuadrature Formulae1970BerlinAkademie Verlag10.1007/978-3-0348-5836-6 – reference: AvezovaN RSamievK AHayotovA RModeling of the unsteady temperature conditions of solar greenhouses with a short-term water heat accumulator and its experimental testingApplied Solar Energy2010464710.3103/S0003701X10010020 – reference: CatinaşTComanGOptimal quadrature formulas based on the ϕ-function methodStud. Univ. Babeş-Bolyai Math.2006511496422464381120.65028 – reference: Sobolev, S. L.: The coefficients of optimal quadrature formulas. Selected Works of S. L. Sobolev, Springer, 561–566 (2006) – reference: LanzaraFOn optimal quadrature formulaeJ. Ineq. Appl.2000520122517852720963.65030 – reference: Zagirova, F. Ya.: On construction of optimal quadrature formulas with equal spaced nodes (in Russian). Novosibirsk, 28 pp. (Preprint no. 25, Institute of Mathematics SD of AS of USSR) (1982) – reference: Zhamalov, Z. Zh.: A difference analogue of the operator d2m/dx2m, In: M. S. Salakhitdinov and T. D. Dzhuraev (Eds.). Direct and Inverse Problems for Partial Differential Equations and Their Applications (in Russian), Fan, Tashkent, 97–108 (1978) – reference: SobolevS LVaskevichV LThe Theory of Cubature Formulas1997DordrechtKluwer Academic Publishers Group10.1007/978-94-015-8913-0 – reference: KöhlerPOn the weights of Sard’s quadrature formulasCalcolo198825169186105375310.1007/BF02575942 – reference: Maqsudov, Sh., Salokhitdinov, M. S., Sirojiddinov, S. H.: The Theory of Complex Variable Functions (in Uzbek), Fan, Tashkent, 1976 – ident: 9506_CR38 – volume: 243 start-page: 91 year: 2013 ident: 9506_CR43 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2012.11.010 – ident: 9506_CR34 – volume: 51 start-page: 211 year: 2014 ident: 9506_CR42 publication-title: Calcolo doi: 10.1007/s10092-013-0076-6 – volume: 25 start-page: 169 year: 1988 ident: 9506_CR21 publication-title: Calcolo doi: 10.1007/BF02575942 – volume: 5 start-page: 275 issue: 3 year: 2002 ident: 9506_CR35 publication-title: Siberian J. Comput. Math. – volume: 74 start-page: 307 year: 2017 ident: 9506_CR8 publication-title: Numererical Algorithms doi: 10.1007/s11075-016-0150-7 – volume: 6 start-page: 567 issue: 5 year: 1972 ident: 9506_CR13 publication-title: Rend. Mat. – volume: 5 start-page: 165 year: 1950 ident: 9506_CR26 publication-title: Uspekhi Matem. Nauk – volume: 51 start-page: 49 issue: 1 year: 2006 ident: 9506_CR11 publication-title: Stud. Univ. Babeş-Bolyai Math. – ident: 9506_CR37 – volume: 54 start-page: 290 issue: 3 year: 2014 ident: 9506_CR15 publication-title: Lithuanian Mathematical Journal doi: 10.1007/s10986-014-9244-x – volume: 5 start-page: 201 year: 2000 ident: 9506_CR22 publication-title: J. Ineq. Appl. – volume: 3 start-page: 321 year: 1966 ident: 9506_CR31 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0703025 – ident: 9506_CR33 – ident: 9506_CR50 – volume: 53 start-page: 545 year: 2013 ident: 9506_CR41 publication-title: BIT Numerical Math. – volume: 2 start-page: 35 issue: 2 year: 2014 ident: 9506_CR7 publication-title: American Journal of Numerical Analysis – volume: 57 start-page: 487 issue: 4 year: 2011 ident: 9506_CR17 publication-title: Numerical Algorithms doi: 10.1007/s11075-010-9440-7 – volume: 46 start-page: 4 year: 2010 ident: 9506_CR2 publication-title: Applied Solar Energy doi: 10.3103/S0003701X10010020 – volume: 52 start-page: 21 issue: 4 year: 2007 ident: 9506_CR5 publication-title: Stud. Univ. Babeş-Bolyai Math. – ident: 9506_CR36 – volume: 62 start-page: 1893 year: 2012 ident: 9506_CR40 publication-title: Applied Numerical Mathematics doi: 10.1016/j.apnum.2012.08.004 – volume: 29 start-page: 118 year: 1950 ident: 9506_CR25 publication-title: J. Math. Physics doi: 10.1002/sapm1950291118 – volume: 28 start-page: 483 year: 1974 ident: 9506_CR32 publication-title: Math. Comp. doi: 10.1090/S0025-5718-1974-0341825-3 – volume-title: The Theory of Cubature Formulas year: 1997 ident: 9506_CR47 doi: 10.1007/978-94-015-8913-0 – ident: 9506_CR6 – volume: 244 start-page: 542 year: 2014 ident: 9506_CR10 publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2014.07.033 – ident: 9506_CR51 – volume: 7 start-page: 1233 issue: 4 year: 2017 ident: 9506_CR9 publication-title: Journal of Applied Analysis and Computation doi: 10.11948/2017076 – ident: 9506_CR3 doi: 10.1007/s10092-019-0320-9 – volume-title: Introduction to the Theory of Cubature Formulas (in Russian) year: 1974 ident: 9506_CR45 – volume-title: Quadrature Formulas (in Russian) year: 1988 ident: 9506_CR27 – volume-title: Quadrature Formulae year: 1970 ident: 9506_CR14 doi: 10.1007/978-3-0348-5836-6 – volume-title: Numerical Quadratures (in Romanian) year: 1957 ident: 9506_CR20 – ident: 9506_CR46 doi: 10.1007/978-0-387-34149-1_35 – volume: 11 start-page: 383 year: 2018 ident: 9506_CR16 publication-title: Journal of Siberian Federal University, Mathematics & Physics doi: 10.17516/1997-1397-2018-11-3-383-396 – volume-title: The Theory of Splines and Their Applications year: 1967 ident: 9506_CR1 – start-page: 174 volume-title: Construction of coefficients of the best quadrature formula for the class $$W_{{L_2}}^{(2)}(M;ON)$$ with equally spaced nodes. Optimization Methods and Operations Research, Applied Mathematics (in Russian) year: 1976 ident: 9506_CR23 – volume-title: Generalized Functions in Mathematical Physics (in Russian) year: 1979 ident: 9506_CR48 – ident: 9506_CR24 – volume: 71 start-page: 80 year: 1949 ident: 9506_CR28 publication-title: Amer. J. Math. doi: 10.2307/2372095 – volume: 276 start-page: 340 year: 2016 ident: 9506_CR44 publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2015.12.022 – volume: 51 start-page: 245 year: 2014 ident: 9506_CR18 publication-title: Calcolo doi: 10.1007/s10092-013-0080-x – volume: 235 start-page: 1114 year: 2011 ident: 9506_CR39 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2010.07.021 – ident: 9506_CR49 – volume: 17 start-page: 73 issue: 2 year: 1972 ident: 9506_CR12 publication-title: Studia Univ. Babeş-Bolyai Ser. Math.-Mech. – volume: 259 start-page: 637 year: 2015 ident: 9506_CR19 publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2015.02.093 – volume: 149 start-page: 227 year: 1963 ident: 9506_CR4 publication-title: Dokladi Akad. Nauk SSSR – volume: 70 start-page: 143 issue: 1 year: 1964 ident: 9506_CR29 publication-title: Bull. Amer. Math. Soc. doi: 10.1090/S0002-9904-1964-11054-5 – volume: 2 start-page: 144 year: 1965 ident: 9506_CR30 publication-title: J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. doi: 10.1137/0702012 |
SSID | ssj0055906 |
Score | 2.3132524 |
Snippet | The paper studies Sard’s problem on construction of optimal quadrature formulas in the space
W
2
(
m
,0)
by Sobolev’s method. This problem consists of two... The paper studies Sard’s problem on construction of optimal quadrature formulas in the space W2(m,0) by Sobolev’s method. This problem consists of two parts:... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1066 |
SubjectTerms | Differential equations Lagrange multiplier Linear equations Mathematical analysis Mathematics Mathematics and Statistics Operators (mathematics) Quadratures Trigonometric functions |
Title | Construction of Optimal Quadrature Formulas Exact for Exponentional-trigonometric Functions by Sobolev’s Method |
URI | https://link.springer.com/article/10.1007/s10114-021-9506-6 https://www.proquest.com/docview/2555656229 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60XvQgPrFaSw6elED3le4eW92tKK3Pgp6WzeukrdJW9Obf8O_5S5zsbloVFTxlIZOwzEySb5gXwJ5ucoYoXFAX56nvaUGzyBFU6tDJXC4Vb5ps5G6PHff9k5vgpszjHtlod-uSzG_qT8luiN1pHlIQoBnM5mEhQNPdxHH13Za9fhEhN4qUIi-iCCeYdWX-tMXXx2iGML85RfO3JlmB5RIkklYh1VWYU4M1WOpOK6yO1uHRdNq0tV_JUJMzPPv3uOhiksmiTjJJEI9OEB2T-DkTY4LwFL8ehgMbZU7HaJqbpAbTVUuQBJ-4XAsJfyFXQz68U0_vr28j0s27TG9AP4mvD49p2T6BCs9hY2qwi0ljUyzIfCE9GTUi2RBaC09oqZkSqulLR0nPD6RoShaqiMsQCdCGkJJ7m1AZ4D9tAXECFB0iwSDUzA-ZjLjQrpspY0xGPPCq0LB8TEVZW9y0uLhLZ1WRDetTZH1qWJ-yKuxPlzwUhTX-Iq5Z4aTlGRulaAwZNOq6URUOrMBm079utv0v6h1YdI3C5BG6NaigZNUu4pAxr8N8mHTqsNBqH7UTM3ZuT2Mc23Hv_LKea-UHaBvdwA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1JS8NAFIAHrQf1IK5YrToHT8pAs02SY5GGqk1FbKG3kNlO2lSSit78G_49f4lvkkyrooK3wCyEeW9mvse8BaFT5TMKFM6JDe3EdRQnaWhxIlRgpTYTkvk6Gjke0N7IvRp74zqOOzfe7uZJsjypPwW7AbuT0qXAAzOYLqMVYIFAq_LI7pjjFwi5XYUUOSEBnKDmKfOnKb5eRgvC_PYoWt410SbaqCERdyqpbqElOdlG6_E8w2q-gx51pU2T-xVnCt_A3n-AQbezVFR5knEEPDoDOsbd55QXGPAUvqbZxHiZkwJMcx3UoKtqcRzBFVdqIWYv-C5j2b18en99y3FcVpneRaOoO7zokbp8AuGORQui2UWHsUnqpS4XjgjboWhzpbjDlVBUcum7wpLCcT3BfUEDGTIRQAewIYRgzh5qTOCf9hG2PBAdkKAXKOoGVISMK9tOpTYmQ-Y5TdQ265jwOre4LnFxnyyyIuulT2DpE730CW2is_mQaZVY46_OLSOcpN5jeQLGkKZR2w6b6NwIbNH862QH_-p9glZ7w7if9C8H14dozdbKU3rrtlADpCyPgEkKdlzq4AcbCNst |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60guhBfGK16h48KYt5bpNj0Yb6aFW00FvIvk41qTQVvfk3_Hv-EmeTbKuigrdAdpcwM9n9hp3vG4QOVZNRQOGcOPCeeK7iJAltToQK7MRhQrKmZiN3e7TT9y4G_qDqczo21e7mSrLkNGiVpjQ_GQl18on4BjieFOUFPqTEdB4teJoMDAHdd1pmKwa0bJX0IjckAC2oudb8aYmvB9MMbX67IC3OnWgVrVSAEbdKD6-hOZmuo-XuVG11vIEedddNowOLM4WvYR94gEm3k0SUmsk4Amw6AaSM288JzzFAVXgaZampOCc5pOma4KA7bHEcwXFXRCRmL_guY9lQPr2_vo1xt-g4vYn6Ufv-tEOqVgqEuzbNicYxmtImqZ94XLgitEJhcaW4y5VQVHLZ9IQthev5gjcFDWTIRAADIJ8QgrlbqJbCN20jbPvgRkCFfqCoF1ARMq4cJ5E6sQyZ79aRZewY80pnXLe7GMYzhWRt-hhMH2vTx7SOjqZTRqXIxl-DG8Y5cfW_jWNIjDQydZywjo6Nw2avf11s51-jD9DizVkUX533LnfRkqNjpyjcbaAaOFnuATzJ2X4Rgh-ch99g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+Optimal+Quadrature+Formulas+Exact+for+Exponentional-trigonometric+Functions+by+Sobolev%E2%80%99s+Method&rft.jtitle=Acta+mathematica+Sinica.+English+series&rft.au=Boltaev%2C+Aziz&rft.au=Hayotov%2C+Abdullo&rft.au=Shadimetov%2C+Kholmat&rft.date=2021-07-01&rft.issn=1439-8516&rft.eissn=1439-7617&rft.volume=37&rft.issue=7&rft.spage=1066&rft.epage=1088&rft_id=info:doi/10.1007%2Fs10114-021-9506-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10114_021_9506_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-8516&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-8516&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-8516&client=summon |