A healthcare monitoring system using random forest and internet of things (IoT)

The Internet of Things (IoT) enabled various types of applications in the field of information technology, smart and connected health care is notably a crucial one is one of them. Our physical and mental health information can be used to bring about a positive transformation change in the health car...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 78; no. 14; pp. 19905 - 19916
Main Authors Kaur, Pavleen, Kumar, Ravinder, Kumar, Munish
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Internet of Things (IoT) enabled various types of applications in the field of information technology, smart and connected health care is notably a crucial one is one of them. Our physical and mental health information can be used to bring about a positive transformation change in the health care landscape using networked sensors. It makes it possible for monitoring to come to the people who don’t have ready access to effective health monitoring system. The captured data can then be analyzed using various machine learning algorithms and then shared through wireless connectivity with medical professionals who can make appropriate recommendations. These scenarios already exist, but we intend to enhance it by analyzing the past data for predicting future problems using prescriptive analytics. It will allow us to move from reactive to visionary approach by rapidly spotting trends and making recommendations on behalf of the actual medical service provider. In this paper, the authors have applied different machine learning techniques and considered public datasets of health care stored in the cloud to build a system, which allows for real time and remote health monitoring built on IoT infrastructure and associated with cloud computing. The system will be allowed to drive recommendations based on the historic and empirical data lying on the cloud. The authors have proposed a framework to uncover knowledge in a database, bringing light to disguise patterns which can help in credible decision making. This paper has evaluated prediction systems for diseases such as heart diseases, breast cancer, diabetes, spect_heart, thyroid, dermatology, liver disorders and surgical data using a number of input attributes related to that particular disease. Experimental results are conducted using a few machine learning algorithms considered in this paper like K-NN, Support Vector Machine, Decision Trees, Random Forest, and MLP.
AbstractList The Internet of Things (IoT) enabled various types of applications in the field of information technology, smart and connected health care is notably a crucial one is one of them. Our physical and mental health information can be used to bring about a positive transformation change in the health care landscape using networked sensors. It makes it possible for monitoring to come to the people who don’t have ready access to effective health monitoring system. The captured data can then be analyzed using various machine learning algorithms and then shared through wireless connectivity with medical professionals who can make appropriate recommendations. These scenarios already exist, but we intend to enhance it by analyzing the past data for predicting future problems using prescriptive analytics. It will allow us to move from reactive to visionary approach by rapidly spotting trends and making recommendations on behalf of the actual medical service provider. In this paper, the authors have applied different machine learning techniques and considered public datasets of health care stored in the cloud to build a system, which allows for real time and remote health monitoring built on IoT infrastructure and associated with cloud computing. The system will be allowed to drive recommendations based on the historic and empirical data lying on the cloud. The authors have proposed a framework to uncover knowledge in a database, bringing light to disguise patterns which can help in credible decision making. This paper has evaluated prediction systems for diseases such as heart diseases, breast cancer, diabetes, spect_heart, thyroid, dermatology, liver disorders and surgical data using a number of input attributes related to that particular disease. Experimental results are conducted using a few machine learning algorithms considered in this paper like K-NN, Support Vector Machine, Decision Trees, Random Forest, and MLP.
Author Kumar, Munish
Kumar, Ravinder
Kaur, Pavleen
Author_xml – sequence: 1
  givenname: Pavleen
  surname: Kaur
  fullname: Kaur, Pavleen
  organization: Computer Science and Engineering Department, Thapar Institute of Engineering & Technology
– sequence: 2
  givenname: Ravinder
  surname: Kumar
  fullname: Kumar, Ravinder
  organization: Computer Science and Engineering Department, Thapar Institute of Engineering & Technology
– sequence: 3
  givenname: Munish
  surname: Kumar
  fullname: Kumar, Munish
  email: munishcse@gmail.com
  organization: Department of Computational Sciences, Maharaja Ranjit Singh Punjab Technical University
BookMark eNp9kE1LAzEQhoNUsK3-AG8BL3pYzSS7O9ljKX4UCr3Uc0jTrN3STWqSHvrv3WUFQdDTzMD7zAzPhIycd5aQW2CPwBg-RQCW84xBlaHgmMkLMoYCRYbIYdT1QrIMCwZXZBLjnjEoC56PyWpGd1Yf0s7oYGnrXZN8aNwHjeeYbEtPsR-Cdlvf0toHGxPtBtq4ZIOzifqapl2XifR-4dcP1-Sy1odob77rlLy_PK_nb9ly9bqYz5aZEVCmrGRYYIm1NLUUuiotarE1DCHPOW4K0KzUlrEcTCVAc2MMkzViXW40WLRcTMndsPcY_Oep-0rt_Sm47qTiIHNZVDmXXQqGlAk-xmBrdQxNq8NZAVO9NzV4U5031XtTPYO_GNMknRrvUtDN4V-SD2Q89gpt-Pnpb-gLW36Czw
CitedBy_id crossref_primary_10_3390_electronics11030419
crossref_primary_10_1109_ACCESS_2023_3284390
crossref_primary_10_3390_s22155574
crossref_primary_10_4018_IJACI_311062
crossref_primary_10_1109_ACCESS_2023_3273895
crossref_primary_10_3390_bdcc4040037
crossref_primary_10_1007_s11042_021_10944_7
crossref_primary_10_1007_s11042_020_08896_5
crossref_primary_10_1007_s10462_021_09985_z
crossref_primary_10_7717_peerj_cs_1394
crossref_primary_10_1155_2019_5931315
crossref_primary_10_32604_cmc_2024_055079
crossref_primary_10_1007_s00354_022_00175_1
crossref_primary_10_1159_000536250
crossref_primary_10_1016_j_aej_2024_05_011
crossref_primary_10_3390_app122211475
crossref_primary_10_1016_j_eswa_2022_119465
crossref_primary_10_1016_j_jnca_2021_103244
crossref_primary_10_1016_j_ijleo_2022_170176
crossref_primary_10_1016_j_measen_2022_100406
crossref_primary_10_1007_s11042_019_07835_3
crossref_primary_10_1162_dint_a_00219
crossref_primary_10_1007_s11277_023_10363_x
crossref_primary_10_3233_THC_213003
crossref_primary_10_1007_s11042_024_18580_7
crossref_primary_10_1007_s44230_023_00049_9
crossref_primary_10_1155_2022_7727915
crossref_primary_10_3390_ijerph18063099
crossref_primary_10_1007_s12652_021_03155_3
crossref_primary_10_3390_math11224621
crossref_primary_10_31202_ecjse_1135485
crossref_primary_10_37648_ijrmst_v11i02_019
crossref_primary_10_1155_2021_4931450
crossref_primary_10_1007_s11277_022_09500_9
crossref_primary_10_1155_2022_2090681
crossref_primary_10_1007_s00500_021_06098_1
crossref_primary_10_1145_3398069
crossref_primary_10_1016_j_jnca_2024_103907
crossref_primary_10_1007_s11042_023_15204_4
crossref_primary_10_5753_jbcs_2024_4685
crossref_primary_10_1016_j_dsm_2024_07_004
crossref_primary_10_1002_ett_4497
crossref_primary_10_1007_s11276_024_03783_5
crossref_primary_10_1007_s12530_024_09571_y
crossref_primary_10_1186_s40537_023_00808_2
crossref_primary_10_3389_fpubh_2022_914106
crossref_primary_10_3390_healthcare10101993
crossref_primary_10_1002_lrh2_10478
crossref_primary_10_1007_s11042_019_07978_3
crossref_primary_10_1016_j_seps_2021_101039
crossref_primary_10_18006_2022_10_2__440_450
crossref_primary_10_1007_s11042_022_13215_1
crossref_primary_10_1007_s42452_024_06351_w
crossref_primary_10_1007_s00521_022_07596_5
crossref_primary_10_3389_fmed_2023_1292761
crossref_primary_10_1111_jcal_12999
crossref_primary_10_2174_2666255814666210715161630
crossref_primary_10_1007_s11276_023_03574_4
crossref_primary_10_1007_s11042_022_13198_z
crossref_primary_10_1109_ACCESS_2020_3008916
crossref_primary_10_1515_med_2022_0508
crossref_primary_10_2139_ssrn_3997695
crossref_primary_10_1016_j_jpha_2021_12_006
crossref_primary_10_1007_s11042_024_19766_9
crossref_primary_10_1016_j_engappai_2025_110138
crossref_primary_10_1007_s12652_024_04780_4
crossref_primary_10_1007_s11042_022_12100_1
crossref_primary_10_3389_fdgth_2023_1279644
crossref_primary_10_1007_s11042_022_12425_x
crossref_primary_10_1007_s10916_020_01674_8
crossref_primary_10_3390_diagnostics14060624
crossref_primary_10_1109_TASE_2023_3289908
crossref_primary_10_1007_s11042_022_13636_y
crossref_primary_10_1016_j_neucom_2023_126719
crossref_primary_10_1007_s00607_020_00877_8
crossref_primary_10_3233_JIFS_235503
crossref_primary_10_3390_smartcities4020024
crossref_primary_10_1007_s11042_024_19169_w
crossref_primary_10_1021_acsami_3c03903
crossref_primary_10_4316_AECE_2023_02012
crossref_primary_10_3390_bios11110435
crossref_primary_10_1016_j_cie_2024_110405
crossref_primary_10_1109_ACCESS_2024_3519567
crossref_primary_10_1002_cpe_6722
crossref_primary_10_1109_ACCESS_2020_3007561
crossref_primary_10_1007_s11277_023_10466_5
crossref_primary_10_3390_bios11100372
crossref_primary_10_1155_2022_1070697
crossref_primary_10_1007_s42979_024_02701_y
crossref_primary_10_32604_cmc_2022_025858
crossref_primary_10_1016_j_jnca_2021_103164
crossref_primary_10_32604_iasc_2023_032585
crossref_primary_10_1007_s11042_020_10258_0
crossref_primary_10_1007_s42417_021_00286_x
crossref_primary_10_1016_j_artmed_2023_102692
crossref_primary_10_32604_cmc_2023_032588
crossref_primary_10_3390_diagnostics12040850
crossref_primary_10_1016_j_compbiomed_2024_109330
crossref_primary_10_1142_S0218126625501063
crossref_primary_10_3389_fnhum_2023_1275795
crossref_primary_10_1007_s11276_023_03373_x
crossref_primary_10_1016_j_measurement_2023_113235
crossref_primary_10_1007_s11042_020_09049_4
crossref_primary_10_1007_s11042_023_15736_9
crossref_primary_10_1109_ACCESS_2020_2981632
crossref_primary_10_1002_btm2_70002
crossref_primary_10_1016_j_adhoc_2023_103348
crossref_primary_10_1080_01969722_2025_2470786
crossref_primary_10_1007_s00500_019_04554_7
crossref_primary_10_1007_s40031_021_00632_3
crossref_primary_10_1155_2022_8626234
crossref_primary_10_1109_TNSE_2022_3186437
crossref_primary_10_4103_idoj_IDOJ_388_20
crossref_primary_10_1007_s11042_023_17212_w
crossref_primary_10_1016_j_jbi_2021_103972
crossref_primary_10_1145_3580800
crossref_primary_10_48084_etasr_8869
crossref_primary_10_1108_JHOM_01_2025_0013
crossref_primary_10_1186_s13677_020_00215_5
crossref_primary_10_9728_dcs_2023_24_9_2147
crossref_primary_10_1007_s12652_020_02579_7
crossref_primary_10_3390_diagnostics13040798
crossref_primary_10_3390_math11061467
crossref_primary_10_1080_03772063_2023_2255567
crossref_primary_10_3390_bios12080562
crossref_primary_10_1007_s00500_020_05003_6
crossref_primary_10_1007_s11042_024_20084_3
crossref_primary_10_1016_j_compbiomed_2022_106043
crossref_primary_10_1038_s41598_024_75977_y
crossref_primary_10_1515_jisys_2022_0291
crossref_primary_10_1109_JSEN_2021_3091626
crossref_primary_10_1515_pjbr_2022_0108
crossref_primary_10_1007_s11042_023_14685_7
crossref_primary_10_1155_2022_6567123
Cites_doi 10.14257/ijbsbt.2013.5.5.25
10.1186/1471-2105-7-3
10.5121/ijci.2015.4402
10.5899/2016/ojids-00002
10.1109/TCSVT.2016.2539778
10.1016/j.comnet.2016.12.019
10.1007/s10916-016-0536-z
10.1007/s10489-017-1056-3
10.1016/j.patcog.2010.08.011
10.1109/JIOT.2016.2561962
10.1007/s10916-015-0210-x
10.1016/j.procs.2015.04.029
10.1109/IntelliSys.2017.8324209
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Multimedia Tools and Applications is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Multimedia Tools and Applications is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-019-7327-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 19916
ExternalDocumentID 10_1007_s11042_019_7327_8
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
203
29M
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
3EH
5QI
AAOBN
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACBXY
ACMFV
ACSTC
ADHKG
ADKFA
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGJBK
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCJ
SCLPG
T16
TEORI
UZXMN
VFIZW
3V.
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c316t-6075767f8cf83a96e7a3dc0714427b51a06ae0041c931a2ccc08f77f6ba1e7e23
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Fri Jul 25 23:44:44 EDT 2025
Thu Apr 24 23:06:26 EDT 2025
Tue Jul 01 02:06:57 EDT 2025
Fri Feb 21 02:37:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Internet of things
Healthcare
Data mining
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-6075767f8cf83a96e7a3dc0714427b51a06ae0041c931a2ccc08f77f6ba1e7e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2184859428
PQPubID 54626
PageCount 12
ParticipantIDs proquest_journals_2184859428
crossref_primary_10_1007_s11042_019_7327_8
crossref_citationtrail_10_1007_s11042_019_7327_8
springer_journals_10_1007_s11042_019_7327_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Costa K, Ribeiro P, Carmargo A, Rossi V, Martins H, Neves M, Fabris R, Imaisumi R, Papa JP (2013) Comparison of the techniques decision tee and MLP for data mining in SPAMs detection in computer networks. Proceedings of the 3rd international conference on innovative computing technology, pp 344–348
VijayaraniSDhayanandSData mining classification algorithms for kidney diseases predictionInternational Journal on Cybernetics & Informatics201544132510.5121/ijci.2015.4402
TaoDWenYHongRMulticolumn bidirectional long short-term memory for mobile devices-based human activity recognitionIEEE Internet Things J2016361124113410.1109/JIOT.2016.2561962
ForkanARMKhalilIAtiquzzamanMViSiBiD: a learning model for early discovery and real time prediction of severe clinical events using vital signs as big dataComput Netw201711324425710.1016/j.comnet.2016.12.019
Parekh M, Saleena B (2015) Designing a cloud based framework for healthcare system and applying clustering techniques for region wise diagnosis. 2nd international symposium on big data and cloud computing (ISBCC’15), 50:537–542
Hameed RT, Mohamad OA, Hamid OT, Tapus N (2015) Design of e-healthcare management system Basedon cloud and service oriented architecture. Proceedings of the 5th IEEE international conference on E-health and bioengineering (EHB), pp 1–4
Diaz-Uriarte R, Alverez-de-Andres S (2006) Gene selection and classification of microarray data using random forest. BMC Bioinformatics. https://doi.org/10.1186/1471-2105-7-3
VermaLSrivastavaSNegiPCA hybrid data mining model to predict coronary artery disease cases using non-invasive clinical dataJ Med Syst201640717810.1007/s10916-016-0536-z
OsmanAHAljahdaliHMDiabetes disease diagnosis method based on feature extraction using k-svmInt J Adv Comput Sci Appl201781236244
Hsu JL, Hung PC, Lin HY, Hsieh CH (2015) Applying under-sampling techniques and cost-sensitive learning methods on risk assessment of breast cancer. J Med Syst 39(4). https://doi.org/10.1007/s10916-015-0210-x
TaoDChengJGaoXLiXDengCRobust sparse coding for Mobile image labeling on the cloudIEEE Trans Circuits Syst Video Technol2017271627210.1109/TCSVT.2016.2539778
ZhangLZhouWWangBZhangZLiFApplying 1-norm svm with squared loss to gene selection for cancer classificationAppl Intell20184871878189010.1007/s10489-017-1056-3
Jahangir M, Afzal H, Ahmed M, Khurshid K, Nawaz R (2017) An expert system for diabetes prediction using auto tuned multi-layer perceptron. Proceedings of the intelligent system conference, pp 722–728
Turanoglu-BekarEUlutagayGKantarc-SavasSClassification of thyroid disease by using data mining models: a comparison of decision tree algorithmOxford Journal of Intelligent Decision and Data Science20162132810.5899/2016/ojids-00002
TomarDAgarwalSA survey on data mining approaches for healthcareInternational Journal of Bio-Science and Bio-Technology20135524126610.14257/ijbsbt.2013.5.5.25
VerikasAGelzinisABacauskieneMMining data with random forest: a survey and results of new testsPattern Recogn201144233034910.1016/j.patcog.2010.08.011
DeviMRShylaJMAnalysis of various data mining techniques to predict diabetes mellitusInt J Appl Eng Res2016111727730
7327_CR1
7327_CR3
L Zhang (7327_CR17) 2018; 48
L Verma (7327_CR15) 2016; 40
AH Osman (7327_CR8) 2017; 8
S Vijayarani (7327_CR16) 2015; 4
7327_CR9
A Verikas (7327_CR14) 2011; 44
7327_CR5
7327_CR6
7327_CR7
ARM Forkan (7327_CR4) 2017; 113
D Tao (7327_CR10) 2016; 3
D Tomar (7327_CR12) 2013; 5
D Tao (7327_CR11) 2017; 27
MR Devi (7327_CR2) 2016; 11
E Turanoglu-Bekar (7327_CR13) 2016; 2
References_xml – reference: ForkanARMKhalilIAtiquzzamanMViSiBiD: a learning model for early discovery and real time prediction of severe clinical events using vital signs as big dataComput Netw201711324425710.1016/j.comnet.2016.12.019
– reference: Turanoglu-BekarEUlutagayGKantarc-SavasSClassification of thyroid disease by using data mining models: a comparison of decision tree algorithmOxford Journal of Intelligent Decision and Data Science20162132810.5899/2016/ojids-00002
– reference: VijayaraniSDhayanandSData mining classification algorithms for kidney diseases predictionInternational Journal on Cybernetics & Informatics201544132510.5121/ijci.2015.4402
– reference: Costa K, Ribeiro P, Carmargo A, Rossi V, Martins H, Neves M, Fabris R, Imaisumi R, Papa JP (2013) Comparison of the techniques decision tee and MLP for data mining in SPAMs detection in computer networks. Proceedings of the 3rd international conference on innovative computing technology, pp 344–348
– reference: Jahangir M, Afzal H, Ahmed M, Khurshid K, Nawaz R (2017) An expert system for diabetes prediction using auto tuned multi-layer perceptron. Proceedings of the intelligent system conference, pp 722–728
– reference: DeviMRShylaJMAnalysis of various data mining techniques to predict diabetes mellitusInt J Appl Eng Res2016111727730
– reference: OsmanAHAljahdaliHMDiabetes disease diagnosis method based on feature extraction using k-svmInt J Adv Comput Sci Appl201781236244
– reference: Hsu JL, Hung PC, Lin HY, Hsieh CH (2015) Applying under-sampling techniques and cost-sensitive learning methods on risk assessment of breast cancer. J Med Syst 39(4). https://doi.org/10.1007/s10916-015-0210-x
– reference: Parekh M, Saleena B (2015) Designing a cloud based framework for healthcare system and applying clustering techniques for region wise diagnosis. 2nd international symposium on big data and cloud computing (ISBCC’15), 50:537–542
– reference: VermaLSrivastavaSNegiPCA hybrid data mining model to predict coronary artery disease cases using non-invasive clinical dataJ Med Syst201640717810.1007/s10916-016-0536-z
– reference: Diaz-Uriarte R, Alverez-de-Andres S (2006) Gene selection and classification of microarray data using random forest. BMC Bioinformatics. https://doi.org/10.1186/1471-2105-7-3
– reference: ZhangLZhouWWangBZhangZLiFApplying 1-norm svm with squared loss to gene selection for cancer classificationAppl Intell20184871878189010.1007/s10489-017-1056-3
– reference: TaoDChengJGaoXLiXDengCRobust sparse coding for Mobile image labeling on the cloudIEEE Trans Circuits Syst Video Technol2017271627210.1109/TCSVT.2016.2539778
– reference: Hameed RT, Mohamad OA, Hamid OT, Tapus N (2015) Design of e-healthcare management system Basedon cloud and service oriented architecture. Proceedings of the 5th IEEE international conference on E-health and bioengineering (EHB), pp 1–4
– reference: TaoDWenYHongRMulticolumn bidirectional long short-term memory for mobile devices-based human activity recognitionIEEE Internet Things J2016361124113410.1109/JIOT.2016.2561962
– reference: TomarDAgarwalSA survey on data mining approaches for healthcareInternational Journal of Bio-Science and Bio-Technology20135524126610.14257/ijbsbt.2013.5.5.25
– reference: VerikasAGelzinisABacauskieneMMining data with random forest: a survey and results of new testsPattern Recogn201144233034910.1016/j.patcog.2010.08.011
– ident: 7327_CR1
– volume: 5
  start-page: 241
  issue: 5
  year: 2013
  ident: 7327_CR12
  publication-title: International Journal of Bio-Science and Bio-Technology
  doi: 10.14257/ijbsbt.2013.5.5.25
– ident: 7327_CR3
  doi: 10.1186/1471-2105-7-3
– volume: 4
  start-page: 13
  issue: 4
  year: 2015
  ident: 7327_CR16
  publication-title: International Journal on Cybernetics & Informatics
  doi: 10.5121/ijci.2015.4402
– volume: 2
  start-page: 13
  year: 2016
  ident: 7327_CR13
  publication-title: Oxford Journal of Intelligent Decision and Data Science
  doi: 10.5899/2016/ojids-00002
– ident: 7327_CR5
– volume: 27
  start-page: 62
  issue: 1
  year: 2017
  ident: 7327_CR11
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2016.2539778
– volume: 113
  start-page: 244
  year: 2017
  ident: 7327_CR4
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2016.12.019
– volume: 40
  start-page: 178
  issue: 7
  year: 2016
  ident: 7327_CR15
  publication-title: J Med Syst
  doi: 10.1007/s10916-016-0536-z
– volume: 48
  start-page: 1878
  issue: 7
  year: 2018
  ident: 7327_CR17
  publication-title: Appl Intell
  doi: 10.1007/s10489-017-1056-3
– volume: 11
  start-page: 727
  issue: 1
  year: 2016
  ident: 7327_CR2
  publication-title: Int J Appl Eng Res
– volume: 8
  start-page: 236
  issue: 1
  year: 2017
  ident: 7327_CR8
  publication-title: Int J Adv Comput Sci Appl
– volume: 44
  start-page: 330
  issue: 2
  year: 2011
  ident: 7327_CR14
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2010.08.011
– volume: 3
  start-page: 1124
  issue: 6
  year: 2016
  ident: 7327_CR10
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2016.2561962
– ident: 7327_CR6
  doi: 10.1007/s10916-015-0210-x
– ident: 7327_CR9
  doi: 10.1016/j.procs.2015.04.029
– ident: 7327_CR7
  doi: 10.1109/IntelliSys.2017.8324209
SSID ssj0016524
Score 2.5433025
Snippet The Internet of Things (IoT) enabled various types of applications in the field of information technology, smart and connected health care is notably a crucial...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19905
SubjectTerms Algorithms
Artificial intelligence
Breast cancer
Cloud computing
Computer Communication Networks
Computer Science
Data analysis
Data Structures and Information Theory
Decision making
Decision trees
Dermatology
Diabetes mellitus
Empirical analysis
Health care
Health services
Heart diseases
Information technology
Internet of Things
Liver
Machine learning
Mental health
Monitoring systems
Multimedia Information Systems
Predictions
Remote monitoring
Special Purpose and Application-Based Systems
Support vector machines
Systems analysis
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgUUAUCvLAwEOREjt-ZKwQVWGApZW6RY7jABI0iIb_z9lNGkCAxBjZsaLz4_ucu_sO4DRSGc8RSgPtFAhjU_AgM4mrmmoQcbRFpuSjfO_EaBLfTvm0zuOeN9HujUvSn9RtslvkUkmQkgSSUTxaV2GNu6s7LuIJHSxdB4LXlWxVGCAcRo0r86chvoJRyzC_OUU91gy3YbMmiWSwmNUdWLGzLmw1BRhIvR-7sPFJTXAX7gfkcRnNRV78ZnUtZKHWTFyI-wNBbMrLF4JcFb-B4AN58j8FbUXKglS-jCc5uynH53swGV6Pr0ZBXS8hMCwSVSAQ_qWQhTKFYjoRVmqWG5ehFFOZ8UiHQlsnsGUSFmlqjAlVIWUhMh1ZaSnbh86snNkDIELwDImj1NrqOJMqMUiUEitVziiTLO9B2BguNbWYuKtp8Zy2MsjO1inaOnW2TlUPLpavvC6UNP7q3G9mI6031Tx1t1HFE7ww9eCymaG2-dfBDv_V-wjWaegzu3Ch9KFTvb3bYyQeVXbiF9oHnZXMzA
  priority: 102
  providerName: Springer Nature
Title A healthcare monitoring system using random forest and internet of things (IoT)
URI https://link.springer.com/article/10.1007/s11042-019-7327-8
https://www.proquest.com/docview/2184859428
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD7o9qIP3sXpHHnwwQvFtlmT9Ek22bzBFNlgPpU0TVVw63T1_3vSpZsK-lRK0lBOknO-5Fw-gCNPxEGCptSRpgJhU6WBE6vQsKYqtDhSI1Iqonx77HrQvB0GQ3vhNrVhlaVOLBR1kilzR35ujiIiCBEtX0zeHcMaZbyrlkJjGaqoggUevqrtTu_hce5HYIGltRWug7bRK_2aRfKcZ1JTEOI4nPqoqn9apgXc_OUhLQxPdwPWLGIkrdkUb8KSHm_BesnGQOzm3ILVb6UFt-G-RV7moV1kVOxc00JmpZuJiXd_JmiokmxEELjiPxB8Ia_FDaHOSZaSvOD0JMc3Wf9kBwbdTv_y2rHkCY6iHssdhliAM54KlQoqQ6a5pIky6UpNn8eBJ10mtam2pULqSV8p5YqU85TF0tNc-3QXKuNsrPeAMBbEiCK5lFo2Yy5Chagp1Fwk1KecJjVwS8FFylYWNwQXb9GiJrKRdYSyjoysI1GD0_knk1lZjf8618vZiOwOm0aL9VCDs3KGFs1_Drb__2AHsOK7RV4Xrow6VPKPT32IsCOPG7AsulcNqLa67XbPPK-e7joNu-KwdeC3vgD8Ttaa
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6t4EB74LFt1S1QfChSH4pI4sR2DlWFCttdoNvLrsQtdRynVCobCkGIP8Vv7IyTbNpKcOMYObGi8Xjms2fmG4A3gcriHF2pp4mBMDJF7GUmoa6pBj2OtoiUXJbvRIxm0dFpfNqDu7YWhtIqW5voDHVeGroj36OjiIoTRMufLn571DWKoqttC41aLY7t7Q0e2a4-jg9wfXfDcHg4_Tzymq4CnuGBqDyBTlIKWShTKK4TYaXmuaE6niiUWRxoX2hLNFQm4YEOjTG-KqQsRKYDKy0RHaDJX444T2hHqeGXRdRCxE0TXeV76ImDNorqSvUCKoRBQOVJHqJj-NcPduD2v3isc3PDdVht8CnbrxVqA3p23oe1tvcDa0xBH57-RWT4DL7ts7NFIhk7d3aCRlhNFM0ou_4HQ7eYl-cMYTL-A8MH9tPdR9qKlQWrXAdR9nZcTt89h9mjCPUFLM3LuX0JTIg4Q8wqtbY6yqRKDGK0xEqV85BLng_AbwWXmobHnNpp_Eo7BmaSdYqyTknWqRrA-8UnFzWJx0Mvb7WrkTb7-SrttG8AH9oV6obvnezVw5PtwMpo-vUkPRlPjjfhSei7ijLUki1Yqi6v7TYCnip77bSMwffHVus_hA8MnA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5KC6IH32K16h4UfBCaR7O7OYhUa7FWqoiF3uJms1FBG7UR8a_565xNk1YFvfUYNlnC7GS-b7Mz3wBsWzxwQ4RSQ2gFwpqMXCOQnu6aKhFxhEKmlGb5duhZt3bec3sF-MxrYXRaZR4T00AdxlL_I6_qrQh3PWTL1ShLi7hqNI-eXwzdQUqftObtNIYu0lYf77h9Gxy2GrjWO7bdPL05OTOyDgOGdCyaGBQBk1EWcRlxR3hUMeGEUtf01GwWuJYwqVBakkp6jiVsKaXJI8YiGghLMaVFDzD8lxjuiswilI5PO1fXozMM6mYtdblpIC5b-ZlqWrhn6bIYpFcGc2yEiZ-oOKa6v05nU9BrzsNsxlZJfeheC1BQ_UWYyztBkCwwLMLMN1nDJbisk_tRWhl5SqOGHiFD2Wiic-3vCIJkGD8RJM34DgQvyEP6d1IlJI5IkvYTJbut-GZvGboTMesKFPtxX60CodQNkMEyIZSoBYx7EhmbpxgPHdthTlgGMzecLzNVc91c49Ef6zFrW_toa1_b2udl2B898jyU9Pjv5kq-Gn72dQ_8sS-W4SBfofHwn5Ot_T_ZFkyhS_sXrU57HaZtMy0vQyepQDF5fVMbyH6SYDNzMwK3k_bsL7uCEi4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+healthcare+monitoring+system+using+random+forest+and+internet+of+things+%28IoT%29&rft.jtitle=Multimedia+tools+and+applications&rft.au=Kaur%2C+Pavleen&rft.au=Kumar%2C+Ravinder&rft.au=Kumar%2C+Munish&rft.date=2019-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=78&rft.issue=14&rft.spage=19905&rft.epage=19916&rft_id=info:doi/10.1007%2Fs11042-019-7327-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon