Automating mixture model fitting of task durations for process conformance checking
Process task duration data often exhibit multiple peaks, indicating differences in, for example, customer ages and preferences, resource capabilities or the day/hour of a week. This heterogeneous data, which captures diverse customer patterns, should be represented using different models, resulting...
Saved in:
Published in | Data mining and knowledge discovery Vol. 39; no. 5; p. 53 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1384-5810 1573-756X |
DOI | 10.1007/s10618-025-01131-5 |
Cover
Abstract | Process task duration data often exhibit multiple peaks, indicating differences in, for example, customer ages and preferences, resource capabilities or the day/hour of a week. This heterogeneous data, which captures diverse customer patterns, should be represented using different models, resulting in an overall mixture model. This paper introduces gamma mixture models to represent various customer patterns in task duration data, with a focus on automating the fitting process. The approach involves a two-stage procedure: first, divide-and-conquer using peak-, equidistance- and cluster-based techniques to partition data, and automatically fit gamma distributions to each subset. The second stage then improves the fitted mixture model by directly searching the log-likelihood surface. The method is compared with the expectation–maximization (EM) algorithm and an open tool (HyperStar), using both artificially generated datasets and a publicly available hospital billing dataset, demonstrating its effectiveness and time efficiency in modelling heterogeneous process duration data. Furthermore, a case study on process conformance checking is conducted using the hospital billing dataset, highlighting a potential application area for the method in process mining. |
---|---|
AbstractList | Process task duration data often exhibit multiple peaks, indicating differences in, for example, customer ages and preferences, resource capabilities or the day/hour of a week. This heterogeneous data, which captures diverse customer patterns, should be represented using different models, resulting in an overall mixture model. This paper introduces gamma mixture models to represent various customer patterns in task duration data, with a focus on automating the fitting process. The approach involves a two-stage procedure: first, divide-and-conquer using peak-, equidistance- and cluster-based techniques to partition data, and automatically fit gamma distributions to each subset. The second stage then improves the fitted mixture model by directly searching the log-likelihood surface. The method is compared with the expectation–maximization (EM) algorithm and an open tool (HyperStar), using both artificially generated datasets and a publicly available hospital billing dataset, demonstrating its effectiveness and time efficiency in modelling heterogeneous process duration data. Furthermore, a case study on process conformance checking is conducted using the hospital billing dataset, highlighting a potential application area for the method in process mining. |
ArticleNumber | 53 |
Author | Burke, Kevin Faddy, Malcolm Donnelly, Mark Yang, Lingkai McClean, Sally Khan, Kashaf |
Author_xml | – sequence: 1 givenname: Lingkai orcidid: 0000-0003-4991-6813 surname: Yang fullname: Yang, Lingkai email: y1163376026@gmail.com organization: Research Institute of Mine Artificial Intelligence, Chinese Institute of Coal Science, School of Computing, Ulster University – sequence: 2 givenname: Sally surname: McClean fullname: McClean, Sally organization: School of Computing, Ulster University – sequence: 3 givenname: Malcolm surname: Faddy fullname: Faddy, Malcolm organization: Formerly Department of Mathematical Sciences, Queensland University of Technology – sequence: 4 givenname: Mark surname: Donnelly fullname: Donnelly, Mark organization: School of Computing, Ulster University – sequence: 5 givenname: Kashaf surname: Khan fullname: Khan, Kashaf organization: British Telecom – sequence: 6 givenname: Kevin surname: Burke fullname: Burke, Kevin organization: Mathematics Applications Consortium for Science and Industry, University of Limerick |
BookMark | eNp9kEtLAzEUhYNUsK3-AVcB16N5TDKZZSm-QHChgruQydzUaTtJTWZA_71pK7hzdR-cc-7lm6GJDx4QuqTkmhJS3SRKJFUFYaIglHJaiBM0paLiRSXk-yT3XJWFUJScoVlKa0KIYJxM0ctiHEJvhs6vcN99DWME3IcWtth1w2EbHB5M2uB2jFkWfMIuRLyLwUJK2Aafx954C9h-gN1kyzk6dWab4OK3ztHb3e3r8qF4er5_XC6eCsupHArRElsSYyVI29hayLJlhhkOZcUIcNYYxbiSQJyEEppaMNdATcuGKUGZE3yOro65-ZnPEdKg12GMPp_UnHFaV7VSMqvYUWVjSCmC07vY9SZ-a0r0Hp4-wtMZnj7A0_tofjSlLPYriH_R_7h-AIdLdLc |
Cites_doi | 10.1109/ICPM49681.2020.00016 10.1109/ACCESS.2021.3051758 10.3390/math11245001 10.1002/hpm.3593 10.1016/j.datak.2025.102430 10.1007/978-3-319-30599-8_3 10.1007/978-3-030-11641-5_20 10.1007/978-3-030-83014-4_1 10.1007/978-3-030-37453-2_47 10.1007/s11227-008-0173-5 10.1504/IJBPIM.2017.088819 10.1007/978-3-319-99713-1_13 10.1007/978-3-319-06674-5 10.1016/j.is.2021.101724 10.1198/106186001317115054 10.1007/s00180-012-0367-4 10.1145/2229156.2229157 10.1007/978-3-031-08848-3_5 10.1002/int.22721 10.1109/GLOCOM.2002.1189083 10.1007/s12599-020-00649-w 10.1016/j.ejor.2023.09.010 10.1007/s10514-017-9686-1 10.1109/SWC50871.2021.00097 10.1109/TPAMI.2021.3128271 10.1016/j.is.2024.102434 10.1007/978-3-030-37453-2_37 10.1145/3669942 10.1016/j.patcog.2018.10.025 10.1016/S0166-5316(03)00101-9 10.3390/buildings11010030 10.1007/978-3-642-40725-3_13 10.1109/TSC.2012.25 10.1007/978-3-319-59536-8_34 10.1007/978-3-030-51831-8_18 10.1016/j.camwa.2012.03.016 10.1016/j.is.2023.102248 10.1007/978-3-031-08848-3_1 10.1007/978-3-031-07472-1_17 10.1016/j.is.2018.11.003 10.1146/annurev-statistics-030718-104938 10.1016/j.is.2015.04.004 10.1109/TPAMI.2014.2306426 10.3390/computers10010006 10.1177/0049124104268644 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s10618-025-01131-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
ExternalDocumentID | 10_1007_s10618_025_01131_5 |
GrantInformation_xml | – fundername: British Telecom – fundername: Invest Northern Ireland funderid: http://dx.doi.org/10.13039/100013360 |
GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8FL 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BENPR BGNMA BSONS C6C CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LAK LLZTM M2O M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR -Y2 .4S 1SB 2P1 2VQ 8AO 8FE 8FG 8G5 AARHV AAYXX ABQSL ABULA ABUWG ACBXY ADHKG AEBTG AEKMD AFGCZ AFKRA AGGDS AGQPQ AHSBF AJBLW AMVHM ARCSS AZQEC BDATZ BEZIV BGLVJ BPHCQ CAG CCPQU CITATION COF DWQXO EDO EJD FINBP FRNLG FSGXE GNUQQ GUQSH H13 I-F K6V K7- M0C N2Q O9- OVD P62 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC Q2X RNI RZC RZE RZK TEORI TUS 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c316t-5d0c40ac6e6cbc9564d2a2a3e4720e32ba82386e0f6e4eb952fbe914b28512f53 |
IEDL.DBID | AGYKE |
ISSN | 1384-5810 |
IngestDate | Sat Aug 16 22:41:27 EDT 2025 Thu Jul 24 01:56:35 EDT 2025 Tue Jul 22 01:11:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Process mining Divide-and-conquer fitting Process duration modelling Nelder-Mead optimisation Process conformance checking Gamma mixture model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-5d0c40ac6e6cbc9564d2a2a3e4720e32ba82386e0f6e4eb952fbe914b28512f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4991-6813 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s10618-025-01131-5 |
PQID | 3231979886 |
PQPubID | 43030 |
ParticipantIDs | proquest_journals_3231979886 crossref_primary_10_1007_s10618_025_01131_5 springer_journals_10_1007_s10618_025_01131_5 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-01 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | 1131_CR20 GJ McLachlan (1131_CR32) 2007 G Battineni (1131_CR11) 2019; 17 M Camargo (1131_CR19) 2023; 117 K Lashkevich (1131_CR27) 2024; 126 W van der Aalst (1131_CR2) 2012; 6 L Yang (1131_CR57) 2025; 158 P Buchholz (1131_CR17) 2014 Y Lai (1131_CR26) 2022; 37 1131_CR22 L Yang (1131_CR54) 2022; 210 L Yang (1131_CR56) 2025; 260 M Han (1131_CR24) 2021; 11 H R’bigui (1131_CR38) 2017; 8 F Richter (1131_CR41) 2019; 84 1131_CR30 P An (1131_CR8) 2022; 59 H Sallay (1131_CR47) 2020; 10 W Fan (1131_CR21) 2021; 44 1131_CR33 H Okamura (1131_CR34) 2013; 7 L Bagnato (1131_CR10) 2013; 28 1131_CR36 SJ Leemans (1131_CR28) 2021; 102 JJ Roldán (1131_CR46) 2018; 42 A Stevens (1131_CR49) 2023; 317 J Taghia (1131_CR50) 2014; 36 1131_CR40 1131_CR42 W van der Aalst (1131_CR1) 2012; 3 J Wang (1131_CR51) 2008; 45 L Yang (1131_CR55) 2024; 18 T Graafmans (1131_CR23) 2021; 63 1131_CR45 L Blevi (1131_CR12) 2017; 448 KP Burnham (1131_CR18) 2004; 33 M Selvam (1131_CR48) 2022; 2 T Kropp (1131_CR25) 2023; 38 1131_CR53 S Bourouis (1131_CR14) 2021; 9 P Reinecke (1131_CR39) 2012; 64 A Rogge-Solti (1131_CR44) 2015; 54 S McClean (1131_CR31) 2023; 11 A Riska (1131_CR43) 2004; 55 1131_CR3 1131_CR4 1131_CR5 1131_CR6 1131_CR7 M Rafiei (1131_CR37) 2021; 134 1131_CR9 C Liu (1131_CR29) 2019; 87 1131_CR13 VM Panaretos (1131_CR35) 2019; 6 M Wiper (1131_CR52) 2001; 10 1131_CR15 1131_CR16 |
References_xml | – volume: 17 start-page: 117 issue: 4 year: 2019 ident: 1131_CR11 publication-title: Int J Comput Sci Inf Security (IJCSIS) – ident: 1131_CR15 doi: 10.1109/ICPM49681.2020.00016 – volume: 9 start-page: 13727 year: 2021 ident: 1131_CR14 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3051758 – volume: 11 start-page: 5001 issue: 24 year: 2023 ident: 1131_CR31 publication-title: Mathematics doi: 10.3390/math11245001 – volume: 38 start-page: 430 issue: 2 year: 2023 ident: 1131_CR25 publication-title: Int J Health Plann Manag doi: 10.1002/hpm.3593 – volume: 158 year: 2025 ident: 1131_CR57 publication-title: Data Knowl Eng doi: 10.1016/j.datak.2025.102430 – ident: 1131_CR33 doi: 10.1007/978-3-319-30599-8_3 – ident: 1131_CR45 doi: 10.1007/978-3-030-11641-5_20 – ident: 1131_CR4 doi: 10.1007/978-3-030-83014-4_1 – ident: 1131_CR9 doi: 10.1007/978-3-030-37453-2_47 – volume: 45 start-page: 296 issue: 3 year: 2008 ident: 1131_CR51 publication-title: J Supercomput doi: 10.1007/s11227-008-0173-5 – volume: 8 start-page: 285 issue: 4 year: 2017 ident: 1131_CR38 publication-title: Int J Bus Process Integr Manag doi: 10.1504/IJBPIM.2017.088819 – ident: 1131_CR13 doi: 10.1007/978-3-319-99713-1_13 – volume-title: Input modeling with phase-type distributions and Markov models: theory and applications year: 2014 ident: 1131_CR17 doi: 10.1007/978-3-319-06674-5 – volume: 102 year: 2021 ident: 1131_CR28 publication-title: Inf Syst doi: 10.1016/j.is.2021.101724 – volume: 10 start-page: 440 issue: 3 year: 2001 ident: 1131_CR52 publication-title: J Comput Graph Stat doi: 10.1198/106186001317115054 – volume: 210 year: 2022 ident: 1131_CR54 publication-title: Expert Syst Appl – volume: 28 start-page: 1571 issue: 4 year: 2013 ident: 1131_CR10 publication-title: Comput Stat doi: 10.1007/s00180-012-0367-4 – volume: 3 start-page: 1 issue: 2 year: 2012 ident: 1131_CR1 publication-title: ACM Trans Manag Inf Syst (TMIS) doi: 10.1145/2229156.2229157 – volume-title: The EM algorithm and extensions year: 2007 ident: 1131_CR32 – ident: 1131_CR20 doi: 10.1007/978-3-031-08848-3_5 – volume: 37 start-page: 4277 issue: 7 year: 2022 ident: 1131_CR26 publication-title: Int J Intell Syst doi: 10.1002/int.22721 – ident: 1131_CR42 doi: 10.1109/GLOCOM.2002.1189083 – volume: 63 start-page: 277 year: 2021 ident: 1131_CR23 publication-title: Bus Inf Syst Eng doi: 10.1007/s12599-020-00649-w – volume: 317 start-page: 317 issue: 2 year: 2023 ident: 1131_CR49 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2023.09.010 – volume: 42 start-page: 1187 issue: 6 year: 2018 ident: 1131_CR46 publication-title: Auton Robot doi: 10.1007/s10514-017-9686-1 – ident: 1131_CR53 doi: 10.1109/SWC50871.2021.00097 – volume: 44 start-page: 9654 issue: 12 year: 2021 ident: 1131_CR21 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2021.3128271 – volume: 126 year: 2024 ident: 1131_CR27 publication-title: Inf Syst doi: 10.1016/j.is.2024.102434 – volume: 7 start-page: 401 issue: 4 year: 2013 ident: 1131_CR34 publication-title: Int J Software Eng Appl – ident: 1131_CR36 doi: 10.1007/978-3-030-37453-2_37 – volume: 18 start-page: 1 issue: 8 year: 2024 ident: 1131_CR55 publication-title: ACM Trans Knowl Discov Data doi: 10.1145/3669942 – volume: 87 start-page: 269 year: 2019 ident: 1131_CR29 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2018.10.025 – volume: 55 start-page: 147 issue: 1–2 year: 2004 ident: 1131_CR43 publication-title: Perform Eval doi: 10.1016/S0166-5316(03)00101-9 – volume: 11 start-page: 30 issue: 1 year: 2021 ident: 1131_CR24 publication-title: Buildings doi: 10.3390/buildings11010030 – ident: 1131_CR40 doi: 10.1007/978-3-642-40725-3_13 – volume: 59 issue: 2 year: 2022 ident: 1131_CR8 publication-title: Inf Process Manag – volume: 6 start-page: 525 issue: 4 year: 2012 ident: 1131_CR2 publication-title: IEEE Trans Serv Comput doi: 10.1109/TSC.2012.25 – ident: 1131_CR30 doi: 10.1007/978-3-319-59536-8_34 – ident: 1131_CR5 doi: 10.1007/978-3-030-51831-8_18 – volume: 448 start-page: 328 year: 2017 ident: 1131_CR12 publication-title: BPI Chall – volume: 64 start-page: 3840 issue: 12 year: 2012 ident: 1131_CR39 publication-title: Comput Math Appl doi: 10.1016/j.camwa.2012.03.016 – ident: 1131_CR16 doi: 10.1109/ICPM49681.2020.00016 – volume: 117 year: 2023 ident: 1131_CR19 publication-title: Inf Syst doi: 10.1016/j.is.2023.102248 – ident: 1131_CR3 – volume: 134 year: 2021 ident: 1131_CR37 publication-title: Data Know Eng – ident: 1131_CR6 doi: 10.1007/978-3-031-08848-3_1 – ident: 1131_CR7 doi: 10.1007/978-3-030-83014-4_1 – ident: 1131_CR22 doi: 10.1007/978-3-031-07472-1_17 – volume: 84 start-page: 265 year: 2019 ident: 1131_CR41 publication-title: Inf Syst doi: 10.1016/j.is.2018.11.003 – volume: 6 start-page: 405 issue: 1 year: 2019 ident: 1131_CR35 publication-title: Annual Rev Stat Appl doi: 10.1146/annurev-statistics-030718-104938 – volume: 54 start-page: 1 year: 2015 ident: 1131_CR44 publication-title: Inf Syst doi: 10.1016/j.is.2015.04.004 – volume: 260 year: 2025 ident: 1131_CR56 publication-title: Expert Syst Appl – volume: 2 start-page: 117 issue: 2 year: 2022 ident: 1131_CR48 publication-title: Data Anal Artif Intell – volume: 36 start-page: 1701 issue: 9 year: 2014 ident: 1131_CR50 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2014.2306426 – volume: 10 start-page: 6 issue: 1 year: 2020 ident: 1131_CR47 publication-title: Computers doi: 10.3390/computers10010006 – volume: 33 start-page: 261 issue: 2 year: 2004 ident: 1131_CR18 publication-title: Sociol Methods Res doi: 10.1177/0049124104268644 |
SSID | ssj0005230 |
Score | 2.435289 |
Snippet | Process task duration data often exhibit multiple peaks, indicating differences in, for example, customer ages and preferences, resource capabilities or the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 53 |
SubjectTerms | Algorithms Artificial Intelligence Automation Business operations Chemistry and Earth Sciences Computer Science Customers Data Mining and Knowledge Discovery Datasets Efficiency Hospitals Information Storage and Retrieval Methods Physics Statistics for Engineering |
Title | Automating mixture model fitting of task durations for process conformance checking |
URI | https://link.springer.com/article/10.1007/s10618-025-01131-5 https://www.proquest.com/docview/3231979886 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50IvjidCpOp-TBN81o0yRLH8uYDkVfdKBPJUkTEbEbtgPxrzf9xebQh730peVoc3e5L7377gAutPOyJBQKWz-0mFrlYSmlwoaFgbQOTyQlF-b-gY8n9PaZPdeksKypdm9SkuVOvUR2477AxfhVZ5OBj9kmbDFfhKIFW9HNy91oqbQjqNjBgmImfK8my_wt5XdAWqDMlcRoGW-u2zBp3rQqM3nvz3PV198rTRzX_ZQ92K0BKIoqi9mHDZN2oN0Md0C1r3dgu6wN1dkBPEbzfFoA2_QVfbx9FSkHVA7QQfatrJpGU4tymb2jZF7ZU4YcFEazioOA3Im74SYgZyK6-Dl_CJPr0dNwjOtZDFgHPs8xSzxNPam54Vppd6iiCZFEBoYOiGcCoqRwwZ8bz3JDjQoZscqEPlXEQTpiWXAErXSammNAYpAQJ5QyXTQT004IZcJ42oSMal-TLlw2ColnVcuNeNFcuVi52K1cXK5czLrQa3QW1-6XxYFDrWHRiY134apRweL2_9JO1nv8FHZIqcWi5qwHrfxzbs4cSMnVeW2T57A55EN3nZDoB9s33m0 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BEYKFjwKiUMADG1hKHNtNxgqBCrRdaKVuke3YqEK0FUklfj62k6gFwcDs6IZ3vvjZd-8O4FrZKMuSWGITJgZTIwMshJBYsyQSxvKJzGthBkPeG9OnCZtUorC8rnavU5L-T70mduNhjN34VbsnoxCzTdiyZCB2cwvGpLtW2BGV2uCYYhaHQSWV-d3G9-NoxTF_pEX9afNwAHsVTUTd0q-HsKFnTdivRzCgKiKbsO0rOFV-BC_dZTF39HP2it6nny4xgPyYG2SmvrYZzQ0qRP6GsmXp9RxZwooWpVIA2XtxrSBA1pHKPaEfw_jhfnTXw9XEBKyikBeYZYGigVBccyWVvfrQjAgiIk07JNARkSK2gHEdGK6plgkjRuokpJJY4kUMi06gMZvP9CmguJMRa5Qy5Vp-KWuEslgHSieMqlCRFtzUwKWLsjFGumqB7GBOLcyphzllLWjX2KZVkORpZLll4vql8Rbc1nivlv-2dva_z69gpzca9NP-4_D5HHaJd7-rEmtDo_hY6gtLKwp56XfRFywowpo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58oHjxsSqurpqDNw22edkeRV18I6jgrSRpIovYXWwX_PkmacuuogfPLXP4Zob52plvBuBAuyzL00RhG6cWM6siLKVU2PCUSuv4RB60MHf34vKZXb_wlykVf5h2b1uStabBb2kqquNRbo-nhG8iTrA_xerik8aYz8I886XPt2vF2dSQB611wgnDPImjRjbzu43vpWnCN3-0SEPl6a_CckMZ0Wnt4zWYMUUHVtpzDKjJzg4shGlOXa7D4-m4GnoqWryi98GnbxKgcPIG2UGYc0ZDiypZvqF8XEdAiRx5RaNaNYAcGK2aADmnav87fQOe-xdPZ5e4uZ6ANY1FhXkeaRZJLYzQSrvPIJYTSSQ17IREhhIlE1euhYmsMMyolBOrTBozRRwJI5bTTZgrhoXZApSc5MQZZVz79V_aGWE8MZE2KWc61qQLhy1w2ahekpFN1iF7mDMHcxZgzngXei22WZMwZUYdz0z97jTRhaMW78njv61t_-_1fVh8OO9nt1f3NzuwRIL3_cBYD-aqj7HZdQyjUnshiL4AptLGwA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automating+mixture+model+fitting+of+task+durations+for+process+conformance+checking&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Yang%2C+Lingkai&rft.au=McClean%2C+Sally&rft.au=Faddy%2C+Malcolm&rft.au=Donnelly%2C+Mark&rft.date=2025-09-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=39&rft.issue=5&rft_id=info:doi/10.1007%2Fs10618-025-01131-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10618_025_01131_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |