p-Laplacian Equations on Locally Finite Graphs
This paper is mainly concerned with the following nonlinear p -Laplacian equation − Δ p ( x ) + ( λ a ( x ) + 1 ) ∣ u ∣ p − 2 ( x ) u ( x ) = f ( x , u ( x ) ) , i n V on a locally finite graph G = ( V, E ) with more general nonlinear term, where Δ p is the discrete p -Laplacian on graphs, p ≥ 2. Un...
Saved in:
Published in | Acta mathematica Sinica. English series Vol. 37; no. 11; pp. 1645 - 1678 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Beijing
Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society
01.11.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1439-8516 1439-7617 |
DOI | 10.1007/s10114-021-9523-5 |
Cover
Loading…
Abstract | This paper is mainly concerned with the following nonlinear
p
-Laplacian equation
−
Δ
p
(
x
)
+
(
λ
a
(
x
)
+
1
)
∣
u
∣
p
−
2
(
x
)
u
(
x
)
=
f
(
x
,
u
(
x
)
)
,
i
n
V
on a locally finite graph
G
= (
V, E
) with more general nonlinear term, where Δ
p
is the discrete
p
-Laplacian on graphs,
p
≥ 2. Under some suitable conditions on
f
and
a
(
x
), we can prove that the equation admits a positive solution by the Mountain Pass theorem and a ground state solution
u
λ
via the method of Nehari manifold, for any λ > 1. In addition, as λ → +∞, we prove that the solution
u
λ
converge to a solution of the following Dirichlet problem
{
−
Δ
p
(
x
)
+
∣
u
∣
p
−
2
(
x
)
u
(
x
)
=
f
(
x
,
u
(
x
)
)
,
i
n
Ω
u
(
x
)
=
0
o
n
∂
Ω
where Ω = {
x
∈
V
:
a
(
x
) = 0} is the potential well and
∂
Ω denotes the the boundary of Ω. |
---|---|
AbstractList | This paper is mainly concerned with the following nonlinear p-Laplacian equation −Δp(x)+(λa(x)+1)∣u∣p−2(x)u(x)=f(x,u(x)),inV on a locally finite graph G = (V, E) with more general nonlinear term, where Δp is the discrete p-Laplacian on graphs, p ≥ 2. Under some suitable conditions on f and a(x), we can prove that the equation admits a positive solution by the Mountain Pass theorem and a ground state solution uλ via the method of Nehari manifold, for any λ > 1. In addition, as λ → +∞, we prove that the solution uλ converge to a solution of the following Dirichlet problem {−Δp(x)+∣u∣p−2(x)u(x)=f(x,u(x)),inΩu(x)=0on∂Ω where Ω = {x ∈ V:a(x) = 0} is the potential well and ∂Ω denotes the the boundary of Ω. This paper is mainly concerned with the following nonlinear p -Laplacian equation − Δ p ( x ) + ( λ a ( x ) + 1 ) ∣ u ∣ p − 2 ( x ) u ( x ) = f ( x , u ( x ) ) , i n V on a locally finite graph G = ( V, E ) with more general nonlinear term, where Δ p is the discrete p -Laplacian on graphs, p ≥ 2. Under some suitable conditions on f and a ( x ), we can prove that the equation admits a positive solution by the Mountain Pass theorem and a ground state solution u λ via the method of Nehari manifold, for any λ > 1. In addition, as λ → +∞, we prove that the solution u λ converge to a solution of the following Dirichlet problem { − Δ p ( x ) + ∣ u ∣ p − 2 ( x ) u ( x ) = f ( x , u ( x ) ) , i n Ω u ( x ) = 0 o n ∂ Ω where Ω = { x ∈ V : a ( x ) = 0} is the potential well and ∂ Ω denotes the the boundary of Ω. |
Author | Shao, Meng Qiu Han, Xiao Li |
Author_xml | – sequence: 1 givenname: Xiao Li surname: Han fullname: Han, Xiao Li organization: Department of Mathematical Sciences, Tsinghua University – sequence: 2 givenname: Meng Qiu surname: Shao fullname: Shao, Meng Qiu email: shaomq17@mails.tsinghua.edu.cn organization: Department of Mathematical Sciences, Tsinghua University |
BookMark | eNp9kM1KAzEURoMo2FYfwN2A69SbZJLMLKW0VRhwo-uQpommjMk0mS769k6dgiDo6t7Fd-7PmaLLEINF6I7AnADIh0yAkBIDJbjmlGF-gSakZDWWgsjLc19xIq7RNOcdAOc1iAmad7jRXauN16FY7g-69zHkIoaiiUa37bFY-eB7W6yT7j7yDbpyus329lxn6G21fF084eZl_bx4bLBhRPSYO8ap5bIUrqaV3YotrYyTWnLJ-QacrjdATKXBiVJuNYUhBhsKDEpLZWnZDN2Pc7sU9webe7WLhxSGlYoKYKSWkokhRcaUSTHnZJ3qkv_U6agIqJMWNWpRgxZ10qL4wMhfjPH999d90r79l6QjmYct4d2mn5v-hr4AoC52Jg |
CitedBy_id | crossref_primary_10_3390_axioms13110762 crossref_primary_10_1016_j_cnsns_2023_107418 crossref_primary_10_1186_s13661_022_01613_1 crossref_primary_10_1007_s41980_023_00846_9 crossref_primary_10_1007_s00013_023_01830_9 crossref_primary_10_1090_proc_17040 crossref_primary_10_1007_s40840_023_01584_1 crossref_primary_10_1063_5_0179851 crossref_primary_10_1177_09217134241308436 crossref_primary_10_3934_eect_2025002 crossref_primary_10_1007_s10455_024_09960_1 crossref_primary_10_1016_j_jmaa_2023_128079 crossref_primary_10_1007_s13163_022_00452_z crossref_primary_10_1063_5_0210421 crossref_primary_10_11650_tjm_240201 crossref_primary_10_1186_s13661_024_01947_y crossref_primary_10_1007_s00526_024_02706_8 crossref_primary_10_1007_s11784_023_01055_x crossref_primary_10_1007_s00526_022_02384_4 crossref_primary_10_5802_crmath_653 crossref_primary_10_3934_era_2023377 |
Cites_doi | 10.1007/BF00946631 10.1016/j.aml.2018.04.005 10.1080/03605309208820848 10.1007/s11425-016-0422-y 10.1090/S0002-9947-1960-0111898-8 10.1016/j.jmaa.2017.07.028 10.1080/00036811.2013.842640 10.1090/proc/13929 10.1016/j.jde.2019.10.007 10.1016/j.jmaa.2012.04.026 10.1007/s00033-004-1084-9 10.1007/s00526-017-1204-y 10.1016/j.jde.2012.12.005 10.1016/j.na.2005.05.056 10.1016/j.jmaa.2015.10.024 10.1016/j.jmaa.2011.03.006 10.1007/PL00001511 10.1007/s11425-017-9254-7 10.1016/j.na.2015.11.014 10.1007/s00209-019-02253-5 10.1007/s00229-003-0397-x 10.1016/j.jmaa.2017.12.020 10.1063/1.3683156 10.1016/j.jde.2016.07.011 10.1007/s00526-016-1042-3 10.1007/s00526-018-1329-7 10.1016/j.anihpc.2006.01.003 10.1002/cpa.3160360405 10.1512/iumj.2009.58.3575 10.1007/978-1-4612-4146-1 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany & The Editorial Office of AMS 2021 Springer-Verlag GmbH Germany & The Editorial Office of AMS 2021. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany & The Editorial Office of AMS 2021 – notice: Springer-Verlag GmbH Germany & The Editorial Office of AMS 2021. |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1007/s10114-021-9523-5 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1439-7617 |
EndPage | 1678 |
ExternalDocumentID | 10_1007_s10114_021_9523_5 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 23M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VR 5VS 67Z 6NX 7WY 88I 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. B0M BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCEZO CCPQU CCVFK CHBEP COF CS3 CSCUP CW9 DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG EST ESX F5P FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE GUQSH H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C JBSCW JZLTJ K60 K6V K6~ K7- KDC KOV L6V LAS LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOS R4E R89 R9I ROL RPX RSV S16 S1Z S26 S27 S28 S3B SAP SCL SCLPG SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ZWQNP ~8M ~A9 AAPKM AAYXX ABBRH ABDBE ADHKG AFDZB AFOHR AGQPQ AHPBZ AMVHM ATHPR CITATION PHGZM PHGZT TGP 7SC 7TB 8FD ABRTQ FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c316t-5f352e5746f928ed6d28cf7a75755b0fa9b01c8a0f647da20f920b20304e274e3 |
IEDL.DBID | U2A |
ISSN | 1439-8516 |
IngestDate | Fri Jul 25 19:01:17 EDT 2025 Tue Jul 01 03:38:00 EDT 2025 Thu Apr 24 22:50:26 EDT 2025 Fri Feb 21 02:47:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | 35J20 locally finite graph 35J05 ground state solution 35J60 Laplacian equation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-5f352e5746f928ed6d28cf7a75755b0fa9b01c8a0f647da20f920b20304e274e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2603197736 |
PQPubID | 54875 |
PageCount | 34 |
ParticipantIDs | proquest_journals_2603197736 crossref_primary_10_1007_s10114_021_9523_5 crossref_citationtrail_10_1007_s10114_021_9523_5 springer_journals_10_1007_s10114_021_9523_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Acta mathematica Sinica. English series |
PublicationTitleAbbrev | Acta. Math. Sin.-English Ser |
PublicationYear | 2021 |
Publisher | Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society Springer Nature B.V |
Publisher_xml | – name: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society – name: Springer Nature B.V |
References | Grigor’yan, A., Lin, Y., Yang, Y. Y.: Kazdan-Warner equation on graph. Calc. Var. Partial Differential Equations, 55(4), Art. 92, 13 pp. (2016) DingY HTanakaKMultiplicity of positive solutions of a nonlinear Schrödinger equationManuscripta Mathematica2003112109135200593310.1007/s00229-003-0397-x Grigor’yanALinYYangY YExistence of positive solutions to some nonlinear equations on locally finite graphsSci. China Math.20176013111324366580110.1007/s11425-016-0422-y Adams, R. A.: Sobolev Spaces, Academic Press, 1975 CaoD MNontrivial solution of semilinear equations with critical exponent in ℝ2Commun. Partial Differential Equations199217407435116343110.1080/03605309208820848 GeH BJiangW FYamabe equations on infinite graphsJ. Math. Anal. Appl.2018460885890375907610.1016/j.jmaa.2017.12.020 GeH BA p-th Yamabe equation on graphProceedings of the American Mathematical Society2018146522192224376737210.1090/proc/13929 LiY QWangZ QZengJGround states of nonlinear Schröodinger equations with potentialsAnn. Inst. H. Poincaré Anal. Non Linéaire200623829837227169510.1016/j.anihpc.2006.01.003 LêAEigenvalue problems for the p-LaplacianNonlinear Analysis20066410571099219681110.1016/j.na.2005.05.056 BrézisHNirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponentsComm. Pure Appl. Math.19833643747770964410.1002/cpa.3160360405 ChenLCoulhonTHuaBRiesz transforms for bounded Laplacians on graphsMath. Z.2020294397417405007110.1007/s00209-019-02253-5 HuangX POn uniqueness class for a heat equation on graphsJ. Math. Anal. Appl.2012393377388292168110.1016/j.jmaa.2012.04.026 ShaoMMaoAMultiplicity of solutions to Schröodinger-Poisson system with concave-convex nonlinearitiesApplied Mathematics Letters201883212218379569410.1016/j.aml.2018.04.005 HeX MZouW MExistence and concentration of ground states for Schroödinger-Poisson equations with critical growthJournal of Mathematical Physics20125311910.1063/1.3683156 Keller, M., Schwarz, M.: The Kazdan-Warner equation on canonically compactifiable graphs. Calc. Var. Partial Differential Equations, 57(2) Art. 70, 18 pp. (2018) Ding, G.: Introduction to Banach Spaces (in Chinese), Science Press, 1997 Grigor’yanALinYYangY YYamabe type equations on graphsJ. Differential Equations201626149244943354296310.1016/j.jde.2016.07.011 ChungY SLeeY SChungS YExtinction and positivity of the solutions of the heat equations with absorption on networksJ. Math. Anal. Appl.2011380642652279442010.1016/j.jmaa.2011.03.006 ZhaoLZhangNExistence of solutions for a higher order Kirchhoff type problem with exponetial critical growthNonlinear Anal.2016132214226343396310.1016/j.na.2015.11.014 Lin, Y., Wu, Y. T.: The existence and nonexistence of global solutions for a semilinear heat equation on graphs. Calc. Var. Partial Differential Equations, 56(4), Art. 102, 22 pp. (2017) HanXShaoMZhaoLExistence and convergence of solutions for nonlinear biharmonic equations on graphsJournal of Differential Equations2020268739363961405361010.1016/j.jde.2019.10.007 WillemMMinimax Theorems1996BostonBirkhaäuser10.1007/978-1-4612-4146-1 NehariZOn a class of nonlinear second-order differential equationsTrans. AMS19609510112311189810.1090/S0002-9947-1960-0111898-8 ZhangNZhaoLConvergence of ground state solutions for nonlinear Schrödinger equations on graphsSci. China Math.201861814811494383374710.1007/s11425-017-9254-7 LinYWuY TOn-diagonal lower estimate of heat kernels on graphsJ. Math. Anal. Appl.201745610401048368846510.1016/j.jmaa.2017.07.028 ClappMDingY HPositive solutions of a Schrödinger equation with critical nonlinearityZ. Angew. Math. Phys.200455592605210766910.1007/s00033-004-1084-9 LiuW JChenKWYuJExtinction and asymptotic behavior of solutions for the ω-heat equation on graphs with source and interior absorptionJ. Math. Anal. Appl.2016435112132342338710.1016/j.jmaa.2015.10.024 RabinowitzP HOn a class of nonlinear Schröodinger equationsZ. Angew. Math. Phys.199243270291116272810.1007/BF00946631 GeH BJiangW FKazdan-Warner equation on infinite graphsJ. Korean Math. Soc.2018551091110138493521401.35300 XinQXuLMuCBlow-up for the ω-heat equation with Dirichelet boundary conditions and a reaction term on graphsAppl. Anal.20149316911701321967710.1080/00036811.2013.842640 WojciechowskiR KHeat kernel and essential spectrum of infinite graphsIndiana Univ. Math. J.20095814191441254209310.1512/iumj.2009.58.3575 BartschTWangZ QMultiple positive solutions for a nonlinear Schrödinger equationZ. Angew. Math. Phys.200051366384176269710.1007/PL00001511 ZhaoLChangY YMin-max level estimate for a singular quasilinear polyharmonic equation in ℝ2mJ. Differential Equations201325424342464301620910.1016/j.jde.2012.12.005 A Grigor’yan (9523_CR15) 2017; 60 A Lê (9523_CR20) 2006; 64 M Shao (9523_CR27) 2018; 83 9523_CR13 D M Cao (9523_CR4) 1992; 17 9523_CR19 M Clapp (9523_CR7) 2004; 55 H B Ge (9523_CR10) 2018; 55 X P Huang (9523_CR18) 2012; 393 A Grigor’yan (9523_CR14) 2016; 261 9523_CR1 X Han (9523_CR16) 2020; 268 Z Nehari (9523_CR25) 1960; 95 N Zhang (9523_CR31) 2018; 61 9523_CR8 Y Q Li (9523_CR21) 2006; 23 W J Liu (9523_CR24) 2016; 435 Q Xin (9523_CR30) 2014; 93 9523_CR22 T Bartsch (9523_CR2) 2000; 51 Y H Ding (9523_CR9) 2003; 112 R K Wojciechowski (9523_CR29) 2009; 58 L Zhao (9523_CR33) 2016; 132 Y Lin (9523_CR23) 2017; 456 H B Ge (9523_CR12) 2018; 146 H Brézis (9523_CR3) 1983; 36 X M He (9523_CR17) 2012; 53 P H Rabinowitz (9523_CR26) 1992; 43 H B Ge (9523_CR11) 2018; 460 L Chen (9523_CR5) 2020; 294 Y S Chung (9523_CR6) 2011; 380 M Willem (9523_CR28) 1996 L Zhao (9523_CR32) 2013; 254 |
References_xml | – reference: WojciechowskiR KHeat kernel and essential spectrum of infinite graphsIndiana Univ. Math. J.20095814191441254209310.1512/iumj.2009.58.3575 – reference: GeH BA p-th Yamabe equation on graphProceedings of the American Mathematical Society2018146522192224376737210.1090/proc/13929 – reference: XinQXuLMuCBlow-up for the ω-heat equation with Dirichelet boundary conditions and a reaction term on graphsAppl. Anal.20149316911701321967710.1080/00036811.2013.842640 – reference: LiuW JChenKWYuJExtinction and asymptotic behavior of solutions for the ω-heat equation on graphs with source and interior absorptionJ. Math. Anal. Appl.2016435112132342338710.1016/j.jmaa.2015.10.024 – reference: WillemMMinimax Theorems1996BostonBirkhaäuser10.1007/978-1-4612-4146-1 – reference: ChenLCoulhonTHuaBRiesz transforms for bounded Laplacians on graphsMath. Z.2020294397417405007110.1007/s00209-019-02253-5 – reference: Grigor’yan, A., Lin, Y., Yang, Y. Y.: Kazdan-Warner equation on graph. Calc. Var. Partial Differential Equations, 55(4), Art. 92, 13 pp. (2016) – reference: ZhaoLChangY YMin-max level estimate for a singular quasilinear polyharmonic equation in ℝ2mJ. Differential Equations201325424342464301620910.1016/j.jde.2012.12.005 – reference: Lin, Y., Wu, Y. T.: The existence and nonexistence of global solutions for a semilinear heat equation on graphs. Calc. Var. Partial Differential Equations, 56(4), Art. 102, 22 pp. (2017) – reference: HanXShaoMZhaoLExistence and convergence of solutions for nonlinear biharmonic equations on graphsJournal of Differential Equations2020268739363961405361010.1016/j.jde.2019.10.007 – reference: ZhaoLZhangNExistence of solutions for a higher order Kirchhoff type problem with exponetial critical growthNonlinear Anal.2016132214226343396310.1016/j.na.2015.11.014 – reference: BrézisHNirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponentsComm. Pure Appl. Math.19833643747770964410.1002/cpa.3160360405 – reference: Adams, R. A.: Sobolev Spaces, Academic Press, 1975 – reference: CaoD MNontrivial solution of semilinear equations with critical exponent in ℝ2Commun. Partial Differential Equations199217407435116343110.1080/03605309208820848 – reference: Grigor’yanALinYYangY YYamabe type equations on graphsJ. Differential Equations201626149244943354296310.1016/j.jde.2016.07.011 – reference: HuangX POn uniqueness class for a heat equation on graphsJ. Math. Anal. Appl.2012393377388292168110.1016/j.jmaa.2012.04.026 – reference: ChungY SLeeY SChungS YExtinction and positivity of the solutions of the heat equations with absorption on networksJ. Math. Anal. Appl.2011380642652279442010.1016/j.jmaa.2011.03.006 – reference: LiY QWangZ QZengJGround states of nonlinear Schröodinger equations with potentialsAnn. Inst. H. Poincaré Anal. Non Linéaire200623829837227169510.1016/j.anihpc.2006.01.003 – reference: NehariZOn a class of nonlinear second-order differential equationsTrans. AMS19609510112311189810.1090/S0002-9947-1960-0111898-8 – reference: Grigor’yanALinYYangY YExistence of positive solutions to some nonlinear equations on locally finite graphsSci. China Math.20176013111324366580110.1007/s11425-016-0422-y – reference: HeX MZouW MExistence and concentration of ground states for Schroödinger-Poisson equations with critical growthJournal of Mathematical Physics20125311910.1063/1.3683156 – reference: RabinowitzP HOn a class of nonlinear Schröodinger equationsZ. Angew. Math. Phys.199243270291116272810.1007/BF00946631 – reference: LêAEigenvalue problems for the p-LaplacianNonlinear Analysis20066410571099219681110.1016/j.na.2005.05.056 – reference: LinYWuY TOn-diagonal lower estimate of heat kernels on graphsJ. Math. Anal. Appl.201745610401048368846510.1016/j.jmaa.2017.07.028 – reference: DingY HTanakaKMultiplicity of positive solutions of a nonlinear Schrödinger equationManuscripta Mathematica2003112109135200593310.1007/s00229-003-0397-x – reference: Ding, G.: Introduction to Banach Spaces (in Chinese), Science Press, 1997 – reference: GeH BJiangW FKazdan-Warner equation on infinite graphsJ. Korean Math. Soc.2018551091110138493521401.35300 – reference: ZhangNZhaoLConvergence of ground state solutions for nonlinear Schrödinger equations on graphsSci. China Math.201861814811494383374710.1007/s11425-017-9254-7 – reference: ClappMDingY HPositive solutions of a Schrödinger equation with critical nonlinearityZ. Angew. Math. Phys.200455592605210766910.1007/s00033-004-1084-9 – reference: Keller, M., Schwarz, M.: The Kazdan-Warner equation on canonically compactifiable graphs. Calc. Var. Partial Differential Equations, 57(2) Art. 70, 18 pp. (2018) – reference: BartschTWangZ QMultiple positive solutions for a nonlinear Schrödinger equationZ. Angew. Math. Phys.200051366384176269710.1007/PL00001511 – reference: GeH BJiangW FYamabe equations on infinite graphsJ. Math. Anal. Appl.2018460885890375907610.1016/j.jmaa.2017.12.020 – reference: ShaoMMaoAMultiplicity of solutions to Schröodinger-Poisson system with concave-convex nonlinearitiesApplied Mathematics Letters201883212218379569410.1016/j.aml.2018.04.005 – ident: 9523_CR8 – volume: 43 start-page: 270 year: 1992 ident: 9523_CR26 publication-title: Z. Angew. Math. Phys. doi: 10.1007/BF00946631 – volume: 83 start-page: 212 year: 2018 ident: 9523_CR27 publication-title: Applied Mathematics Letters doi: 10.1016/j.aml.2018.04.005 – volume: 55 start-page: 1091 year: 2018 ident: 9523_CR10 publication-title: J. Korean Math. Soc. – volume: 17 start-page: 407 year: 1992 ident: 9523_CR4 publication-title: Commun. Partial Differential Equations doi: 10.1080/03605309208820848 – volume: 60 start-page: 1311 year: 2017 ident: 9523_CR15 publication-title: Sci. China Math. doi: 10.1007/s11425-016-0422-y – volume: 95 start-page: 101 year: 1960 ident: 9523_CR25 publication-title: Trans. AMS doi: 10.1090/S0002-9947-1960-0111898-8 – volume: 456 start-page: 1040 year: 2017 ident: 9523_CR23 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2017.07.028 – volume: 93 start-page: 1691 year: 2014 ident: 9523_CR30 publication-title: Appl. Anal. doi: 10.1080/00036811.2013.842640 – volume: 146 start-page: 2219 issue: 5 year: 2018 ident: 9523_CR12 publication-title: Proceedings of the American Mathematical Society doi: 10.1090/proc/13929 – volume: 268 start-page: 3936 issue: 7 year: 2020 ident: 9523_CR16 publication-title: Journal of Differential Equations doi: 10.1016/j.jde.2019.10.007 – volume: 393 start-page: 377 year: 2012 ident: 9523_CR18 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2012.04.026 – volume: 55 start-page: 592 year: 2004 ident: 9523_CR7 publication-title: Z. Angew. Math. Phys. doi: 10.1007/s00033-004-1084-9 – ident: 9523_CR22 doi: 10.1007/s00526-017-1204-y – volume: 254 start-page: 2434 year: 2013 ident: 9523_CR32 publication-title: J. Differential Equations doi: 10.1016/j.jde.2012.12.005 – volume: 64 start-page: 1057 year: 2006 ident: 9523_CR20 publication-title: Nonlinear Analysis doi: 10.1016/j.na.2005.05.056 – volume: 435 start-page: 112 year: 2016 ident: 9523_CR24 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2015.10.024 – volume: 380 start-page: 642 year: 2011 ident: 9523_CR6 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2011.03.006 – volume: 51 start-page: 366 year: 2000 ident: 9523_CR2 publication-title: Z. Angew. Math. Phys. doi: 10.1007/PL00001511 – volume: 61 start-page: 1481 issue: 8 year: 2018 ident: 9523_CR31 publication-title: Sci. China Math. doi: 10.1007/s11425-017-9254-7 – volume: 132 start-page: 214 year: 2016 ident: 9523_CR33 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2015.11.014 – volume: 294 start-page: 397 year: 2020 ident: 9523_CR5 publication-title: Math. Z. doi: 10.1007/s00209-019-02253-5 – volume: 112 start-page: 109 year: 2003 ident: 9523_CR9 publication-title: Manuscripta Mathematica doi: 10.1007/s00229-003-0397-x – volume: 460 start-page: 885 year: 2018 ident: 9523_CR11 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2017.12.020 – ident: 9523_CR1 – volume: 53 start-page: 1 year: 2012 ident: 9523_CR17 publication-title: Journal of Mathematical Physics doi: 10.1063/1.3683156 – volume: 261 start-page: 4924 year: 2016 ident: 9523_CR14 publication-title: J. Differential Equations doi: 10.1016/j.jde.2016.07.011 – ident: 9523_CR13 doi: 10.1007/s00526-016-1042-3 – ident: 9523_CR19 doi: 10.1007/s00526-018-1329-7 – volume: 23 start-page: 829 year: 2006 ident: 9523_CR21 publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire doi: 10.1016/j.anihpc.2006.01.003 – volume: 36 start-page: 437 year: 1983 ident: 9523_CR3 publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.3160360405 – volume: 58 start-page: 1419 year: 2009 ident: 9523_CR29 publication-title: Indiana Univ. Math. J. doi: 10.1512/iumj.2009.58.3575 – volume-title: Minimax Theorems year: 1996 ident: 9523_CR28 doi: 10.1007/978-1-4612-4146-1 |
SSID | ssj0055906 |
Score | 2.4500663 |
Snippet | This paper is mainly concerned with the following nonlinear
p
-Laplacian equation
−
Δ
p
(
x
)
+
(
λ
a
(
x
)
+
1
)
∣
u
∣
p
−
2
(
x
)
u
(
x
)
=
f
(
x
,
u
(
x
)
)... This paper is mainly concerned with the following nonlinear p-Laplacian equation −Δp(x)+(λa(x)+1)∣u∣p−2(x)u(x)=f(x,u(x)),inV on a locally finite graph G = (V,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1645 |
SubjectTerms | Dirichlet problem Graphs Laplace equation Mathematics Mathematics and Statistics Mountains |
Title | p-Laplacian Equations on Locally Finite Graphs |
URI | https://link.springer.com/article/10.1007/s10114-021-9523-5 https://www.proquest.com/docview/2603197736 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu8AB8RSDMfXACRSUpW3aHAdqN8E2IcSkcarSNpGQpm7QceDf4_SxAQIkTj3UzcFO7c-y_RngXCa666LzJYKlPnGEpiTGMEskQlcRJzH3C5Kk0ZgPJs7t1J1Wc9x53e1elyQLT_1p2A2xOylaCjB7Iu4mNF1M3U0f34T1aveLCJmWI0W2IAgneF3K_OmIr8FojTC_FUWLWBPuwk4FEq1eadU92FDZPmyPVgyr-QFcLchQmoYqNK8VvJSE3bk1z6yhiU6zdyt8NnDS6htG6vwQJmHweDMg1e4DkthdviSuRmSkXM_hWjBfpTxlfqI96SG8cmOqpYhpN_El1dzxUskoitGYmUKnwkRT2UfQyOaZOgZLKCGk9hAXaMdREvMDW9ME86xuqrXkdgtorYQoqYjBzX6KWbSmNDZ6i1BvkdFb5LbgYvXJomTF-Eu4XWs2qn6QPGJmuzViT5u34LLW9vr1r4ed_Ev6FLaYsXYxO9iGxvL1TZ0hiFjGHdj0w34Hmr3-012Az-tgfP_QKa7SB4Wkvqs |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgOwAH3ojBgB44gTJlfaTNcUJ7wB6nTRqnKm0TCTF1g24H-PU4fWwwAdLOdaPWcezPsv0F4FaEqu6g8yXcjDxic0VJgGGWCISuPAgD5qUkSf0B64zsp7Ezzue4k6LbvShJpp7627AbYneSthRg9kScbSjbmILbJSg32s_dZuGAESPTbKjI4gQBBSuKmb8t8jMcrTDmWlk0jTatAxgW35k1mbzWFvOgFn6uUThu-COHsJ-jT6ORmcsRbMn4GPb6S-rW5ARqM9ITulML7cZovmVM4IkxjY2eDnuTD6P1onGq0dZU18kpjFrN4UOH5JcqkNCqszlxFEIu6bg2U9z0ZMQi0wuVK1zEbU5AleABrYeeoIrZbiRMimI0MHUFVWIGK60zKMXTWJ6DwSXnQrkIOJRtS4GJh6VoiAlcPVJKMKsCtNCtH-aM4_rii4m_4krWqvBRFb5Whe9U4G75yiyj2_hPuFpsmJ-fvMQ39bXZCGotVoH7Qv-rx38udrGR9A3sdIb9nt97HHQvYdfUm5kOKFahNH9fyCtEKvPgOrfML5G-2kM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgkxAceCPGswdOoGxZH2lzRLAHsE0cmDROJW0TCTF1g5YD_Hqctd1gAiTEuWnU2k78WbY_A5yIUNUdvHwJNyOP2FxREqCbJQKhKw_CgHkTkqRuj7X79vXAGeRzTpOi2r1ISWY9DZqlKU5r40jVPjW-IY4nk_ICjKSIswhlW3Ozl6B83rq_aRSXMeJlmjUYWZwguGBFYvO7Tb66phnenEuRTjxPcw0eim_OCk6eqq9pUA3f5-gc__FT67Cao1LjPDOjDViQ8SasdKeUrskWVMekI3QFF9qT0XjOGMITYxQbHe0Oh29G81HjV6OlKbCTbeg3G3cXbZIPWyChVWcpcRRCMem4NlPc9GTEItMLlStcxHNOQJXgAa2HnqCK2W4kTIrLaGDqzKrEyFZaO1CKR7HcBYNLzoVyEYgo25YCAxJL0RADu3qklGBWBWghZz_Mmcj1QIyhP-NQ1qLwURS-FoXvVOB0-so4o-H4bfFBoTw_P5GJb-px2gh2LVaBs0IXs8c_brb3p9XHsHR72fQ7V72bfVg2tS4nfYsHUEpfXuUhApg0OMqN9AOU_uMn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=p-Laplacian+Equations+on+Locally+Finite+Graphs&rft.jtitle=Acta+mathematica+Sinica.+English+series&rft.au=Han+Xiao+Li&rft.au=Shao+Meng+Qiu&rft.date=2021-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1439-8516&rft.eissn=1439-7617&rft.volume=37&rft.issue=11&rft.spage=1645&rft.epage=1678&rft_id=info:doi/10.1007%2Fs10114-021-9523-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-8516&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-8516&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-8516&client=summon |