Cordyceps militaris polysaccharide alleviates diabetic symptoms by regulating gut microbiota against TLR4/NF-κB pathway
The relationship between gut microbiota and type 2 diabetes mellitus (T2DM) has attracted increasing attention. In our work, one purified fraction a (AEPSa) was obtained from Cordyceps militaris polysaccharides, and its hypoglycemic activity and underlying mechanisms were investigated in high-fat di...
Saved in:
Published in | International journal of biological macromolecules Vol. 230; p. 123241 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.03.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0141-8130 1879-0003 1879-0003 |
DOI | 10.1016/j.ijbiomac.2023.123241 |
Cover
Abstract | The relationship between gut microbiota and type 2 diabetes mellitus (T2DM) has attracted increasing attention. In our work, one purified fraction a (AEPSa) was obtained from Cordyceps militaris polysaccharides, and its hypoglycemic activity and underlying mechanisms were investigated in high-fat diet (HFD)- and streptozotocin (STZ)-induced T2DM mice. The results revealed that AEPSa reshaped gut microbiota by increasing Allobaculum, Alistipes, Lachnospiraceae_NK4A136_group and norank_f_Muribaculaceae and decreasing Enterococcus and Ruminococcus_torques_group to inhibit the colonic toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway and upregulate intestinal tight junction protein expression, thereby improving glucose and serum lipid metabolism, hormone secretion and complications. Fecal microbiota transplantation (FMT) also confirmed these findings. These results indicated that symptomatic relief of T2DM might be related to AEPSa regulating the gut microbiota against the TLR4/NF-κB pathway to protect the intestinal barrier. Therefore, AEPSa might be developed as a prebiotic agent against T2DM by regulating gut microbiota.
•One purified fraction a (AEPSa) was obtained from C. militaris polysaccharides.•AEPSa obviously altered the composition and diversity of gut flora in T2DM mice.•AEPSa protected gut barrier by inhibiting TLR4/NF-κB pathway in T2DM mice.•AEPSa might be developed as prebiotic agents against T2DM by regulating gut flora. |
---|---|
AbstractList | The relationship between gut microbiota and type 2 diabetes mellitus (T2DM) has attracted increasing attention. In our work, one purified fraction a (AEPSa) was obtained from Cordyceps militaris polysaccharides, and its hypoglycemic activity and underlying mechanisms were investigated in high-fat diet (HFD)- and streptozotocin (STZ)-induced T2DM mice. The results revealed that AEPSa reshaped gut microbiota by increasing Allobaculum, Alistipes, Lachnospiraceae_NK4A136_group and norank_f_Muribaculaceae and decreasing Enterococcus and Ruminococcus_torques_group to inhibit the colonic toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway and upregulate intestinal tight junction protein expression, thereby improving glucose and serum lipid metabolism, hormone secretion and complications. Fecal microbiota transplantation (FMT) also confirmed these findings. These results indicated that symptomatic relief of T2DM might be related to AEPSa regulating the gut microbiota against the TLR4/NF-κB pathway to protect the intestinal barrier. Therefore, AEPSa might be developed as a prebiotic agent against T2DM by regulating gut microbiota. The relationship between gut microbiota and type 2 diabetes mellitus (T2DM) has attracted increasing attention. In our work, one purified fraction a (AEPSa) was obtained from Cordyceps militaris polysaccharides, and its hypoglycemic activity and underlying mechanisms were investigated in high-fat diet (HFD)- and streptozotocin (STZ)-induced T2DM mice. The results revealed that AEPSa reshaped gut microbiota by increasing Allobaculum, Alistipes, Lachnospiraceae_NK4A136_group and norank_f_Muribaculaceae and decreasing Enterococcus and Ruminococcus_torques_group to inhibit the colonic toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway and upregulate intestinal tight junction protein expression, thereby improving glucose and serum lipid metabolism, hormone secretion and complications. Fecal microbiota transplantation (FMT) also confirmed these findings. These results indicated that symptomatic relief of T2DM might be related to AEPSa regulating the gut microbiota against the TLR4/NF-κB pathway to protect the intestinal barrier. Therefore, AEPSa might be developed as a prebiotic agent against T2DM by regulating gut microbiota. •One purified fraction a (AEPSa) was obtained from C. militaris polysaccharides.•AEPSa obviously altered the composition and diversity of gut flora in T2DM mice.•AEPSa protected gut barrier by inhibiting TLR4/NF-κB pathway in T2DM mice.•AEPSa might be developed as prebiotic agents against T2DM by regulating gut flora. The relationship between gut microbiota and type 2 diabetes mellitus (T2DM) has attracted increasing attention. In our work, one purified fraction a (AEPSa) was obtained from Cordyceps militaris polysaccharides, and its hypoglycemic activity and underlying mechanisms were investigated in high-fat diet (HFD)- and streptozotocin (STZ)-induced T2DM mice. The results revealed that AEPSa reshaped gut microbiota by increasing Allobaculum, Alistipes, Lachnospiraceae_NK4A136_group and norank_f_Muribaculaceae and decreasing Enterococcus and Ruminococcus_torques_group to inhibit the colonic toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway and upregulate intestinal tight junction protein expression, thereby improving glucose and serum lipid metabolism, hormone secretion and complications. Fecal microbiota transplantation (FMT) also confirmed these findings. These results indicated that symptomatic relief of T2DM might be related to AEPSa regulating the gut microbiota against the TLR4/NF-κB pathway to protect the intestinal barrier. Therefore, AEPSa might be developed as a prebiotic agent against T2DM by regulating gut microbiota.The relationship between gut microbiota and type 2 diabetes mellitus (T2DM) has attracted increasing attention. In our work, one purified fraction a (AEPSa) was obtained from Cordyceps militaris polysaccharides, and its hypoglycemic activity and underlying mechanisms were investigated in high-fat diet (HFD)- and streptozotocin (STZ)-induced T2DM mice. The results revealed that AEPSa reshaped gut microbiota by increasing Allobaculum, Alistipes, Lachnospiraceae_NK4A136_group and norank_f_Muribaculaceae and decreasing Enterococcus and Ruminococcus_torques_group to inhibit the colonic toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway and upregulate intestinal tight junction protein expression, thereby improving glucose and serum lipid metabolism, hormone secretion and complications. Fecal microbiota transplantation (FMT) also confirmed these findings. These results indicated that symptomatic relief of T2DM might be related to AEPSa regulating the gut microbiota against the TLR4/NF-κB pathway to protect the intestinal barrier. Therefore, AEPSa might be developed as a prebiotic agent against T2DM by regulating gut microbiota. |
ArticleNumber | 123241 |
Author | Zhao, Huajie Li, Min Zhao, Linjing Yang, Fan Liu, Liang Wu, Zhen Jia, Le Zhou, Mingxu Li, Duan |
Author_xml | – sequence: 1 givenname: Huajie surname: Zhao fullname: Zhao, Huajie organization: School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, PR China – sequence: 2 givenname: Min surname: Li fullname: Li, Min organization: School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, PR China – sequence: 3 givenname: Liang surname: Liu fullname: Liu, Liang organization: School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, PR China – sequence: 4 givenname: Duan surname: Li fullname: Li, Duan organization: School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, PR China – sequence: 5 givenname: Linjing surname: Zhao fullname: Zhao, Linjing organization: School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, PR China – sequence: 6 givenname: Zhen surname: Wu fullname: Wu, Zhen organization: School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, PR China – sequence: 7 givenname: Mingxu surname: Zhou fullname: Zhou, Mingxu organization: School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, PR China – sequence: 8 givenname: Le surname: Jia fullname: Jia, Le email: jiale0525@163.com organization: College of Life Science, Shandong Agricultural University, Taian 271018, PR China – sequence: 9 givenname: Fan surname: Yang fullname: Yang, Fan email: yangf77@xxmu.edu.cn organization: School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36641024$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAURS1URKcDv1B5ySZTO06cRGIBjGhBGoGEytp6fvFMPUriYDst-TU-gm-qR9PZsJmNLVv33vd07hW5GNxgCLnmbMUZlzf7ld1r63rAVc5yseK5yAv-iix4XTUZY0xckAXjBc9qLtgluQphn35lyes35FJIWXCWFwvyZ-18O6MZA-1tZyN4G-joujkA4kN6tYZC15lHC9EE2lrQJlqkYe7H6PpA9Uy92U0dRDvs6G6KKQe9S7tFoLADO4RI7zc_i5vvt9m_v5_pCPHhCea35PUWumDevdxL8uv2y_36a7b5cfdt_WmToeAyZiUWUErg2iA0Yqt1sy1RtzlDI3ktsanqhiNoVjdQ6KbAohSHo9JNXaOuxJK8P-aO3v2eTIiqtwFN18Fg3BRUXosiZyJn5XlpJcsqzUtwl-T6RTrp3rRq9LYHP6sT2CT4cBQkFiF4s1WY4EbrhujBdoozdehR7dWpR3XoUR17THb5n_004azx49FoEtNHa7wKaM2AprXeYFSts-cingFniL2E |
CitedBy_id | crossref_primary_10_1016_j_fbio_2024_103699 crossref_primary_10_3389_fmicb_2024_1308866 crossref_primary_10_1016_j_fbio_2024_105059 crossref_primary_10_1016_j_jfutfo_2024_07_014 crossref_primary_10_1016_j_lfs_2024_122487 crossref_primary_10_1016_j_psj_2024_103507 crossref_primary_10_1016_j_ijbiomac_2024_136691 crossref_primary_10_1016_j_intimp_2024_111490 crossref_primary_10_1016_j_ijbiomac_2024_134784 crossref_primary_10_1016_j_ijbiomac_2024_138774 crossref_primary_10_3390_foods13101539 crossref_primary_10_1002_mnfr_202400555 crossref_primary_10_3390_molecules28207136 crossref_primary_10_1016_j_foodres_2024_114535 crossref_primary_10_26599_FMH_2025_9420046 crossref_primary_10_1016_j_ijbiomac_2024_138803 crossref_primary_10_1002_star_202300202 crossref_primary_10_1016_j_ijbiomac_2025_140221 crossref_primary_10_1039_D4FO04037F crossref_primary_10_3390_ph17040456 crossref_primary_10_1093_jas_skae194 crossref_primary_10_1007_s11694_024_02607_6 crossref_primary_10_1016_j_drudis_2024_104182 crossref_primary_10_1016_j_fbio_2024_104999 crossref_primary_10_1142_S0192415X24500563 crossref_primary_10_3390_antiox13040441 crossref_primary_10_3390_molecules28196816 crossref_primary_10_1016_j_carpta_2024_100567 crossref_primary_10_1016_j_jtcme_2024_05_007 crossref_primary_10_3389_fmicb_2024_1443743 crossref_primary_10_1016_j_intimp_2024_113426 crossref_primary_10_1016_j_jnutbio_2025_109908 crossref_primary_10_1016_j_ijbiomac_2024_135404 crossref_primary_10_26599_FMH_2025_9420049 crossref_primary_10_1016_j_ijbiomac_2024_132256 crossref_primary_10_3390_ani15040591 crossref_primary_10_1016_j_ijbiomac_2024_137427 crossref_primary_10_3390_molecules28237745 crossref_primary_10_3390_polym16141972 crossref_primary_10_1016_j_foodchem_2024_142558 crossref_primary_10_1016_j_foodres_2023_113095 crossref_primary_10_1039_D3FO04430K crossref_primary_10_3390_nutraceuticals3040036 crossref_primary_10_1007_s00203_024_03952_2 crossref_primary_10_1016_j_jff_2024_106229 |
Cites_doi | 10.1080/19490976.2020.1842990 10.1016/j.biopha.2017.09.104 10.1016/j.lfs.2019.04.011 10.1073/pnas.1814558116 10.1007/s11154-014-9288-6 10.1016/j.fct.2019.110886 10.1016/j.lfs.2019.117020 10.3390/foods10102252 10.3748/wjg.v21.i1.102 10.1096/fj.201900177R 10.1016/j.ijbiomac.2022.01.102 10.4239/wjd.v12.i1.19 10.1016/j.ijbiomac.2019.12.115 10.1186/2040-2392-4-42 10.1016/j.ijbiomac.2019.03.078 10.1038/s41598-017-05259-3 10.1210/en.2009-1294 10.1016/j.cmet.2016.04.011 10.3389/fimmu.2020.00807 10.1016/j.metabol.2021.154712 10.1016/j.intimp.2020.107272 10.1038/s41577-019-0198-4 10.1016/j.carbpol.2020.116261 10.1016/j.jff.2018.12.001 10.1016/j.ijbiomac.2022.06.071 10.1126/science.aar3318 10.1080/10408398.2018.1501658 10.1021/jf503681r 10.1038/s41575-022-00581-2 10.1016/j.jdiacomp.2020.107766 10.1016/j.foodres.2022.110945 10.1111/1348-0421.12749 10.1016/j.carbpol.2022.119626 10.1038/s41401-019-0330-9 10.1016/j.carbpol.2020.116780 10.1080/19490976.2017.1293224 10.1016/j.foodres.2017.11.023 10.1016/j.foodres.2020.109316 10.1016/j.carbpol.2016.01.040 10.3389/fcimb.2019.00455 10.1186/s40168-021-01115-9 10.1016/j.carbpol.2020.115969 10.3389/fimmu.2017.01882 10.1039/C8FO00206A 10.1016/j.biopha.2020.110681 10.3389/fimmu.2021.741371 10.1016/j.jff.2022.105152 10.1155/2018/9150807 10.3390/toxins12100619 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. Copyright © 2023 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier B.V. – notice: Copyright © 2023 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.ijbiomac.2023.123241 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1879-0003 |
ExternalDocumentID | 36641024 10_1016_j_ijbiomac_2023_123241 S0141813023001174 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UNMZH ~02 ~G- 29J 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLW HVGLF HZ~ R2- RIG SBG SSH UHS WUQ CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c316t-5c4a56a1beca93fbb9f5cbd20ce6186c97891cab089a4b94c4534c457b988cb73 |
IEDL.DBID | AIKHN |
ISSN | 0141-8130 1879-0003 |
IngestDate | Fri Sep 05 15:06:03 EDT 2025 Thu Sep 04 21:57:50 EDT 2025 Thu Apr 03 07:00:24 EDT 2025 Thu Apr 24 23:05:45 EDT 2025 Tue Jul 01 03:35:51 EDT 2025 Fri Feb 23 02:38:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gut microbiota T2DM HFD ALT FBG ADP Cr NF-κB MC STZ BUN TLR4/NF-κB pathway Hypoglycemic activity OGGT Intestinal barrier AST GLP-1 FINS FMT TC HOMA-IR TG NC LEP Cordyceps militaris polysaccharides AEPS |
Language | English |
License | Copyright © 2023 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-5c4a56a1beca93fbb9f5cbd20ce6186c97891cab089a4b94c4534c457b988cb73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 36641024 |
PQID | 2765778900 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2834203205 proquest_miscellaneous_2765778900 pubmed_primary_36641024 crossref_citationtrail_10_1016_j_ijbiomac_2023_123241 crossref_primary_10_1016_j_ijbiomac_2023_123241 elsevier_sciencedirect_doi_10_1016_j_ijbiomac_2023_123241 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 2023-03-00 2023-Mar-01 20230301 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | International journal of biological macromolecules |
PublicationTitleAlternate | Int J Biol Macromol |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liang, Wang, Luo, Fan, Zhou, Liu, Yao, Zhang, Zhong, Zhao, Zha (bb0205) 2019; 228 Liu, Xu, Huang, Xue, Zhang, Zhang, Li, Li (bb0180) 2022; 201 Su, Xin, Yang, Dong, Mei, Dai, Wang (bb0145) 2022; 214 Zhou, Yang, Xu, Huang, Ran, Yan, Mi, Lu, Sun, Zeng, Cao (bb0025) 2022; 291 Tang, Xu, Zeng, Gong (bb0080) 2021; 91 Zhang, Li, Han, Li, Zhang, Liu, Wang (bb0070) 2020; 41 Njume, Donkor, Mcainch (bb0005) 2019; 53 Koay, Wali, Luk, Macia, Cogger, Pulpitel, Wahl, Solon-Biet, Holmes, Simpson, O'Sullivan (bb0225) 2019; 33 Wang, Christophersen, Sorich, Gerber, Angley, Conlon (bb0260) 2013; 4 Huang, Zhu, Wu, Wang, Chen, Liu, Huang, Zhang, Wu, Ding (bb0090) 2022; 157 Li, Ding, Nie, Zhang, Xiong, Xie (bb0175) 2014; 62 Raza, Putaala, Hibberd, Alhoniemi, Tiihonen, Makela, Herzig (bb0230) 2017; 7 (bb0020) 2021 Liu, Zhu, Tang, Wang, Wang, Liu, Zhang (bb0135) 2016; 142 Zhang, Zeng, Cui, Liu, Dong, Sun (bb0110) 2020; 235 Wang, Wang, Li, Li, Yuan, Pan (bb0155) 2017; 95 Wu, Huang, Li, Li, Han, Zhang, Xu, Zhang, Pang, Wang, Zhang, Zhao, Wang (bb0085) 2021; 9 Thaiss, Levy, Grosheva, Zheng, Soffer, Blacher, Braverman, Tengeler, Barak, Elazar, Elinav (bb0055) 2018; 359 Hu, Wang, Li, Hou, Yin, Yang, Yang, Li, Xia, Zhou, Liu, Song, Guo (bb0105) 2019; 131 Zhang, Chen, Yi, Peng, Xie, Gou, Peng, Tang (bb0075) 2020; 12 Zhou, Ma, Han, Yang, Lv, Shao, Wang, Kang, Wang (bb0195) 2021; 12 Fu, Zhang, Wei, Lum, Nadler, Bassaganyariera, Liu (bb0160) 2010; 151 Everard, Cani (bb0170) 2014; 15 Li, Watanabe, Kimura (bb0035) 2017; 8 Xu, Cao, Wang, Wang, Cao, Yan, Wang (bb0065) 2015; 21 Yang, Wei, Liu, Zhang, Tian, Hou, Jiang (bb0045) 2021; 117 Shen, Yang, Zhu, Tian, Liang (bb0215) 2020; 131 Firmal, Shah, Chattopadhyay (bb0200) 2020; 11 Zhao, Deng, Li, Jia, Yang (bb0130) 2022; 95 de Groot, Frissen, de Clercq, Nieuwdorp (bb0060) 2017; 8 Sorini, Cosorich, Lo Conte, De Giorgi, Facciotti, Luciano, Rocchi, Ferrarese, Sanvito, Canducci, Falcone (bb0050) 2019; 116 Guo, Shi, Du, Wang, Han, Sun, Feng (bb0190) 2019; 239 Wang, Yang, Xu, Jiang, Cai, Yu (bb0220) 2020; 240 Wu, Xu, Su, Zhu, Wang, Liu, Wang, Shi, Zhang, Qin, Wang (bb0120) 2020; 248 Stern, Rutkowski, Scherer (bb0165) 2016; 23 Li, Ni, Zhang, Li, Zhang, Wu, Du, Hou, Zhang (bb0245) 2020; 64 Zhao, Yang, Wai, Zhang, Portillo, Paoli, Wu, Cheang, Liu, Carpéné, Xiao, Cao (bb0010) 2019; 59 Wang, Lu, Yan, Tian, Zheng, Leng, Wang, Jiao, Wang, Bai (bb0040) 2020; 9 He, Zheng, Guo, Huang, Yuan, Huang, Lin (bb0095) 2020; 145 Tang, Zhu, Liu, Sun, Song, Zhang (bb0140) 2018; 9 Zhang, Zhao, Zhang, Pang, Xu, Kang, Li, Zhang, Zhang, Zhang, Li, Ning, Zhao (bb0235) 2012; 7 Amirullah, Zainal, Noorlidah (bb0100) 2018; 105 Jin, Li, Xia, Li, Zhao, Li, Li, Li, Zhou, Fu, Li, Li (bb0250) 2021; 12 Yu, Yue, Hui, Zhi, Hayat, Yang, Zhang, Chu, Zhou (bb0125) 2021; 10 Gao, Meng, Liu, Wang, Zheng (bb0150) 2020; 12 Zhao, Liu, Cao, Xu, Li (bb0015) 2020; 135 Yuan, Xie, Chen, Huang, Yu, Chen, Li (bb0210) 2021; 35 Zhang, Xu, Zhang, Chen, Wu, Liu, Sui, Zhu, Zhang (bb0030) 2022; 153 Jiang, Dong, Jiang, Liang, Kang (bb0240) 2020; 136 Tilg, Zmora, Adolph, Elinav (bb0185) 2020; 20 Metwaly, Reitmeier, Haller (bb0255) 2022; 19 Zhao, Lai, Zhang, Huang, Jia (bb0115) 2018; 2018 Guo (10.1016/j.ijbiomac.2023.123241_bb0190) 2019; 239 Yuan (10.1016/j.ijbiomac.2023.123241_bb0210) 2021; 35 Wang (10.1016/j.ijbiomac.2023.123241_bb0220) 2020; 240 Wang (10.1016/j.ijbiomac.2023.123241_bb0155) 2017; 95 Su (10.1016/j.ijbiomac.2023.123241_bb0145) 2022; 214 Zhao (10.1016/j.ijbiomac.2023.123241_bb0130) 2022; 95 Liang (10.1016/j.ijbiomac.2023.123241_bb0205) 2019; 228 Zhang (10.1016/j.ijbiomac.2023.123241_bb0075) 2020; 12 Zhang (10.1016/j.ijbiomac.2023.123241_bb0110) 2020; 235 Zhou (10.1016/j.ijbiomac.2023.123241_bb0195) 2021; 12 Sorini (10.1016/j.ijbiomac.2023.123241_bb0050) 2019; 116 Wu (10.1016/j.ijbiomac.2023.123241_bb0085) 2021; 9 Everard (10.1016/j.ijbiomac.2023.123241_bb0170) 2014; 15 Huang (10.1016/j.ijbiomac.2023.123241_bb0090) 2022; 157 Wang (10.1016/j.ijbiomac.2023.123241_bb0040) 2020; 9 Jin (10.1016/j.ijbiomac.2023.123241_bb0250) 2021; 12 He (10.1016/j.ijbiomac.2023.123241_bb0095) 2020; 145 Stern (10.1016/j.ijbiomac.2023.123241_bb0165) 2016; 23 Zhang (10.1016/j.ijbiomac.2023.123241_bb0030) 2022; 153 Zhao (10.1016/j.ijbiomac.2023.123241_bb0015) 2020; 135 Wang (10.1016/j.ijbiomac.2023.123241_bb0260) 2013; 4 Metwaly (10.1016/j.ijbiomac.2023.123241_bb0255) 2022; 19 Zhou (10.1016/j.ijbiomac.2023.123241_bb0025) 2022; 291 Amirullah (10.1016/j.ijbiomac.2023.123241_bb0100) 2018; 105 Tang (10.1016/j.ijbiomac.2023.123241_bb0140) 2018; 9 Jiang (10.1016/j.ijbiomac.2023.123241_bb0240) 2020; 136 Zhang (10.1016/j.ijbiomac.2023.123241_bb0235) 2012; 7 Thaiss (10.1016/j.ijbiomac.2023.123241_bb0055) 2018; 359 Njume (10.1016/j.ijbiomac.2023.123241_bb0005) 2019; 53 Yang (10.1016/j.ijbiomac.2023.123241_bb0045) 2021; 117 de Groot (10.1016/j.ijbiomac.2023.123241_bb0060) 2017; 8 Raza (10.1016/j.ijbiomac.2023.123241_bb0230) 2017; 7 Zhao (10.1016/j.ijbiomac.2023.123241_bb0115) 2018; 2018 Fu (10.1016/j.ijbiomac.2023.123241_bb0160) 2010; 151 Zhao (10.1016/j.ijbiomac.2023.123241_bb0010) 2019; 59 Gao (10.1016/j.ijbiomac.2023.123241_bb0150) 2020; 12 Yu (10.1016/j.ijbiomac.2023.123241_bb0125) 2021; 10 Tang (10.1016/j.ijbiomac.2023.123241_bb0080) 2021; 91 Liu (10.1016/j.ijbiomac.2023.123241_bb0135) 2016; 142 Shen (10.1016/j.ijbiomac.2023.123241_bb0215) 2020; 131 Zhang (10.1016/j.ijbiomac.2023.123241_bb0070) 2020; 41 Tilg (10.1016/j.ijbiomac.2023.123241_bb0185) 2020; 20 Liu (10.1016/j.ijbiomac.2023.123241_bb0180) 2022; 201 Li (10.1016/j.ijbiomac.2023.123241_bb0245) 2020; 64 Li (10.1016/j.ijbiomac.2023.123241_bb0035) 2017; 8 Hu (10.1016/j.ijbiomac.2023.123241_bb0105) 2019; 131 Wu (10.1016/j.ijbiomac.2023.123241_bb0120) 2020; 248 Li (10.1016/j.ijbiomac.2023.123241_bb0175) 2014; 62 Koay (10.1016/j.ijbiomac.2023.123241_bb0225) 2019; 33 (10.1016/j.ijbiomac.2023.123241_bb0020) 2021 Xu (10.1016/j.ijbiomac.2023.123241_bb0065) 2015; 21 Firmal (10.1016/j.ijbiomac.2023.123241_bb0200) 2020; 11 |
References_xml | – volume: 9 start-page: 455 year: 2020 ident: bb0040 article-title: Promising treatment for type 2 diabetes: fecal microbiota transplantation reverses insulin resistance and impaired islets publication-title: Front. Cell. Infect. Microbiol. – volume: 15 start-page: 189 year: 2014 end-page: 196 ident: bb0170 article-title: Gut microbiota and GLP-1 publication-title: Rev. Endocr. Metab. Dis. – volume: 59 start-page: 830 year: 2019 end-page: 847 ident: bb0010 article-title: Regulation of glucose metabolism by bioactive phytochemicals for the management of type 2 diabetes mellitus publication-title: Crit. Rev. Food Sci. – volume: 12 year: 2020 ident: bb0075 article-title: Phlorizin ameliorates obesity-associated endotoxemia and insulin resistance in high-fat diet-fed mice by targeting the gut microbiota and intestinal barrier integrity publication-title: Gut Microbes – volume: 214 start-page: 312 year: 2022 end-page: 323 ident: bb0145 article-title: Polysaccharide from Inonotus obliquus ameliorates intestinal barrier dysfunction in mice with type 2 diabetes mellitus publication-title: Int. J. Biol. Macromol. – volume: 4 start-page: 42 year: 2013 ident: bb0260 article-title: Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder publication-title: Mol. Autism – volume: 2018 year: 2018 ident: bb0115 article-title: Antioxidant and hypoglycemic effects of acidic-extractable polysaccharides from Cordyceps militaris on type 2 diabetes mice publication-title: Oxidative Med. Cell. Longev. – volume: 9 start-page: 2300 year: 2018 end-page: 2312 ident: bb0140 article-title: The chemical structure and antiaging bioactivity of an acid polysaccharide obtained from rose buds publication-title: Food Funct. – volume: 12 start-page: 619 year: 2020 ident: bb0150 article-title: The compromised intestinal barrier induced by mycotoxins publication-title: Toxins – volume: 19 start-page: 383 year: 2022 end-page: 397 ident: bb0255 article-title: Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders publication-title: Nat. Rev. Gastroentero. Hepat. – volume: 240 year: 2020 ident: bb0220 article-title: Odd-numbered agaro-oligosaccharides alleviate type 2 diabetes mellitus and related colonic microbiota dysbiosis in mice publication-title: Carbohydr. Polym. – volume: 41 start-page: 678 year: 2020 end-page: 685 ident: bb0070 article-title: Fecal microbiota transplantation improves metabolism and gut microbiome composition in db/db mice publication-title: Acta Pharmacol. Sin. – volume: 359 start-page: 1376 year: 2018 end-page: 1383 ident: bb0055 article-title: Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection publication-title: Science – volume: 95 year: 2022 ident: bb0130 article-title: Enzymatic-extractable polysaccharides from Cordyceps militaris alleviate carbon tetrachloride-induced liver injury via Nrf2/ROS/NF-κB signaling pathway publication-title: J. Funct. Foods – volume: 7 year: 2012 ident: bb0235 article-title: Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats publication-title: Plos One – volume: 8 start-page: 253 year: 2017 end-page: 267 ident: bb0060 article-title: Fecal microbiota transplantation in metabolic syndrome: history, present and future publication-title: Gut Microbes – year: 2021 ident: bb0020 article-title: IDF Diabetes Atlas (10th ED.) – volume: 248 year: 2020 ident: bb0120 article-title: Roles of gut microbiota and metabolites in a homogalacturonan-type pectic polysaccharide from Ficus pumila Linn. fruits mediated amelioration of obesity publication-title: Carbohydr. Polym. – volume: 53 start-page: 115 year: 2019 end-page: 124 ident: bb0005 article-title: Predisposing factors of type 2 diabetes mellitus and the potential protective role of native plants with functional properties publication-title: J. Funct. Foods – volume: 239 year: 2019 ident: bb0190 article-title: HMGB1/TLR4 promotes apoptosis and reduces autophagy of hippocampal neurons in diabetes combined with OSA publication-title: Life Sci. – volume: 35 year: 2021 ident: bb0210 article-title: Impaired intestinal barrier function in type 2 diabetic patients measured by serum LPS, zonulin, and IFABP publication-title: J. Diabetes Complicat. – volume: 9 start-page: 184 year: 2021 ident: bb0085 article-title: Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis publication-title: Microbiome – volume: 135 year: 2020 ident: bb0015 article-title: A sea cucumber (Holothuria leucospilota) polysaccharide improves the gut microbiome to alleviate the symptoms of type 2 diabetes mellitus in goto-kakizaki rats publication-title: Food Chem. Toxicol. – volume: 91 year: 2021 ident: bb0080 article-title: Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF-kB signaling pathway publication-title: Int. Immunopharmacol. – volume: 131 year: 2020 ident: bb0215 article-title: Protective effects of syringin against oxidative stress and inflammation in diabetic pregnant rats via TLR4/MyD88/NF-kappaB signaling pathway publication-title: Biomed. Pharmacother. – volume: 21 start-page: 102 year: 2015 end-page: 111 ident: bb0065 article-title: Fecal microbiota transplantation broadening its application beyond intestinal disorders publication-title: World J. Gastroenterol. – volume: 151 start-page: 3026 year: 2010 end-page: 3037 ident: bb0160 article-title: Genistein induces pancreatic β-cell proliferation through activation of multiple signaling pathways and prevents insulin-deficient diabetes in mice publication-title: Endocrinology – volume: 228 start-page: 258 year: 2019 end-page: 265 ident: bb0205 article-title: Toll-like receptor 4 promotes high glucose-induced catabolic and inflammatory responses in chondrocytes in an NF-κB-dependent manner publication-title: Life Sci. – volume: 116 start-page: 15140 year: 2019 end-page: 15149 ident: bb0050 article-title: Loss of gut barrier integrity triggers activation of islet-reactive T cells and autoimmune diabetes publication-title: Proc.Natl. Acad. Sci. USA – volume: 33 start-page: 8033 year: 2019 end-page: 8042 ident: bb0225 article-title: Ingestion of resistant starch by mice markedly increases microbiome-derived metabolites publication-title: FASEB J. – volume: 62 start-page: 11884 year: 2014 end-page: 11891 ident: bb0175 article-title: Carrot juice fermented with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats publication-title: J. Agric. Food Chem. – volume: 142 start-page: 63 year: 2016 end-page: 72 ident: bb0135 article-title: Structural properties of polysaccharides from cultivated fruit bodies and mycelium of Cordyceps militaris publication-title: Carbohydr. Polym. – volume: 145 start-page: 11 year: 2020 end-page: 20 ident: bb0095 article-title: Structural characterization and immune-enhancing activity of a novel high-molecular-weight polysaccharide from Cordyceps militaris publication-title: Int. J. Biol. Macromol. – volume: 64 start-page: 23 year: 2020 end-page: 32 ident: bb0245 article-title: Effect of cinnamon essential oil on gut microbiota in the mouse model of dextran sodium sulfate-induced colitis publication-title: Microbiol. Immunol. – volume: 131 start-page: 264 year: 2019 end-page: 272 ident: bb0105 article-title: Structural characterisation and cholesterol efflux improving capacity of the novel polysaccharides from Cordyceps militaris publication-title: Int. J. Biol. Macromol. – volume: 291 year: 2022 ident: bb0025 article-title: The polysaccharides from the fruits of Lycium barbarum L. confer anti-diabetic effect by regulating gut microbiota and intestinal barrier publication-title: Carbohydr. Polym. – volume: 8 start-page: 1882 year: 2017 ident: bb0035 article-title: Gut microbiota dysbiosis drives and implies novel therapeutic strategies for diabetes mellitus and related metabolic diseases publication-title: Front. Immunol. – volume: 11 start-page: 807 year: 2020 ident: bb0200 article-title: Insight into TLR4-mediated immunomodulation in normal pregnancy and related disorders publication-title: Front. Immunol. – volume: 7 start-page: 5294 year: 2017 ident: bb0230 article-title: Polydextrose changes the gut microbiome and attenuates fasting triglyceride and cholesterol levels in Western diet fed mice publication-title: Sci. Rep. – volume: 95 start-page: 1669 year: 2017 end-page: 1677 ident: bb0155 article-title: Anti-diabetic effects of Inonotus obliquus polysaccharides in streptozotocin-induced type 2 diabetic mice and potential mechanism via PI3K-Akt signal pathway publication-title: Biomed. Pharmacother. – volume: 12 start-page: 19 year: 2021 end-page: 46 ident: bb0195 article-title: Metformin regulates inflammation and fibrosis in diabetic kidney disease through TNC/TLR4/NF-κB/miR-155-5p inflammatory loop publication-title: WorldJ. Diabetes – volume: 23 start-page: 770 year: 2016 end-page: 784 ident: bb0165 article-title: Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk publication-title: Cell Metab. – volume: 12 year: 2021 ident: bb0250 article-title: Probiotic interventions alleviate food allergy symptoms correlated with cesarean section: a murine model publication-title: Front. Immunol. – volume: 153 year: 2022 ident: bb0030 article-title: Licorice extract ameliorates hyperglycemia through reshaping gut microbiota structure and inhibiting TLR4/NF-κB signaling pathway in type 2 diabetic mice publication-title: Food Res. Int. – volume: 117 year: 2021 ident: bb0045 article-title: Role of the gut microbiota in type 2 diabetes and related diseases publication-title: Metabolism – volume: 20 start-page: 40 year: 2020 end-page: 54 ident: bb0185 article-title: The intestinal microbiota fuelling metabolic inflammation publication-title: Nat. Rev. Immunol. – volume: 235 year: 2020 ident: bb0110 article-title: Structural characterization, antioxidant and immunomodulatory activities of a neutral polysaccharide from Cordyceps militaris cultivated on hull-less barley publication-title: Carbohydr. Polym. – volume: 10 start-page: 2252 year: 2021 ident: bb0125 article-title: Antihyperlipidemia and gut microbiota community regulation effects of selenium-rich Cordyceps militaris polysaccharides on the high-fat diet-fed mice model publication-title: Foods – volume: 105 start-page: 517 year: 2018 end-page: 536 ident: bb0100 article-title: The potential applications of mushrooms against some facets of atherosclerosis: a review publication-title: Food Res. Int. – volume: 201 start-page: 616 year: 2022 end-page: 629 ident: bb0180 article-title: Fucoidan ameliorates glucose metabolism by the improvement of intestinal barrier and inflammatory damage in type 2 diabetic rats publication-title: Int. J. Biol. Macromol. – volume: 136 year: 2020 ident: bb0240 article-title: Effect of Durio zibethinus rind polysaccharide on functional constipation and intestinal microbiota in rats publication-title: Food Res. Int. – volume: 157 year: 2022 ident: bb0090 article-title: Polysaccharides from Cordyceps militaris prevent obesity in association with modulating gut microbiota and metabolites in high-fat diet-fed mice publication-title: Carbohydr. Polym. – volume: 12 year: 2020 ident: 10.1016/j.ijbiomac.2023.123241_bb0075 article-title: Phlorizin ameliorates obesity-associated endotoxemia and insulin resistance in high-fat diet-fed mice by targeting the gut microbiota and intestinal barrier integrity publication-title: Gut Microbes doi: 10.1080/19490976.2020.1842990 – volume: 95 start-page: 1669 year: 2017 ident: 10.1016/j.ijbiomac.2023.123241_bb0155 article-title: Anti-diabetic effects of Inonotus obliquus polysaccharides in streptozotocin-induced type 2 diabetic mice and potential mechanism via PI3K-Akt signal pathway publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2017.09.104 – volume: 228 start-page: 258 year: 2019 ident: 10.1016/j.ijbiomac.2023.123241_bb0205 article-title: Toll-like receptor 4 promotes high glucose-induced catabolic and inflammatory responses in chondrocytes in an NF-κB-dependent manner publication-title: Life Sci. doi: 10.1016/j.lfs.2019.04.011 – volume: 7 year: 2012 ident: 10.1016/j.ijbiomac.2023.123241_bb0235 article-title: Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats publication-title: Plos One – volume: 116 start-page: 15140 year: 2019 ident: 10.1016/j.ijbiomac.2023.123241_bb0050 article-title: Loss of gut barrier integrity triggers activation of islet-reactive T cells and autoimmune diabetes publication-title: Proc.Natl. Acad. Sci. USA doi: 10.1073/pnas.1814558116 – volume: 15 start-page: 189 year: 2014 ident: 10.1016/j.ijbiomac.2023.123241_bb0170 article-title: Gut microbiota and GLP-1 publication-title: Rev. Endocr. Metab. Dis. doi: 10.1007/s11154-014-9288-6 – year: 2021 ident: 10.1016/j.ijbiomac.2023.123241_bb0020 – volume: 135 year: 2020 ident: 10.1016/j.ijbiomac.2023.123241_bb0015 article-title: A sea cucumber (Holothuria leucospilota) polysaccharide improves the gut microbiome to alleviate the symptoms of type 2 diabetes mellitus in goto-kakizaki rats publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2019.110886 – volume: 239 year: 2019 ident: 10.1016/j.ijbiomac.2023.123241_bb0190 article-title: HMGB1/TLR4 promotes apoptosis and reduces autophagy of hippocampal neurons in diabetes combined with OSA publication-title: Life Sci. doi: 10.1016/j.lfs.2019.117020 – volume: 10 start-page: 2252 year: 2021 ident: 10.1016/j.ijbiomac.2023.123241_bb0125 article-title: Antihyperlipidemia and gut microbiota community regulation effects of selenium-rich Cordyceps militaris polysaccharides on the high-fat diet-fed mice model publication-title: Foods doi: 10.3390/foods10102252 – volume: 21 start-page: 102 year: 2015 ident: 10.1016/j.ijbiomac.2023.123241_bb0065 article-title: Fecal microbiota transplantation broadening its application beyond intestinal disorders publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v21.i1.102 – volume: 33 start-page: 8033 year: 2019 ident: 10.1016/j.ijbiomac.2023.123241_bb0225 article-title: Ingestion of resistant starch by mice markedly increases microbiome-derived metabolites publication-title: FASEB J. doi: 10.1096/fj.201900177R – volume: 201 start-page: 616 year: 2022 ident: 10.1016/j.ijbiomac.2023.123241_bb0180 article-title: Fucoidan ameliorates glucose metabolism by the improvement of intestinal barrier and inflammatory damage in type 2 diabetic rats publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2022.01.102 – volume: 12 start-page: 19 year: 2021 ident: 10.1016/j.ijbiomac.2023.123241_bb0195 article-title: Metformin regulates inflammation and fibrosis in diabetic kidney disease through TNC/TLR4/NF-κB/miR-155-5p inflammatory loop publication-title: WorldJ. Diabetes doi: 10.4239/wjd.v12.i1.19 – volume: 145 start-page: 11 year: 2020 ident: 10.1016/j.ijbiomac.2023.123241_bb0095 article-title: Structural characterization and immune-enhancing activity of a novel high-molecular-weight polysaccharide from Cordyceps militaris publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.12.115 – volume: 4 start-page: 42 year: 2013 ident: 10.1016/j.ijbiomac.2023.123241_bb0260 article-title: Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder publication-title: Mol. Autism doi: 10.1186/2040-2392-4-42 – volume: 131 start-page: 264 year: 2019 ident: 10.1016/j.ijbiomac.2023.123241_bb0105 article-title: Structural characterisation and cholesterol efflux improving capacity of the novel polysaccharides from Cordyceps militaris publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.03.078 – volume: 7 start-page: 5294 year: 2017 ident: 10.1016/j.ijbiomac.2023.123241_bb0230 article-title: Polydextrose changes the gut microbiome and attenuates fasting triglyceride and cholesterol levels in Western diet fed mice publication-title: Sci. Rep. doi: 10.1038/s41598-017-05259-3 – volume: 151 start-page: 3026 year: 2010 ident: 10.1016/j.ijbiomac.2023.123241_bb0160 article-title: Genistein induces pancreatic β-cell proliferation through activation of multiple signaling pathways and prevents insulin-deficient diabetes in mice publication-title: Endocrinology doi: 10.1210/en.2009-1294 – volume: 23 start-page: 770 year: 2016 ident: 10.1016/j.ijbiomac.2023.123241_bb0165 article-title: Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.04.011 – volume: 11 start-page: 807 year: 2020 ident: 10.1016/j.ijbiomac.2023.123241_bb0200 article-title: Insight into TLR4-mediated immunomodulation in normal pregnancy and related disorders publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.00807 – volume: 117 year: 2021 ident: 10.1016/j.ijbiomac.2023.123241_bb0045 article-title: Role of the gut microbiota in type 2 diabetes and related diseases publication-title: Metabolism doi: 10.1016/j.metabol.2021.154712 – volume: 91 year: 2021 ident: 10.1016/j.ijbiomac.2023.123241_bb0080 article-title: Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF-kB signaling pathway publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2020.107272 – volume: 20 start-page: 40 year: 2020 ident: 10.1016/j.ijbiomac.2023.123241_bb0185 article-title: The intestinal microbiota fuelling metabolic inflammation publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-019-0198-4 – volume: 240 year: 2020 ident: 10.1016/j.ijbiomac.2023.123241_bb0220 article-title: Odd-numbered agaro-oligosaccharides alleviate type 2 diabetes mellitus and related colonic microbiota dysbiosis in mice publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.116261 – volume: 157 year: 2022 ident: 10.1016/j.ijbiomac.2023.123241_bb0090 article-title: Polysaccharides from Cordyceps militaris prevent obesity in association with modulating gut microbiota and metabolites in high-fat diet-fed mice publication-title: Carbohydr. Polym. – volume: 53 start-page: 115 year: 2019 ident: 10.1016/j.ijbiomac.2023.123241_bb0005 article-title: Predisposing factors of type 2 diabetes mellitus and the potential protective role of native plants with functional properties publication-title: J. Funct. Foods doi: 10.1016/j.jff.2018.12.001 – volume: 214 start-page: 312 year: 2022 ident: 10.1016/j.ijbiomac.2023.123241_bb0145 article-title: Polysaccharide from Inonotus obliquus ameliorates intestinal barrier dysfunction in mice with type 2 diabetes mellitus publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2022.06.071 – volume: 359 start-page: 1376 year: 2018 ident: 10.1016/j.ijbiomac.2023.123241_bb0055 article-title: Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection publication-title: Science doi: 10.1126/science.aar3318 – volume: 59 start-page: 830 year: 2019 ident: 10.1016/j.ijbiomac.2023.123241_bb0010 article-title: Regulation of glucose metabolism by bioactive phytochemicals for the management of type 2 diabetes mellitus publication-title: Crit. Rev. Food Sci. doi: 10.1080/10408398.2018.1501658 – volume: 62 start-page: 11884 year: 2014 ident: 10.1016/j.ijbiomac.2023.123241_bb0175 article-title: Carrot juice fermented with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats publication-title: J. Agric. Food Chem. doi: 10.1021/jf503681r – volume: 19 start-page: 383 year: 2022 ident: 10.1016/j.ijbiomac.2023.123241_bb0255 article-title: Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders publication-title: Nat. Rev. Gastroentero. Hepat. doi: 10.1038/s41575-022-00581-2 – volume: 35 year: 2021 ident: 10.1016/j.ijbiomac.2023.123241_bb0210 article-title: Impaired intestinal barrier function in type 2 diabetic patients measured by serum LPS, zonulin, and IFABP publication-title: J. Diabetes Complicat. doi: 10.1016/j.jdiacomp.2020.107766 – volume: 153 year: 2022 ident: 10.1016/j.ijbiomac.2023.123241_bb0030 article-title: Licorice extract ameliorates hyperglycemia through reshaping gut microbiota structure and inhibiting TLR4/NF-κB signaling pathway in type 2 diabetic mice publication-title: Food Res. Int. doi: 10.1016/j.foodres.2022.110945 – volume: 64 start-page: 23 year: 2020 ident: 10.1016/j.ijbiomac.2023.123241_bb0245 article-title: Effect of cinnamon essential oil on gut microbiota in the mouse model of dextran sodium sulfate-induced colitis publication-title: Microbiol. Immunol. doi: 10.1111/1348-0421.12749 – volume: 291 year: 2022 ident: 10.1016/j.ijbiomac.2023.123241_bb0025 article-title: The polysaccharides from the fruits of Lycium barbarum L. confer anti-diabetic effect by regulating gut microbiota and intestinal barrier publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2022.119626 – volume: 41 start-page: 678 year: 2020 ident: 10.1016/j.ijbiomac.2023.123241_bb0070 article-title: Fecal microbiota transplantation improves metabolism and gut microbiome composition in db/db mice publication-title: Acta Pharmacol. Sin. doi: 10.1038/s41401-019-0330-9 – volume: 248 year: 2020 ident: 10.1016/j.ijbiomac.2023.123241_bb0120 article-title: Roles of gut microbiota and metabolites in a homogalacturonan-type pectic polysaccharide from Ficus pumila Linn. fruits mediated amelioration of obesity publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.116780 – volume: 8 start-page: 253 year: 2017 ident: 10.1016/j.ijbiomac.2023.123241_bb0060 article-title: Fecal microbiota transplantation in metabolic syndrome: history, present and future publication-title: Gut Microbes doi: 10.1080/19490976.2017.1293224 – volume: 105 start-page: 517 year: 2018 ident: 10.1016/j.ijbiomac.2023.123241_bb0100 article-title: The potential applications of mushrooms against some facets of atherosclerosis: a review publication-title: Food Res. Int. doi: 10.1016/j.foodres.2017.11.023 – volume: 136 year: 2020 ident: 10.1016/j.ijbiomac.2023.123241_bb0240 article-title: Effect of Durio zibethinus rind polysaccharide on functional constipation and intestinal microbiota in rats publication-title: Food Res. Int. doi: 10.1016/j.foodres.2020.109316 – volume: 142 start-page: 63 year: 2016 ident: 10.1016/j.ijbiomac.2023.123241_bb0135 article-title: Structural properties of polysaccharides from cultivated fruit bodies and mycelium of Cordyceps militaris publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2016.01.040 – volume: 9 start-page: 455 year: 2020 ident: 10.1016/j.ijbiomac.2023.123241_bb0040 article-title: Promising treatment for type 2 diabetes: fecal microbiota transplantation reverses insulin resistance and impaired islets publication-title: Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2019.00455 – volume: 9 start-page: 184 year: 2021 ident: 10.1016/j.ijbiomac.2023.123241_bb0085 article-title: Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis publication-title: Microbiome doi: 10.1186/s40168-021-01115-9 – volume: 235 year: 2020 ident: 10.1016/j.ijbiomac.2023.123241_bb0110 article-title: Structural characterization, antioxidant and immunomodulatory activities of a neutral polysaccharide from Cordyceps militaris cultivated on hull-less barley publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.115969 – volume: 8 start-page: 1882 year: 2017 ident: 10.1016/j.ijbiomac.2023.123241_bb0035 article-title: Gut microbiota dysbiosis drives and implies novel therapeutic strategies for diabetes mellitus and related metabolic diseases publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.01882 – volume: 9 start-page: 2300 year: 2018 ident: 10.1016/j.ijbiomac.2023.123241_bb0140 article-title: The chemical structure and antiaging bioactivity of an acid polysaccharide obtained from rose buds publication-title: Food Funct. doi: 10.1039/C8FO00206A – volume: 131 year: 2020 ident: 10.1016/j.ijbiomac.2023.123241_bb0215 article-title: Protective effects of syringin against oxidative stress and inflammation in diabetic pregnant rats via TLR4/MyD88/NF-kappaB signaling pathway publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2020.110681 – volume: 12 year: 2021 ident: 10.1016/j.ijbiomac.2023.123241_bb0250 article-title: Probiotic interventions alleviate food allergy symptoms correlated with cesarean section: a murine model publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.741371 – volume: 95 year: 2022 ident: 10.1016/j.ijbiomac.2023.123241_bb0130 article-title: Enzymatic-extractable polysaccharides from Cordyceps militaris alleviate carbon tetrachloride-induced liver injury via Nrf2/ROS/NF-κB signaling pathway publication-title: J. Funct. Foods doi: 10.1016/j.jff.2022.105152 – volume: 2018 year: 2018 ident: 10.1016/j.ijbiomac.2023.123241_bb0115 article-title: Antioxidant and hypoglycemic effects of acidic-extractable polysaccharides from Cordyceps militaris on type 2 diabetes mice publication-title: Oxidative Med. Cell. Longev. doi: 10.1155/2018/9150807 – volume: 12 start-page: 619 year: 2020 ident: 10.1016/j.ijbiomac.2023.123241_bb0150 article-title: The compromised intestinal barrier induced by mycotoxins publication-title: Toxins doi: 10.3390/toxins12100619 |
SSID | ssj0006518 |
Score | 2.5551255 |
Snippet | The relationship between gut microbiota and type 2 diabetes mellitus (T2DM) has attracted increasing attention. In our work, one purified fraction a (AEPSa)... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 123241 |
SubjectTerms | Animals blood lipids Cordyceps - metabolism Cordyceps militaris Cordyceps militaris polysaccharides Diabetes Mellitus, Type 2 - drug therapy Enterococcus Gastrointestinal Microbiome glucose glycemic effect Gut microbiota high fat diet hormone secretion Hypoglycemic activity Intestinal barrier intestinal microorganisms intestines lipid metabolism Mice NF-kappa B - metabolism noninsulin-dependent diabetes mellitus polysaccharides Polysaccharides - pharmacology prebiotics protein synthesis streptozotocin tight junctions TLR4/NF-κB pathway Toll-like receptor 4 Toll-Like Receptor 4 - metabolism |
Title | Cordyceps militaris polysaccharide alleviates diabetic symptoms by regulating gut microbiota against TLR4/NF-κB pathway |
URI | https://dx.doi.org/10.1016/j.ijbiomac.2023.123241 https://www.ncbi.nlm.nih.gov/pubmed/36641024 https://www.proquest.com/docview/2765778900 https://www.proquest.com/docview/2834203205 |
Volume | 230 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtswECUS59Beiu512gYs0KssUVwkHlOjhrv5UCRAbgRJUYGM2BYiOYku_bB-RL4pHC1Ge0hz6EWABI5AcCjOIzXzHkIffQQ2xmYusFLzgGWpDExEXMCZFRmngugY6p1_LMT8lH0942d7aDrUwkBaZb_2d2t6u1r3T8J-NMOyKEJIS_LhCURvWmIzto8OYioFH6GD4y_f5ovdgix4e8wH7QMw-KNQeDkpllDnroHNMKaTFmCQ-2LUfRi0jUWzp-hJDyLxcdfPZ2jPrZ-jR9NBu-0Fupn6PWVjXVnhVUvD7T9lXG4umkpbqLMqModBROWqAKiJuwPYwuKqWZX1ZlVh0-DLTqXehzZ8vq39ezrKplpjfa4LjyrxyfefLFzMgtvfnzAoG1_r5iU6nX0-mc6DXmMhsJSIOuCWaS408a7UkubGyJxbk8WRdcCkb_0mUxKrTZRKzYxklnEKl8TINLUmoa_QaL1ZuzcIa9CmikieEr8FMzmw2Hh4Rlic0YRFuR0jPoyqsj0BOehgXKgh02ypBm8o8IbqvDFG4c6u7Cg4HrSQg9PUX5NJ-TjxoO2HwcvKOw1-n-i122wrFSeCJ1A3HP2jTUpZq0nPx-h1N0V2faZCMA_n2OF_9O4tegx3XRLcOzSqL7fuvUdFtTlC-5Nf5Kif-3f9Zg5Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVKWZQNorw6QMFIbDOJ40fiJYw6GmA6CzSVurNsx6ky6sxETQbIhg_jI_gmfPMoZVG6YJNFch1Zvo7vsXPvOQi98xHYGJu5wErNA5alMjARcQFnVmScCqJjqHc-XYjZGft0zs_30GSohYG0yn7t79b0drXu74T9aIZlUYSQluTDE4jetMRm7B66zzhNIK9v_ONPnofg7SEfWAdgfqNMeDUuVlDlroHLMKbjFl6Q2yLUbQi0jUTTR-hhDyHx-66Xh2jPbR6jg8mg3PYEfZ_4HWVjXVnhdUvC7T9kXG4vm0pbqLIqModBQuVrAUATd8evhcVVsy7r7brCpsFXnUa9D2z4Ylf793SETbXG-kIXHlPi5fwLCxfT4NfPDxh0jb_p5ik6m54sJ7OgV1gILCWiDrhlmgtNvCO1pLkxMufWZHFkHfDoW7_FlMRqE6VSMyOZ9QMMl8TINLUmoc_Q_ma7cUcIa1CmikieEr8BMzlw2HhwRlic0YRFuR0hPoyqsj39OKhgXKohz2ylBm8o8IbqvDFC4XW7siPguLOFHJym_ppKykeJO9u-HbysvNPg54neuO2uUnEieAJVw9E_bFLKWkV6PkLPuyly3WcqBPNgjr34j969QQez5elczT8uPr9ED-BJlw73Cu3XVzt37PFRbV638_83TaoPGw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cordyceps+militaris+polysaccharide+alleviates+diabetic+symptoms+by+regulating+gut+microbiota+against+TLR4%2FNF-%CE%BAB+pathway&rft.jtitle=International+journal+of+biological+macromolecules&rft.au=Zhao%2C+Huajie&rft.au=Li%2C+Min&rft.au=Liu%2C+Liang&rft.au=Li%2C+Duan&rft.date=2023-03-01&rft.pub=Elsevier+B.V&rft.issn=0141-8130&rft.eissn=1879-0003&rft.volume=230&rft_id=info:doi/10.1016%2Fj.ijbiomac.2023.123241&rft.externalDocID=S0141813023001174 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-8130&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-8130&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-8130&client=summon |