p-Laplacian Equations on Locally Finite Graphs

This paper is mainly concerned with the following nonlinear p -Laplacian equation − Δ p ( x ) + ( λ a ( x ) + 1 ) ∣ u ∣ p − 2 ( x ) u ( x ) = f ( x , u ( x ) ) , i n V on a locally finite graph G = ( V, E ) with more general nonlinear term, where Δ p is the discrete p -Laplacian on graphs, p ≥ 2. Un...

Full description

Saved in:
Bibliographic Details
Published inActa mathematica Sinica. English series Vol. 37; no. 11; pp. 1645 - 1678
Main Authors Han, Xiao Li, Shao, Meng Qiu
Format Journal Article
LanguageEnglish
Published Beijing Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society 01.11.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1439-8516
1439-7617
DOI10.1007/s10114-021-9523-5

Cover

Loading…
Abstract This paper is mainly concerned with the following nonlinear p -Laplacian equation − Δ p ( x ) + ( λ a ( x ) + 1 ) ∣ u ∣ p − 2 ( x ) u ( x ) = f ( x , u ( x ) ) , i n V on a locally finite graph G = ( V, E ) with more general nonlinear term, where Δ p is the discrete p -Laplacian on graphs, p ≥ 2. Under some suitable conditions on f and a ( x ), we can prove that the equation admits a positive solution by the Mountain Pass theorem and a ground state solution u λ via the method of Nehari manifold, for any λ > 1. In addition, as λ → +∞, we prove that the solution u λ converge to a solution of the following Dirichlet problem { − Δ p ( x ) + ∣ u ∣ p − 2 ( x ) u ( x ) = f ( x , u ( x ) ) , i n Ω u ( x ) = 0 o n ∂ Ω where Ω = { x ∈ V : a ( x ) = 0} is the potential well and ∂ Ω denotes the the boundary of Ω.
AbstractList This paper is mainly concerned with the following nonlinear p-Laplacian equation −Δp(x)+(λa(x)+1)∣u∣p−2(x)u(x)=f(x,u(x)),inV on a locally finite graph G = (V, E) with more general nonlinear term, where Δp is the discrete p-Laplacian on graphs, p ≥ 2. Under some suitable conditions on f and a(x), we can prove that the equation admits a positive solution by the Mountain Pass theorem and a ground state solution uλ via the method of Nehari manifold, for any λ > 1. In addition, as λ → +∞, we prove that the solution uλ converge to a solution of the following Dirichlet problem {−Δp(x)+∣u∣p−2(x)u(x)=f(x,u(x)),inΩu(x)=0on∂Ω where Ω = {x ∈ V:a(x) = 0} is the potential well and ∂Ω denotes the the boundary of Ω.
This paper is mainly concerned with the following nonlinear p -Laplacian equation − Δ p ( x ) + ( λ a ( x ) + 1 ) ∣ u ∣ p − 2 ( x ) u ( x ) = f ( x , u ( x ) ) , i n V on a locally finite graph G = ( V, E ) with more general nonlinear term, where Δ p is the discrete p -Laplacian on graphs, p ≥ 2. Under some suitable conditions on f and a ( x ), we can prove that the equation admits a positive solution by the Mountain Pass theorem and a ground state solution u λ via the method of Nehari manifold, for any λ > 1. In addition, as λ → +∞, we prove that the solution u λ converge to a solution of the following Dirichlet problem { − Δ p ( x ) + ∣ u ∣ p − 2 ( x ) u ( x ) = f ( x , u ( x ) ) , i n Ω u ( x ) = 0 o n ∂ Ω where Ω = { x ∈ V : a ( x ) = 0} is the potential well and ∂ Ω denotes the the boundary of Ω.
Author Shao, Meng Qiu
Han, Xiao Li
Author_xml – sequence: 1
  givenname: Xiao Li
  surname: Han
  fullname: Han, Xiao Li
  organization: Department of Mathematical Sciences, Tsinghua University
– sequence: 2
  givenname: Meng Qiu
  surname: Shao
  fullname: Shao, Meng Qiu
  email: shaomq17@mails.tsinghua.edu.cn
  organization: Department of Mathematical Sciences, Tsinghua University
BookMark eNp9kM1KAzEURoMo2FYfwN2A69SbZJLMLKW0VRhwo-uQpommjMk0mS769k6dgiDo6t7Fd-7PmaLLEINF6I7AnADIh0yAkBIDJbjmlGF-gSakZDWWgsjLc19xIq7RNOcdAOc1iAmad7jRXauN16FY7g-69zHkIoaiiUa37bFY-eB7W6yT7j7yDbpyus329lxn6G21fF084eZl_bx4bLBhRPSYO8ap5bIUrqaV3YotrYyTWnLJ-QacrjdATKXBiVJuNYUhBhsKDEpLZWnZDN2Pc7sU9webe7WLhxSGlYoKYKSWkokhRcaUSTHnZJ3qkv_U6agIqJMWNWpRgxZ10qL4wMhfjPH999d90r79l6QjmYct4d2mn5v-hr4AoC52Jg
CitedBy_id crossref_primary_10_3390_axioms13110762
crossref_primary_10_1016_j_cnsns_2023_107418
crossref_primary_10_1186_s13661_022_01613_1
crossref_primary_10_1007_s41980_023_00846_9
crossref_primary_10_1007_s00013_023_01830_9
crossref_primary_10_1090_proc_17040
crossref_primary_10_1007_s40840_023_01584_1
crossref_primary_10_1063_5_0179851
crossref_primary_10_1177_09217134241308436
crossref_primary_10_3934_eect_2025002
crossref_primary_10_1007_s10455_024_09960_1
crossref_primary_10_1016_j_jmaa_2023_128079
crossref_primary_10_1007_s13163_022_00452_z
crossref_primary_10_1063_5_0210421
crossref_primary_10_11650_tjm_240201
crossref_primary_10_1186_s13661_024_01947_y
crossref_primary_10_1007_s00526_024_02706_8
crossref_primary_10_1007_s11784_023_01055_x
crossref_primary_10_1007_s00526_022_02384_4
crossref_primary_10_5802_crmath_653
crossref_primary_10_3934_era_2023377
Cites_doi 10.1007/BF00946631
10.1016/j.aml.2018.04.005
10.1080/03605309208820848
10.1007/s11425-016-0422-y
10.1090/S0002-9947-1960-0111898-8
10.1016/j.jmaa.2017.07.028
10.1080/00036811.2013.842640
10.1090/proc/13929
10.1016/j.jde.2019.10.007
10.1016/j.jmaa.2012.04.026
10.1007/s00033-004-1084-9
10.1007/s00526-017-1204-y
10.1016/j.jde.2012.12.005
10.1016/j.na.2005.05.056
10.1016/j.jmaa.2015.10.024
10.1016/j.jmaa.2011.03.006
10.1007/PL00001511
10.1007/s11425-017-9254-7
10.1016/j.na.2015.11.014
10.1007/s00209-019-02253-5
10.1007/s00229-003-0397-x
10.1016/j.jmaa.2017.12.020
10.1063/1.3683156
10.1016/j.jde.2016.07.011
10.1007/s00526-016-1042-3
10.1007/s00526-018-1329-7
10.1016/j.anihpc.2006.01.003
10.1002/cpa.3160360405
10.1512/iumj.2009.58.3575
10.1007/978-1-4612-4146-1
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany & The Editorial Office of AMS 2021
Springer-Verlag GmbH Germany & The Editorial Office of AMS 2021.
Copyright_xml – notice: Springer-Verlag GmbH Germany & The Editorial Office of AMS 2021
– notice: Springer-Verlag GmbH Germany & The Editorial Office of AMS 2021.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s10114-021-9523-5
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1439-7617
EndPage 1678
ExternalDocumentID 10_1007_s10114_021_9523_5
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
23M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VR
5VS
67Z
6NX
7WY
88I
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCEZO
CCPQU
CCVFK
CHBEP
COF
CS3
CSCUP
CW9
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
GUQSH
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
JBSCW
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAS
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOS
R4E
R89
R9I
ROL
RPX
RSV
S16
S1Z
S26
S27
S28
S3B
SAP
SCL
SCLPG
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
ZWQNP
~8M
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
AMVHM
ATHPR
CITATION
PHGZM
PHGZT
TGP
7SC
7TB
8FD
ABRTQ
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c316t-5f352e5746f928ed6d28cf7a75755b0fa9b01c8a0f647da20f920b20304e274e3
IEDL.DBID U2A
ISSN 1439-8516
IngestDate Fri Jul 25 19:01:17 EDT 2025
Tue Jul 01 03:38:00 EDT 2025
Thu Apr 24 22:50:26 EDT 2025
Fri Feb 21 02:47:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords 35J20
locally finite graph
35J05
ground state solution
35J60
Laplacian equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-5f352e5746f928ed6d28cf7a75755b0fa9b01c8a0f647da20f920b20304e274e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2603197736
PQPubID 54875
PageCount 34
ParticipantIDs proquest_journals_2603197736
crossref_primary_10_1007_s10114_021_9523_5
crossref_citationtrail_10_1007_s10114_021_9523_5
springer_journals_10_1007_s10114_021_9523_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Acta mathematica Sinica. English series
PublicationTitleAbbrev Acta. Math. Sin.-English Ser
PublicationYear 2021
Publisher Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society
Springer Nature B.V
Publisher_xml – name: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society
– name: Springer Nature B.V
References Grigor’yan, A., Lin, Y., Yang, Y. Y.: Kazdan-Warner equation on graph. Calc. Var. Partial Differential Equations, 55(4), Art. 92, 13 pp. (2016)
DingY HTanakaKMultiplicity of positive solutions of a nonlinear Schrödinger equationManuscripta Mathematica2003112109135200593310.1007/s00229-003-0397-x
Grigor’yanALinYYangY YExistence of positive solutions to some nonlinear equations on locally finite graphsSci. China Math.20176013111324366580110.1007/s11425-016-0422-y
Adams, R. A.: Sobolev Spaces, Academic Press, 1975
CaoD MNontrivial solution of semilinear equations with critical exponent in ℝ2Commun. Partial Differential Equations199217407435116343110.1080/03605309208820848
GeH BJiangW FYamabe equations on infinite graphsJ. Math. Anal. Appl.2018460885890375907610.1016/j.jmaa.2017.12.020
GeH BA p-th Yamabe equation on graphProceedings of the American Mathematical Society2018146522192224376737210.1090/proc/13929
LiY QWangZ QZengJGround states of nonlinear Schröodinger equations with potentialsAnn. Inst. H. Poincaré Anal. Non Linéaire200623829837227169510.1016/j.anihpc.2006.01.003
LêAEigenvalue problems for the p-LaplacianNonlinear Analysis20066410571099219681110.1016/j.na.2005.05.056
BrézisHNirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponentsComm. Pure Appl. Math.19833643747770964410.1002/cpa.3160360405
ChenLCoulhonTHuaBRiesz transforms for bounded Laplacians on graphsMath. Z.2020294397417405007110.1007/s00209-019-02253-5
HuangX POn uniqueness class for a heat equation on graphsJ. Math. Anal. Appl.2012393377388292168110.1016/j.jmaa.2012.04.026
ShaoMMaoAMultiplicity of solutions to Schröodinger-Poisson system with concave-convex nonlinearitiesApplied Mathematics Letters201883212218379569410.1016/j.aml.2018.04.005
HeX MZouW MExistence and concentration of ground states for Schroödinger-Poisson equations with critical growthJournal of Mathematical Physics20125311910.1063/1.3683156
Keller, M., Schwarz, M.: The Kazdan-Warner equation on canonically compactifiable graphs. Calc. Var. Partial Differential Equations, 57(2) Art. 70, 18 pp. (2018)
Ding, G.: Introduction to Banach Spaces (in Chinese), Science Press, 1997
Grigor’yanALinYYangY YYamabe type equations on graphsJ. Differential Equations201626149244943354296310.1016/j.jde.2016.07.011
ChungY SLeeY SChungS YExtinction and positivity of the solutions of the heat equations with absorption on networksJ. Math. Anal. Appl.2011380642652279442010.1016/j.jmaa.2011.03.006
ZhaoLZhangNExistence of solutions for a higher order Kirchhoff type problem with exponetial critical growthNonlinear Anal.2016132214226343396310.1016/j.na.2015.11.014
Lin, Y., Wu, Y. T.: The existence and nonexistence of global solutions for a semilinear heat equation on graphs. Calc. Var. Partial Differential Equations, 56(4), Art. 102, 22 pp. (2017)
HanXShaoMZhaoLExistence and convergence of solutions for nonlinear biharmonic equations on graphsJournal of Differential Equations2020268739363961405361010.1016/j.jde.2019.10.007
WillemMMinimax Theorems1996BostonBirkhaäuser10.1007/978-1-4612-4146-1
NehariZOn a class of nonlinear second-order differential equationsTrans. AMS19609510112311189810.1090/S0002-9947-1960-0111898-8
ZhangNZhaoLConvergence of ground state solutions for nonlinear Schrödinger equations on graphsSci. China Math.201861814811494383374710.1007/s11425-017-9254-7
LinYWuY TOn-diagonal lower estimate of heat kernels on graphsJ. Math. Anal. Appl.201745610401048368846510.1016/j.jmaa.2017.07.028
ClappMDingY HPositive solutions of a Schrödinger equation with critical nonlinearityZ. Angew. Math. Phys.200455592605210766910.1007/s00033-004-1084-9
LiuW JChenKWYuJExtinction and asymptotic behavior of solutions for the ω-heat equation on graphs with source and interior absorptionJ. Math. Anal. Appl.2016435112132342338710.1016/j.jmaa.2015.10.024
RabinowitzP HOn a class of nonlinear Schröodinger equationsZ. Angew. Math. Phys.199243270291116272810.1007/BF00946631
GeH BJiangW FKazdan-Warner equation on infinite graphsJ. Korean Math. Soc.2018551091110138493521401.35300
XinQXuLMuCBlow-up for the ω-heat equation with Dirichelet boundary conditions and a reaction term on graphsAppl. Anal.20149316911701321967710.1080/00036811.2013.842640
WojciechowskiR KHeat kernel and essential spectrum of infinite graphsIndiana Univ. Math. J.20095814191441254209310.1512/iumj.2009.58.3575
BartschTWangZ QMultiple positive solutions for a nonlinear Schrödinger equationZ. Angew. Math. Phys.200051366384176269710.1007/PL00001511
ZhaoLChangY YMin-max level estimate for a singular quasilinear polyharmonic equation in ℝ2mJ. Differential Equations201325424342464301620910.1016/j.jde.2012.12.005
A Grigor’yan (9523_CR15) 2017; 60
A Lê (9523_CR20) 2006; 64
M Shao (9523_CR27) 2018; 83
9523_CR13
D M Cao (9523_CR4) 1992; 17
9523_CR19
M Clapp (9523_CR7) 2004; 55
H B Ge (9523_CR10) 2018; 55
X P Huang (9523_CR18) 2012; 393
A Grigor’yan (9523_CR14) 2016; 261
9523_CR1
X Han (9523_CR16) 2020; 268
Z Nehari (9523_CR25) 1960; 95
N Zhang (9523_CR31) 2018; 61
9523_CR8
Y Q Li (9523_CR21) 2006; 23
W J Liu (9523_CR24) 2016; 435
Q Xin (9523_CR30) 2014; 93
9523_CR22
T Bartsch (9523_CR2) 2000; 51
Y H Ding (9523_CR9) 2003; 112
R K Wojciechowski (9523_CR29) 2009; 58
L Zhao (9523_CR33) 2016; 132
Y Lin (9523_CR23) 2017; 456
H B Ge (9523_CR12) 2018; 146
H Brézis (9523_CR3) 1983; 36
X M He (9523_CR17) 2012; 53
P H Rabinowitz (9523_CR26) 1992; 43
H B Ge (9523_CR11) 2018; 460
L Chen (9523_CR5) 2020; 294
Y S Chung (9523_CR6) 2011; 380
M Willem (9523_CR28) 1996
L Zhao (9523_CR32) 2013; 254
References_xml – reference: WojciechowskiR KHeat kernel and essential spectrum of infinite graphsIndiana Univ. Math. J.20095814191441254209310.1512/iumj.2009.58.3575
– reference: GeH BA p-th Yamabe equation on graphProceedings of the American Mathematical Society2018146522192224376737210.1090/proc/13929
– reference: XinQXuLMuCBlow-up for the ω-heat equation with Dirichelet boundary conditions and a reaction term on graphsAppl. Anal.20149316911701321967710.1080/00036811.2013.842640
– reference: LiuW JChenKWYuJExtinction and asymptotic behavior of solutions for the ω-heat equation on graphs with source and interior absorptionJ. Math. Anal. Appl.2016435112132342338710.1016/j.jmaa.2015.10.024
– reference: WillemMMinimax Theorems1996BostonBirkhaäuser10.1007/978-1-4612-4146-1
– reference: ChenLCoulhonTHuaBRiesz transforms for bounded Laplacians on graphsMath. Z.2020294397417405007110.1007/s00209-019-02253-5
– reference: Grigor’yan, A., Lin, Y., Yang, Y. Y.: Kazdan-Warner equation on graph. Calc. Var. Partial Differential Equations, 55(4), Art. 92, 13 pp. (2016)
– reference: ZhaoLChangY YMin-max level estimate for a singular quasilinear polyharmonic equation in ℝ2mJ. Differential Equations201325424342464301620910.1016/j.jde.2012.12.005
– reference: Lin, Y., Wu, Y. T.: The existence and nonexistence of global solutions for a semilinear heat equation on graphs. Calc. Var. Partial Differential Equations, 56(4), Art. 102, 22 pp. (2017)
– reference: HanXShaoMZhaoLExistence and convergence of solutions for nonlinear biharmonic equations on graphsJournal of Differential Equations2020268739363961405361010.1016/j.jde.2019.10.007
– reference: ZhaoLZhangNExistence of solutions for a higher order Kirchhoff type problem with exponetial critical growthNonlinear Anal.2016132214226343396310.1016/j.na.2015.11.014
– reference: BrézisHNirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponentsComm. Pure Appl. Math.19833643747770964410.1002/cpa.3160360405
– reference: Adams, R. A.: Sobolev Spaces, Academic Press, 1975
– reference: CaoD MNontrivial solution of semilinear equations with critical exponent in ℝ2Commun. Partial Differential Equations199217407435116343110.1080/03605309208820848
– reference: Grigor’yanALinYYangY YYamabe type equations on graphsJ. Differential Equations201626149244943354296310.1016/j.jde.2016.07.011
– reference: HuangX POn uniqueness class for a heat equation on graphsJ. Math. Anal. Appl.2012393377388292168110.1016/j.jmaa.2012.04.026
– reference: ChungY SLeeY SChungS YExtinction and positivity of the solutions of the heat equations with absorption on networksJ. Math. Anal. Appl.2011380642652279442010.1016/j.jmaa.2011.03.006
– reference: LiY QWangZ QZengJGround states of nonlinear Schröodinger equations with potentialsAnn. Inst. H. Poincaré Anal. Non Linéaire200623829837227169510.1016/j.anihpc.2006.01.003
– reference: NehariZOn a class of nonlinear second-order differential equationsTrans. AMS19609510112311189810.1090/S0002-9947-1960-0111898-8
– reference: Grigor’yanALinYYangY YExistence of positive solutions to some nonlinear equations on locally finite graphsSci. China Math.20176013111324366580110.1007/s11425-016-0422-y
– reference: HeX MZouW MExistence and concentration of ground states for Schroödinger-Poisson equations with critical growthJournal of Mathematical Physics20125311910.1063/1.3683156
– reference: RabinowitzP HOn a class of nonlinear Schröodinger equationsZ. Angew. Math. Phys.199243270291116272810.1007/BF00946631
– reference: LêAEigenvalue problems for the p-LaplacianNonlinear Analysis20066410571099219681110.1016/j.na.2005.05.056
– reference: LinYWuY TOn-diagonal lower estimate of heat kernels on graphsJ. Math. Anal. Appl.201745610401048368846510.1016/j.jmaa.2017.07.028
– reference: DingY HTanakaKMultiplicity of positive solutions of a nonlinear Schrödinger equationManuscripta Mathematica2003112109135200593310.1007/s00229-003-0397-x
– reference: Ding, G.: Introduction to Banach Spaces (in Chinese), Science Press, 1997
– reference: GeH BJiangW FKazdan-Warner equation on infinite graphsJ. Korean Math. Soc.2018551091110138493521401.35300
– reference: ZhangNZhaoLConvergence of ground state solutions for nonlinear Schrödinger equations on graphsSci. China Math.201861814811494383374710.1007/s11425-017-9254-7
– reference: ClappMDingY HPositive solutions of a Schrödinger equation with critical nonlinearityZ. Angew. Math. Phys.200455592605210766910.1007/s00033-004-1084-9
– reference: Keller, M., Schwarz, M.: The Kazdan-Warner equation on canonically compactifiable graphs. Calc. Var. Partial Differential Equations, 57(2) Art. 70, 18 pp. (2018)
– reference: BartschTWangZ QMultiple positive solutions for a nonlinear Schrödinger equationZ. Angew. Math. Phys.200051366384176269710.1007/PL00001511
– reference: GeH BJiangW FYamabe equations on infinite graphsJ. Math. Anal. Appl.2018460885890375907610.1016/j.jmaa.2017.12.020
– reference: ShaoMMaoAMultiplicity of solutions to Schröodinger-Poisson system with concave-convex nonlinearitiesApplied Mathematics Letters201883212218379569410.1016/j.aml.2018.04.005
– ident: 9523_CR8
– volume: 43
  start-page: 270
  year: 1992
  ident: 9523_CR26
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/BF00946631
– volume: 83
  start-page: 212
  year: 2018
  ident: 9523_CR27
  publication-title: Applied Mathematics Letters
  doi: 10.1016/j.aml.2018.04.005
– volume: 55
  start-page: 1091
  year: 2018
  ident: 9523_CR10
  publication-title: J. Korean Math. Soc.
– volume: 17
  start-page: 407
  year: 1992
  ident: 9523_CR4
  publication-title: Commun. Partial Differential Equations
  doi: 10.1080/03605309208820848
– volume: 60
  start-page: 1311
  year: 2017
  ident: 9523_CR15
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-016-0422-y
– volume: 95
  start-page: 101
  year: 1960
  ident: 9523_CR25
  publication-title: Trans. AMS
  doi: 10.1090/S0002-9947-1960-0111898-8
– volume: 456
  start-page: 1040
  year: 2017
  ident: 9523_CR23
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2017.07.028
– volume: 93
  start-page: 1691
  year: 2014
  ident: 9523_CR30
  publication-title: Appl. Anal.
  doi: 10.1080/00036811.2013.842640
– volume: 146
  start-page: 2219
  issue: 5
  year: 2018
  ident: 9523_CR12
  publication-title: Proceedings of the American Mathematical Society
  doi: 10.1090/proc/13929
– volume: 268
  start-page: 3936
  issue: 7
  year: 2020
  ident: 9523_CR16
  publication-title: Journal of Differential Equations
  doi: 10.1016/j.jde.2019.10.007
– volume: 393
  start-page: 377
  year: 2012
  ident: 9523_CR18
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2012.04.026
– volume: 55
  start-page: 592
  year: 2004
  ident: 9523_CR7
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/s00033-004-1084-9
– ident: 9523_CR22
  doi: 10.1007/s00526-017-1204-y
– volume: 254
  start-page: 2434
  year: 2013
  ident: 9523_CR32
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2012.12.005
– volume: 64
  start-page: 1057
  year: 2006
  ident: 9523_CR20
  publication-title: Nonlinear Analysis
  doi: 10.1016/j.na.2005.05.056
– volume: 435
  start-page: 112
  year: 2016
  ident: 9523_CR24
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2015.10.024
– volume: 380
  start-page: 642
  year: 2011
  ident: 9523_CR6
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2011.03.006
– volume: 51
  start-page: 366
  year: 2000
  ident: 9523_CR2
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/PL00001511
– volume: 61
  start-page: 1481
  issue: 8
  year: 2018
  ident: 9523_CR31
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-017-9254-7
– volume: 132
  start-page: 214
  year: 2016
  ident: 9523_CR33
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2015.11.014
– volume: 294
  start-page: 397
  year: 2020
  ident: 9523_CR5
  publication-title: Math. Z.
  doi: 10.1007/s00209-019-02253-5
– volume: 112
  start-page: 109
  year: 2003
  ident: 9523_CR9
  publication-title: Manuscripta Mathematica
  doi: 10.1007/s00229-003-0397-x
– volume: 460
  start-page: 885
  year: 2018
  ident: 9523_CR11
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2017.12.020
– ident: 9523_CR1
– volume: 53
  start-page: 1
  year: 2012
  ident: 9523_CR17
  publication-title: Journal of Mathematical Physics
  doi: 10.1063/1.3683156
– volume: 261
  start-page: 4924
  year: 2016
  ident: 9523_CR14
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2016.07.011
– ident: 9523_CR13
  doi: 10.1007/s00526-016-1042-3
– ident: 9523_CR19
  doi: 10.1007/s00526-018-1329-7
– volume: 23
  start-page: 829
  year: 2006
  ident: 9523_CR21
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
  doi: 10.1016/j.anihpc.2006.01.003
– volume: 36
  start-page: 437
  year: 1983
  ident: 9523_CR3
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.3160360405
– volume: 58
  start-page: 1419
  year: 2009
  ident: 9523_CR29
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.2009.58.3575
– volume-title: Minimax Theorems
  year: 1996
  ident: 9523_CR28
  doi: 10.1007/978-1-4612-4146-1
SSID ssj0055906
Score 2.4500663
Snippet This paper is mainly concerned with the following nonlinear p -Laplacian equation − Δ p ( x ) + ( λ a ( x ) + 1 ) ∣ u ∣ p − 2 ( x ) u ( x ) = f ( x , u ( x ) )...
This paper is mainly concerned with the following nonlinear p-Laplacian equation −Δp(x)+(λa(x)+1)∣u∣p−2(x)u(x)=f(x,u(x)),inV on a locally finite graph G = (V,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1645
SubjectTerms Dirichlet problem
Graphs
Laplace equation
Mathematics
Mathematics and Statistics
Mountains
Title p-Laplacian Equations on Locally Finite Graphs
URI https://link.springer.com/article/10.1007/s10114-021-9523-5
https://www.proquest.com/docview/2603197736
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu8AB8RSDMfXACRSUpW3aHAdqN8E2IcSkcarSNpGQpm7QceDf4_SxAQIkTj3UzcFO7c-y_RngXCa666LzJYKlPnGEpiTGMEskQlcRJzH3C5Kk0ZgPJs7t1J1Wc9x53e1elyQLT_1p2A2xOylaCjB7Iu4mNF1M3U0f34T1aveLCJmWI0W2IAgneF3K_OmIr8FojTC_FUWLWBPuwk4FEq1eadU92FDZPmyPVgyr-QFcLchQmoYqNK8VvJSE3bk1z6yhiU6zdyt8NnDS6htG6vwQJmHweDMg1e4DkthdviSuRmSkXM_hWjBfpTxlfqI96SG8cmOqpYhpN_El1dzxUskoitGYmUKnwkRT2UfQyOaZOgZLKCGk9hAXaMdREvMDW9ME86xuqrXkdgtorYQoqYjBzX6KWbSmNDZ6i1BvkdFb5LbgYvXJomTF-Eu4XWs2qn6QPGJmuzViT5u34LLW9vr1r4ed_Ev6FLaYsXYxO9iGxvL1TZ0hiFjGHdj0w34Hmr3-012Az-tgfP_QKa7SB4Wkvqs
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgOwAH3ojBgB44gTJlfaTNcUJ7wB6nTRqnKm0TCTF1g24H-PU4fWwwAdLOdaPWcezPsv0F4FaEqu6g8yXcjDxic0VJgGGWCISuPAgD5qUkSf0B64zsp7Ezzue4k6LbvShJpp7627AbYneSthRg9kScbSjbmILbJSg32s_dZuGAESPTbKjI4gQBBSuKmb8t8jMcrTDmWlk0jTatAxgW35k1mbzWFvOgFn6uUThu-COHsJ-jT6ORmcsRbMn4GPb6S-rW5ARqM9ITulML7cZovmVM4IkxjY2eDnuTD6P1onGq0dZU18kpjFrN4UOH5JcqkNCqszlxFEIu6bg2U9z0ZMQi0wuVK1zEbU5AleABrYeeoIrZbiRMimI0MHUFVWIGK60zKMXTWJ6DwSXnQrkIOJRtS4GJh6VoiAlcPVJKMKsCtNCtH-aM4_rii4m_4krWqvBRFb5Whe9U4G75yiyj2_hPuFpsmJ-fvMQ39bXZCGotVoH7Qv-rx38udrGR9A3sdIb9nt97HHQvYdfUm5kOKFahNH9fyCtEKvPgOrfML5G-2kM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgkxAceCPGswdOoGxZH2lzRLAHsE0cmDROJW0TCTF1g5YD_Hqctd1gAiTEuWnU2k78WbY_A5yIUNUdvHwJNyOP2FxREqCbJQKhKw_CgHkTkqRuj7X79vXAGeRzTpOi2r1ISWY9DZqlKU5r40jVPjW-IY4nk_ICjKSIswhlW3Ozl6B83rq_aRSXMeJlmjUYWZwguGBFYvO7Tb66phnenEuRTjxPcw0eim_OCk6eqq9pUA3f5-gc__FT67Cao1LjPDOjDViQ8SasdKeUrskWVMekI3QFF9qT0XjOGMITYxQbHe0Oh29G81HjV6OlKbCTbeg3G3cXbZIPWyChVWcpcRRCMem4NlPc9GTEItMLlStcxHNOQJXgAa2HnqCK2W4kTIrLaGDqzKrEyFZaO1CKR7HcBYNLzoVyEYgo25YCAxJL0RADu3qklGBWBWghZz_Mmcj1QIyhP-NQ1qLwURS-FoXvVOB0-so4o-H4bfFBoTw_P5GJb-px2gh2LVaBs0IXs8c_brb3p9XHsHR72fQ7V72bfVg2tS4nfYsHUEpfXuUhApg0OMqN9AOU_uMn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=p-Laplacian+Equations+on+Locally+Finite+Graphs&rft.jtitle=Acta+mathematica+Sinica.+English+series&rft.au=Han+Xiao+Li&rft.au=Shao+Meng+Qiu&rft.date=2021-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1439-8516&rft.eissn=1439-7617&rft.volume=37&rft.issue=11&rft.spage=1645&rft.epage=1678&rft_id=info:doi/10.1007%2Fs10114-021-9523-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-8516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-8516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-8516&client=summon