On the nature of the KH2PO4 high-temperature transformation
For over two decades, the high-temperature phase transition (HTPT) at around T p = 180 °C on KH 2 PO 4 (KDP), which involves an ionic conductivity increase, constitutes a controversial subject; while most authors ratify a physical transformation (tetragonal → monoclinic phase transition), others de...
Saved in:
Published in | Ionics Vol. 23; no. 5; pp. 1187 - 1195 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0947-7047 1862-0760 |
DOI | 10.1007/s11581-016-1932-6 |
Cover
Loading…
Abstract | For over two decades, the high-temperature phase transition (HTPT) at around
T
p
= 180 °C on KH
2
PO
4
(KDP), which involves an ionic conductivity increase, constitutes a controversial subject; while most authors ratify a physical transformation (tetragonal → monoclinic phase transition), others defend the chemical transformation. A careful high-temperature phase behavior examination of this acid salt by means of modulated and conventional differential scanning calorimetry, thermogravimetric analysis, simultaneous thermogravimetric and differential scanning calorimetry, impedance spectroscopy, and temperature evolution of X-ray diffraction was performed to provide a possible solution to this long-standing issue. We found that the structural phase transition does not take place. Instead, a chemical transformation occurs at
T
p
. When KDP is heated through this temperature, the sample initially corresponding to a single phase (tetragonal) transforms to a sample composed of two solid phases: tetragonal KDP, located at its bulk, and monoclinic potassium metaphosphate (KPO
3
), located at its surface. Most of the water produced evaporates, but a small portion of liquid water bonds to KPO
3
. Because this is of polymeric nature, it takes the role of a host matrix that contains liquid water regions. Consequently, given that part of the water dissolves a portion of surface salt (providing protons), the surface sample system behaves in a similar manner to a polymer electrolyte membrane where the proton transport mechanism includes the vehicle type, using hydronium (H
3
O
+
) as a charge carrier. On further heating, the bulk tetragonal KDP phase reduced to its total decomposition. The metastability of the high-temperature phase below
T
p
is also explained. |
---|---|
AbstractList | For over two decades, the high-temperature phase transition (HTPT) at around
T
p
= 180 °C on KH
2
PO
4
(KDP), which involves an ionic conductivity increase, constitutes a controversial subject; while most authors ratify a physical transformation (tetragonal → monoclinic phase transition), others defend the chemical transformation. A careful high-temperature phase behavior examination of this acid salt by means of modulated and conventional differential scanning calorimetry, thermogravimetric analysis, simultaneous thermogravimetric and differential scanning calorimetry, impedance spectroscopy, and temperature evolution of X-ray diffraction was performed to provide a possible solution to this long-standing issue. We found that the structural phase transition does not take place. Instead, a chemical transformation occurs at
T
p
. When KDP is heated through this temperature, the sample initially corresponding to a single phase (tetragonal) transforms to a sample composed of two solid phases: tetragonal KDP, located at its bulk, and monoclinic potassium metaphosphate (KPO
3
), located at its surface. Most of the water produced evaporates, but a small portion of liquid water bonds to KPO
3
. Because this is of polymeric nature, it takes the role of a host matrix that contains liquid water regions. Consequently, given that part of the water dissolves a portion of surface salt (providing protons), the surface sample system behaves in a similar manner to a polymer electrolyte membrane where the proton transport mechanism includes the vehicle type, using hydronium (H
3
O
+
) as a charge carrier. On further heating, the bulk tetragonal KDP phase reduced to its total decomposition. The metastability of the high-temperature phase below
T
p
is also explained. For over two decades, the high-temperature phase transition (HTPT) at around Tp = 180 °C on KH2PO4 (KDP), which involves an ionic conductivity increase, constitutes a controversial subject; while most authors ratify a physical transformation (tetragonal → monoclinic phase transition), others defend the chemical transformation. A careful high-temperature phase behavior examination of this acid salt by means of modulated and conventional differential scanning calorimetry, thermogravimetric analysis, simultaneous thermogravimetric and differential scanning calorimetry, impedance spectroscopy, and temperature evolution of X-ray diffraction was performed to provide a possible solution to this long-standing issue. We found that the structural phase transition does not take place. Instead, a chemical transformation occurs at Tp. When KDP is heated through this temperature, the sample initially corresponding to a single phase (tetragonal) transforms to a sample composed of two solid phases: tetragonal KDP, located at its bulk, and monoclinic potassium metaphosphate (KPO3), located at its surface. Most of the water produced evaporates, but a small portion of liquid water bonds to KPO3. Because this is of polymeric nature, it takes the role of a host matrix that contains liquid water regions. Consequently, given that part of the water dissolves a portion of surface salt (providing protons), the surface sample system behaves in a similar manner to a polymer electrolyte membrane where the proton transport mechanism includes the vehicle type, using hydronium (H3O+) as a charge carrier. On further heating, the bulk tetragonal KDP phase reduced to its total decomposition. The metastability of the high-temperature phase below Tp is also explained. |
Author | Piñeres, I Ortiz, E De la Hoz, C Tróchez, J C León, C |
Author_xml | – sequence: 1 givenname: I surname: Piñeres fullname: Piñeres, I organization: GFM, Department of Physics, Faculty of Basic Sciences, Universidad del Atlántico – sequence: 2 givenname: E surname: Ortiz fullname: Ortiz, E email: everortiz@mail.uniatlantico.edu.co organization: GFM, Department of Physics, Faculty of Basic Sciences, Universidad del Atlántico – sequence: 3 givenname: C surname: De la Hoz fullname: De la Hoz, C organization: GFM, Department of Physics, Faculty of Basic Sciences, Universidad del Atlántico – sequence: 4 givenname: J C surname: Tróchez fullname: Tróchez, J C organization: GFM, Department of Physics, Faculty of Basic Sciences, Universidad del Atlántico – sequence: 5 givenname: C surname: León fullname: León, C organization: GFMC, Department of Applied Physics III, Faculty of Physics, Universidad Complutense de Madrid |
BookMark | eNp9kE1LAzEQhoNUsK3-AG8Fz9GZbDYfeJKiVizUg55D3E3aLW22JunBf--260EEPYUh7zPz8ozIILTBEXKJcI0A8iYhlgopoKCoC0bFCRmiEoyCFDAgQ9BcUglcnpFRSmsAIZDJIbldhEleuUmweR_dpPXH6XnGXhZ8smqWK5rddudi_52jDcm3cWtz04ZzcurtJrmL73dM3h7uX6czOl88Pk3v5rQqUGRaes65QsV1pUAzxy2TNfBas7LmQjLwvnwHptDZEpys0WvNK81s5RSveFGMyVW_dxfbj71L2azbfQzdSYNKgwBWctWlZJ-qYptSdN5UTT727Fo3G4NgDqZMb8p0pszBlBEdib_IXWy2Nn7-y7CeSV02LF380elP6AuRVXqf |
CitedBy_id | crossref_primary_10_1007_s11581_017_2408_z crossref_primary_10_1039_D4QM01036A crossref_primary_10_1134_S1063774523600527 crossref_primary_10_1007_s10973_021_10821_3 crossref_primary_10_1039_D4TC02947J crossref_primary_10_1016_j_commatsci_2023_112666 crossref_primary_10_1039_D1TC04846E crossref_primary_10_1007_s11581_017_2420_3 crossref_primary_10_1016_j_ijleo_2020_165645 crossref_primary_10_1039_D2QI00171C crossref_primary_10_1039_D5QM00062A crossref_primary_10_31857_S0023476123600520 crossref_primary_10_1002_adom_202400194 crossref_primary_10_1002_adom_202401332 crossref_primary_10_1021_acsagscitech_2c00153 crossref_primary_10_1103_PhysRevMaterials_5_103401 crossref_primary_10_1088_1742_6596_935_1_012050 |
Cites_doi | 10.1080/00150198908007907 10.1088/0953-8984/13/42/302 10.1103/PhysRevB.69.054104 10.1063/1.1328043 10.1016/S0022-3697(97)00237-0 10.1088/0953-8984/8/29/022 10.1016/j.molstruc.2012.09.002 10.1080/00150198808008840 10.1016/j.ijhydene.2011.09.152 10.1103/PhysRevB.78.104304 10.1021/cm980293j 10.1016/S0167-2738(99)00173-3 10.1016/0040-6031(79)85047-9 10.1016/j.jpowsour.2016.05.021 10.1088/0953-8984/23/23/234110 10.1016/S0040-6031(94)85215-4 10.1016/S0022-3697(97)00218-7 10.1080/00150199108209422 10.1149/1.1883874 10.1039/B604311A 10.1088/0953-8984/21/32/325401 10.1016/j.jpcs.2010.08.004 10.1002/pssb.2220490248 10.1063/1.478371 10.1016/j.apenergy.2016.04.111 10.1021/cm020138b 10.1007/s10973-016-5474-y 10.1143/JPSJ.39.843 10.1016/0022-3697(95)00233-2 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2016 Copyright Springer Science & Business Media 2017 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2016 – notice: Copyright Springer Science & Business Media 2017 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11581-016-1932-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1862-0760 |
EndPage | 1195 |
ExternalDocumentID | 10_1007_s11581_016_1932_6 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 2.D 203 29J 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z85 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c316t-5f44481849c8092e4a27d04d925d46720ff5b0281ea50e7d1f994c92ace84c433 |
IEDL.DBID | U2A |
ISSN | 0947-7047 |
IngestDate | Fri Jul 25 11:10:27 EDT 2025 Tue Jul 01 00:58:42 EDT 2025 Thu Apr 24 23:00:04 EDT 2025 Fri Feb 21 02:32:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | KDP-type crystals Diffusion in solids Superprotonic phase transition Thermal surface decomposition KH PO High-temperature phase transition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-5f44481849c8092e4a27d04d925d46720ff5b0281ea50e7d1f994c92ace84c433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1890602548 |
PQPubID | 2043901 |
PageCount | 9 |
ParticipantIDs | proquest_journals_1890602548 crossref_citationtrail_10_1007_s11581_016_1932_6 crossref_primary_10_1007_s11581_016_1932_6 springer_journals_10_1007_s11581_016_1932_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-01 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | International Journal of Ionics The Science and Technology of Ionic Motion |
PublicationTitle | Ionics |
PublicationTitleAbbrev | Ionics |
PublicationYear | 2017 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | OrtizEVargasRAMellanderBEOn the reported high-temperature phase transition in KH2PO4—strong evidence of partial polymerization instead of a structural phase transitionJ Phys Chem Solids19985933053101:CAS:528:DyaK1cXks1GktA%3D%3D10.1016/S0022-3697(97)00218-7 BaranovAIKhiznichenkoVPShuvalovLAHigh temperature phase transitions and proton conductivity in some KDP-family crystalsFerroelectrics19891001351411:CAS:528:DyaK3cXitVyktLw%3D10.1080/00150198908007907 PaceyRClarkJDifferential scanning calorimetry of univalent dihydrogen phosphates and arsenatesThermochim Acta1979301151261:CAS:528:DyaE1MXhvFegtrs%3D10.1016/0040-6031(79)85047-9 BoysenDASossinaHMLiuHSeccoRAHigh-temperature behavior of CsH2PO4 under both ambient and high pressure conditionsChem Mater20031537277361:CAS:528:DC%2BD3sXjvFemuw%3D%3D10.1021/cm020138b OrtizEVargasRACuervoGMellanderBEGustafsonJOn the high-temperature phase transition of RbH2PO4—a polymorphic transition?J Phys Chem Solids199859111111171:CAS:528:DyaK1cXkvFakt78%3D10.1016/S0022-3697(97)00237-0 Goñi-UrtiagaAPresvytesDScottKSolid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis: reviewInt J Hydrog Energy2012373358337210.1016/j.ijhydene.2011.09.152 ParkJHLeeKSKimJNThe possible origin of high-temperature phenomena in KH2PO4. JKorean Phys Soc199832S11S51 OrtizEVargasRAMellanderBEOn the high-temperature phase transition of some KDP-family compounds: a structural phase transition? A transition to a bulk-high proton conducting phase?Solid State Ionics19991251771851:CAS:528:DyaK1MXntlOgsb0%3D10.1016/S0167-2738(99)00173-3 LundénABaranowskiBFrieselMInfluence of water vapour pressure and mechanical treatments on phase stability in MHXO4 and MH2PO4 salts (M = K, Rb, Cs, NH4; X = S, Se)Ferroelectrics199112410310710.1080/00150199108209422 SubramoniJALovellSKahrBPolymorphism of potassium dihydrogen phosphateChem Mater19981082053205710.1021/cm980293j ItohKMatubayashiTNakamuraEMotegiHX-ray study of high-temperature phase transitions in KH2PO4J Phys Soc Jpn19753938431:CAS:528:DyaE2MXmtVSntrs%3D10.1143/JPSJ.39.843 BronowskaWComment on “does the structural superionic phase transition at 231 °C in CsH2PO4 really not exist?”J Chem Phys200111416116121:CAS:528:DC%2BD3MXmslY%3D10.1063/1.1328043 BotezCCarbajalDAdirajuVTackettRChianelliRIntermediate-temperature polymorphic phase transition in KH2PO4: a synchrotron X-ray diffraction studyJ Phys Chem Solids201071157615801:CAS:528:DC%2BC3cXht1Sltb7L10.1016/j.jpcs.2010.08.004 GrünbergJLevinSPelahIGerlichDHigh temperature phase transitions and metastability in KDP type crystalsPhys Stat Sol (b)19724985786910.1002/pssb.2220490248 OrtizEPiñeresILeónCOn the low- to high proton-conducting transformation of a CsHSO4–CsH2PO4 solid solution and its parents physical or chemical nature?J Therm Anal Calorim201612624074191:CAS:528:DC%2BC28Xhslylt7nO10.1007/s10973-016-5474-y Ferroelectrics. 1987;71 and 1987;72 (special issue on KH2PO4-type ferro- and antiferroelectrics) HaileSMChisholmCRISasakiKBoysenDAUdaTSolid acid proton conductors: from laboratory curiosities to fuel cell electrolytesFaraday Discuss200713417391:CAS:528:DC%2BD28Xht12mt7bP10.1039/B604311A Díaz-GuillénMRMorenoKJDíaz-GuillénJAFuentesAFNgaiKLGarcia-BarriocanalJSantamaríaJLeónCCation size effects in oxygen ion dynamics of highly disordered pyrochlore-type ionic conductorsPhys Rev B2008781010430410.1103/PhysRevB.78.104304 ChandraSSuperionic solids: principles and applications1981AmsterdamNorth-Holland Publishing Company BaranovAIKhiznichenkoVPSandlerVAShuvalovLAFrequency dielectric dispersion in the ferroelectric and superionic phases of CsH2PO4Ferroelectrics19888118318610.1080/00150198808008840 ParkJHPossible origin of the proton conduction mechanism of CsH2PO4 crystals at high temperaturesPhys Rev B200469505410410.1103/PhysRevB.69.054104 EttoumiHMhiriTKinetic process of dehydration at fusion temperature and the high-temperature phase transition in KH2PO4J Mol Struct201310341121181:CAS:528:DC%2BC3sXhslWqtro%3D10.1016/j.molstruc.2012.09.002 ParkJHLeeKSKimJBKimJNSurface instability and possible polymerization in RbH2PO4 at high temperaturesJ Phys Condens Matter1996854911:CAS:528:DyaK28Xks1ekt70%3D10.1088/0953-8984/8/29/022 ParkJHLeeKSChoiBCHigh-temperature transformation in KH2PO4 and RbH2PO4 crystalsJ Phys Condens Matter200113941194191:CAS:528:DC%2BD3MXotVGqu7s%3D10.1088/0953-8984/13/42/302 NikiforovAVBergRWPetrushinaIMBjerrumNJSpecific electrical conductivity in molten potassium dihydrogen phosphate KH2PO4—an electrolyte for water electrolysis at ∼300 °CAppl Energy20161755455501:CAS:528:DC%2BC28XnsVens7k%3D10.1016/j.apenergy.2016.04.111 BotezCEMartinezHTackettRJChianelliRRZhangJZhaoYHigh-temperature crystal structures and chemical modifications in RbH2PO4J Phys-Condens Matter20092132540110.1088/0953-8984/21/32/325401 LeeKSHidden nature of the high-temperature phase transitions in crystals of KH2PO4-type: is it a physical change?J Phys Chem Solids1996573333421:CAS:528:DyaK28Xhs1Gmsrg%3D10.1016/0022-3697(95)00233-2 ReadingMLugetAWilsonRModulated differential scanning calorimetryThermochim Acta19942382953071:CAS:528:DyaK2cXls1Gjt7k%3D10.1016/S0040-6031(94)85215-4 MohammadNMohamadABKadhumHAALohKSA review on synthesis and characterization of solid acid materials for fuel cell applicationsJ Power Sources201632277921:CAS:528:DC%2BC28XnvVarur0%3D10.1016/j.jpowsour.2016.05.021 León C, Lucía ML, Santamaría J, Sánchez-Quesada F (1988) Universal scaling of the conductivity relaxation in crystalline ionic conductors. Phys Rev B:41–44 VladimirIGTijianaITComplex nonlinearity2008BerlinSpringer OrtizEVargasRAMellanderBEOn the high-temperature phase transitions of CsH2PO4: a polymorphic transition? A transition to a superprotonic conducting phase?J Chem Phys1999110484748531:CAS:528:DyaK1MXhtlekurc%3D10.1063/1.478371 UdaTHaileSMThin-membrane solid-acid fuel cellElectrochem Solid-State Lett20058A245A2461:CAS:528:DC%2BD2MXksFamtL0%3D10.1149/1.1883874 PaschosOKunzeJStimmingUMagliaFJA review on phosphate based, solid state, protonic conductors for intermediate temperature fuel cellsPhys-Condens Matter2011232341101:STN:280:DC%2BC3MrltFGlsg%3D%3D10.1088/0953-8984/23/23/234110 E Ortiz (1932_CR18) 1999; 110 W Bronowska (1932_CR8) 2001; 114 C Botez (1932_CR11) 2010; 71 AV Nikiforov (1932_CR26) 2016; 175 IG Vladimir (1932_CR34) 2008 T Uda (1932_CR9) 2005; 8 R Pacey (1932_CR29) 1979; 30 AI Baranov (1932_CR6) 1989; 100 K Itoh (1932_CR13) 1975; 39 J Grünberg (1932_CR16) 1972; 49 E Ortiz (1932_CR20) 1998; 59 JH Park (1932_CR22) 2004; 69 JH Park (1932_CR23) 1996; 8 JH Park (1932_CR24) 2001; 13 N Mohammad (1932_CR3) 2016; 322 O Paschos (1932_CR4) 2011; 23 E Ortiz (1932_CR25) 2016; 126 A Goñi-Urtiaga (1932_CR2) 2012; 37 E Ortiz (1932_CR19) 1998; 59 CE Botez (1932_CR10) 2009; 21 S Chandra (1932_CR31) 1981 1932_CR27 E Ortiz (1932_CR21) 1999; 125 JH Park (1932_CR14) 1998; 32 H Ettoumi (1932_CR30) 2013; 1034 SM Haile (1932_CR5) 2007; 134 A Lundén (1932_CR17) 1991; 124 DA Boysen (1932_CR32) 2003; 15 1932_CR1 JA Subramoni (1932_CR12) 1998; 10 M Reading (1932_CR33) 1994; 238 AI Baranov (1932_CR7) 1988; 81 KS Lee (1932_CR15) 1996; 57 MR Díaz-Guillén (1932_CR28) 2008; 78 |
References_xml | – reference: VladimirIGTijianaITComplex nonlinearity2008BerlinSpringer – reference: MohammadNMohamadABKadhumHAALohKSA review on synthesis and characterization of solid acid materials for fuel cell applicationsJ Power Sources201632277921:CAS:528:DC%2BC28XnvVarur0%3D10.1016/j.jpowsour.2016.05.021 – reference: BotezCCarbajalDAdirajuVTackettRChianelliRIntermediate-temperature polymorphic phase transition in KH2PO4: a synchrotron X-ray diffraction studyJ Phys Chem Solids201071157615801:CAS:528:DC%2BC3cXht1Sltb7L10.1016/j.jpcs.2010.08.004 – reference: UdaTHaileSMThin-membrane solid-acid fuel cellElectrochem Solid-State Lett20058A245A2461:CAS:528:DC%2BD2MXksFamtL0%3D10.1149/1.1883874 – reference: OrtizEVargasRAMellanderBEOn the high-temperature phase transitions of CsH2PO4: a polymorphic transition? A transition to a superprotonic conducting phase?J Chem Phys1999110484748531:CAS:528:DyaK1MXhtlekurc%3D10.1063/1.478371 – reference: OrtizEVargasRACuervoGMellanderBEGustafsonJOn the high-temperature phase transition of RbH2PO4—a polymorphic transition?J Phys Chem Solids199859111111171:CAS:528:DyaK1cXkvFakt78%3D10.1016/S0022-3697(97)00237-0 – reference: LundénABaranowskiBFrieselMInfluence of water vapour pressure and mechanical treatments on phase stability in MHXO4 and MH2PO4 salts (M = K, Rb, Cs, NH4; X = S, Se)Ferroelectrics199112410310710.1080/00150199108209422 – reference: Díaz-GuillénMRMorenoKJDíaz-GuillénJAFuentesAFNgaiKLGarcia-BarriocanalJSantamaríaJLeónCCation size effects in oxygen ion dynamics of highly disordered pyrochlore-type ionic conductorsPhys Rev B2008781010430410.1103/PhysRevB.78.104304 – reference: SubramoniJALovellSKahrBPolymorphism of potassium dihydrogen phosphateChem Mater19981082053205710.1021/cm980293j – reference: ParkJHPossible origin of the proton conduction mechanism of CsH2PO4 crystals at high temperaturesPhys Rev B200469505410410.1103/PhysRevB.69.054104 – reference: OrtizEPiñeresILeónCOn the low- to high proton-conducting transformation of a CsHSO4–CsH2PO4 solid solution and its parents physical or chemical nature?J Therm Anal Calorim201612624074191:CAS:528:DC%2BC28Xhslylt7nO10.1007/s10973-016-5474-y – reference: LeeKSHidden nature of the high-temperature phase transitions in crystals of KH2PO4-type: is it a physical change?J Phys Chem Solids1996573333421:CAS:528:DyaK28Xhs1Gmsrg%3D10.1016/0022-3697(95)00233-2 – reference: BotezCEMartinezHTackettRJChianelliRRZhangJZhaoYHigh-temperature crystal structures and chemical modifications in RbH2PO4J Phys-Condens Matter20092132540110.1088/0953-8984/21/32/325401 – reference: Ferroelectrics. 1987;71 and 1987;72 (special issue on KH2PO4-type ferro- and antiferroelectrics) – reference: ItohKMatubayashiTNakamuraEMotegiHX-ray study of high-temperature phase transitions in KH2PO4J Phys Soc Jpn19753938431:CAS:528:DyaE2MXmtVSntrs%3D10.1143/JPSJ.39.843 – reference: HaileSMChisholmCRISasakiKBoysenDAUdaTSolid acid proton conductors: from laboratory curiosities to fuel cell electrolytesFaraday Discuss200713417391:CAS:528:DC%2BD28Xht12mt7bP10.1039/B604311A – reference: BronowskaWComment on “does the structural superionic phase transition at 231 °C in CsH2PO4 really not exist?”J Chem Phys200111416116121:CAS:528:DC%2BD3MXmslY%3D10.1063/1.1328043 – reference: PaschosOKunzeJStimmingUMagliaFJA review on phosphate based, solid state, protonic conductors for intermediate temperature fuel cellsPhys-Condens Matter2011232341101:STN:280:DC%2BC3MrltFGlsg%3D%3D10.1088/0953-8984/23/23/234110 – reference: ParkJHLeeKSKimJBKimJNSurface instability and possible polymerization in RbH2PO4 at high temperaturesJ Phys Condens Matter1996854911:CAS:528:DyaK28Xks1ekt70%3D10.1088/0953-8984/8/29/022 – reference: BoysenDASossinaHMLiuHSeccoRAHigh-temperature behavior of CsH2PO4 under both ambient and high pressure conditionsChem Mater20031537277361:CAS:528:DC%2BD3sXjvFemuw%3D%3D10.1021/cm020138b – reference: OrtizEVargasRAMellanderBEOn the high-temperature phase transition of some KDP-family compounds: a structural phase transition? A transition to a bulk-high proton conducting phase?Solid State Ionics19991251771851:CAS:528:DyaK1MXntlOgsb0%3D10.1016/S0167-2738(99)00173-3 – reference: EttoumiHMhiriTKinetic process of dehydration at fusion temperature and the high-temperature phase transition in KH2PO4J Mol Struct201310341121181:CAS:528:DC%2BC3sXhslWqtro%3D10.1016/j.molstruc.2012.09.002 – reference: ChandraSSuperionic solids: principles and applications1981AmsterdamNorth-Holland Publishing Company – reference: Goñi-UrtiagaAPresvytesDScottKSolid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis: reviewInt J Hydrog Energy2012373358337210.1016/j.ijhydene.2011.09.152 – reference: PaceyRClarkJDifferential scanning calorimetry of univalent dihydrogen phosphates and arsenatesThermochim Acta1979301151261:CAS:528:DyaE1MXhvFegtrs%3D10.1016/0040-6031(79)85047-9 – reference: ParkJHLeeKSKimJNThe possible origin of high-temperature phenomena in KH2PO4. JKorean Phys Soc199832S11S51 – reference: OrtizEVargasRAMellanderBEOn the reported high-temperature phase transition in KH2PO4—strong evidence of partial polymerization instead of a structural phase transitionJ Phys Chem Solids19985933053101:CAS:528:DyaK1cXks1GktA%3D%3D10.1016/S0022-3697(97)00218-7 – reference: NikiforovAVBergRWPetrushinaIMBjerrumNJSpecific electrical conductivity in molten potassium dihydrogen phosphate KH2PO4—an electrolyte for water electrolysis at ∼300 °CAppl Energy20161755455501:CAS:528:DC%2BC28XnsVens7k%3D10.1016/j.apenergy.2016.04.111 – reference: BaranovAIKhiznichenkoVPSandlerVAShuvalovLAFrequency dielectric dispersion in the ferroelectric and superionic phases of CsH2PO4Ferroelectrics19888118318610.1080/00150198808008840 – reference: GrünbergJLevinSPelahIGerlichDHigh temperature phase transitions and metastability in KDP type crystalsPhys Stat Sol (b)19724985786910.1002/pssb.2220490248 – reference: BaranovAIKhiznichenkoVPShuvalovLAHigh temperature phase transitions and proton conductivity in some KDP-family crystalsFerroelectrics19891001351411:CAS:528:DyaK3cXitVyktLw%3D10.1080/00150198908007907 – reference: ParkJHLeeKSChoiBCHigh-temperature transformation in KH2PO4 and RbH2PO4 crystalsJ Phys Condens Matter200113941194191:CAS:528:DC%2BD3MXotVGqu7s%3D10.1088/0953-8984/13/42/302 – reference: León C, Lucía ML, Santamaría J, Sánchez-Quesada F (1988) Universal scaling of the conductivity relaxation in crystalline ionic conductors. Phys Rev B:41–44 – reference: ReadingMLugetAWilsonRModulated differential scanning calorimetryThermochim Acta19942382953071:CAS:528:DyaK2cXls1Gjt7k%3D10.1016/S0040-6031(94)85215-4 – ident: 1932_CR27 – volume: 100 start-page: 135 year: 1989 ident: 1932_CR6 publication-title: Ferroelectrics doi: 10.1080/00150198908007907 – volume: 13 start-page: 9411 year: 2001 ident: 1932_CR24 publication-title: J Phys Condens Matter doi: 10.1088/0953-8984/13/42/302 – volume: 69 start-page: 054104 issue: 5 year: 2004 ident: 1932_CR22 publication-title: Phys Rev B doi: 10.1103/PhysRevB.69.054104 – volume: 114 start-page: 611 issue: 1 year: 2001 ident: 1932_CR8 publication-title: J Chem Phys doi: 10.1063/1.1328043 – volume: 59 start-page: 1111 year: 1998 ident: 1932_CR19 publication-title: J Phys Chem Solids doi: 10.1016/S0022-3697(97)00237-0 – volume: 8 start-page: 5491 year: 1996 ident: 1932_CR23 publication-title: J Phys Condens Matter doi: 10.1088/0953-8984/8/29/022 – volume: 1034 start-page: 112 year: 2013 ident: 1932_CR30 publication-title: J Mol Struct doi: 10.1016/j.molstruc.2012.09.002 – volume: 81 start-page: 183 year: 1988 ident: 1932_CR7 publication-title: Ferroelectrics doi: 10.1080/00150198808008840 – volume-title: Complex nonlinearity year: 2008 ident: 1932_CR34 – volume: 37 start-page: 3358 year: 2012 ident: 1932_CR2 publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2011.09.152 – volume: 78 start-page: 104304 issue: 10 year: 2008 ident: 1932_CR28 publication-title: Phys Rev B doi: 10.1103/PhysRevB.78.104304 – volume: 32 start-page: S11 year: 1998 ident: 1932_CR14 publication-title: Korean Phys Soc – volume: 10 start-page: 2053 issue: 8 year: 1998 ident: 1932_CR12 publication-title: Chem Mater doi: 10.1021/cm980293j – volume: 125 start-page: 177 year: 1999 ident: 1932_CR21 publication-title: Solid State Ionics doi: 10.1016/S0167-2738(99)00173-3 – volume: 30 start-page: 115 year: 1979 ident: 1932_CR29 publication-title: Thermochim Acta doi: 10.1016/0040-6031(79)85047-9 – volume: 322 start-page: 77 year: 2016 ident: 1932_CR3 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.05.021 – volume: 23 start-page: 234110 year: 2011 ident: 1932_CR4 publication-title: Phys-Condens Matter doi: 10.1088/0953-8984/23/23/234110 – ident: 1932_CR1 – volume: 238 start-page: 295 year: 1994 ident: 1932_CR33 publication-title: Thermochim Acta doi: 10.1016/S0040-6031(94)85215-4 – volume-title: Superionic solids: principles and applications year: 1981 ident: 1932_CR31 – volume: 59 start-page: 305 issue: 3 year: 1998 ident: 1932_CR20 publication-title: J Phys Chem Solids doi: 10.1016/S0022-3697(97)00218-7 – volume: 124 start-page: 103 year: 1991 ident: 1932_CR17 publication-title: Ferroelectrics doi: 10.1080/00150199108209422 – volume: 8 start-page: A245 year: 2005 ident: 1932_CR9 publication-title: Electrochem Solid-State Lett doi: 10.1149/1.1883874 – volume: 134 start-page: 17 year: 2007 ident: 1932_CR5 publication-title: Faraday Discuss doi: 10.1039/B604311A – volume: 21 start-page: 325401 year: 2009 ident: 1932_CR10 publication-title: J Phys-Condens Matter doi: 10.1088/0953-8984/21/32/325401 – volume: 71 start-page: 1576 year: 2010 ident: 1932_CR11 publication-title: J Phys Chem Solids doi: 10.1016/j.jpcs.2010.08.004 – volume: 49 start-page: 857 year: 1972 ident: 1932_CR16 publication-title: Phys Stat Sol (b) doi: 10.1002/pssb.2220490248 – volume: 110 start-page: 4847 year: 1999 ident: 1932_CR18 publication-title: J Chem Phys doi: 10.1063/1.478371 – volume: 175 start-page: 545 year: 2016 ident: 1932_CR26 publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.04.111 – volume: 15 start-page: 727 issue: 3 year: 2003 ident: 1932_CR32 publication-title: Chem Mater doi: 10.1021/cm020138b – volume: 126 start-page: 407 issue: 2 year: 2016 ident: 1932_CR25 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-016-5474-y – volume: 39 start-page: 843 issue: 3 year: 1975 ident: 1932_CR13 publication-title: J Phys Soc Jpn doi: 10.1143/JPSJ.39.843 – volume: 57 start-page: 333 year: 1996 ident: 1932_CR15 publication-title: J Phys Chem Solids doi: 10.1016/0022-3697(95)00233-2 |
SSID | ssj0066127 |
Score | 2.1907983 |
Snippet | For over two decades, the high-temperature phase transition (HTPT) at around
T
p
= 180 °C on KH
2
PO
4
(KDP), which involves an ionic conductivity increase,... For over two decades, the high-temperature phase transition (HTPT) at around Tp = 180 °C on KH2PO4 (KDP), which involves an ionic conductivity increase,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1187 |
SubjectTerms | Bulk sampling Chemistry Chemistry and Materials Science Condensed Matter Physics Current carriers Differential scanning calorimetry Electrochemistry Energy Storage High temperature Ion currents Optical and Electronic Materials Original Paper Phase transitions Potassium phosphates Protons Renewable and Green Energy Solid phases Thermogravimetric analysis Water |
Title | On the nature of the KH2PO4 high-temperature transformation |
URI | https://link.springer.com/article/10.1007/s11581-016-1932-6 https://www.proquest.com/docview/1890602548 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7odtCL-BOnc_TgSQkkadImeNqGczjcPDiYp9I2yUk6cfX_N2kbN0UFT6U0TeElzfs-3nvfA7gkqQotMM5QmnKNGBERElQJxNNQYZNZQFsRxYdpNJ6z-wVfNHXcK5_t7kOS1Um9LnYjXDjqGyEHOlC0DW1uqbvb1nPa98ev9Td1n1bJYhRjFvtQ5k9TfHVGa4T5LSha-ZrRPuw1IDHo16t6AFu6OISdoe_NdgQ3syKwyC2oZTmDpanuJmP6OGOBUyBGTnKq0UsOyg1wuiyOYT66fRqOUdMGAeUhiUrEDbMcyjIxmQssqWYpjRVmSlKu7DFHsTE8szCB6JRjHStipGS5pGmuBctZGJ5Aq1gW-hQCbt2xEUrrjIVMZUrGhNglsZTCMJrHogPY2yPJG41w16riJVmrGzsTJi4vzJkwiTpw9fnKay2Q8dfgrjdy0vwrq4QIiSNXlG8_f-0Nv_H4t8nO_jX6HHap88hVrmIXWuXbu76weKLMetDujwaDqbvePU9ue9V--gD0wcEB |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGWDhG1EokIEJ5Cp27MQWE6oKhULL0EplipLYXkApgrDw67GTmEIFSB2jOE585_je6e7eAZziRAYGGKcoSZhCFPMQcSI5YkkgfZ0aQFs6iveDsDemtxM2qeu431y2uwtJlif1rNgNM25d3xBZ0IHCZVihxgVnDVi5vH7sd90BbCxO1alV0AhFPo1cMPO3SX6aoxnGnAuLltbmagNG7jurJJOn9nuRtrOPOQrHBReyCes1-vQuq-2yBUsq34bVjmv6tgMXw9wzkNCr-D69qS6v-j3yMKSepTZGlsuqJmL2im-od5rvwviqO-r0UN1fAWUBDgvENDXOmXHxRMZ9QRRNSCR9KgVh0pyfxNeapQZ_YJUwX0USayFoJkiSKU4zGgR70MinudoHjxk7r7lUKqUBlakUEcZG18ZX0ZRkEW-C78QcZzX5uO2B8RzPaJOtVGKbcGalEodNOPt65KVi3vhvcMvpLq5_wrcYc-GHttrfvP7cqeLb7b8mO1ho9Ams9kb3d_HdzaB_CGvEmv0yIbIFjeL1XR0Z0FKkx_Um_QSPu92n |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oBPUi_sTp1B48KcEkTdoET0Md0-m2gwNvpW2Sk3TD1f_fpG3cFBU8lqYpvLTvfR_vve8BnJNUhRYYZyhNuUaMiAgJqgTiaaiwySygrYji0zDqT9jDC39p5pzOfbW7T0nWPQ1Opakor2bKXC0a3wgXjgZHyAEQFK3CmvXGxNV0TWjXu2Ibe-qZrZLFKMYs9mnNn7b4GpgWaPNbgrSKO71t2GoAY9CtT3gHVnSxCxs3fk7bHlyPisCiuKCW6Aymproa9Ol4xAKnRoyc_FSjnRyUS0B1WuzDpHf3fNNHzUgElIckKhE3zPIpy8pkLrCkmqU0VpgpSbmyLo9iY3hmIQPRKcc6VsRIyXJJ01wLlrMwPIBWMS30IQTchmYjlNYZC5nKlIwJscdj6YVhNI9FG7C3R5I3euFubMVrslA6diZMXI2YM2ESteHi85FZLZbx1-KON3LS_DfzhAiJI9egb19_6Q2_dPu3zY7-tfoM1se3veTxfjg4hk3qAnVVwtiBVvn2rk8szCiz0-pT-gC7CcUg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+nature+of+the+KH2PO4+high-temperature+transformation&rft.jtitle=Ionics&rft.au=Pi%C3%B1eres%2C+I&rft.au=Ortiz%2C+E&rft.au=De+la+Hoz%2C+C&rft.au=Tr%C3%B3chez%2C+J+C&rft.date=2017-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0947-7047&rft.eissn=1862-0760&rft.volume=23&rft.issue=5&rft.spage=1187&rft.epage=1195&rft_id=info:doi/10.1007%2Fs11581-016-1932-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-7047&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-7047&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-7047&client=summon |