Automating mixture model fitting of task durations for process conformance checking

Process task duration data often exhibit multiple peaks, indicating differences in, for example, customer ages and preferences, resource capabilities or the day/hour of a week. This heterogeneous data, which captures diverse customer patterns, should be represented using different models, resulting...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 39; no. 5; p. 53
Main Authors Yang, Lingkai, McClean, Sally, Faddy, Malcolm, Donnelly, Mark, Khan, Kashaf, Burke, Kevin
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1384-5810
1573-756X
DOI10.1007/s10618-025-01131-5

Cover

Abstract Process task duration data often exhibit multiple peaks, indicating differences in, for example, customer ages and preferences, resource capabilities or the day/hour of a week. This heterogeneous data, which captures diverse customer patterns, should be represented using different models, resulting in an overall mixture model. This paper introduces gamma mixture models to represent various customer patterns in task duration data, with a focus on automating the fitting process. The approach involves a two-stage procedure: first, divide-and-conquer using peak-, equidistance- and cluster-based techniques to partition data, and automatically fit gamma distributions to each subset. The second stage then improves the fitted mixture model by directly searching the log-likelihood surface. The method is compared with the expectation–maximization (EM) algorithm and an open tool (HyperStar), using both artificially generated datasets and a publicly available hospital billing dataset, demonstrating its effectiveness and time efficiency in modelling heterogeneous process duration data. Furthermore, a case study on process conformance checking is conducted using the hospital billing dataset, highlighting a potential application area for the method in process mining.
AbstractList Process task duration data often exhibit multiple peaks, indicating differences in, for example, customer ages and preferences, resource capabilities or the day/hour of a week. This heterogeneous data, which captures diverse customer patterns, should be represented using different models, resulting in an overall mixture model. This paper introduces gamma mixture models to represent various customer patterns in task duration data, with a focus on automating the fitting process. The approach involves a two-stage procedure: first, divide-and-conquer using peak-, equidistance- and cluster-based techniques to partition data, and automatically fit gamma distributions to each subset. The second stage then improves the fitted mixture model by directly searching the log-likelihood surface. The method is compared with the expectation–maximization (EM) algorithm and an open tool (HyperStar), using both artificially generated datasets and a publicly available hospital billing dataset, demonstrating its effectiveness and time efficiency in modelling heterogeneous process duration data. Furthermore, a case study on process conformance checking is conducted using the hospital billing dataset, highlighting a potential application area for the method in process mining.
ArticleNumber 53
Author Burke, Kevin
Faddy, Malcolm
Donnelly, Mark
Yang, Lingkai
McClean, Sally
Khan, Kashaf
Author_xml – sequence: 1
  givenname: Lingkai
  orcidid: 0000-0003-4991-6813
  surname: Yang
  fullname: Yang, Lingkai
  email: y1163376026@gmail.com
  organization: Research Institute of Mine Artificial Intelligence, Chinese Institute of Coal Science, School of Computing, Ulster University
– sequence: 2
  givenname: Sally
  surname: McClean
  fullname: McClean, Sally
  organization: School of Computing, Ulster University
– sequence: 3
  givenname: Malcolm
  surname: Faddy
  fullname: Faddy, Malcolm
  organization: Formerly Department of Mathematical Sciences, Queensland University of Technology
– sequence: 4
  givenname: Mark
  surname: Donnelly
  fullname: Donnelly, Mark
  organization: School of Computing, Ulster University
– sequence: 5
  givenname: Kashaf
  surname: Khan
  fullname: Khan, Kashaf
  organization: British Telecom
– sequence: 6
  givenname: Kevin
  surname: Burke
  fullname: Burke, Kevin
  organization: Mathematics Applications Consortium for Science and Industry, University of Limerick
BookMark eNp9kEtLAzEUhYNUsK3-AVcB16N5TDKZZSm-QHChgruQydzUaTtJTWZA_71pK7hzdR-cc-7lm6GJDx4QuqTkmhJS3SRKJFUFYaIglHJaiBM0paLiRSXk-yT3XJWFUJScoVlKa0KIYJxM0ctiHEJvhs6vcN99DWME3IcWtth1w2EbHB5M2uB2jFkWfMIuRLyLwUJK2Aafx954C9h-gN1kyzk6dWab4OK3ztHb3e3r8qF4er5_XC6eCsupHArRElsSYyVI29hayLJlhhkOZcUIcNYYxbiSQJyEEppaMNdATcuGKUGZE3yOro65-ZnPEdKg12GMPp_UnHFaV7VSMqvYUWVjSCmC07vY9SZ-a0r0Hp4-wtMZnj7A0_tofjSlLPYriH_R_7h-AIdLdLc
Cites_doi 10.1109/ICPM49681.2020.00016
10.1109/ACCESS.2021.3051758
10.3390/math11245001
10.1002/hpm.3593
10.1016/j.datak.2025.102430
10.1007/978-3-319-30599-8_3
10.1007/978-3-030-11641-5_20
10.1007/978-3-030-83014-4_1
10.1007/978-3-030-37453-2_47
10.1007/s11227-008-0173-5
10.1504/IJBPIM.2017.088819
10.1007/978-3-319-99713-1_13
10.1007/978-3-319-06674-5
10.1016/j.is.2021.101724
10.1198/106186001317115054
10.1007/s00180-012-0367-4
10.1145/2229156.2229157
10.1007/978-3-031-08848-3_5
10.1002/int.22721
10.1109/GLOCOM.2002.1189083
10.1007/s12599-020-00649-w
10.1016/j.ejor.2023.09.010
10.1007/s10514-017-9686-1
10.1109/SWC50871.2021.00097
10.1109/TPAMI.2021.3128271
10.1016/j.is.2024.102434
10.1007/978-3-030-37453-2_37
10.1145/3669942
10.1016/j.patcog.2018.10.025
10.1016/S0166-5316(03)00101-9
10.3390/buildings11010030
10.1007/978-3-642-40725-3_13
10.1109/TSC.2012.25
10.1007/978-3-319-59536-8_34
10.1007/978-3-030-51831-8_18
10.1016/j.camwa.2012.03.016
10.1016/j.is.2023.102248
10.1007/978-3-031-08848-3_1
10.1007/978-3-031-07472-1_17
10.1016/j.is.2018.11.003
10.1146/annurev-statistics-030718-104938
10.1016/j.is.2015.04.004
10.1109/TPAMI.2014.2306426
10.3390/computers10010006
10.1177/0049124104268644
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10618-025-01131-5
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
ExternalDocumentID 10_1007_s10618_025_01131_5
GrantInformation_xml – fundername: British Telecom
– fundername: Invest Northern Ireland
  funderid: http://dx.doi.org/10.13039/100013360
GroupedDBID -~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8FL
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BENPR
BGNMA
BSONS
C6C
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LAK
LLZTM
M2O
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
-Y2
.4S
1SB
2P1
2VQ
8AO
8FE
8FG
8G5
AARHV
AAYXX
ABQSL
ABULA
ABUWG
ACBXY
ADHKG
AEBTG
AEKMD
AFGCZ
AFKRA
AGGDS
AGQPQ
AHSBF
AJBLW
AMVHM
ARCSS
AZQEC
BDATZ
BEZIV
BGLVJ
BPHCQ
CAG
CCPQU
CITATION
COF
DWQXO
EDO
EJD
FINBP
FRNLG
FSGXE
GNUQQ
GUQSH
H13
I-F
K6V
K7-
M0C
N2Q
O9-
OVD
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
Q2X
RNI
RZC
RZE
RZK
TEORI
TUS
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c316t-5d0c40ac6e6cbc9564d2a2a3e4720e32ba82386e0f6e4eb952fbe914b28512f53
IEDL.DBID AGYKE
ISSN 1384-5810
IngestDate Sat Aug 16 22:41:27 EDT 2025
Thu Jul 24 01:56:35 EDT 2025
Tue Jul 22 01:11:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Process mining
Divide-and-conquer fitting
Process duration modelling
Nelder-Mead optimisation
Process conformance checking
Gamma mixture model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-5d0c40ac6e6cbc9564d2a2a3e4720e32ba82386e0f6e4eb952fbe914b28512f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4991-6813
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s10618-025-01131-5
PQID 3231979886
PQPubID 43030
ParticipantIDs proquest_journals_3231979886
crossref_primary_10_1007_s10618_025_01131_5
springer_journals_10_1007_s10618_025_01131_5
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 1131_CR20
GJ McLachlan (1131_CR32) 2007
G Battineni (1131_CR11) 2019; 17
M Camargo (1131_CR19) 2023; 117
K Lashkevich (1131_CR27) 2024; 126
W van der Aalst (1131_CR2) 2012; 6
L Yang (1131_CR57) 2025; 158
P Buchholz (1131_CR17) 2014
Y Lai (1131_CR26) 2022; 37
1131_CR22
L Yang (1131_CR54) 2022; 210
L Yang (1131_CR56) 2025; 260
M Han (1131_CR24) 2021; 11
H R’bigui (1131_CR38) 2017; 8
F Richter (1131_CR41) 2019; 84
1131_CR30
P An (1131_CR8) 2022; 59
H Sallay (1131_CR47) 2020; 10
W Fan (1131_CR21) 2021; 44
1131_CR33
H Okamura (1131_CR34) 2013; 7
L Bagnato (1131_CR10) 2013; 28
1131_CR36
SJ Leemans (1131_CR28) 2021; 102
JJ Roldán (1131_CR46) 2018; 42
A Stevens (1131_CR49) 2023; 317
J Taghia (1131_CR50) 2014; 36
1131_CR40
1131_CR42
W van der Aalst (1131_CR1) 2012; 3
J Wang (1131_CR51) 2008; 45
L Yang (1131_CR55) 2024; 18
T Graafmans (1131_CR23) 2021; 63
1131_CR45
L Blevi (1131_CR12) 2017; 448
KP Burnham (1131_CR18) 2004; 33
M Selvam (1131_CR48) 2022; 2
T Kropp (1131_CR25) 2023; 38
1131_CR53
S Bourouis (1131_CR14) 2021; 9
P Reinecke (1131_CR39) 2012; 64
A Rogge-Solti (1131_CR44) 2015; 54
S McClean (1131_CR31) 2023; 11
A Riska (1131_CR43) 2004; 55
1131_CR3
1131_CR4
1131_CR5
1131_CR6
1131_CR7
M Rafiei (1131_CR37) 2021; 134
1131_CR9
C Liu (1131_CR29) 2019; 87
1131_CR13
VM Panaretos (1131_CR35) 2019; 6
M Wiper (1131_CR52) 2001; 10
1131_CR15
1131_CR16
References_xml – volume: 17
  start-page: 117
  issue: 4
  year: 2019
  ident: 1131_CR11
  publication-title: Int J Comput Sci Inf Security (IJCSIS)
– ident: 1131_CR15
  doi: 10.1109/ICPM49681.2020.00016
– volume: 9
  start-page: 13727
  year: 2021
  ident: 1131_CR14
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3051758
– volume: 11
  start-page: 5001
  issue: 24
  year: 2023
  ident: 1131_CR31
  publication-title: Mathematics
  doi: 10.3390/math11245001
– volume: 38
  start-page: 430
  issue: 2
  year: 2023
  ident: 1131_CR25
  publication-title: Int J Health Plann Manag
  doi: 10.1002/hpm.3593
– volume: 158
  year: 2025
  ident: 1131_CR57
  publication-title: Data Knowl Eng
  doi: 10.1016/j.datak.2025.102430
– ident: 1131_CR33
  doi: 10.1007/978-3-319-30599-8_3
– ident: 1131_CR45
  doi: 10.1007/978-3-030-11641-5_20
– ident: 1131_CR4
  doi: 10.1007/978-3-030-83014-4_1
– ident: 1131_CR9
  doi: 10.1007/978-3-030-37453-2_47
– volume: 45
  start-page: 296
  issue: 3
  year: 2008
  ident: 1131_CR51
  publication-title: J Supercomput
  doi: 10.1007/s11227-008-0173-5
– volume: 8
  start-page: 285
  issue: 4
  year: 2017
  ident: 1131_CR38
  publication-title: Int J Bus Process Integr Manag
  doi: 10.1504/IJBPIM.2017.088819
– ident: 1131_CR13
  doi: 10.1007/978-3-319-99713-1_13
– volume-title: Input modeling with phase-type distributions and Markov models: theory and applications
  year: 2014
  ident: 1131_CR17
  doi: 10.1007/978-3-319-06674-5
– volume: 102
  year: 2021
  ident: 1131_CR28
  publication-title: Inf Syst
  doi: 10.1016/j.is.2021.101724
– volume: 10
  start-page: 440
  issue: 3
  year: 2001
  ident: 1131_CR52
  publication-title: J Comput Graph Stat
  doi: 10.1198/106186001317115054
– volume: 210
  year: 2022
  ident: 1131_CR54
  publication-title: Expert Syst Appl
– volume: 28
  start-page: 1571
  issue: 4
  year: 2013
  ident: 1131_CR10
  publication-title: Comput Stat
  doi: 10.1007/s00180-012-0367-4
– volume: 3
  start-page: 1
  issue: 2
  year: 2012
  ident: 1131_CR1
  publication-title: ACM Trans Manag Inf Syst (TMIS)
  doi: 10.1145/2229156.2229157
– volume-title: The EM algorithm and extensions
  year: 2007
  ident: 1131_CR32
– ident: 1131_CR20
  doi: 10.1007/978-3-031-08848-3_5
– volume: 37
  start-page: 4277
  issue: 7
  year: 2022
  ident: 1131_CR26
  publication-title: Int J Intell Syst
  doi: 10.1002/int.22721
– ident: 1131_CR42
  doi: 10.1109/GLOCOM.2002.1189083
– volume: 63
  start-page: 277
  year: 2021
  ident: 1131_CR23
  publication-title: Bus Inf Syst Eng
  doi: 10.1007/s12599-020-00649-w
– volume: 317
  start-page: 317
  issue: 2
  year: 2023
  ident: 1131_CR49
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2023.09.010
– volume: 42
  start-page: 1187
  issue: 6
  year: 2018
  ident: 1131_CR46
  publication-title: Auton Robot
  doi: 10.1007/s10514-017-9686-1
– ident: 1131_CR53
  doi: 10.1109/SWC50871.2021.00097
– volume: 44
  start-page: 9654
  issue: 12
  year: 2021
  ident: 1131_CR21
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2021.3128271
– volume: 126
  year: 2024
  ident: 1131_CR27
  publication-title: Inf Syst
  doi: 10.1016/j.is.2024.102434
– volume: 7
  start-page: 401
  issue: 4
  year: 2013
  ident: 1131_CR34
  publication-title: Int J Software Eng Appl
– ident: 1131_CR36
  doi: 10.1007/978-3-030-37453-2_37
– volume: 18
  start-page: 1
  issue: 8
  year: 2024
  ident: 1131_CR55
  publication-title: ACM Trans Knowl Discov Data
  doi: 10.1145/3669942
– volume: 87
  start-page: 269
  year: 2019
  ident: 1131_CR29
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2018.10.025
– volume: 55
  start-page: 147
  issue: 1–2
  year: 2004
  ident: 1131_CR43
  publication-title: Perform Eval
  doi: 10.1016/S0166-5316(03)00101-9
– volume: 11
  start-page: 30
  issue: 1
  year: 2021
  ident: 1131_CR24
  publication-title: Buildings
  doi: 10.3390/buildings11010030
– ident: 1131_CR40
  doi: 10.1007/978-3-642-40725-3_13
– volume: 59
  issue: 2
  year: 2022
  ident: 1131_CR8
  publication-title: Inf Process Manag
– volume: 6
  start-page: 525
  issue: 4
  year: 2012
  ident: 1131_CR2
  publication-title: IEEE Trans Serv Comput
  doi: 10.1109/TSC.2012.25
– ident: 1131_CR30
  doi: 10.1007/978-3-319-59536-8_34
– ident: 1131_CR5
  doi: 10.1007/978-3-030-51831-8_18
– volume: 448
  start-page: 328
  year: 2017
  ident: 1131_CR12
  publication-title: BPI Chall
– volume: 64
  start-page: 3840
  issue: 12
  year: 2012
  ident: 1131_CR39
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2012.03.016
– ident: 1131_CR16
  doi: 10.1109/ICPM49681.2020.00016
– volume: 117
  year: 2023
  ident: 1131_CR19
  publication-title: Inf Syst
  doi: 10.1016/j.is.2023.102248
– ident: 1131_CR3
– volume: 134
  year: 2021
  ident: 1131_CR37
  publication-title: Data Know Eng
– ident: 1131_CR6
  doi: 10.1007/978-3-031-08848-3_1
– ident: 1131_CR7
  doi: 10.1007/978-3-030-83014-4_1
– ident: 1131_CR22
  doi: 10.1007/978-3-031-07472-1_17
– volume: 84
  start-page: 265
  year: 2019
  ident: 1131_CR41
  publication-title: Inf Syst
  doi: 10.1016/j.is.2018.11.003
– volume: 6
  start-page: 405
  issue: 1
  year: 2019
  ident: 1131_CR35
  publication-title: Annual Rev Stat Appl
  doi: 10.1146/annurev-statistics-030718-104938
– volume: 54
  start-page: 1
  year: 2015
  ident: 1131_CR44
  publication-title: Inf Syst
  doi: 10.1016/j.is.2015.04.004
– volume: 260
  year: 2025
  ident: 1131_CR56
  publication-title: Expert Syst Appl
– volume: 2
  start-page: 117
  issue: 2
  year: 2022
  ident: 1131_CR48
  publication-title: Data Anal Artif Intell
– volume: 36
  start-page: 1701
  issue: 9
  year: 2014
  ident: 1131_CR50
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2014.2306426
– volume: 10
  start-page: 6
  issue: 1
  year: 2020
  ident: 1131_CR47
  publication-title: Computers
  doi: 10.3390/computers10010006
– volume: 33
  start-page: 261
  issue: 2
  year: 2004
  ident: 1131_CR18
  publication-title: Sociol Methods Res
  doi: 10.1177/0049124104268644
SSID ssj0005230
Score 2.435289
Snippet Process task duration data often exhibit multiple peaks, indicating differences in, for example, customer ages and preferences, resource capabilities or the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 53
SubjectTerms Algorithms
Artificial Intelligence
Automation
Business operations
Chemistry and Earth Sciences
Computer Science
Customers
Data Mining and Knowledge Discovery
Datasets
Efficiency
Hospitals
Information Storage and Retrieval
Methods
Physics
Statistics for Engineering
Title Automating mixture model fitting of task durations for process conformance checking
URI https://link.springer.com/article/10.1007/s10618-025-01131-5
https://www.proquest.com/docview/3231979886
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50IvjidCpOp-TBN81o0yRLH8uYDkVfdKBPJUkTEbEbtgPxrzf9xebQh730peVoc3e5L7377gAutPOyJBQKWz-0mFrlYSmlwoaFgbQOTyQlF-b-gY8n9PaZPdeksKypdm9SkuVOvUR2477AxfhVZ5OBj9kmbDFfhKIFW9HNy91oqbQjqNjBgmImfK8my_wt5XdAWqDMlcRoGW-u2zBp3rQqM3nvz3PV198rTRzX_ZQ92K0BKIoqi9mHDZN2oN0Md0C1r3dgu6wN1dkBPEbzfFoA2_QVfbx9FSkHVA7QQfatrJpGU4tymb2jZF7ZU4YcFEazioOA3Im74SYgZyK6-Dl_CJPr0dNwjOtZDFgHPs8xSzxNPam54Vppd6iiCZFEBoYOiGcCoqRwwZ8bz3JDjQoZscqEPlXEQTpiWXAErXSammNAYpAQJ5QyXTQT004IZcJ42oSMal-TLlw2ColnVcuNeNFcuVi52K1cXK5czLrQa3QW1-6XxYFDrWHRiY134apRweL2_9JO1nv8FHZIqcWi5qwHrfxzbs4cSMnVeW2T57A55EN3nZDoB9s33m0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BEYKFjwKiUMADG1hKHNtNxgqBCrRdaKVuke3YqEK0FUklfj62k6gFwcDs6IZ3vvjZd-8O4FrZKMuSWGITJgZTIwMshJBYsyQSxvKJzGthBkPeG9OnCZtUorC8rnavU5L-T70mduNhjN34VbsnoxCzTdiyZCB2cwvGpLtW2BGV2uCYYhaHQSWV-d3G9-NoxTF_pEX9afNwAHsVTUTd0q-HsKFnTdivRzCgKiKbsO0rOFV-BC_dZTF39HP2it6nny4xgPyYG2SmvrYZzQ0qRP6GsmXp9RxZwooWpVIA2XtxrSBA1pHKPaEfw_jhfnTXw9XEBKyikBeYZYGigVBccyWVvfrQjAgiIk07JNARkSK2gHEdGK6plgkjRuokpJJY4kUMi06gMZvP9CmguJMRa5Qy5Vp-KWuEslgHSieMqlCRFtzUwKWLsjFGumqB7GBOLcyphzllLWjX2KZVkORpZLll4vql8Rbc1nivlv-2dva_z69gpzca9NP-4_D5HHaJd7-rEmtDo_hY6gtLKwp56XfRFywowpo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58oHjxsSqurpqDNw22edkeRV18I6jgrSRpIovYXWwX_PkmacuuogfPLXP4Zob52plvBuBAuyzL00RhG6cWM6siLKVU2PCUSuv4RB60MHf34vKZXb_wlykVf5h2b1uStabBb2kqquNRbo-nhG8iTrA_xerik8aYz8I886XPt2vF2dSQB611wgnDPImjRjbzu43vpWnCN3-0SEPl6a_CckMZ0Wnt4zWYMUUHVtpzDKjJzg4shGlOXa7D4-m4GnoqWryi98GnbxKgcPIG2UGYc0ZDiypZvqF8XEdAiRx5RaNaNYAcGK2aADmnav87fQOe-xdPZ5e4uZ6ANY1FhXkeaRZJLYzQSrvPIJYTSSQ17IREhhIlE1euhYmsMMyolBOrTBozRRwJI5bTTZgrhoXZApSc5MQZZVz79V_aGWE8MZE2KWc61qQLhy1w2ahekpFN1iF7mDMHcxZgzngXei22WZMwZUYdz0z97jTRhaMW78njv61t_-_1fVh8OO9nt1f3NzuwRIL3_cBYD-aqj7HZdQyjUnshiL4AptLGwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automating+mixture+model+fitting+of+task+durations+for+process+conformance+checking&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Yang%2C+Lingkai&rft.au=McClean%2C+Sally&rft.au=Faddy%2C+Malcolm&rft.au=Donnelly%2C+Mark&rft.date=2025-09-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=39&rft.issue=5&rft_id=info:doi/10.1007%2Fs10618-025-01131-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10618_025_01131_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon