A healthcare monitoring system using random forest and internet of things (IoT)
The Internet of Things (IoT) enabled various types of applications in the field of information technology, smart and connected health care is notably a crucial one is one of them. Our physical and mental health information can be used to bring about a positive transformation change in the health car...
Saved in:
Published in | Multimedia tools and applications Vol. 78; no. 14; pp. 19905 - 19916 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Internet of Things (IoT) enabled various types of applications in the field of information technology, smart and connected health care is notably a crucial one is one of them. Our physical and mental health information can be used to bring about a positive transformation change in the health care landscape using networked sensors. It makes it possible for monitoring to come to the people who don’t have ready access to effective health monitoring system. The captured data can then be analyzed using various machine learning algorithms and then shared through wireless connectivity with medical professionals who can make appropriate recommendations. These scenarios already exist, but we intend to enhance it by analyzing the past data for predicting future problems using prescriptive analytics. It will allow us to move from reactive to visionary approach by rapidly spotting trends and making recommendations on behalf of the actual medical service provider. In this paper, the authors have applied different machine learning techniques and considered public datasets of health care stored in the cloud to build a system, which allows for real time and remote health monitoring built on IoT infrastructure and associated with cloud computing. The system will be allowed to drive recommendations based on the historic and empirical data lying on the cloud. The authors have proposed a framework to uncover knowledge in a database, bringing light to disguise patterns which can help in credible decision making. This paper has evaluated prediction systems for diseases such as heart diseases, breast cancer, diabetes, spect_heart, thyroid, dermatology, liver disorders and surgical data using a number of input attributes related to that particular disease. Experimental results are conducted using a few machine learning algorithms considered in this paper like K-NN, Support Vector Machine, Decision Trees, Random Forest, and MLP. |
---|---|
AbstractList | The Internet of Things (IoT) enabled various types of applications in the field of information technology, smart and connected health care is notably a crucial one is one of them. Our physical and mental health information can be used to bring about a positive transformation change in the health care landscape using networked sensors. It makes it possible for monitoring to come to the people who don’t have ready access to effective health monitoring system. The captured data can then be analyzed using various machine learning algorithms and then shared through wireless connectivity with medical professionals who can make appropriate recommendations. These scenarios already exist, but we intend to enhance it by analyzing the past data for predicting future problems using prescriptive analytics. It will allow us to move from reactive to visionary approach by rapidly spotting trends and making recommendations on behalf of the actual medical service provider. In this paper, the authors have applied different machine learning techniques and considered public datasets of health care stored in the cloud to build a system, which allows for real time and remote health monitoring built on IoT infrastructure and associated with cloud computing. The system will be allowed to drive recommendations based on the historic and empirical data lying on the cloud. The authors have proposed a framework to uncover knowledge in a database, bringing light to disguise patterns which can help in credible decision making. This paper has evaluated prediction systems for diseases such as heart diseases, breast cancer, diabetes, spect_heart, thyroid, dermatology, liver disorders and surgical data using a number of input attributes related to that particular disease. Experimental results are conducted using a few machine learning algorithms considered in this paper like K-NN, Support Vector Machine, Decision Trees, Random Forest, and MLP. |
Author | Kumar, Munish Kumar, Ravinder Kaur, Pavleen |
Author_xml | – sequence: 1 givenname: Pavleen surname: Kaur fullname: Kaur, Pavleen organization: Computer Science and Engineering Department, Thapar Institute of Engineering & Technology – sequence: 2 givenname: Ravinder surname: Kumar fullname: Kumar, Ravinder organization: Computer Science and Engineering Department, Thapar Institute of Engineering & Technology – sequence: 3 givenname: Munish surname: Kumar fullname: Kumar, Munish email: munishcse@gmail.com organization: Department of Computational Sciences, Maharaja Ranjit Singh Punjab Technical University |
BookMark | eNp9kE1LAzEQhoNUsK3-AG8BL3pYzSS7O9ljKX4UCr3Uc0jTrN3STWqSHvrv3WUFQdDTzMD7zAzPhIycd5aQW2CPwBg-RQCW84xBlaHgmMkLMoYCRYbIYdT1QrIMCwZXZBLjnjEoC56PyWpGd1Yf0s7oYGnrXZN8aNwHjeeYbEtPsR-Cdlvf0toHGxPtBtq4ZIOzifqapl2XifR-4dcP1-Sy1odob77rlLy_PK_nb9ly9bqYz5aZEVCmrGRYYIm1NLUUuiotarE1DCHPOW4K0KzUlrEcTCVAc2MMkzViXW40WLRcTMndsPcY_Oep-0rt_Sm47qTiIHNZVDmXXQqGlAk-xmBrdQxNq8NZAVO9NzV4U5031XtTPYO_GNMknRrvUtDN4V-SD2Q89gpt-Pnpb-gLW36Czw |
CitedBy_id | crossref_primary_10_3390_electronics11030419 crossref_primary_10_1109_ACCESS_2023_3284390 crossref_primary_10_3390_s22155574 crossref_primary_10_4018_IJACI_311062 crossref_primary_10_1109_ACCESS_2023_3273895 crossref_primary_10_3390_bdcc4040037 crossref_primary_10_1007_s11042_021_10944_7 crossref_primary_10_1007_s11042_020_08896_5 crossref_primary_10_1007_s10462_021_09985_z crossref_primary_10_7717_peerj_cs_1394 crossref_primary_10_1155_2019_5931315 crossref_primary_10_32604_cmc_2024_055079 crossref_primary_10_1007_s00354_022_00175_1 crossref_primary_10_1159_000536250 crossref_primary_10_1016_j_aej_2024_05_011 crossref_primary_10_3390_app122211475 crossref_primary_10_1016_j_eswa_2022_119465 crossref_primary_10_1016_j_jnca_2021_103244 crossref_primary_10_1016_j_ijleo_2022_170176 crossref_primary_10_1016_j_measen_2022_100406 crossref_primary_10_1007_s11042_019_07835_3 crossref_primary_10_1162_dint_a_00219 crossref_primary_10_1007_s11277_023_10363_x crossref_primary_10_3233_THC_213003 crossref_primary_10_1007_s11042_024_18580_7 crossref_primary_10_1007_s44230_023_00049_9 crossref_primary_10_1155_2022_7727915 crossref_primary_10_3390_ijerph18063099 crossref_primary_10_1007_s12652_021_03155_3 crossref_primary_10_3390_math11224621 crossref_primary_10_31202_ecjse_1135485 crossref_primary_10_37648_ijrmst_v11i02_019 crossref_primary_10_1155_2021_4931450 crossref_primary_10_1007_s11277_022_09500_9 crossref_primary_10_1155_2022_2090681 crossref_primary_10_1007_s00500_021_06098_1 crossref_primary_10_1145_3398069 crossref_primary_10_1016_j_jnca_2024_103907 crossref_primary_10_1007_s11042_023_15204_4 crossref_primary_10_5753_jbcs_2024_4685 crossref_primary_10_1016_j_dsm_2024_07_004 crossref_primary_10_1002_ett_4497 crossref_primary_10_1007_s11276_024_03783_5 crossref_primary_10_1007_s12530_024_09571_y crossref_primary_10_1186_s40537_023_00808_2 crossref_primary_10_3389_fpubh_2022_914106 crossref_primary_10_3390_healthcare10101993 crossref_primary_10_1002_lrh2_10478 crossref_primary_10_1007_s11042_019_07978_3 crossref_primary_10_1016_j_seps_2021_101039 crossref_primary_10_18006_2022_10_2__440_450 crossref_primary_10_1007_s11042_022_13215_1 crossref_primary_10_1007_s42452_024_06351_w crossref_primary_10_1007_s00521_022_07596_5 crossref_primary_10_3389_fmed_2023_1292761 crossref_primary_10_1111_jcal_12999 crossref_primary_10_2174_2666255814666210715161630 crossref_primary_10_1007_s11276_023_03574_4 crossref_primary_10_1007_s11042_022_13198_z crossref_primary_10_1109_ACCESS_2020_3008916 crossref_primary_10_1515_med_2022_0508 crossref_primary_10_2139_ssrn_3997695 crossref_primary_10_1016_j_jpha_2021_12_006 crossref_primary_10_1007_s11042_024_19766_9 crossref_primary_10_1016_j_engappai_2025_110138 crossref_primary_10_1007_s12652_024_04780_4 crossref_primary_10_1007_s11042_022_12100_1 crossref_primary_10_3389_fdgth_2023_1279644 crossref_primary_10_1007_s11042_022_12425_x crossref_primary_10_1007_s10916_020_01674_8 crossref_primary_10_3390_diagnostics14060624 crossref_primary_10_1109_TASE_2023_3289908 crossref_primary_10_1007_s11042_022_13636_y crossref_primary_10_1016_j_neucom_2023_126719 crossref_primary_10_1007_s00607_020_00877_8 crossref_primary_10_3233_JIFS_235503 crossref_primary_10_3390_smartcities4020024 crossref_primary_10_1007_s11042_024_19169_w crossref_primary_10_1021_acsami_3c03903 crossref_primary_10_4316_AECE_2023_02012 crossref_primary_10_3390_bios11110435 crossref_primary_10_1016_j_cie_2024_110405 crossref_primary_10_1109_ACCESS_2024_3519567 crossref_primary_10_1002_cpe_6722 crossref_primary_10_1109_ACCESS_2020_3007561 crossref_primary_10_1007_s11277_023_10466_5 crossref_primary_10_3390_bios11100372 crossref_primary_10_1155_2022_1070697 crossref_primary_10_1007_s42979_024_02701_y crossref_primary_10_32604_cmc_2022_025858 crossref_primary_10_1016_j_jnca_2021_103164 crossref_primary_10_32604_iasc_2023_032585 crossref_primary_10_1007_s11042_020_10258_0 crossref_primary_10_1007_s42417_021_00286_x crossref_primary_10_1016_j_artmed_2023_102692 crossref_primary_10_32604_cmc_2023_032588 crossref_primary_10_3390_diagnostics12040850 crossref_primary_10_1016_j_compbiomed_2024_109330 crossref_primary_10_1142_S0218126625501063 crossref_primary_10_3389_fnhum_2023_1275795 crossref_primary_10_1007_s11276_023_03373_x crossref_primary_10_1016_j_measurement_2023_113235 crossref_primary_10_1007_s11042_020_09049_4 crossref_primary_10_1007_s11042_023_15736_9 crossref_primary_10_1109_ACCESS_2020_2981632 crossref_primary_10_1002_btm2_70002 crossref_primary_10_1016_j_adhoc_2023_103348 crossref_primary_10_1080_01969722_2025_2470786 crossref_primary_10_1007_s00500_019_04554_7 crossref_primary_10_1007_s40031_021_00632_3 crossref_primary_10_1155_2022_8626234 crossref_primary_10_1109_TNSE_2022_3186437 crossref_primary_10_4103_idoj_IDOJ_388_20 crossref_primary_10_1007_s11042_023_17212_w crossref_primary_10_1016_j_jbi_2021_103972 crossref_primary_10_1145_3580800 crossref_primary_10_48084_etasr_8869 crossref_primary_10_1108_JHOM_01_2025_0013 crossref_primary_10_1186_s13677_020_00215_5 crossref_primary_10_9728_dcs_2023_24_9_2147 crossref_primary_10_1007_s12652_020_02579_7 crossref_primary_10_3390_diagnostics13040798 crossref_primary_10_3390_math11061467 crossref_primary_10_1080_03772063_2023_2255567 crossref_primary_10_3390_bios12080562 crossref_primary_10_1007_s00500_020_05003_6 crossref_primary_10_1007_s11042_024_20084_3 crossref_primary_10_1016_j_compbiomed_2022_106043 crossref_primary_10_1038_s41598_024_75977_y crossref_primary_10_1515_jisys_2022_0291 crossref_primary_10_1109_JSEN_2021_3091626 crossref_primary_10_1515_pjbr_2022_0108 crossref_primary_10_1007_s11042_023_14685_7 crossref_primary_10_1155_2022_6567123 |
Cites_doi | 10.14257/ijbsbt.2013.5.5.25 10.1186/1471-2105-7-3 10.5121/ijci.2015.4402 10.5899/2016/ojids-00002 10.1109/TCSVT.2016.2539778 10.1016/j.comnet.2016.12.019 10.1007/s10916-016-0536-z 10.1007/s10489-017-1056-3 10.1016/j.patcog.2010.08.011 10.1109/JIOT.2016.2561962 10.1007/s10916-015-0210-x 10.1016/j.procs.2015.04.029 10.1109/IntelliSys.2017.8324209 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Multimedia Tools and Applications is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Multimedia Tools and Applications is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-019-7327-8 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 19916 |
ExternalDocumentID | 10_1007_s11042_019_7327_8 |
GroupedDBID | -4Z -59 -5G -BR -EM -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 203 29M 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX -Y2 1SB 2.D 28- 2P1 2VQ 3EH 5QI AAOBN AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACMFV ACSTC ADHKG ADKFA AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGJBK AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF H13 KOW N2Q NDZJH O9- OVD PHGZM PHGZT R4E RNI RZC RZE RZK S1Z S26 S28 SCJ SCLPG T16 TEORI UZXMN VFIZW 3V. 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c316t-6075767f8cf83a96e7a3dc0714427b51a06ae0041c931a2ccc08f77f6ba1e7e23 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Fri Jul 25 23:44:44 EDT 2025 Thu Apr 24 23:06:26 EDT 2025 Tue Jul 01 02:06:57 EDT 2025 Fri Feb 21 02:37:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | Internet of things Healthcare Data mining Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-6075767f8cf83a96e7a3dc0714427b51a06ae0041c931a2ccc08f77f6ba1e7e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2184859428 |
PQPubID | 54626 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2184859428 crossref_primary_10_1007_s11042_019_7327_8 crossref_citationtrail_10_1007_s11042_019_7327_8 springer_journals_10_1007_s11042_019_7327_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Costa K, Ribeiro P, Carmargo A, Rossi V, Martins H, Neves M, Fabris R, Imaisumi R, Papa JP (2013) Comparison of the techniques decision tee and MLP for data mining in SPAMs detection in computer networks. Proceedings of the 3rd international conference on innovative computing technology, pp 344–348 VijayaraniSDhayanandSData mining classification algorithms for kidney diseases predictionInternational Journal on Cybernetics & Informatics201544132510.5121/ijci.2015.4402 TaoDWenYHongRMulticolumn bidirectional long short-term memory for mobile devices-based human activity recognitionIEEE Internet Things J2016361124113410.1109/JIOT.2016.2561962 ForkanARMKhalilIAtiquzzamanMViSiBiD: a learning model for early discovery and real time prediction of severe clinical events using vital signs as big dataComput Netw201711324425710.1016/j.comnet.2016.12.019 Parekh M, Saleena B (2015) Designing a cloud based framework for healthcare system and applying clustering techniques for region wise diagnosis. 2nd international symposium on big data and cloud computing (ISBCC’15), 50:537–542 Hameed RT, Mohamad OA, Hamid OT, Tapus N (2015) Design of e-healthcare management system Basedon cloud and service oriented architecture. Proceedings of the 5th IEEE international conference on E-health and bioengineering (EHB), pp 1–4 Diaz-Uriarte R, Alverez-de-Andres S (2006) Gene selection and classification of microarray data using random forest. BMC Bioinformatics. https://doi.org/10.1186/1471-2105-7-3 VermaLSrivastavaSNegiPCA hybrid data mining model to predict coronary artery disease cases using non-invasive clinical dataJ Med Syst201640717810.1007/s10916-016-0536-z OsmanAHAljahdaliHMDiabetes disease diagnosis method based on feature extraction using k-svmInt J Adv Comput Sci Appl201781236244 Hsu JL, Hung PC, Lin HY, Hsieh CH (2015) Applying under-sampling techniques and cost-sensitive learning methods on risk assessment of breast cancer. J Med Syst 39(4). https://doi.org/10.1007/s10916-015-0210-x TaoDChengJGaoXLiXDengCRobust sparse coding for Mobile image labeling on the cloudIEEE Trans Circuits Syst Video Technol2017271627210.1109/TCSVT.2016.2539778 ZhangLZhouWWangBZhangZLiFApplying 1-norm svm with squared loss to gene selection for cancer classificationAppl Intell20184871878189010.1007/s10489-017-1056-3 Jahangir M, Afzal H, Ahmed M, Khurshid K, Nawaz R (2017) An expert system for diabetes prediction using auto tuned multi-layer perceptron. Proceedings of the intelligent system conference, pp 722–728 Turanoglu-BekarEUlutagayGKantarc-SavasSClassification of thyroid disease by using data mining models: a comparison of decision tree algorithmOxford Journal of Intelligent Decision and Data Science20162132810.5899/2016/ojids-00002 TomarDAgarwalSA survey on data mining approaches for healthcareInternational Journal of Bio-Science and Bio-Technology20135524126610.14257/ijbsbt.2013.5.5.25 VerikasAGelzinisABacauskieneMMining data with random forest: a survey and results of new testsPattern Recogn201144233034910.1016/j.patcog.2010.08.011 DeviMRShylaJMAnalysis of various data mining techniques to predict diabetes mellitusInt J Appl Eng Res2016111727730 7327_CR1 7327_CR3 L Zhang (7327_CR17) 2018; 48 L Verma (7327_CR15) 2016; 40 AH Osman (7327_CR8) 2017; 8 S Vijayarani (7327_CR16) 2015; 4 7327_CR9 A Verikas (7327_CR14) 2011; 44 7327_CR5 7327_CR6 7327_CR7 ARM Forkan (7327_CR4) 2017; 113 D Tao (7327_CR10) 2016; 3 D Tomar (7327_CR12) 2013; 5 D Tao (7327_CR11) 2017; 27 MR Devi (7327_CR2) 2016; 11 E Turanoglu-Bekar (7327_CR13) 2016; 2 |
References_xml | – reference: ForkanARMKhalilIAtiquzzamanMViSiBiD: a learning model for early discovery and real time prediction of severe clinical events using vital signs as big dataComput Netw201711324425710.1016/j.comnet.2016.12.019 – reference: Turanoglu-BekarEUlutagayGKantarc-SavasSClassification of thyroid disease by using data mining models: a comparison of decision tree algorithmOxford Journal of Intelligent Decision and Data Science20162132810.5899/2016/ojids-00002 – reference: VijayaraniSDhayanandSData mining classification algorithms for kidney diseases predictionInternational Journal on Cybernetics & Informatics201544132510.5121/ijci.2015.4402 – reference: Costa K, Ribeiro P, Carmargo A, Rossi V, Martins H, Neves M, Fabris R, Imaisumi R, Papa JP (2013) Comparison of the techniques decision tee and MLP for data mining in SPAMs detection in computer networks. Proceedings of the 3rd international conference on innovative computing technology, pp 344–348 – reference: Jahangir M, Afzal H, Ahmed M, Khurshid K, Nawaz R (2017) An expert system for diabetes prediction using auto tuned multi-layer perceptron. Proceedings of the intelligent system conference, pp 722–728 – reference: DeviMRShylaJMAnalysis of various data mining techniques to predict diabetes mellitusInt J Appl Eng Res2016111727730 – reference: OsmanAHAljahdaliHMDiabetes disease diagnosis method based on feature extraction using k-svmInt J Adv Comput Sci Appl201781236244 – reference: Hsu JL, Hung PC, Lin HY, Hsieh CH (2015) Applying under-sampling techniques and cost-sensitive learning methods on risk assessment of breast cancer. J Med Syst 39(4). https://doi.org/10.1007/s10916-015-0210-x – reference: Parekh M, Saleena B (2015) Designing a cloud based framework for healthcare system and applying clustering techniques for region wise diagnosis. 2nd international symposium on big data and cloud computing (ISBCC’15), 50:537–542 – reference: VermaLSrivastavaSNegiPCA hybrid data mining model to predict coronary artery disease cases using non-invasive clinical dataJ Med Syst201640717810.1007/s10916-016-0536-z – reference: Diaz-Uriarte R, Alverez-de-Andres S (2006) Gene selection and classification of microarray data using random forest. BMC Bioinformatics. https://doi.org/10.1186/1471-2105-7-3 – reference: ZhangLZhouWWangBZhangZLiFApplying 1-norm svm with squared loss to gene selection for cancer classificationAppl Intell20184871878189010.1007/s10489-017-1056-3 – reference: TaoDChengJGaoXLiXDengCRobust sparse coding for Mobile image labeling on the cloudIEEE Trans Circuits Syst Video Technol2017271627210.1109/TCSVT.2016.2539778 – reference: Hameed RT, Mohamad OA, Hamid OT, Tapus N (2015) Design of e-healthcare management system Basedon cloud and service oriented architecture. Proceedings of the 5th IEEE international conference on E-health and bioengineering (EHB), pp 1–4 – reference: TaoDWenYHongRMulticolumn bidirectional long short-term memory for mobile devices-based human activity recognitionIEEE Internet Things J2016361124113410.1109/JIOT.2016.2561962 – reference: TomarDAgarwalSA survey on data mining approaches for healthcareInternational Journal of Bio-Science and Bio-Technology20135524126610.14257/ijbsbt.2013.5.5.25 – reference: VerikasAGelzinisABacauskieneMMining data with random forest: a survey and results of new testsPattern Recogn201144233034910.1016/j.patcog.2010.08.011 – ident: 7327_CR1 – volume: 5 start-page: 241 issue: 5 year: 2013 ident: 7327_CR12 publication-title: International Journal of Bio-Science and Bio-Technology doi: 10.14257/ijbsbt.2013.5.5.25 – ident: 7327_CR3 doi: 10.1186/1471-2105-7-3 – volume: 4 start-page: 13 issue: 4 year: 2015 ident: 7327_CR16 publication-title: International Journal on Cybernetics & Informatics doi: 10.5121/ijci.2015.4402 – volume: 2 start-page: 13 year: 2016 ident: 7327_CR13 publication-title: Oxford Journal of Intelligent Decision and Data Science doi: 10.5899/2016/ojids-00002 – ident: 7327_CR5 – volume: 27 start-page: 62 issue: 1 year: 2017 ident: 7327_CR11 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2016.2539778 – volume: 113 start-page: 244 year: 2017 ident: 7327_CR4 publication-title: Comput Netw doi: 10.1016/j.comnet.2016.12.019 – volume: 40 start-page: 178 issue: 7 year: 2016 ident: 7327_CR15 publication-title: J Med Syst doi: 10.1007/s10916-016-0536-z – volume: 48 start-page: 1878 issue: 7 year: 2018 ident: 7327_CR17 publication-title: Appl Intell doi: 10.1007/s10489-017-1056-3 – volume: 11 start-page: 727 issue: 1 year: 2016 ident: 7327_CR2 publication-title: Int J Appl Eng Res – volume: 8 start-page: 236 issue: 1 year: 2017 ident: 7327_CR8 publication-title: Int J Adv Comput Sci Appl – volume: 44 start-page: 330 issue: 2 year: 2011 ident: 7327_CR14 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2010.08.011 – volume: 3 start-page: 1124 issue: 6 year: 2016 ident: 7327_CR10 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2016.2561962 – ident: 7327_CR6 doi: 10.1007/s10916-015-0210-x – ident: 7327_CR9 doi: 10.1016/j.procs.2015.04.029 – ident: 7327_CR7 doi: 10.1109/IntelliSys.2017.8324209 |
SSID | ssj0016524 |
Score | 2.5433025 |
Snippet | The Internet of Things (IoT) enabled various types of applications in the field of information technology, smart and connected health care is notably a crucial... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 19905 |
SubjectTerms | Algorithms Artificial intelligence Breast cancer Cloud computing Computer Communication Networks Computer Science Data analysis Data Structures and Information Theory Decision making Decision trees Dermatology Diabetes mellitus Empirical analysis Health care Health services Heart diseases Information technology Internet of Things Liver Machine learning Mental health Monitoring systems Multimedia Information Systems Predictions Remote monitoring Special Purpose and Application-Based Systems Support vector machines Systems analysis |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgUUAUCvLAwEOREjt-ZKwQVWGApZW6RY7jABI0iIb_z9lNGkCAxBjZsaLz4_ucu_sO4DRSGc8RSgPtFAhjU_AgM4mrmmoQcbRFpuSjfO_EaBLfTvm0zuOeN9HujUvSn9RtslvkUkmQkgSSUTxaV2GNu6s7LuIJHSxdB4LXlWxVGCAcRo0r86chvoJRyzC_OUU91gy3YbMmiWSwmNUdWLGzLmw1BRhIvR-7sPFJTXAX7gfkcRnNRV78ZnUtZKHWTFyI-wNBbMrLF4JcFb-B4AN58j8FbUXKglS-jCc5uynH53swGV6Pr0ZBXS8hMCwSVSAQ_qWQhTKFYjoRVmqWG5ehFFOZ8UiHQlsnsGUSFmlqjAlVIWUhMh1ZaSnbh86snNkDIELwDImj1NrqOJMqMUiUEitVziiTLO9B2BguNbWYuKtp8Zy2MsjO1inaOnW2TlUPLpavvC6UNP7q3G9mI6031Tx1t1HFE7ww9eCymaG2-dfBDv_V-wjWaegzu3Ch9KFTvb3bYyQeVXbiF9oHnZXMzA priority: 102 providerName: Springer Nature |
Title | A healthcare monitoring system using random forest and internet of things (IoT) |
URI | https://link.springer.com/article/10.1007/s11042-019-7327-8 https://www.proquest.com/docview/2184859428 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD7o9qIP3sXpHHnwwQvFtlmT9Ek22bzBFNlgPpU0TVVw63T1_3vSpZsK-lRK0lBOknO-5Fw-gCNPxEGCptSRpgJhU6WBE6vQsKYqtDhSI1Iqonx77HrQvB0GQ3vhNrVhlaVOLBR1kilzR35ujiIiCBEtX0zeHcMaZbyrlkJjGaqoggUevqrtTu_hce5HYIGltRWug7bRK_2aRfKcZ1JTEOI4nPqoqn9apgXc_OUhLQxPdwPWLGIkrdkUb8KSHm_BesnGQOzm3ILVb6UFt-G-RV7moV1kVOxc00JmpZuJiXd_JmiokmxEELjiPxB8Ia_FDaHOSZaSvOD0JMc3Wf9kBwbdTv_y2rHkCY6iHssdhliAM54KlQoqQ6a5pIky6UpNn8eBJ10mtam2pULqSV8p5YqU85TF0tNc-3QXKuNsrPeAMBbEiCK5lFo2Yy5Chagp1Fwk1KecJjVwS8FFylYWNwQXb9GiJrKRdYSyjoysI1GD0_knk1lZjf8618vZiOwOm0aL9VCDs3KGFs1_Drb__2AHsOK7RV4Xrow6VPKPT32IsCOPG7AsulcNqLa67XbPPK-e7joNu-KwdeC3vgD8Ttaa |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6t4EB74LFt1S1QfChSH4pI4sR2DlWFCttdoNvLrsQtdRynVCobCkGIP8Vv7IyTbNpKcOMYObGi8Xjms2fmG4A3gcriHF2pp4mBMDJF7GUmoa6pBj2OtoiUXJbvRIxm0dFpfNqDu7YWhtIqW5voDHVeGroj36OjiIoTRMufLn571DWKoqttC41aLY7t7Q0e2a4-jg9wfXfDcHg4_Tzymq4CnuGBqDyBTlIKWShTKK4TYaXmuaE6niiUWRxoX2hLNFQm4YEOjTG-KqQsRKYDKy0RHaDJX444T2hHqeGXRdRCxE0TXeV76ImDNorqSvUCKoRBQOVJHqJj-NcPduD2v3isc3PDdVht8CnbrxVqA3p23oe1tvcDa0xBH57-RWT4DL7ts7NFIhk7d3aCRlhNFM0ou_4HQ7eYl-cMYTL-A8MH9tPdR9qKlQWrXAdR9nZcTt89h9mjCPUFLM3LuX0JTIg4Q8wqtbY6yqRKDGK0xEqV85BLng_AbwWXmobHnNpp_Eo7BmaSdYqyTknWqRrA-8UnFzWJx0Mvb7WrkTb7-SrttG8AH9oV6obvnezVw5PtwMpo-vUkPRlPjjfhSei7ijLUki1Yqi6v7TYCnip77bSMwffHVus_hA8MnA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5KC6IH32K16h4UfBCaR7O7OYhUa7FWqoiF3uJms1FBG7UR8a_565xNk1YFvfUYNlnC7GS-b7Mz3wBsWzxwQ4RSQ2gFwpqMXCOQnu6aKhFxhEKmlGb5duhZt3bec3sF-MxrYXRaZR4T00AdxlL_I6_qrQh3PWTL1ShLi7hqNI-eXwzdQUqftObtNIYu0lYf77h9Gxy2GrjWO7bdPL05OTOyDgOGdCyaGBQBk1EWcRlxR3hUMeGEUtf01GwWuJYwqVBakkp6jiVsKaXJI8YiGghLMaVFDzD8lxjuiswilI5PO1fXozMM6mYtdblpIC5b-ZlqWrhn6bIYpFcGc2yEiZ-oOKa6v05nU9BrzsNsxlZJfeheC1BQ_UWYyztBkCwwLMLMN1nDJbisk_tRWhl5SqOGHiFD2Wiic-3vCIJkGD8RJM34DgQvyEP6d1IlJI5IkvYTJbut-GZvGboTMesKFPtxX60CodQNkMEyIZSoBYx7EhmbpxgPHdthTlgGMzecLzNVc91c49Ef6zFrW_toa1_b2udl2B898jyU9Pjv5kq-Gn72dQ_8sS-W4SBfofHwn5Ot_T_ZFkyhS_sXrU57HaZtMy0vQyepQDF5fVMbyH6SYDNzMwK3k_bsL7uCEi4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+healthcare+monitoring+system+using+random+forest+and+internet+of+things+%28IoT%29&rft.jtitle=Multimedia+tools+and+applications&rft.au=Kaur%2C+Pavleen&rft.au=Kumar%2C+Ravinder&rft.au=Kumar%2C+Munish&rft.date=2019-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=78&rft.issue=14&rft.spage=19905&rft.epage=19916&rft_id=info:doi/10.1007%2Fs11042-019-7327-8&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |