Construction of Optimal Quadrature Formulas Exact for Exponentional-trigonometric Functions by Sobolev’s Method

The paper studies Sard’s problem on construction of optimal quadrature formulas in the space W 2 ( m ,0) by Sobolev’s method. This problem consists of two parts: first calculating the norm of the error functional and then finding the minimum of this norm by coefficients of quadrature formulas. Here...

Full description

Saved in:
Bibliographic Details
Published inActa mathematica Sinica. English series Vol. 37; no. 7; pp. 1066 - 1088
Main Authors Boltaev, Aziz, Hayotov, Abdullo, Shadimetov, Kholmat
Format Journal Article
LanguageEnglish
Published Beijing Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society 01.07.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The paper studies Sard’s problem on construction of optimal quadrature formulas in the space W 2 ( m ,0) by Sobolev’s method. This problem consists of two parts: first calculating the norm of the error functional and then finding the minimum of this norm by coefficients of quadrature formulas. Here the norm of the error functional is calculated with the help of the extremal function. Then using the method of Lagrange multipliers the system of linear equations for coefficients of the optimal quadrature formulas in the space W 2 ( m ,0) is obtained, moreover the existence and uniqueness of the solution of this system are discussed. Next, the discrete analogue D m ( hβ ) of the differential operator d 2 m d x 2 m − 1 is constructed. Further, Sobolev’s method of construction of optimal quadrature formulas in the space W 2 ( m ,0) , which based on the discrete analogue D m ( hβ ), is described. Next, for m = 1 and m = 3 the optimal quadrature formulas which are exact to exponential-trigonometric functions are obtained. Finally, at the end of the paper the rate of convergence of the optimal quadrature formulas in the space W 2 (3,0) for the cases m = 1 and m = 3 are presented.
AbstractList The paper studies Sard’s problem on construction of optimal quadrature formulas in the space W 2 ( m ,0) by Sobolev’s method. This problem consists of two parts: first calculating the norm of the error functional and then finding the minimum of this norm by coefficients of quadrature formulas. Here the norm of the error functional is calculated with the help of the extremal function. Then using the method of Lagrange multipliers the system of linear equations for coefficients of the optimal quadrature formulas in the space W 2 ( m ,0) is obtained, moreover the existence and uniqueness of the solution of this system are discussed. Next, the discrete analogue D m ( hβ ) of the differential operator d 2 m d x 2 m − 1 is constructed. Further, Sobolev’s method of construction of optimal quadrature formulas in the space W 2 ( m ,0) , which based on the discrete analogue D m ( hβ ), is described. Next, for m = 1 and m = 3 the optimal quadrature formulas which are exact to exponential-trigonometric functions are obtained. Finally, at the end of the paper the rate of convergence of the optimal quadrature formulas in the space W 2 (3,0) for the cases m = 1 and m = 3 are presented.
The paper studies Sard’s problem on construction of optimal quadrature formulas in the space W2(m,0) by Sobolev’s method. This problem consists of two parts: first calculating the norm of the error functional and then finding the minimum of this norm by coefficients of quadrature formulas. Here the norm of the error functional is calculated with the help of the extremal function. Then using the method of Lagrange multipliers the system of linear equations for coefficients of the optimal quadrature formulas in the space W2(m,0) is obtained, moreover the existence and uniqueness of the solution of this system are discussed. Next, the discrete analogue Dm(hβ) of the differential operator d2mdx2m−1 is constructed. Further, Sobolev’s method of construction of optimal quadrature formulas in the space W2(m,0), which based on the discrete analogue Dm(hβ), is described. Next, for m = 1 and m = 3 the optimal quadrature formulas which are exact to exponential-trigonometric functions are obtained. Finally, at the end of the paper the rate of convergence of the optimal quadrature formulas in the space W2(3,0) for the cases m = 1 and m = 3 are presented.
Author Hayotov, Abdullo
Shadimetov, Kholmat
Boltaev, Aziz
Author_xml – sequence: 1
  givenname: Aziz
  surname: Boltaev
  fullname: Boltaev, Aziz
  organization: V. I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences
– sequence: 2
  givenname: Abdullo
  surname: Hayotov
  fullname: Hayotov, Abdullo
  email: hayotov@mail.ru
  organization: V. I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences
– sequence: 3
  givenname: Kholmat
  surname: Shadimetov
  fullname: Shadimetov, Kholmat
  organization: V. I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, Tashkent Railway Engineering Institute
BookMark eNp9kMFKwzAcxoNMcJs-gLeA52rSJml7lLGpMBminkOapLOja7okFXfzNXw9n8TUDgRBT_kO3--fj98EjBrTaADOMbrECKVXDiOMSYRiHOUUsYgdgTEmSR6lDKejQ84oZidg4twGIUpzxMZgNzON87aTvjINNCVctb7aiho-dEJZ4Tur4cLYbVcLB-dvQnpYGhtSG_5vekjUkbfV2jRmq0OQcNE139ccLPbw0RSm1q-f7x8O3mv_YtQpOC5F7fTZ4Z2C58X8aXYbLVc3d7PrZSQTzHzEcExJTIhmVBCpEpWjXCFZljKRpSqZljolCmuVEKpkqlim80JloZDSTKkimYKL4W5rza7TzvON6WyY63hMKWWUxXEeWunQktY4Z3XJZeVFP99bUdUcI9775YNfHvzy3i9ngcS_yNYGc3b_LxMPjAvdZq3tz6a_oS_r1ZON
CitedBy_id crossref_primary_10_1134_S1995080223100359
crossref_primary_10_3390_math11143114
crossref_primary_10_3390_math12050738
crossref_primary_10_3390_axioms14030220
crossref_primary_10_1186_s13660_024_03111_7
Cites_doi 10.1016/j.cam.2012.11.010
10.1007/s10092-013-0076-6
10.1007/BF02575942
10.1007/s11075-016-0150-7
10.1007/s10986-014-9244-x
10.1137/0703025
10.1007/s11075-010-9440-7
10.3103/S0003701X10010020
10.1016/j.apnum.2012.08.004
10.1002/sapm1950291118
10.1090/S0025-5718-1974-0341825-3
10.1007/978-94-015-8913-0
10.1016/j.amc.2014.07.033
10.11948/2017076
10.1007/s10092-019-0320-9
10.1007/978-3-0348-5836-6
10.1007/978-0-387-34149-1_35
10.17516/1997-1397-2018-11-3-383-396
10.2307/2372095
10.1016/j.amc.2015.12.022
10.1007/s10092-013-0080-x
10.1016/j.cam.2010.07.021
10.1016/j.amc.2015.02.093
10.1090/S0002-9904-1964-11054-5
10.1137/0702012
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany & The Editorial Office of AMS 2021
Springer-Verlag GmbH Germany & The Editorial Office of AMS 2021.
Copyright_xml – notice: Springer-Verlag GmbH Germany & The Editorial Office of AMS 2021
– notice: Springer-Verlag GmbH Germany & The Editorial Office of AMS 2021.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s10114-021-9506-6
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1439-7617
EndPage 1088
ExternalDocumentID 10_1007_s10114_021_9506_6
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
23M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VR
5VS
67Z
6NX
7WY
88I
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCEZO
CCPQU
CCVFK
CHBEP
COF
CS3
CSCUP
CW9
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
GUQSH
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
JBSCW
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAS
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOS
R4E
R89
R9I
ROL
RPX
RSV
S16
S1Z
S26
S27
S28
S3B
SAP
SCL
SCLPG
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
ZWQNP
~8M
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
AMVHM
ATHPR
CITATION
PHGZM
PHGZT
TGP
7SC
7TB
8FD
ABRTQ
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c316t-61254244e65a4cd3d909d0cffc3cfdf6ece74d1ed345dc7d68e9bd8cff758ddb3
IEDL.DBID U2A
ISSN 1439-8516
IngestDate Fri Jul 25 18:57:42 EDT 2025
Tue Jul 01 03:38:00 EDT 2025
Thu Apr 24 23:11:53 EDT 2025
Fri Feb 21 02:48:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords discrete analogue
65D30
65D32
optimal coefficients
the error functional
The extremal function
41A15
Sobolev’s method
41A05
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-61254244e65a4cd3d909d0cffc3cfdf6ece74d1ed345dc7d68e9bd8cff758ddb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2555656229
PQPubID 54875
PageCount 23
ParticipantIDs proquest_journals_2555656229
crossref_citationtrail_10_1007_s10114_021_9506_6
crossref_primary_10_1007_s10114_021_9506_6
springer_journals_10_1007_s10114_021_9506_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Acta mathematica Sinica. English series
PublicationTitleAbbrev Acta. Math. Sin.-English Ser
PublicationYear 2021
Publisher Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society
Springer Nature B.V
Publisher_xml – name: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society
– name: Springer Nature B.V
References HayotovA RMilovanovićG VShadimetovK MOn an optimal quadrature formula in the sense of SardNumerical Algorithms2011574487510281945810.1007/s11075-010-9440-7
Zhamalov, Z. Zh.: A difference analogue of the operator d2m/dx2m, In: M. S. Salakhitdinov and T. D. Dzhuraev (Eds.). Direct and Inverse Problems for Partial Differential Equations and Their Applications (in Russian), Fan, Tashkent, 97–108 (1978)
Shadimetov, Kh. M., Hayotov, A. R.: Construction of the discrete analogue of the differential operator d2m/dx2m − d2m−2/dx2m−2 (in Russian). Uzbek Math. Zh., no. (2), 85–95 (2004)
SobolevS LIntroduction to the Theory of Cubature Formulas (in Russian)1974MoscowNauka
Sobolev, S. L.: The coefficients of optimal quadrature formulas. Selected Works of S. L. Sobolev, Springer, 561–566 (2006)
ShadimetovK MHayotovA ROptimal quadrature formulas in the sense of Sard in W2(m,m−1)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2^{(m,m - 1)}(0,1)$$\end{document} spaceCalcolo201451211243321015510.1007/s10092-013-0076-6
AhlbergJ HNilsonE NWalshJ LThe Theory of Splines and Their Applications1967New YorkAcademic Press0158.15901
ShadimetovK MHayotovA RNuralievF AOptimal quadrature formulas of Euler-Maclaurin typeApplied Mathematics and Computation2016276340355345202110.1016/j.amc.2015.12.022
BoltaevN DHayotovA RShadimetovK MConstruction of optimal quadrature formulas for Fourier coefficients in Sobolev space L2(m)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2^{(m)}(0,1)$$\end{document}Numererical Algorithms20177430733610.1007/s11075-016-0150-7
AvezovaN RSamievK AHayotovA RModeling of the unsteady temperature conditions of solar greenhouses with a short-term water heat accumulator and its experimental testingApplied Solar Energy2010464710.3103/S0003701X10010020
ComanGMonosplines and optimal quadrature formulae in LpRend. Mat.1972655675770247.41017
HayotovA RConstruction of interpolation splines minimizing the semi-norm in the space K2(Pm)Journal of Siberian Federal University, Mathematics & Physics201811383396382395410.17516/1997-1397-2018-11-3-383-396
LanzaraFOn optimal quadrature formulaeJ. Ineq. Appl.2000520122517852720963.65030
VladimirovV SGeneralized Functions in Mathematical Physics (in Russian)1979MoscowNauka0515.46034
BoltaevN DHayotovA RMilovanovićG VOptimal quadrature formulas for Fourier coefficients in W2(m,m−1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2^{(m,m - 1)}$$\end{document} spaceJournal of Applied Analysis and Computation20177412331266372391810.11948/2017076
HayotovA RThe discrete analogue of a differential operator and its applicationsLithuanian Mathematical Journal2014543290307324097210.1007/s10986-014-9244-x
SchoenbergI JOn monosplines of least square deviation and best quadrature formulae IISIAM J. Numer. Anal.1966332132820331710.1137/0703025
HayotovA RMilovanovićG VShadimetovK MInterpolation splines minimizing a semi-normCalcolo201451245260321015610.1007/s10092-013-0080-x
Zagirova, F. Ya.: On construction of optimal quadrature formulas with equal spaced nodes (in Russian). Novosibirsk, 28 pp. (Preprint no. 25, Institute of Mathematics SD of AS of USSR) (1982)
IonescuD VNumerical Quadratures (in Romanian)1957Editura TehnicăBucuresti
ComanGQuadrature formulas of Sard type (in Romanian)Studia Univ. Babeş-Bolyai Ser. Math.-Mech.197217273773783640357.65015
Babaev, S. S., Hayotov, A. R.: Optimal interpolation formulas in the space W2(m,m−1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2^{(m,m - 1)}$$\end{document}. Calcolo, 56(3), Paper No. 23, 25pp. (2019)
Shadimetov, Kh. M., Hayotov, A. R.: Computation of coefficients of optimal quadrature formulas in the space W2(m,m−1)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2^{(m,m - 1)}(0,1)$$\end{document} (in Russian). Uzbek. Math. Zh., no. (3), 67–82 (2004)
SardABest approximate integration formulas; best approximation formulasAmer. J. Math.19497180912928310.2307/2372095
ShadimetovK MHayotovA RConstruction of interpolation splines minimizing semi-norm in W2(m,m−1)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2^{(m,m - 1)}(0,1)$$\end{document} spaceBIT Numerical Math.2013535455631273.41007
HayotovA RMilovanovićG VShadimetovK MOptimal quadratures in the sense of Sard in a Hilbert spaceApplied Mathematics and Computation2015259637653333840010.1016/j.amc.2015.02.093
BlagaPComanGSome problems on optimal quadratureStud. Univ. Babeş-Bolyai Math.2007524214424293371174.65007
Nikol’skiiS MQuadrature Formulas (in Russian)1988MoscowNauka
Shadimetov, Kh. M.: Optimal quadrature formulas in L2M(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2^M(\Omega )$$\end{document} and L2M(R1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2^M({R^1})$$\end{document} (in Russian). Dokl. Akad. Nauk UzSSR, no. 3, 5–8 (1983)
ShadimetovK MHayotovA ROptimal quadrature formulas with positive coefficients in L2(m)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2^{(m)}(0,1)$$\end{document} spaceJ. Comput. Appl. Math.201123511141128272805210.1016/j.cam.2010.07.021
ShadimetovK MConstruction of weight optimal quadrature formulas in the space L2(m)(0,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2^{(m)}(0,N)$$\end{document} (in Russian)Siberian J. Comput. Math.200253275293
SchoenbergI JSpline interpolation and best quadrature formulaeBull. Amer. Math. Soc.196470114314815715710.1090/S0002-9904-1964-11054-5
Zhamalov, Z. Zh., Shadimetov, Kh. M.: Optimal quadrature formulas (in Russian). Dokl. Akad. Nauk UzSSR, no. 7, 3–5 (1980)
BoltaevA KHayotovA RShadimetovK MAbout coefficients and order of convergence of the optimal quadrature formulaAmerican Journal of Numerical Analysis2014223548
SchoenbergI JOn monosplines of least deviation and best quadrature formulaeJ. Soc. Indust. Appl. Math. Ser. B Numer. Anal.1965214417020230910.1137/0702012
SchoenbergI JSillimanS DOn semicardinal quadrature formulaeMath. Comp.19742848349734182510.1090/S0025-5718-1974-0341825-3
MaljukovA AOrlovI IConstruction of coefficients of the best quadrature formula for the class WL2(2)(M;ON)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{{L_2}}^{(2)}(M;ON)$$\end{document} with equally spaced nodes. Optimization Methods and Operations Research, Applied Mathematics (in Russian)1976IrkutskAkad. Nauk SSSR Sibirsk. Otdel. Sibirsk. Ènerget. Inst.174177191
CatinaşTComanGOptimal quadrature formulas based on the ϕ-function methodStud. Univ. Babeş-Bolyai Math.2006511496422464381120.65028
MeyersL FSardABest approximate integration formulasJ. Math. Physics1950291181233627710.1002/sapm1950291118
Maqsudov, Sh., Salokhitdinov, M. S., Sirojiddinov, S. H.: The Theory of Complex Variable Functions (in Uzbek), Fan, Tashkent, 1976
Boltaev, A. K.: An extremal function of an optimal quadrature formula (in Russian). Uzbek. Math. Zh., no. 2, 57–65 (2011)
KöhlerPOn the weights of Sard’s quadrature formulasCalcolo198825169186105375310.1007/BF02575942
BabuškaIOptimal quadrature formulas (in Russian)Dokladi Akad. Nauk SSSR1963149227229
SobolevS LVaskevichV LThe Theory of Cubature Formulas1997DordrechtKluwer Academic Publishers Group10.1007/978-94-015-8913-0
ShadimetovK MHayotovA RNuralievF AOn an optimal quadrature formula in Sobolev space L2(m)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2^{(m)}(0,1)$$\end{document}J. Comput. Appl. Math.201324391112300337510.1016/j.cam.2012.11.010
Nikol’skiiS MTo question about estimation of approximation by quadrature formulas (in Russian)Uspekhi Matem. Nauk195051651770036.323012(36)
Shadimetov, Kh. M.: The discrete analogue of the differential operator d2m/dx2m and its construction. Questions of Computations and Applied Mathematics (in Russian), Tashkent, 22–35, (1985), arXiv: 1001.0556 [math.NA]
Shadimetov, Kh. M., Hayotov, A. R.: Properties of the discrete analogue of the differential operator d2m/dx2m − d2m−2/dx2m−2 (in Russian). Uzbek Math. Zh., no. (4), 7
A Sard (9506_CR28) 1949; 71
9506_CR36
P Köhler (9506_CR21) 1988; 25
9506_CR33
9506_CR34
K M Shadimetov (9506_CR43) 2013; 243
A R Hayotov (9506_CR19) 2015; 259
A R Hayotov (9506_CR15) 2014; 54
I Babuška (9506_CR4) 1963; 149
N D Boltaev (9506_CR9) 2017; 7
A Cabada (9506_CR10) 2014; 244
K M Shadimetov (9506_CR41) 2013; 53
9506_CR37
9506_CR38
I J Schoenberg (9506_CR31) 1966; 3
9506_CR46
D V Ionescu (9506_CR20) 1957
A R Hayotov (9506_CR16) 2018; 11
I J Schoenberg (9506_CR30) 1965; 2
I J Schoenberg (9506_CR32) 1974; 28
A A Maljukov (9506_CR23) 1976
G Coman (9506_CR12) 1972; 17
9506_CR49
V S Vladimirov (9506_CR48) 1979
N R Avezova (9506_CR2) 2010; 46
A R Hayotov (9506_CR18) 2014; 51
K M Shadimetov (9506_CR44) 2016; 276
N D Boltaev (9506_CR8) 2017; 74
9506_CR50
S M Nikol’skii (9506_CR27) 1988
S L Sobolev (9506_CR45) 1974
K M Shadimetov (9506_CR42) 2014; 51
S L Sobolev (9506_CR47) 1997
9506_CR51
9506_CR6
J H Ahlberg (9506_CR1) 1967
L F Meyers (9506_CR25) 1950; 29
A K Boltaev (9506_CR7) 2014; 2
K M Shadimetov (9506_CR35) 2002; 5
9506_CR3
S M Nikol’skii (9506_CR26) 1950; 5
I J Schoenberg (9506_CR29) 1964; 70
F Lanzara (9506_CR22) 2000; 5
A Ghizzetti (9506_CR14) 1970
9506_CR24
A R Hayotov (9506_CR17) 2011; 57
K M Shadimetov (9506_CR39) 2011; 235
T Catinaş (9506_CR11) 2006; 51
G Coman (9506_CR13) 1972; 6
P Blaga (9506_CR5) 2007; 52
K M Shadimetov (9506_CR40) 2012; 62
References_xml – reference: Babaev, S. S., Hayotov, A. R.: Optimal interpolation formulas in the space W2(m,m−1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2^{(m,m - 1)}$$\end{document}. Calcolo, 56(3), Paper No. 23, 25pp. (2019)
– reference: Shadimetov, Kh. M.: Optimal quadrature formulas in L2M(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2^M(\Omega )$$\end{document} and L2M(R1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2^M({R^1})$$\end{document} (in Russian). Dokl. Akad. Nauk UzSSR, no. 3, 5–8 (1983)
– reference: AhlbergJ HNilsonE NWalshJ LThe Theory of Splines and Their Applications1967New YorkAcademic Press0158.15901
– reference: IonescuD VNumerical Quadratures (in Romanian)1957Editura TehnicăBucuresti
– reference: ShadimetovK MConstruction of weight optimal quadrature formulas in the space L2(m)(0,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2^{(m)}(0,N)$$\end{document} (in Russian)Siberian J. Comput. Math.200253275293
– reference: ShadimetovK MHayotovA ROptimal quadrature formulas in the sense of Sard in W2(m,m−1)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2^{(m,m - 1)}(0,1)$$\end{document} spaceCalcolo201451211243321015510.1007/s10092-013-0076-6
– reference: ShadimetovK MHayotovA RNuralievF AOptimal quadrature formulas of Euler-Maclaurin typeApplied Mathematics and Computation2016276340355345202110.1016/j.amc.2015.12.022
– reference: SobolevS LIntroduction to the Theory of Cubature Formulas (in Russian)1974MoscowNauka
– reference: BoltaevN DHayotovA RMilovanovićG VOptimal quadrature formulas for Fourier coefficients in W2(m,m−1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2^{(m,m - 1)}$$\end{document} spaceJournal of Applied Analysis and Computation20177412331266372391810.11948/2017076
– reference: CabadaAHayotovA RShadimetovK MConstruction of Dm-splines in L2(m)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2^{(m)}(0,1)$$\end{document} space by Sobolev methodApplied Mathematics and Computation2014244542551325060010.1016/j.amc.2014.07.033
– reference: Nikol’skiiS MTo question about estimation of approximation by quadrature formulas (in Russian)Uspekhi Matem. Nauk195051651770036.323012(36)
– reference: SchoenbergI JSpline interpolation and best quadrature formulaeBull. Amer. Math. Soc.196470114314815715710.1090/S0002-9904-1964-11054-5
– reference: ComanGMonosplines and optimal quadrature formulae in LpRend. Mat.1972655675770247.41017
– reference: SchoenbergI JSillimanS DOn semicardinal quadrature formulaeMath. Comp.19742848349734182510.1090/S0025-5718-1974-0341825-3
– reference: SchoenbergI JOn monosplines of least square deviation and best quadrature formulae IISIAM J. Numer. Anal.1966332132820331710.1137/0703025
– reference: HayotovA RConstruction of interpolation splines minimizing the semi-norm in the space K2(Pm)Journal of Siberian Federal University, Mathematics & Physics201811383396382395410.17516/1997-1397-2018-11-3-383-396
– reference: ShadimetovK MHayotovA RNuralievF AOn an optimal quadrature formula in Sobolev space L2(m)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2^{(m)}(0,1)$$\end{document}J. Comput. Appl. Math.201324391112300337510.1016/j.cam.2012.11.010
– reference: Shadimetov, Kh. M., Hayotov, A. R.: Computation of coefficients of optimal quadrature formulas in the space W2(m,m−1)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2^{(m,m - 1)}(0,1)$$\end{document} (in Russian). Uzbek. Math. Zh., no. (3), 67–82 (2004)
– reference: Zhamalov, Z. Zh., Shadimetov, Kh. M.: Optimal quadrature formulas (in Russian). Dokl. Akad. Nauk UzSSR, no. 7, 3–5 (1980)
– reference: ShadimetovK MHayotovA RAzamovS SOptimal quadrature formula in K2(P2) spaceApplied Numerical Mathematics20126218931909298074210.1016/j.apnum.2012.08.004
– reference: ComanGQuadrature formulas of Sard type (in Romanian)Studia Univ. Babeş-Bolyai Ser. Math.-Mech.197217273773783640357.65015
– reference: Shadimetov, Kh. M.: The discrete analogue of the differential operator d2m/dx2m and its construction. Questions of Computations and Applied Mathematics (in Russian), Tashkent, 22–35, (1985), arXiv: 1001.0556 [math.NA]
– reference: Shadimetov, Kh. M., Hayotov, A. R.: Construction of the discrete analogue of the differential operator d2m/dx2m − d2m−2/dx2m−2 (in Russian). Uzbek Math. Zh., no. (2), 85–95 (2004)
– reference: BlagaPComanGSome problems on optimal quadratureStud. Univ. Babeş-Bolyai Math.2007524214424293371174.65007
– reference: BoltaevA KHayotovA RShadimetovK MAbout coefficients and order of convergence of the optimal quadrature formulaAmerican Journal of Numerical Analysis2014223548
– reference: VladimirovV SGeneralized Functions in Mathematical Physics (in Russian)1979MoscowNauka0515.46034
– reference: BoltaevN DHayotovA RShadimetovK MConstruction of optimal quadrature formulas for Fourier coefficients in Sobolev space L2(m)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2^{(m)}(0,1)$$\end{document}Numererical Algorithms20177430733610.1007/s11075-016-0150-7
– reference: HayotovA RThe discrete analogue of a differential operator and its applicationsLithuanian Mathematical Journal2014543290307324097210.1007/s10986-014-9244-x
– reference: SchoenbergI JOn monosplines of least deviation and best quadrature formulaeJ. Soc. Indust. Appl. Math. Ser. B Numer. Anal.1965214417020230910.1137/0702012
– reference: BabuškaIOptimal quadrature formulas (in Russian)Dokladi Akad. Nauk SSSR1963149227229
– reference: MeyersL FSardABest approximate integration formulasJ. Math. Physics1950291181233627710.1002/sapm1950291118
– reference: HayotovA RMilovanovićG VShadimetovK MOn an optimal quadrature formula in the sense of SardNumerical Algorithms2011574487510281945810.1007/s11075-010-9440-7
– reference: MaljukovA AOrlovI IConstruction of coefficients of the best quadrature formula for the class WL2(2)(M;ON)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{{L_2}}^{(2)}(M;ON)$$\end{document} with equally spaced nodes. Optimization Methods and Operations Research, Applied Mathematics (in Russian)1976IrkutskAkad. Nauk SSSR Sibirsk. Otdel. Sibirsk. Ènerget. Inst.174177191
– reference: HayotovA RMilovanovićG VShadimetovK MInterpolation splines minimizing a semi-normCalcolo201451245260321015610.1007/s10092-013-0080-x
– reference: HayotovA RMilovanovićG VShadimetovK MOptimal quadratures in the sense of Sard in a Hilbert spaceApplied Mathematics and Computation2015259637653333840010.1016/j.amc.2015.02.093
– reference: Nikol’skiiS MQuadrature Formulas (in Russian)1988MoscowNauka
– reference: SardABest approximate integration formulas; best approximation formulasAmer. J. Math.19497180912928310.2307/2372095
– reference: ShadimetovK MHayotovA ROptimal quadrature formulas with positive coefficients in L2(m)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2^{(m)}(0,1)$$\end{document} spaceJ. Comput. Appl. Math.201123511141128272805210.1016/j.cam.2010.07.021
– reference: ShadimetovK MHayotovA RConstruction of interpolation splines minimizing semi-norm in W2(m,m−1)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2^{(m,m - 1)}(0,1)$$\end{document} spaceBIT Numerical Math.2013535455631273.41007
– reference: Shadimetov, Kh. M., Hayotov, A. R.: Properties of the discrete analogue of the differential operator d2m/dx2m − d2m−2/dx2m−2 (in Russian). Uzbek Math. Zh., no. (4), 72–83 (2004)
– reference: Boltaev, A. K.: An extremal function of an optimal quadrature formula (in Russian). Uzbek. Math. Zh., no. 2, 57–65 (2011)
– reference: GhizzettiAOssiciniAQuadrature Formulae1970BerlinAkademie Verlag10.1007/978-3-0348-5836-6
– reference: AvezovaN RSamievK AHayotovA RModeling of the unsteady temperature conditions of solar greenhouses with a short-term water heat accumulator and its experimental testingApplied Solar Energy2010464710.3103/S0003701X10010020
– reference: CatinaşTComanGOptimal quadrature formulas based on the ϕ-function methodStud. Univ. Babeş-Bolyai Math.2006511496422464381120.65028
– reference: Sobolev, S. L.: The coefficients of optimal quadrature formulas. Selected Works of S. L. Sobolev, Springer, 561–566 (2006)
– reference: LanzaraFOn optimal quadrature formulaeJ. Ineq. Appl.2000520122517852720963.65030
– reference: Zagirova, F. Ya.: On construction of optimal quadrature formulas with equal spaced nodes (in Russian). Novosibirsk, 28 pp. (Preprint no. 25, Institute of Mathematics SD of AS of USSR) (1982)
– reference: Zhamalov, Z. Zh.: A difference analogue of the operator d2m/dx2m, In: M. S. Salakhitdinov and T. D. Dzhuraev (Eds.). Direct and Inverse Problems for Partial Differential Equations and Their Applications (in Russian), Fan, Tashkent, 97–108 (1978)
– reference: SobolevS LVaskevichV LThe Theory of Cubature Formulas1997DordrechtKluwer Academic Publishers Group10.1007/978-94-015-8913-0
– reference: KöhlerPOn the weights of Sard’s quadrature formulasCalcolo198825169186105375310.1007/BF02575942
– reference: Maqsudov, Sh., Salokhitdinov, M. S., Sirojiddinov, S. H.: The Theory of Complex Variable Functions (in Uzbek), Fan, Tashkent, 1976
– ident: 9506_CR38
– volume: 243
  start-page: 91
  year: 2013
  ident: 9506_CR43
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2012.11.010
– ident: 9506_CR34
– volume: 51
  start-page: 211
  year: 2014
  ident: 9506_CR42
  publication-title: Calcolo
  doi: 10.1007/s10092-013-0076-6
– volume: 25
  start-page: 169
  year: 1988
  ident: 9506_CR21
  publication-title: Calcolo
  doi: 10.1007/BF02575942
– volume: 5
  start-page: 275
  issue: 3
  year: 2002
  ident: 9506_CR35
  publication-title: Siberian J. Comput. Math.
– volume: 74
  start-page: 307
  year: 2017
  ident: 9506_CR8
  publication-title: Numererical Algorithms
  doi: 10.1007/s11075-016-0150-7
– volume: 6
  start-page: 567
  issue: 5
  year: 1972
  ident: 9506_CR13
  publication-title: Rend. Mat.
– volume: 5
  start-page: 165
  year: 1950
  ident: 9506_CR26
  publication-title: Uspekhi Matem. Nauk
– volume: 51
  start-page: 49
  issue: 1
  year: 2006
  ident: 9506_CR11
  publication-title: Stud. Univ. Babeş-Bolyai Math.
– ident: 9506_CR37
– volume: 54
  start-page: 290
  issue: 3
  year: 2014
  ident: 9506_CR15
  publication-title: Lithuanian Mathematical Journal
  doi: 10.1007/s10986-014-9244-x
– volume: 5
  start-page: 201
  year: 2000
  ident: 9506_CR22
  publication-title: J. Ineq. Appl.
– volume: 3
  start-page: 321
  year: 1966
  ident: 9506_CR31
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0703025
– ident: 9506_CR33
– ident: 9506_CR50
– volume: 53
  start-page: 545
  year: 2013
  ident: 9506_CR41
  publication-title: BIT Numerical Math.
– volume: 2
  start-page: 35
  issue: 2
  year: 2014
  ident: 9506_CR7
  publication-title: American Journal of Numerical Analysis
– volume: 57
  start-page: 487
  issue: 4
  year: 2011
  ident: 9506_CR17
  publication-title: Numerical Algorithms
  doi: 10.1007/s11075-010-9440-7
– volume: 46
  start-page: 4
  year: 2010
  ident: 9506_CR2
  publication-title: Applied Solar Energy
  doi: 10.3103/S0003701X10010020
– volume: 52
  start-page: 21
  issue: 4
  year: 2007
  ident: 9506_CR5
  publication-title: Stud. Univ. Babeş-Bolyai Math.
– ident: 9506_CR36
– volume: 62
  start-page: 1893
  year: 2012
  ident: 9506_CR40
  publication-title: Applied Numerical Mathematics
  doi: 10.1016/j.apnum.2012.08.004
– volume: 29
  start-page: 118
  year: 1950
  ident: 9506_CR25
  publication-title: J. Math. Physics
  doi: 10.1002/sapm1950291118
– volume: 28
  start-page: 483
  year: 1974
  ident: 9506_CR32
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1974-0341825-3
– volume-title: The Theory of Cubature Formulas
  year: 1997
  ident: 9506_CR47
  doi: 10.1007/978-94-015-8913-0
– ident: 9506_CR6
– volume: 244
  start-page: 542
  year: 2014
  ident: 9506_CR10
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2014.07.033
– ident: 9506_CR51
– volume: 7
  start-page: 1233
  issue: 4
  year: 2017
  ident: 9506_CR9
  publication-title: Journal of Applied Analysis and Computation
  doi: 10.11948/2017076
– ident: 9506_CR3
  doi: 10.1007/s10092-019-0320-9
– volume-title: Introduction to the Theory of Cubature Formulas (in Russian)
  year: 1974
  ident: 9506_CR45
– volume-title: Quadrature Formulas (in Russian)
  year: 1988
  ident: 9506_CR27
– volume-title: Quadrature Formulae
  year: 1970
  ident: 9506_CR14
  doi: 10.1007/978-3-0348-5836-6
– volume-title: Numerical Quadratures (in Romanian)
  year: 1957
  ident: 9506_CR20
– ident: 9506_CR46
  doi: 10.1007/978-0-387-34149-1_35
– volume: 11
  start-page: 383
  year: 2018
  ident: 9506_CR16
  publication-title: Journal of Siberian Federal University, Mathematics & Physics
  doi: 10.17516/1997-1397-2018-11-3-383-396
– volume-title: The Theory of Splines and Their Applications
  year: 1967
  ident: 9506_CR1
– start-page: 174
  volume-title: Construction of coefficients of the best quadrature formula for the class $$W_{{L_2}}^{(2)}(M;ON)$$ with equally spaced nodes. Optimization Methods and Operations Research, Applied Mathematics (in Russian)
  year: 1976
  ident: 9506_CR23
– volume-title: Generalized Functions in Mathematical Physics (in Russian)
  year: 1979
  ident: 9506_CR48
– ident: 9506_CR24
– volume: 71
  start-page: 80
  year: 1949
  ident: 9506_CR28
  publication-title: Amer. J. Math.
  doi: 10.2307/2372095
– volume: 276
  start-page: 340
  year: 2016
  ident: 9506_CR44
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2015.12.022
– volume: 51
  start-page: 245
  year: 2014
  ident: 9506_CR18
  publication-title: Calcolo
  doi: 10.1007/s10092-013-0080-x
– volume: 235
  start-page: 1114
  year: 2011
  ident: 9506_CR39
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2010.07.021
– ident: 9506_CR49
– volume: 17
  start-page: 73
  issue: 2
  year: 1972
  ident: 9506_CR12
  publication-title: Studia Univ. Babeş-Bolyai Ser. Math.-Mech.
– volume: 259
  start-page: 637
  year: 2015
  ident: 9506_CR19
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2015.02.093
– volume: 149
  start-page: 227
  year: 1963
  ident: 9506_CR4
  publication-title: Dokladi Akad. Nauk SSSR
– volume: 70
  start-page: 143
  issue: 1
  year: 1964
  ident: 9506_CR29
  publication-title: Bull. Amer. Math. Soc.
  doi: 10.1090/S0002-9904-1964-11054-5
– volume: 2
  start-page: 144
  year: 1965
  ident: 9506_CR30
  publication-title: J. Soc. Indust. Appl. Math. Ser. B Numer. Anal.
  doi: 10.1137/0702012
SSID ssj0055906
Score 2.3132524
Snippet The paper studies Sard’s problem on construction of optimal quadrature formulas in the space W 2 ( m ,0) by Sobolev’s method. This problem consists of two...
The paper studies Sard’s problem on construction of optimal quadrature formulas in the space W2(m,0) by Sobolev’s method. This problem consists of two parts:...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1066
SubjectTerms Differential equations
Lagrange multiplier
Linear equations
Mathematical analysis
Mathematics
Mathematics and Statistics
Operators (mathematics)
Quadratures
Trigonometric functions
Title Construction of Optimal Quadrature Formulas Exact for Exponentional-trigonometric Functions by Sobolev’s Method
URI https://link.springer.com/article/10.1007/s10114-021-9506-6
https://www.proquest.com/docview/2555656229
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60XvQgPrFaSw6elED3le4eW92tKK3Pgp6WzeukrdJW9Obf8O_5S5zsbloVFTxlIZOwzEySb5gXwJ5ucoYoXFAX56nvaUGzyBFU6tDJXC4Vb5ps5G6PHff9k5vgpszjHtlod-uSzG_qT8luiN1pHlIQoBnM5mEhQNPdxHH13Za9fhEhN4qUIi-iCCeYdWX-tMXXx2iGML85RfO3JlmB5RIkklYh1VWYU4M1WOpOK6yO1uHRdNq0tV_JUJMzPPv3uOhiksmiTjJJEI9OEB2T-DkTY4LwFL8ehgMbZU7HaJqbpAbTVUuQBJ-4XAsJfyFXQz68U0_vr28j0s27TG9AP4mvD49p2T6BCs9hY2qwi0ljUyzIfCE9GTUi2RBaC09oqZkSqulLR0nPD6RoShaqiMsQCdCGkJJ7m1AZ4D9tAXECFB0iwSDUzA-ZjLjQrpspY0xGPPCq0LB8TEVZW9y0uLhLZ1WRDetTZH1qWJ-yKuxPlzwUhTX-Iq5Z4aTlGRulaAwZNOq6URUOrMBm079utv0v6h1YdI3C5BG6NaigZNUu4pAxr8N8mHTqsNBqH7UTM3ZuT2Mc23Hv_LKea-UHaBvdwA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1JS8NAFIAHrQf1IK5YrToHT8pAs02SY5GGqk1FbKG3kNlO2lSSit78G_49f4lvkkyrooK3wCyEeW9mvse8BaFT5TMKFM6JDe3EdRQnaWhxIlRgpTYTkvk6Gjke0N7IvRp74zqOOzfe7uZJsjypPwW7AbuT0qXAAzOYLqMVYIFAq_LI7pjjFwi5XYUUOSEBnKDmKfOnKb5eRgvC_PYoWt410SbaqCERdyqpbqElOdlG6_E8w2q-gx51pU2T-xVnCt_A3n-AQbezVFR5knEEPDoDOsbd55QXGPAUvqbZxHiZkwJMcx3UoKtqcRzBFVdqIWYv-C5j2b18en99y3FcVpneRaOoO7zokbp8AuGORQui2UWHsUnqpS4XjgjboWhzpbjDlVBUcum7wpLCcT3BfUEDGTIRQAewIYRgzh5qTOCf9hG2PBAdkKAXKOoGVISMK9tOpTYmQ-Y5TdQ265jwOre4LnFxnyyyIuulT2DpE730CW2is_mQaZVY46_OLSOcpN5jeQLGkKZR2w6b6NwIbNH862QH_-p9glZ7w7if9C8H14dozdbKU3rrtlADpCyPgEkKdlzq4AcbCNst
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60guhBfGK16h48KYt5bpNj0Yb6aFW00FvIvk41qTQVvfk3_Hv-EmeTbKuigrdAdpcwM9n9hp3vG4QOVZNRQOGcOPCeeK7iJAltToQK7MRhQrKmZiN3e7TT9y4G_qDqczo21e7mSrLkNGiVpjQ_GQl18on4BjieFOUFPqTEdB4teJoMDAHdd1pmKwa0bJX0IjckAC2oudb8aYmvB9MMbX67IC3OnWgVrVSAEbdKD6-hOZmuo-XuVG11vIEedddNowOLM4WvYR94gEm3k0SUmsk4Amw6AaSM288JzzFAVXgaZampOCc5pOma4KA7bHEcwXFXRCRmL_guY9lQPr2_vo1xt-g4vYn6Ufv-tEOqVgqEuzbNicYxmtImqZ94XLgitEJhcaW4y5VQVHLZ9IQthev5gjcFDWTIRAADIJ8QgrlbqJbCN20jbPvgRkCFfqCoF1ARMq4cJ5E6sQyZ79aRZewY80pnXLe7GMYzhWRt-hhMH2vTx7SOjqZTRqXIxl-DG8Y5cfW_jWNIjDQydZywjo6Nw2avf11s51-jD9DizVkUX533LnfRkqNjpyjcbaAaOFnuATzJ2X4Rgh-ch99g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+Optimal+Quadrature+Formulas+Exact+for+Exponentional-trigonometric+Functions+by+Sobolev%E2%80%99s+Method&rft.jtitle=Acta+mathematica+Sinica.+English+series&rft.au=Boltaev%2C+Aziz&rft.au=Hayotov%2C+Abdullo&rft.au=Shadimetov%2C+Kholmat&rft.date=2021-07-01&rft.issn=1439-8516&rft.eissn=1439-7617&rft.volume=37&rft.issue=7&rft.spage=1066&rft.epage=1088&rft_id=info:doi/10.1007%2Fs10114-021-9506-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10114_021_9506_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-8516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-8516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-8516&client=summon