On the nature of the KH2PO4 high-temperature transformation

For over two decades, the high-temperature phase transition (HTPT) at around T p  = 180 °C on KH 2 PO 4 (KDP), which involves an ionic conductivity increase, constitutes a controversial subject; while most authors ratify a physical transformation (tetragonal → monoclinic phase transition), others de...

Full description

Saved in:
Bibliographic Details
Published inIonics Vol. 23; no. 5; pp. 1187 - 1195
Main Authors Piñeres, I, Ortiz, E, De la Hoz, C, Tróchez, J C, León, C
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0947-7047
1862-0760
DOI10.1007/s11581-016-1932-6

Cover

Loading…
Abstract For over two decades, the high-temperature phase transition (HTPT) at around T p  = 180 °C on KH 2 PO 4 (KDP), which involves an ionic conductivity increase, constitutes a controversial subject; while most authors ratify a physical transformation (tetragonal → monoclinic phase transition), others defend the chemical transformation. A careful high-temperature phase behavior examination of this acid salt by means of modulated and conventional differential scanning calorimetry, thermogravimetric analysis, simultaneous thermogravimetric and differential scanning calorimetry, impedance spectroscopy, and temperature evolution of X-ray diffraction was performed to provide a possible solution to this long-standing issue. We found that the structural phase transition does not take place. Instead, a chemical transformation occurs at T p . When KDP is heated through this temperature, the sample initially corresponding to a single phase (tetragonal) transforms to a sample composed of two solid phases: tetragonal KDP, located at its bulk, and monoclinic potassium metaphosphate (KPO 3 ), located at its surface. Most of the water produced evaporates, but a small portion of liquid water bonds to KPO 3 . Because this is of polymeric nature, it takes the role of a host matrix that contains liquid water regions. Consequently, given that part of the water dissolves a portion of surface salt (providing protons), the surface sample system behaves in a similar manner to a polymer electrolyte membrane where the proton transport mechanism includes the vehicle type, using hydronium (H 3 O + ) as a charge carrier. On further heating, the bulk tetragonal KDP phase reduced to its total decomposition. The metastability of the high-temperature phase below T p is also explained.
AbstractList For over two decades, the high-temperature phase transition (HTPT) at around T p  = 180 °C on KH 2 PO 4 (KDP), which involves an ionic conductivity increase, constitutes a controversial subject; while most authors ratify a physical transformation (tetragonal → monoclinic phase transition), others defend the chemical transformation. A careful high-temperature phase behavior examination of this acid salt by means of modulated and conventional differential scanning calorimetry, thermogravimetric analysis, simultaneous thermogravimetric and differential scanning calorimetry, impedance spectroscopy, and temperature evolution of X-ray diffraction was performed to provide a possible solution to this long-standing issue. We found that the structural phase transition does not take place. Instead, a chemical transformation occurs at T p . When KDP is heated through this temperature, the sample initially corresponding to a single phase (tetragonal) transforms to a sample composed of two solid phases: tetragonal KDP, located at its bulk, and monoclinic potassium metaphosphate (KPO 3 ), located at its surface. Most of the water produced evaporates, but a small portion of liquid water bonds to KPO 3 . Because this is of polymeric nature, it takes the role of a host matrix that contains liquid water regions. Consequently, given that part of the water dissolves a portion of surface salt (providing protons), the surface sample system behaves in a similar manner to a polymer electrolyte membrane where the proton transport mechanism includes the vehicle type, using hydronium (H 3 O + ) as a charge carrier. On further heating, the bulk tetragonal KDP phase reduced to its total decomposition. The metastability of the high-temperature phase below T p is also explained.
For over two decades, the high-temperature phase transition (HTPT) at around Tp = 180 °C on KH2PO4 (KDP), which involves an ionic conductivity increase, constitutes a controversial subject; while most authors ratify a physical transformation (tetragonal → monoclinic phase transition), others defend the chemical transformation. A careful high-temperature phase behavior examination of this acid salt by means of modulated and conventional differential scanning calorimetry, thermogravimetric analysis, simultaneous thermogravimetric and differential scanning calorimetry, impedance spectroscopy, and temperature evolution of X-ray diffraction was performed to provide a possible solution to this long-standing issue. We found that the structural phase transition does not take place. Instead, a chemical transformation occurs at Tp. When KDP is heated through this temperature, the sample initially corresponding to a single phase (tetragonal) transforms to a sample composed of two solid phases: tetragonal KDP, located at its bulk, and monoclinic potassium metaphosphate (KPO3), located at its surface. Most of the water produced evaporates, but a small portion of liquid water bonds to KPO3. Because this is of polymeric nature, it takes the role of a host matrix that contains liquid water regions. Consequently, given that part of the water dissolves a portion of surface salt (providing protons), the surface sample system behaves in a similar manner to a polymer electrolyte membrane where the proton transport mechanism includes the vehicle type, using hydronium (H3O+) as a charge carrier. On further heating, the bulk tetragonal KDP phase reduced to its total decomposition. The metastability of the high-temperature phase below Tp is also explained.
Author Piñeres, I
Ortiz, E
De la Hoz, C
Tróchez, J C
León, C
Author_xml – sequence: 1
  givenname: I
  surname: Piñeres
  fullname: Piñeres, I
  organization: GFM, Department of Physics, Faculty of Basic Sciences, Universidad del Atlántico
– sequence: 2
  givenname: E
  surname: Ortiz
  fullname: Ortiz, E
  email: everortiz@mail.uniatlantico.edu.co
  organization: GFM, Department of Physics, Faculty of Basic Sciences, Universidad del Atlántico
– sequence: 3
  givenname: C
  surname: De la Hoz
  fullname: De la Hoz, C
  organization: GFM, Department of Physics, Faculty of Basic Sciences, Universidad del Atlántico
– sequence: 4
  givenname: J C
  surname: Tróchez
  fullname: Tróchez, J C
  organization: GFM, Department of Physics, Faculty of Basic Sciences, Universidad del Atlántico
– sequence: 5
  givenname: C
  surname: León
  fullname: León, C
  organization: GFMC, Department of Applied Physics III, Faculty of Physics, Universidad Complutense de Madrid
BookMark eNp9kE1LAzEQhoNUsK3-AG8Fz9GZbDYfeJKiVizUg55D3E3aLW22JunBf--260EEPYUh7zPz8ozIILTBEXKJcI0A8iYhlgopoKCoC0bFCRmiEoyCFDAgQ9BcUglcnpFRSmsAIZDJIbldhEleuUmweR_dpPXH6XnGXhZ8smqWK5rddudi_52jDcm3cWtz04ZzcurtJrmL73dM3h7uX6czOl88Pk3v5rQqUGRaes65QsV1pUAzxy2TNfBas7LmQjLwvnwHptDZEpys0WvNK81s5RSveFGMyVW_dxfbj71L2azbfQzdSYNKgwBWctWlZJ-qYptSdN5UTT727Fo3G4NgDqZMb8p0pszBlBEdib_IXWy2Nn7-y7CeSV02LF380elP6AuRVXqf
CitedBy_id crossref_primary_10_1007_s11581_017_2408_z
crossref_primary_10_1039_D4QM01036A
crossref_primary_10_1134_S1063774523600527
crossref_primary_10_1007_s10973_021_10821_3
crossref_primary_10_1039_D4TC02947J
crossref_primary_10_1016_j_commatsci_2023_112666
crossref_primary_10_1039_D1TC04846E
crossref_primary_10_1007_s11581_017_2420_3
crossref_primary_10_1016_j_ijleo_2020_165645
crossref_primary_10_1039_D2QI00171C
crossref_primary_10_1039_D5QM00062A
crossref_primary_10_31857_S0023476123600520
crossref_primary_10_1002_adom_202400194
crossref_primary_10_1002_adom_202401332
crossref_primary_10_1021_acsagscitech_2c00153
crossref_primary_10_1103_PhysRevMaterials_5_103401
crossref_primary_10_1088_1742_6596_935_1_012050
Cites_doi 10.1080/00150198908007907
10.1088/0953-8984/13/42/302
10.1103/PhysRevB.69.054104
10.1063/1.1328043
10.1016/S0022-3697(97)00237-0
10.1088/0953-8984/8/29/022
10.1016/j.molstruc.2012.09.002
10.1080/00150198808008840
10.1016/j.ijhydene.2011.09.152
10.1103/PhysRevB.78.104304
10.1021/cm980293j
10.1016/S0167-2738(99)00173-3
10.1016/0040-6031(79)85047-9
10.1016/j.jpowsour.2016.05.021
10.1088/0953-8984/23/23/234110
10.1016/S0040-6031(94)85215-4
10.1016/S0022-3697(97)00218-7
10.1080/00150199108209422
10.1149/1.1883874
10.1039/B604311A
10.1088/0953-8984/21/32/325401
10.1016/j.jpcs.2010.08.004
10.1002/pssb.2220490248
10.1063/1.478371
10.1016/j.apenergy.2016.04.111
10.1021/cm020138b
10.1007/s10973-016-5474-y
10.1143/JPSJ.39.843
10.1016/0022-3697(95)00233-2
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2016
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2016
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
DOI 10.1007/s11581-016-1932-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1862-0760
EndPage 1195
ExternalDocumentID 10_1007_s11581_016_1932_6
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
2.D
203
29J
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c316t-5f44481849c8092e4a27d04d925d46720ff5b0281ea50e7d1f994c92ace84c433
IEDL.DBID U2A
ISSN 0947-7047
IngestDate Fri Jul 25 11:10:27 EDT 2025
Tue Jul 01 00:58:42 EDT 2025
Thu Apr 24 23:00:04 EDT 2025
Fri Feb 21 02:32:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords KDP-type crystals
Diffusion in solids
Superprotonic phase transition
Thermal surface decomposition
KH
PO
High-temperature phase transition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-5f44481849c8092e4a27d04d925d46720ff5b0281ea50e7d1f994c92ace84c433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1890602548
PQPubID 2043901
PageCount 9
ParticipantIDs proquest_journals_1890602548
crossref_citationtrail_10_1007_s11581_016_1932_6
crossref_primary_10_1007_s11581_016_1932_6
springer_journals_10_1007_s11581_016_1932_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Ionics The Science and Technology of Ionic Motion
PublicationTitle Ionics
PublicationTitleAbbrev Ionics
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References OrtizEVargasRAMellanderBEOn the reported high-temperature phase transition in KH2PO4—strong evidence of partial polymerization instead of a structural phase transitionJ Phys Chem Solids19985933053101:CAS:528:DyaK1cXks1GktA%3D%3D10.1016/S0022-3697(97)00218-7
BaranovAIKhiznichenkoVPShuvalovLAHigh temperature phase transitions and proton conductivity in some KDP-family crystalsFerroelectrics19891001351411:CAS:528:DyaK3cXitVyktLw%3D10.1080/00150198908007907
PaceyRClarkJDifferential scanning calorimetry of univalent dihydrogen phosphates and arsenatesThermochim Acta1979301151261:CAS:528:DyaE1MXhvFegtrs%3D10.1016/0040-6031(79)85047-9
BoysenDASossinaHMLiuHSeccoRAHigh-temperature behavior of CsH2PO4 under both ambient and high pressure conditionsChem Mater20031537277361:CAS:528:DC%2BD3sXjvFemuw%3D%3D10.1021/cm020138b
OrtizEVargasRACuervoGMellanderBEGustafsonJOn the high-temperature phase transition of RbH2PO4—a polymorphic transition?J Phys Chem Solids199859111111171:CAS:528:DyaK1cXkvFakt78%3D10.1016/S0022-3697(97)00237-0
Goñi-UrtiagaAPresvytesDScottKSolid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis: reviewInt J Hydrog Energy2012373358337210.1016/j.ijhydene.2011.09.152
ParkJHLeeKSKimJNThe possible origin of high-temperature phenomena in KH2PO4. JKorean Phys Soc199832S11S51
OrtizEVargasRAMellanderBEOn the high-temperature phase transition of some KDP-family compounds: a structural phase transition? A transition to a bulk-high proton conducting phase?Solid State Ionics19991251771851:CAS:528:DyaK1MXntlOgsb0%3D10.1016/S0167-2738(99)00173-3
LundénABaranowskiBFrieselMInfluence of water vapour pressure and mechanical treatments on phase stability in MHXO4 and MH2PO4 salts (M = K, Rb, Cs, NH4; X = S, Se)Ferroelectrics199112410310710.1080/00150199108209422
SubramoniJALovellSKahrBPolymorphism of potassium dihydrogen phosphateChem Mater19981082053205710.1021/cm980293j
ItohKMatubayashiTNakamuraEMotegiHX-ray study of high-temperature phase transitions in KH2PO4J Phys Soc Jpn19753938431:CAS:528:DyaE2MXmtVSntrs%3D10.1143/JPSJ.39.843
BronowskaWComment on “does the structural superionic phase transition at 231 °C in CsH2PO4 really not exist?”J Chem Phys200111416116121:CAS:528:DC%2BD3MXmslY%3D10.1063/1.1328043
BotezCCarbajalDAdirajuVTackettRChianelliRIntermediate-temperature polymorphic phase transition in KH2PO4: a synchrotron X-ray diffraction studyJ Phys Chem Solids201071157615801:CAS:528:DC%2BC3cXht1Sltb7L10.1016/j.jpcs.2010.08.004
GrünbergJLevinSPelahIGerlichDHigh temperature phase transitions and metastability in KDP type crystalsPhys Stat Sol (b)19724985786910.1002/pssb.2220490248
OrtizEPiñeresILeónCOn the low- to high proton-conducting transformation of a CsHSO4–CsH2PO4 solid solution and its parents physical or chemical nature?J Therm Anal Calorim201612624074191:CAS:528:DC%2BC28Xhslylt7nO10.1007/s10973-016-5474-y
Ferroelectrics. 1987;71 and 1987;72 (special issue on KH2PO4-type ferro- and antiferroelectrics)
HaileSMChisholmCRISasakiKBoysenDAUdaTSolid acid proton conductors: from laboratory curiosities to fuel cell electrolytesFaraday Discuss200713417391:CAS:528:DC%2BD28Xht12mt7bP10.1039/B604311A
Díaz-GuillénMRMorenoKJDíaz-GuillénJAFuentesAFNgaiKLGarcia-BarriocanalJSantamaríaJLeónCCation size effects in oxygen ion dynamics of highly disordered pyrochlore-type ionic conductorsPhys Rev B2008781010430410.1103/PhysRevB.78.104304
ChandraSSuperionic solids: principles and applications1981AmsterdamNorth-Holland Publishing Company
BaranovAIKhiznichenkoVPSandlerVAShuvalovLAFrequency dielectric dispersion in the ferroelectric and superionic phases of CsH2PO4Ferroelectrics19888118318610.1080/00150198808008840
ParkJHPossible origin of the proton conduction mechanism of CsH2PO4 crystals at high temperaturesPhys Rev B200469505410410.1103/PhysRevB.69.054104
EttoumiHMhiriTKinetic process of dehydration at fusion temperature and the high-temperature phase transition in KH2PO4J Mol Struct201310341121181:CAS:528:DC%2BC3sXhslWqtro%3D10.1016/j.molstruc.2012.09.002
ParkJHLeeKSKimJBKimJNSurface instability and possible polymerization in RbH2PO4 at high temperaturesJ Phys Condens Matter1996854911:CAS:528:DyaK28Xks1ekt70%3D10.1088/0953-8984/8/29/022
ParkJHLeeKSChoiBCHigh-temperature transformation in KH2PO4 and RbH2PO4 crystalsJ Phys Condens Matter200113941194191:CAS:528:DC%2BD3MXotVGqu7s%3D10.1088/0953-8984/13/42/302
NikiforovAVBergRWPetrushinaIMBjerrumNJSpecific electrical conductivity in molten potassium dihydrogen phosphate KH2PO4—an electrolyte for water electrolysis at ∼300 °CAppl Energy20161755455501:CAS:528:DC%2BC28XnsVens7k%3D10.1016/j.apenergy.2016.04.111
BotezCEMartinezHTackettRJChianelliRRZhangJZhaoYHigh-temperature crystal structures and chemical modifications in RbH2PO4J Phys-Condens Matter20092132540110.1088/0953-8984/21/32/325401
LeeKSHidden nature of the high-temperature phase transitions in crystals of KH2PO4-type: is it a physical change?J Phys Chem Solids1996573333421:CAS:528:DyaK28Xhs1Gmsrg%3D10.1016/0022-3697(95)00233-2
ReadingMLugetAWilsonRModulated differential scanning calorimetryThermochim Acta19942382953071:CAS:528:DyaK2cXls1Gjt7k%3D10.1016/S0040-6031(94)85215-4
MohammadNMohamadABKadhumHAALohKSA review on synthesis and characterization of solid acid materials for fuel cell applicationsJ Power Sources201632277921:CAS:528:DC%2BC28XnvVarur0%3D10.1016/j.jpowsour.2016.05.021
León C, Lucía ML, Santamaría J, Sánchez-Quesada F (1988) Universal scaling of the conductivity relaxation in crystalline ionic conductors. Phys Rev B:41–44
VladimirIGTijianaITComplex nonlinearity2008BerlinSpringer
OrtizEVargasRAMellanderBEOn the high-temperature phase transitions of CsH2PO4: a polymorphic transition? A transition to a superprotonic conducting phase?J Chem Phys1999110484748531:CAS:528:DyaK1MXhtlekurc%3D10.1063/1.478371
UdaTHaileSMThin-membrane solid-acid fuel cellElectrochem Solid-State Lett20058A245A2461:CAS:528:DC%2BD2MXksFamtL0%3D10.1149/1.1883874
PaschosOKunzeJStimmingUMagliaFJA review on phosphate based, solid state, protonic conductors for intermediate temperature fuel cellsPhys-Condens Matter2011232341101:STN:280:DC%2BC3MrltFGlsg%3D%3D10.1088/0953-8984/23/23/234110
E Ortiz (1932_CR18) 1999; 110
W Bronowska (1932_CR8) 2001; 114
C Botez (1932_CR11) 2010; 71
AV Nikiforov (1932_CR26) 2016; 175
IG Vladimir (1932_CR34) 2008
T Uda (1932_CR9) 2005; 8
R Pacey (1932_CR29) 1979; 30
AI Baranov (1932_CR6) 1989; 100
K Itoh (1932_CR13) 1975; 39
J Grünberg (1932_CR16) 1972; 49
E Ortiz (1932_CR20) 1998; 59
JH Park (1932_CR22) 2004; 69
JH Park (1932_CR23) 1996; 8
JH Park (1932_CR24) 2001; 13
N Mohammad (1932_CR3) 2016; 322
O Paschos (1932_CR4) 2011; 23
E Ortiz (1932_CR25) 2016; 126
A Goñi-Urtiaga (1932_CR2) 2012; 37
E Ortiz (1932_CR19) 1998; 59
CE Botez (1932_CR10) 2009; 21
S Chandra (1932_CR31) 1981
1932_CR27
E Ortiz (1932_CR21) 1999; 125
JH Park (1932_CR14) 1998; 32
H Ettoumi (1932_CR30) 2013; 1034
SM Haile (1932_CR5) 2007; 134
A Lundén (1932_CR17) 1991; 124
DA Boysen (1932_CR32) 2003; 15
1932_CR1
JA Subramoni (1932_CR12) 1998; 10
M Reading (1932_CR33) 1994; 238
AI Baranov (1932_CR7) 1988; 81
KS Lee (1932_CR15) 1996; 57
MR Díaz-Guillén (1932_CR28) 2008; 78
References_xml – reference: VladimirIGTijianaITComplex nonlinearity2008BerlinSpringer
– reference: MohammadNMohamadABKadhumHAALohKSA review on synthesis and characterization of solid acid materials for fuel cell applicationsJ Power Sources201632277921:CAS:528:DC%2BC28XnvVarur0%3D10.1016/j.jpowsour.2016.05.021
– reference: BotezCCarbajalDAdirajuVTackettRChianelliRIntermediate-temperature polymorphic phase transition in KH2PO4: a synchrotron X-ray diffraction studyJ Phys Chem Solids201071157615801:CAS:528:DC%2BC3cXht1Sltb7L10.1016/j.jpcs.2010.08.004
– reference: UdaTHaileSMThin-membrane solid-acid fuel cellElectrochem Solid-State Lett20058A245A2461:CAS:528:DC%2BD2MXksFamtL0%3D10.1149/1.1883874
– reference: OrtizEVargasRAMellanderBEOn the high-temperature phase transitions of CsH2PO4: a polymorphic transition? A transition to a superprotonic conducting phase?J Chem Phys1999110484748531:CAS:528:DyaK1MXhtlekurc%3D10.1063/1.478371
– reference: OrtizEVargasRACuervoGMellanderBEGustafsonJOn the high-temperature phase transition of RbH2PO4—a polymorphic transition?J Phys Chem Solids199859111111171:CAS:528:DyaK1cXkvFakt78%3D10.1016/S0022-3697(97)00237-0
– reference: LundénABaranowskiBFrieselMInfluence of water vapour pressure and mechanical treatments on phase stability in MHXO4 and MH2PO4 salts (M = K, Rb, Cs, NH4; X = S, Se)Ferroelectrics199112410310710.1080/00150199108209422
– reference: Díaz-GuillénMRMorenoKJDíaz-GuillénJAFuentesAFNgaiKLGarcia-BarriocanalJSantamaríaJLeónCCation size effects in oxygen ion dynamics of highly disordered pyrochlore-type ionic conductorsPhys Rev B2008781010430410.1103/PhysRevB.78.104304
– reference: SubramoniJALovellSKahrBPolymorphism of potassium dihydrogen phosphateChem Mater19981082053205710.1021/cm980293j
– reference: ParkJHPossible origin of the proton conduction mechanism of CsH2PO4 crystals at high temperaturesPhys Rev B200469505410410.1103/PhysRevB.69.054104
– reference: OrtizEPiñeresILeónCOn the low- to high proton-conducting transformation of a CsHSO4–CsH2PO4 solid solution and its parents physical or chemical nature?J Therm Anal Calorim201612624074191:CAS:528:DC%2BC28Xhslylt7nO10.1007/s10973-016-5474-y
– reference: LeeKSHidden nature of the high-temperature phase transitions in crystals of KH2PO4-type: is it a physical change?J Phys Chem Solids1996573333421:CAS:528:DyaK28Xhs1Gmsrg%3D10.1016/0022-3697(95)00233-2
– reference: BotezCEMartinezHTackettRJChianelliRRZhangJZhaoYHigh-temperature crystal structures and chemical modifications in RbH2PO4J Phys-Condens Matter20092132540110.1088/0953-8984/21/32/325401
– reference: Ferroelectrics. 1987;71 and 1987;72 (special issue on KH2PO4-type ferro- and antiferroelectrics)
– reference: ItohKMatubayashiTNakamuraEMotegiHX-ray study of high-temperature phase transitions in KH2PO4J Phys Soc Jpn19753938431:CAS:528:DyaE2MXmtVSntrs%3D10.1143/JPSJ.39.843
– reference: HaileSMChisholmCRISasakiKBoysenDAUdaTSolid acid proton conductors: from laboratory curiosities to fuel cell electrolytesFaraday Discuss200713417391:CAS:528:DC%2BD28Xht12mt7bP10.1039/B604311A
– reference: BronowskaWComment on “does the structural superionic phase transition at 231 °C in CsH2PO4 really not exist?”J Chem Phys200111416116121:CAS:528:DC%2BD3MXmslY%3D10.1063/1.1328043
– reference: PaschosOKunzeJStimmingUMagliaFJA review on phosphate based, solid state, protonic conductors for intermediate temperature fuel cellsPhys-Condens Matter2011232341101:STN:280:DC%2BC3MrltFGlsg%3D%3D10.1088/0953-8984/23/23/234110
– reference: ParkJHLeeKSKimJBKimJNSurface instability and possible polymerization in RbH2PO4 at high temperaturesJ Phys Condens Matter1996854911:CAS:528:DyaK28Xks1ekt70%3D10.1088/0953-8984/8/29/022
– reference: BoysenDASossinaHMLiuHSeccoRAHigh-temperature behavior of CsH2PO4 under both ambient and high pressure conditionsChem Mater20031537277361:CAS:528:DC%2BD3sXjvFemuw%3D%3D10.1021/cm020138b
– reference: OrtizEVargasRAMellanderBEOn the high-temperature phase transition of some KDP-family compounds: a structural phase transition? A transition to a bulk-high proton conducting phase?Solid State Ionics19991251771851:CAS:528:DyaK1MXntlOgsb0%3D10.1016/S0167-2738(99)00173-3
– reference: EttoumiHMhiriTKinetic process of dehydration at fusion temperature and the high-temperature phase transition in KH2PO4J Mol Struct201310341121181:CAS:528:DC%2BC3sXhslWqtro%3D10.1016/j.molstruc.2012.09.002
– reference: ChandraSSuperionic solids: principles and applications1981AmsterdamNorth-Holland Publishing Company
– reference: Goñi-UrtiagaAPresvytesDScottKSolid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis: reviewInt J Hydrog Energy2012373358337210.1016/j.ijhydene.2011.09.152
– reference: PaceyRClarkJDifferential scanning calorimetry of univalent dihydrogen phosphates and arsenatesThermochim Acta1979301151261:CAS:528:DyaE1MXhvFegtrs%3D10.1016/0040-6031(79)85047-9
– reference: ParkJHLeeKSKimJNThe possible origin of high-temperature phenomena in KH2PO4. JKorean Phys Soc199832S11S51
– reference: OrtizEVargasRAMellanderBEOn the reported high-temperature phase transition in KH2PO4—strong evidence of partial polymerization instead of a structural phase transitionJ Phys Chem Solids19985933053101:CAS:528:DyaK1cXks1GktA%3D%3D10.1016/S0022-3697(97)00218-7
– reference: NikiforovAVBergRWPetrushinaIMBjerrumNJSpecific electrical conductivity in molten potassium dihydrogen phosphate KH2PO4—an electrolyte for water electrolysis at ∼300 °CAppl Energy20161755455501:CAS:528:DC%2BC28XnsVens7k%3D10.1016/j.apenergy.2016.04.111
– reference: BaranovAIKhiznichenkoVPSandlerVAShuvalovLAFrequency dielectric dispersion in the ferroelectric and superionic phases of CsH2PO4Ferroelectrics19888118318610.1080/00150198808008840
– reference: GrünbergJLevinSPelahIGerlichDHigh temperature phase transitions and metastability in KDP type crystalsPhys Stat Sol (b)19724985786910.1002/pssb.2220490248
– reference: BaranovAIKhiznichenkoVPShuvalovLAHigh temperature phase transitions and proton conductivity in some KDP-family crystalsFerroelectrics19891001351411:CAS:528:DyaK3cXitVyktLw%3D10.1080/00150198908007907
– reference: ParkJHLeeKSChoiBCHigh-temperature transformation in KH2PO4 and RbH2PO4 crystalsJ Phys Condens Matter200113941194191:CAS:528:DC%2BD3MXotVGqu7s%3D10.1088/0953-8984/13/42/302
– reference: León C, Lucía ML, Santamaría J, Sánchez-Quesada F (1988) Universal scaling of the conductivity relaxation in crystalline ionic conductors. Phys Rev B:41–44
– reference: ReadingMLugetAWilsonRModulated differential scanning calorimetryThermochim Acta19942382953071:CAS:528:DyaK2cXls1Gjt7k%3D10.1016/S0040-6031(94)85215-4
– ident: 1932_CR27
– volume: 100
  start-page: 135
  year: 1989
  ident: 1932_CR6
  publication-title: Ferroelectrics
  doi: 10.1080/00150198908007907
– volume: 13
  start-page: 9411
  year: 2001
  ident: 1932_CR24
  publication-title: J Phys Condens Matter
  doi: 10.1088/0953-8984/13/42/302
– volume: 69
  start-page: 054104
  issue: 5
  year: 2004
  ident: 1932_CR22
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.69.054104
– volume: 114
  start-page: 611
  issue: 1
  year: 2001
  ident: 1932_CR8
  publication-title: J Chem Phys
  doi: 10.1063/1.1328043
– volume: 59
  start-page: 1111
  year: 1998
  ident: 1932_CR19
  publication-title: J Phys Chem Solids
  doi: 10.1016/S0022-3697(97)00237-0
– volume: 8
  start-page: 5491
  year: 1996
  ident: 1932_CR23
  publication-title: J Phys Condens Matter
  doi: 10.1088/0953-8984/8/29/022
– volume: 1034
  start-page: 112
  year: 2013
  ident: 1932_CR30
  publication-title: J Mol Struct
  doi: 10.1016/j.molstruc.2012.09.002
– volume: 81
  start-page: 183
  year: 1988
  ident: 1932_CR7
  publication-title: Ferroelectrics
  doi: 10.1080/00150198808008840
– volume-title: Complex nonlinearity
  year: 2008
  ident: 1932_CR34
– volume: 37
  start-page: 3358
  year: 2012
  ident: 1932_CR2
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2011.09.152
– volume: 78
  start-page: 104304
  issue: 10
  year: 2008
  ident: 1932_CR28
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.78.104304
– volume: 32
  start-page: S11
  year: 1998
  ident: 1932_CR14
  publication-title: Korean Phys Soc
– volume: 10
  start-page: 2053
  issue: 8
  year: 1998
  ident: 1932_CR12
  publication-title: Chem Mater
  doi: 10.1021/cm980293j
– volume: 125
  start-page: 177
  year: 1999
  ident: 1932_CR21
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(99)00173-3
– volume: 30
  start-page: 115
  year: 1979
  ident: 1932_CR29
  publication-title: Thermochim Acta
  doi: 10.1016/0040-6031(79)85047-9
– volume: 322
  start-page: 77
  year: 2016
  ident: 1932_CR3
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.05.021
– volume: 23
  start-page: 234110
  year: 2011
  ident: 1932_CR4
  publication-title: Phys-Condens Matter
  doi: 10.1088/0953-8984/23/23/234110
– ident: 1932_CR1
– volume: 238
  start-page: 295
  year: 1994
  ident: 1932_CR33
  publication-title: Thermochim Acta
  doi: 10.1016/S0040-6031(94)85215-4
– volume-title: Superionic solids: principles and applications
  year: 1981
  ident: 1932_CR31
– volume: 59
  start-page: 305
  issue: 3
  year: 1998
  ident: 1932_CR20
  publication-title: J Phys Chem Solids
  doi: 10.1016/S0022-3697(97)00218-7
– volume: 124
  start-page: 103
  year: 1991
  ident: 1932_CR17
  publication-title: Ferroelectrics
  doi: 10.1080/00150199108209422
– volume: 8
  start-page: A245
  year: 2005
  ident: 1932_CR9
  publication-title: Electrochem Solid-State Lett
  doi: 10.1149/1.1883874
– volume: 134
  start-page: 17
  year: 2007
  ident: 1932_CR5
  publication-title: Faraday Discuss
  doi: 10.1039/B604311A
– volume: 21
  start-page: 325401
  year: 2009
  ident: 1932_CR10
  publication-title: J Phys-Condens Matter
  doi: 10.1088/0953-8984/21/32/325401
– volume: 71
  start-page: 1576
  year: 2010
  ident: 1932_CR11
  publication-title: J Phys Chem Solids
  doi: 10.1016/j.jpcs.2010.08.004
– volume: 49
  start-page: 857
  year: 1972
  ident: 1932_CR16
  publication-title: Phys Stat Sol (b)
  doi: 10.1002/pssb.2220490248
– volume: 110
  start-page: 4847
  year: 1999
  ident: 1932_CR18
  publication-title: J Chem Phys
  doi: 10.1063/1.478371
– volume: 175
  start-page: 545
  year: 2016
  ident: 1932_CR26
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.04.111
– volume: 15
  start-page: 727
  issue: 3
  year: 2003
  ident: 1932_CR32
  publication-title: Chem Mater
  doi: 10.1021/cm020138b
– volume: 126
  start-page: 407
  issue: 2
  year: 2016
  ident: 1932_CR25
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-016-5474-y
– volume: 39
  start-page: 843
  issue: 3
  year: 1975
  ident: 1932_CR13
  publication-title: J Phys Soc Jpn
  doi: 10.1143/JPSJ.39.843
– volume: 57
  start-page: 333
  year: 1996
  ident: 1932_CR15
  publication-title: J Phys Chem Solids
  doi: 10.1016/0022-3697(95)00233-2
SSID ssj0066127
Score 2.1907983
Snippet For over two decades, the high-temperature phase transition (HTPT) at around T p  = 180 °C on KH 2 PO 4 (KDP), which involves an ionic conductivity increase,...
For over two decades, the high-temperature phase transition (HTPT) at around Tp = 180 °C on KH2PO4 (KDP), which involves an ionic conductivity increase,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1187
SubjectTerms Bulk sampling
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Current carriers
Differential scanning calorimetry
Electrochemistry
Energy Storage
High temperature
Ion currents
Optical and Electronic Materials
Original Paper
Phase transitions
Potassium phosphates
Protons
Renewable and Green Energy
Solid phases
Thermogravimetric analysis
Water
Title On the nature of the KH2PO4 high-temperature transformation
URI https://link.springer.com/article/10.1007/s11581-016-1932-6
https://www.proquest.com/docview/1890602548
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7odtCL-BOnc_TgSQkkadImeNqGczjcPDiYp9I2yUk6cfX_N2kbN0UFT6U0TeElzfs-3nvfA7gkqQotMM5QmnKNGBERElQJxNNQYZNZQFsRxYdpNJ6z-wVfNHXcK5_t7kOS1Um9LnYjXDjqGyEHOlC0DW1uqbvb1nPa98ev9Td1n1bJYhRjFvtQ5k9TfHVGa4T5LSha-ZrRPuw1IDHo16t6AFu6OISdoe_NdgQ3syKwyC2oZTmDpanuJmP6OGOBUyBGTnKq0UsOyg1wuiyOYT66fRqOUdMGAeUhiUrEDbMcyjIxmQssqWYpjRVmSlKu7DFHsTE8szCB6JRjHStipGS5pGmuBctZGJ5Aq1gW-hQCbt2xEUrrjIVMZUrGhNglsZTCMJrHogPY2yPJG41w16riJVmrGzsTJi4vzJkwiTpw9fnKay2Q8dfgrjdy0vwrq4QIiSNXlG8_f-0Nv_H4t8nO_jX6HHap88hVrmIXWuXbu76weKLMetDujwaDqbvePU9ue9V--gD0wcEB
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGWDhG1EokIEJ5Cp27MQWE6oKhULL0EplipLYXkApgrDw67GTmEIFSB2jOE585_je6e7eAZziRAYGGKcoSZhCFPMQcSI5YkkgfZ0aQFs6iveDsDemtxM2qeu431y2uwtJlif1rNgNM25d3xBZ0IHCZVihxgVnDVi5vH7sd90BbCxO1alV0AhFPo1cMPO3SX6aoxnGnAuLltbmagNG7jurJJOn9nuRtrOPOQrHBReyCes1-vQuq-2yBUsq34bVjmv6tgMXw9wzkNCr-D69qS6v-j3yMKSepTZGlsuqJmL2im-od5rvwviqO-r0UN1fAWUBDgvENDXOmXHxRMZ9QRRNSCR9KgVh0pyfxNeapQZ_YJUwX0USayFoJkiSKU4zGgR70MinudoHjxk7r7lUKqUBlakUEcZG18ZX0ZRkEW-C78QcZzX5uO2B8RzPaJOtVGKbcGalEodNOPt65KVi3vhvcMvpLq5_wrcYc-GHttrfvP7cqeLb7b8mO1ho9Ams9kb3d_HdzaB_CGvEmv0yIbIFjeL1XR0Z0FKkx_Um_QSPu92n
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oBPUi_sTp1B48KcEkTdoET0Md0-m2gwNvpW2Sk3TD1f_fpG3cFBU8lqYpvLTvfR_vve8BnJNUhRYYZyhNuUaMiAgJqgTiaaiwySygrYji0zDqT9jDC39p5pzOfbW7T0nWPQ1Opakor2bKXC0a3wgXjgZHyAEQFK3CmvXGxNV0TWjXu2Ibe-qZrZLFKMYs9mnNn7b4GpgWaPNbgrSKO71t2GoAY9CtT3gHVnSxCxs3fk7bHlyPisCiuKCW6Aymproa9Ol4xAKnRoyc_FSjnRyUS0B1WuzDpHf3fNNHzUgElIckKhE3zPIpy8pkLrCkmqU0VpgpSbmyLo9iY3hmIQPRKcc6VsRIyXJJ01wLlrMwPIBWMS30IQTchmYjlNYZC5nKlIwJscdj6YVhNI9FG7C3R5I3euFubMVrslA6diZMXI2YM2ESteHi85FZLZbx1-KON3LS_DfzhAiJI9egb19_6Q2_dPu3zY7-tfoM1se3veTxfjg4hk3qAnVVwtiBVvn2rk8szCiz0-pT-gC7CcUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+nature+of+the+KH2PO4+high-temperature+transformation&rft.jtitle=Ionics&rft.au=Pi%C3%B1eres%2C+I&rft.au=Ortiz%2C+E&rft.au=De+la+Hoz%2C+C&rft.au=Tr%C3%B3chez%2C+J+C&rft.date=2017-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0947-7047&rft.eissn=1862-0760&rft.volume=23&rft.issue=5&rft.spage=1187&rft.epage=1195&rft_id=info:doi/10.1007%2Fs11581-016-1932-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-7047&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-7047&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-7047&client=summon