Cordyceps militaris polysaccharide alleviates diabetic symptoms by regulating gut microbiota against TLR4/NF-κB pathway

The relationship between gut microbiota and type 2 diabetes mellitus (T2DM) has attracted increasing attention. In our work, one purified fraction a (AEPSa) was obtained from Cordyceps militaris polysaccharides, and its hypoglycemic activity and underlying mechanisms were investigated in high-fat di...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 230; p. 123241
Main Authors Zhao, Huajie, Li, Min, Liu, Liang, Li, Duan, Zhao, Linjing, Wu, Zhen, Zhou, Mingxu, Jia, Le, Yang, Fan
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.03.2023
Subjects
Online AccessGet full text
ISSN0141-8130
1879-0003
1879-0003
DOI10.1016/j.ijbiomac.2023.123241

Cover

Abstract The relationship between gut microbiota and type 2 diabetes mellitus (T2DM) has attracted increasing attention. In our work, one purified fraction a (AEPSa) was obtained from Cordyceps militaris polysaccharides, and its hypoglycemic activity and underlying mechanisms were investigated in high-fat diet (HFD)- and streptozotocin (STZ)-induced T2DM mice. The results revealed that AEPSa reshaped gut microbiota by increasing Allobaculum, Alistipes, Lachnospiraceae_NK4A136_group and norank_f_Muribaculaceae and decreasing Enterococcus and Ruminococcus_torques_group to inhibit the colonic toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway and upregulate intestinal tight junction protein expression, thereby improving glucose and serum lipid metabolism, hormone secretion and complications. Fecal microbiota transplantation (FMT) also confirmed these findings. These results indicated that symptomatic relief of T2DM might be related to AEPSa regulating the gut microbiota against the TLR4/NF-κB pathway to protect the intestinal barrier. Therefore, AEPSa might be developed as a prebiotic agent against T2DM by regulating gut microbiota. •One purified fraction a (AEPSa) was obtained from C. militaris polysaccharides.•AEPSa obviously altered the composition and diversity of gut flora in T2DM mice.•AEPSa protected gut barrier by inhibiting TLR4/NF-κB pathway in T2DM mice.•AEPSa might be developed as prebiotic agents against T2DM by regulating gut flora.
AbstractList The relationship between gut microbiota and type 2 diabetes mellitus (T2DM) has attracted increasing attention. In our work, one purified fraction a (AEPSa) was obtained from Cordyceps militaris polysaccharides, and its hypoglycemic activity and underlying mechanisms were investigated in high-fat diet (HFD)- and streptozotocin (STZ)-induced T2DM mice. The results revealed that AEPSa reshaped gut microbiota by increasing Allobaculum, Alistipes, Lachnospiraceae_NK4A136_group and norank_f_Muribaculaceae and decreasing Enterococcus and Ruminococcus_torques_group to inhibit the colonic toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway and upregulate intestinal tight junction protein expression, thereby improving glucose and serum lipid metabolism, hormone secretion and complications. Fecal microbiota transplantation (FMT) also confirmed these findings. These results indicated that symptomatic relief of T2DM might be related to AEPSa regulating the gut microbiota against the TLR4/NF-κB pathway to protect the intestinal barrier. Therefore, AEPSa might be developed as a prebiotic agent against T2DM by regulating gut microbiota.
The relationship between gut microbiota and type 2 diabetes mellitus (T2DM) has attracted increasing attention. In our work, one purified fraction a (AEPSa) was obtained from Cordyceps militaris polysaccharides, and its hypoglycemic activity and underlying mechanisms were investigated in high-fat diet (HFD)- and streptozotocin (STZ)-induced T2DM mice. The results revealed that AEPSa reshaped gut microbiota by increasing Allobaculum, Alistipes, Lachnospiraceae_NK4A136_group and norank_f_Muribaculaceae and decreasing Enterococcus and Ruminococcus_torques_group to inhibit the colonic toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway and upregulate intestinal tight junction protein expression, thereby improving glucose and serum lipid metabolism, hormone secretion and complications. Fecal microbiota transplantation (FMT) also confirmed these findings. These results indicated that symptomatic relief of T2DM might be related to AEPSa regulating the gut microbiota against the TLR4/NF-κB pathway to protect the intestinal barrier. Therefore, AEPSa might be developed as a prebiotic agent against T2DM by regulating gut microbiota. •One purified fraction a (AEPSa) was obtained from C. militaris polysaccharides.•AEPSa obviously altered the composition and diversity of gut flora in T2DM mice.•AEPSa protected gut barrier by inhibiting TLR4/NF-κB pathway in T2DM mice.•AEPSa might be developed as prebiotic agents against T2DM by regulating gut flora.
The relationship between gut microbiota and type 2 diabetes mellitus (T2DM) has attracted increasing attention. In our work, one purified fraction a (AEPSa) was obtained from Cordyceps militaris polysaccharides, and its hypoglycemic activity and underlying mechanisms were investigated in high-fat diet (HFD)- and streptozotocin (STZ)-induced T2DM mice. The results revealed that AEPSa reshaped gut microbiota by increasing Allobaculum, Alistipes, Lachnospiraceae_NK4A136_group and norank_f_Muribaculaceae and decreasing Enterococcus and Ruminococcus_torques_group to inhibit the colonic toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway and upregulate intestinal tight junction protein expression, thereby improving glucose and serum lipid metabolism, hormone secretion and complications. Fecal microbiota transplantation (FMT) also confirmed these findings. These results indicated that symptomatic relief of T2DM might be related to AEPSa regulating the gut microbiota against the TLR4/NF-κB pathway to protect the intestinal barrier. Therefore, AEPSa might be developed as a prebiotic agent against T2DM by regulating gut microbiota.The relationship between gut microbiota and type 2 diabetes mellitus (T2DM) has attracted increasing attention. In our work, one purified fraction a (AEPSa) was obtained from Cordyceps militaris polysaccharides, and its hypoglycemic activity and underlying mechanisms were investigated in high-fat diet (HFD)- and streptozotocin (STZ)-induced T2DM mice. The results revealed that AEPSa reshaped gut microbiota by increasing Allobaculum, Alistipes, Lachnospiraceae_NK4A136_group and norank_f_Muribaculaceae and decreasing Enterococcus and Ruminococcus_torques_group to inhibit the colonic toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway and upregulate intestinal tight junction protein expression, thereby improving glucose and serum lipid metabolism, hormone secretion and complications. Fecal microbiota transplantation (FMT) also confirmed these findings. These results indicated that symptomatic relief of T2DM might be related to AEPSa regulating the gut microbiota against the TLR4/NF-κB pathway to protect the intestinal barrier. Therefore, AEPSa might be developed as a prebiotic agent against T2DM by regulating gut microbiota.
ArticleNumber 123241
Author Zhao, Huajie
Li, Min
Zhao, Linjing
Yang, Fan
Liu, Liang
Wu, Zhen
Jia, Le
Zhou, Mingxu
Li, Duan
Author_xml – sequence: 1
  givenname: Huajie
  surname: Zhao
  fullname: Zhao, Huajie
  organization: School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, PR China
– sequence: 2
  givenname: Min
  surname: Li
  fullname: Li, Min
  organization: School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, PR China
– sequence: 3
  givenname: Liang
  surname: Liu
  fullname: Liu, Liang
  organization: School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, PR China
– sequence: 4
  givenname: Duan
  surname: Li
  fullname: Li, Duan
  organization: School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, PR China
– sequence: 5
  givenname: Linjing
  surname: Zhao
  fullname: Zhao, Linjing
  organization: School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, PR China
– sequence: 6
  givenname: Zhen
  surname: Wu
  fullname: Wu, Zhen
  organization: School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, PR China
– sequence: 7
  givenname: Mingxu
  surname: Zhou
  fullname: Zhou, Mingxu
  organization: School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, PR China
– sequence: 8
  givenname: Le
  surname: Jia
  fullname: Jia, Le
  email: jiale0525@163.com
  organization: College of Life Science, Shandong Agricultural University, Taian 271018, PR China
– sequence: 9
  givenname: Fan
  surname: Yang
  fullname: Yang, Fan
  email: yangf77@xxmu.edu.cn
  organization: School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36641024$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAURS1URKcDv1B5ySZTO06cRGIBjGhBGoGEytp6fvFMPUriYDst-TU-gm-qR9PZsJmNLVv33vd07hW5GNxgCLnmbMUZlzf7ld1r63rAVc5yseK5yAv-iix4XTUZY0xckAXjBc9qLtgluQphn35lyes35FJIWXCWFwvyZ-18O6MZA-1tZyN4G-joujkA4kN6tYZC15lHC9EE2lrQJlqkYe7H6PpA9Uy92U0dRDvs6G6KKQe9S7tFoLADO4RI7zc_i5vvt9m_v5_pCPHhCea35PUWumDevdxL8uv2y_36a7b5cfdt_WmToeAyZiUWUErg2iA0Yqt1sy1RtzlDI3ktsanqhiNoVjdQ6KbAohSHo9JNXaOuxJK8P-aO3v2eTIiqtwFN18Fg3BRUXosiZyJn5XlpJcsqzUtwl-T6RTrp3rRq9LYHP6sT2CT4cBQkFiF4s1WY4EbrhujBdoozdehR7dWpR3XoUR17THb5n_004azx49FoEtNHa7wKaM2AprXeYFSts-cingFniL2E
CitedBy_id crossref_primary_10_1016_j_fbio_2024_103699
crossref_primary_10_3389_fmicb_2024_1308866
crossref_primary_10_1016_j_fbio_2024_105059
crossref_primary_10_1016_j_jfutfo_2024_07_014
crossref_primary_10_1016_j_lfs_2024_122487
crossref_primary_10_1016_j_psj_2024_103507
crossref_primary_10_1016_j_ijbiomac_2024_136691
crossref_primary_10_1016_j_intimp_2024_111490
crossref_primary_10_1016_j_ijbiomac_2024_134784
crossref_primary_10_1016_j_ijbiomac_2024_138774
crossref_primary_10_3390_foods13101539
crossref_primary_10_1002_mnfr_202400555
crossref_primary_10_3390_molecules28207136
crossref_primary_10_1016_j_foodres_2024_114535
crossref_primary_10_26599_FMH_2025_9420046
crossref_primary_10_1016_j_ijbiomac_2024_138803
crossref_primary_10_1002_star_202300202
crossref_primary_10_1016_j_ijbiomac_2025_140221
crossref_primary_10_1039_D4FO04037F
crossref_primary_10_3390_ph17040456
crossref_primary_10_1093_jas_skae194
crossref_primary_10_1007_s11694_024_02607_6
crossref_primary_10_1016_j_drudis_2024_104182
crossref_primary_10_1016_j_fbio_2024_104999
crossref_primary_10_1142_S0192415X24500563
crossref_primary_10_3390_antiox13040441
crossref_primary_10_3390_molecules28196816
crossref_primary_10_1016_j_carpta_2024_100567
crossref_primary_10_1016_j_jtcme_2024_05_007
crossref_primary_10_3389_fmicb_2024_1443743
crossref_primary_10_1016_j_intimp_2024_113426
crossref_primary_10_1016_j_jnutbio_2025_109908
crossref_primary_10_1016_j_ijbiomac_2024_135404
crossref_primary_10_26599_FMH_2025_9420049
crossref_primary_10_1016_j_ijbiomac_2024_132256
crossref_primary_10_3390_ani15040591
crossref_primary_10_1016_j_ijbiomac_2024_137427
crossref_primary_10_3390_molecules28237745
crossref_primary_10_3390_polym16141972
crossref_primary_10_1016_j_foodchem_2024_142558
crossref_primary_10_1016_j_foodres_2023_113095
crossref_primary_10_1039_D3FO04430K
crossref_primary_10_3390_nutraceuticals3040036
crossref_primary_10_1007_s00203_024_03952_2
crossref_primary_10_1016_j_jff_2024_106229
Cites_doi 10.1080/19490976.2020.1842990
10.1016/j.biopha.2017.09.104
10.1016/j.lfs.2019.04.011
10.1073/pnas.1814558116
10.1007/s11154-014-9288-6
10.1016/j.fct.2019.110886
10.1016/j.lfs.2019.117020
10.3390/foods10102252
10.3748/wjg.v21.i1.102
10.1096/fj.201900177R
10.1016/j.ijbiomac.2022.01.102
10.4239/wjd.v12.i1.19
10.1016/j.ijbiomac.2019.12.115
10.1186/2040-2392-4-42
10.1016/j.ijbiomac.2019.03.078
10.1038/s41598-017-05259-3
10.1210/en.2009-1294
10.1016/j.cmet.2016.04.011
10.3389/fimmu.2020.00807
10.1016/j.metabol.2021.154712
10.1016/j.intimp.2020.107272
10.1038/s41577-019-0198-4
10.1016/j.carbpol.2020.116261
10.1016/j.jff.2018.12.001
10.1016/j.ijbiomac.2022.06.071
10.1126/science.aar3318
10.1080/10408398.2018.1501658
10.1021/jf503681r
10.1038/s41575-022-00581-2
10.1016/j.jdiacomp.2020.107766
10.1016/j.foodres.2022.110945
10.1111/1348-0421.12749
10.1016/j.carbpol.2022.119626
10.1038/s41401-019-0330-9
10.1016/j.carbpol.2020.116780
10.1080/19490976.2017.1293224
10.1016/j.foodres.2017.11.023
10.1016/j.foodres.2020.109316
10.1016/j.carbpol.2016.01.040
10.3389/fcimb.2019.00455
10.1186/s40168-021-01115-9
10.1016/j.carbpol.2020.115969
10.3389/fimmu.2017.01882
10.1039/C8FO00206A
10.1016/j.biopha.2020.110681
10.3389/fimmu.2021.741371
10.1016/j.jff.2022.105152
10.1155/2018/9150807
10.3390/toxins12100619
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright © 2023 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Copyright © 2023 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.ijbiomac.2023.123241
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1879-0003
ExternalDocumentID 36641024
10_1016_j_ijbiomac_2023_123241
S0141813023001174
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UNMZH
~02
~G-
29J
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
R2-
RIG
SBG
SSH
UHS
WUQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c316t-5c4a56a1beca93fbb9f5cbd20ce6186c97891cab089a4b94c4534c457b988cb73
IEDL.DBID AIKHN
ISSN 0141-8130
1879-0003
IngestDate Fri Sep 05 15:06:03 EDT 2025
Thu Sep 04 21:57:50 EDT 2025
Thu Apr 03 07:00:24 EDT 2025
Thu Apr 24 23:05:45 EDT 2025
Tue Jul 01 03:35:51 EDT 2025
Fri Feb 23 02:38:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gut microbiota
T2DM
HFD
ALT
FBG
ADP
Cr
NF-κB
MC
STZ
BUN
TLR4/NF-κB pathway
Hypoglycemic activity
OGGT
Intestinal barrier
AST
GLP-1
FINS
FMT
TC
HOMA-IR
TG
NC
LEP
Cordyceps militaris polysaccharides
AEPS
Language English
License Copyright © 2023 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-5c4a56a1beca93fbb9f5cbd20ce6186c97891cab089a4b94c4534c457b988cb73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 36641024
PQID 2765778900
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2834203205
proquest_miscellaneous_2765778900
pubmed_primary_36641024
crossref_citationtrail_10_1016_j_ijbiomac_2023_123241
crossref_primary_10_1016_j_ijbiomac_2023_123241
elsevier_sciencedirect_doi_10_1016_j_ijbiomac_2023_123241
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
2023-03-00
2023-Mar-01
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle International journal of biological macromolecules
PublicationTitleAlternate Int J Biol Macromol
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liang, Wang, Luo, Fan, Zhou, Liu, Yao, Zhang, Zhong, Zhao, Zha (bb0205) 2019; 228
Liu, Xu, Huang, Xue, Zhang, Zhang, Li, Li (bb0180) 2022; 201
Su, Xin, Yang, Dong, Mei, Dai, Wang (bb0145) 2022; 214
Zhou, Yang, Xu, Huang, Ran, Yan, Mi, Lu, Sun, Zeng, Cao (bb0025) 2022; 291
Tang, Xu, Zeng, Gong (bb0080) 2021; 91
Zhang, Li, Han, Li, Zhang, Liu, Wang (bb0070) 2020; 41
Njume, Donkor, Mcainch (bb0005) 2019; 53
Koay, Wali, Luk, Macia, Cogger, Pulpitel, Wahl, Solon-Biet, Holmes, Simpson, O'Sullivan (bb0225) 2019; 33
Wang, Christophersen, Sorich, Gerber, Angley, Conlon (bb0260) 2013; 4
Huang, Zhu, Wu, Wang, Chen, Liu, Huang, Zhang, Wu, Ding (bb0090) 2022; 157
Li, Ding, Nie, Zhang, Xiong, Xie (bb0175) 2014; 62
Raza, Putaala, Hibberd, Alhoniemi, Tiihonen, Makela, Herzig (bb0230) 2017; 7
(bb0020) 2021
Liu, Zhu, Tang, Wang, Wang, Liu, Zhang (bb0135) 2016; 142
Zhang, Zeng, Cui, Liu, Dong, Sun (bb0110) 2020; 235
Wang, Wang, Li, Li, Yuan, Pan (bb0155) 2017; 95
Wu, Huang, Li, Li, Han, Zhang, Xu, Zhang, Pang, Wang, Zhang, Zhao, Wang (bb0085) 2021; 9
Thaiss, Levy, Grosheva, Zheng, Soffer, Blacher, Braverman, Tengeler, Barak, Elazar, Elinav (bb0055) 2018; 359
Hu, Wang, Li, Hou, Yin, Yang, Yang, Li, Xia, Zhou, Liu, Song, Guo (bb0105) 2019; 131
Zhang, Chen, Yi, Peng, Xie, Gou, Peng, Tang (bb0075) 2020; 12
Zhou, Ma, Han, Yang, Lv, Shao, Wang, Kang, Wang (bb0195) 2021; 12
Fu, Zhang, Wei, Lum, Nadler, Bassaganyariera, Liu (bb0160) 2010; 151
Everard, Cani (bb0170) 2014; 15
Li, Watanabe, Kimura (bb0035) 2017; 8
Xu, Cao, Wang, Wang, Cao, Yan, Wang (bb0065) 2015; 21
Yang, Wei, Liu, Zhang, Tian, Hou, Jiang (bb0045) 2021; 117
Shen, Yang, Zhu, Tian, Liang (bb0215) 2020; 131
Firmal, Shah, Chattopadhyay (bb0200) 2020; 11
Zhao, Deng, Li, Jia, Yang (bb0130) 2022; 95
de Groot, Frissen, de Clercq, Nieuwdorp (bb0060) 2017; 8
Sorini, Cosorich, Lo Conte, De Giorgi, Facciotti, Luciano, Rocchi, Ferrarese, Sanvito, Canducci, Falcone (bb0050) 2019; 116
Guo, Shi, Du, Wang, Han, Sun, Feng (bb0190) 2019; 239
Wang, Yang, Xu, Jiang, Cai, Yu (bb0220) 2020; 240
Wu, Xu, Su, Zhu, Wang, Liu, Wang, Shi, Zhang, Qin, Wang (bb0120) 2020; 248
Stern, Rutkowski, Scherer (bb0165) 2016; 23
Li, Ni, Zhang, Li, Zhang, Wu, Du, Hou, Zhang (bb0245) 2020; 64
Zhao, Yang, Wai, Zhang, Portillo, Paoli, Wu, Cheang, Liu, Carpéné, Xiao, Cao (bb0010) 2019; 59
Wang, Lu, Yan, Tian, Zheng, Leng, Wang, Jiao, Wang, Bai (bb0040) 2020; 9
He, Zheng, Guo, Huang, Yuan, Huang, Lin (bb0095) 2020; 145
Tang, Zhu, Liu, Sun, Song, Zhang (bb0140) 2018; 9
Zhang, Zhao, Zhang, Pang, Xu, Kang, Li, Zhang, Zhang, Zhang, Li, Ning, Zhao (bb0235) 2012; 7
Amirullah, Zainal, Noorlidah (bb0100) 2018; 105
Jin, Li, Xia, Li, Zhao, Li, Li, Li, Zhou, Fu, Li, Li (bb0250) 2021; 12
Yu, Yue, Hui, Zhi, Hayat, Yang, Zhang, Chu, Zhou (bb0125) 2021; 10
Gao, Meng, Liu, Wang, Zheng (bb0150) 2020; 12
Zhao, Liu, Cao, Xu, Li (bb0015) 2020; 135
Yuan, Xie, Chen, Huang, Yu, Chen, Li (bb0210) 2021; 35
Zhang, Xu, Zhang, Chen, Wu, Liu, Sui, Zhu, Zhang (bb0030) 2022; 153
Jiang, Dong, Jiang, Liang, Kang (bb0240) 2020; 136
Tilg, Zmora, Adolph, Elinav (bb0185) 2020; 20
Metwaly, Reitmeier, Haller (bb0255) 2022; 19
Zhao, Lai, Zhang, Huang, Jia (bb0115) 2018; 2018
Guo (10.1016/j.ijbiomac.2023.123241_bb0190) 2019; 239
Yuan (10.1016/j.ijbiomac.2023.123241_bb0210) 2021; 35
Wang (10.1016/j.ijbiomac.2023.123241_bb0220) 2020; 240
Wang (10.1016/j.ijbiomac.2023.123241_bb0155) 2017; 95
Su (10.1016/j.ijbiomac.2023.123241_bb0145) 2022; 214
Zhao (10.1016/j.ijbiomac.2023.123241_bb0130) 2022; 95
Liang (10.1016/j.ijbiomac.2023.123241_bb0205) 2019; 228
Zhang (10.1016/j.ijbiomac.2023.123241_bb0075) 2020; 12
Zhang (10.1016/j.ijbiomac.2023.123241_bb0110) 2020; 235
Zhou (10.1016/j.ijbiomac.2023.123241_bb0195) 2021; 12
Sorini (10.1016/j.ijbiomac.2023.123241_bb0050) 2019; 116
Wu (10.1016/j.ijbiomac.2023.123241_bb0085) 2021; 9
Everard (10.1016/j.ijbiomac.2023.123241_bb0170) 2014; 15
Huang (10.1016/j.ijbiomac.2023.123241_bb0090) 2022; 157
Wang (10.1016/j.ijbiomac.2023.123241_bb0040) 2020; 9
Jin (10.1016/j.ijbiomac.2023.123241_bb0250) 2021; 12
He (10.1016/j.ijbiomac.2023.123241_bb0095) 2020; 145
Stern (10.1016/j.ijbiomac.2023.123241_bb0165) 2016; 23
Zhang (10.1016/j.ijbiomac.2023.123241_bb0030) 2022; 153
Zhao (10.1016/j.ijbiomac.2023.123241_bb0015) 2020; 135
Wang (10.1016/j.ijbiomac.2023.123241_bb0260) 2013; 4
Metwaly (10.1016/j.ijbiomac.2023.123241_bb0255) 2022; 19
Zhou (10.1016/j.ijbiomac.2023.123241_bb0025) 2022; 291
Amirullah (10.1016/j.ijbiomac.2023.123241_bb0100) 2018; 105
Tang (10.1016/j.ijbiomac.2023.123241_bb0140) 2018; 9
Jiang (10.1016/j.ijbiomac.2023.123241_bb0240) 2020; 136
Zhang (10.1016/j.ijbiomac.2023.123241_bb0235) 2012; 7
Thaiss (10.1016/j.ijbiomac.2023.123241_bb0055) 2018; 359
Njume (10.1016/j.ijbiomac.2023.123241_bb0005) 2019; 53
Yang (10.1016/j.ijbiomac.2023.123241_bb0045) 2021; 117
de Groot (10.1016/j.ijbiomac.2023.123241_bb0060) 2017; 8
Raza (10.1016/j.ijbiomac.2023.123241_bb0230) 2017; 7
Zhao (10.1016/j.ijbiomac.2023.123241_bb0115) 2018; 2018
Fu (10.1016/j.ijbiomac.2023.123241_bb0160) 2010; 151
Zhao (10.1016/j.ijbiomac.2023.123241_bb0010) 2019; 59
Gao (10.1016/j.ijbiomac.2023.123241_bb0150) 2020; 12
Yu (10.1016/j.ijbiomac.2023.123241_bb0125) 2021; 10
Tang (10.1016/j.ijbiomac.2023.123241_bb0080) 2021; 91
Liu (10.1016/j.ijbiomac.2023.123241_bb0135) 2016; 142
Shen (10.1016/j.ijbiomac.2023.123241_bb0215) 2020; 131
Zhang (10.1016/j.ijbiomac.2023.123241_bb0070) 2020; 41
Tilg (10.1016/j.ijbiomac.2023.123241_bb0185) 2020; 20
Liu (10.1016/j.ijbiomac.2023.123241_bb0180) 2022; 201
Li (10.1016/j.ijbiomac.2023.123241_bb0245) 2020; 64
Li (10.1016/j.ijbiomac.2023.123241_bb0035) 2017; 8
Hu (10.1016/j.ijbiomac.2023.123241_bb0105) 2019; 131
Wu (10.1016/j.ijbiomac.2023.123241_bb0120) 2020; 248
Li (10.1016/j.ijbiomac.2023.123241_bb0175) 2014; 62
Koay (10.1016/j.ijbiomac.2023.123241_bb0225) 2019; 33
(10.1016/j.ijbiomac.2023.123241_bb0020) 2021
Xu (10.1016/j.ijbiomac.2023.123241_bb0065) 2015; 21
Firmal (10.1016/j.ijbiomac.2023.123241_bb0200) 2020; 11
References_xml – volume: 9
  start-page: 455
  year: 2020
  ident: bb0040
  article-title: Promising treatment for type 2 diabetes: fecal microbiota transplantation reverses insulin resistance and impaired islets
  publication-title: Front. Cell. Infect. Microbiol.
– volume: 15
  start-page: 189
  year: 2014
  end-page: 196
  ident: bb0170
  article-title: Gut microbiota and GLP-1
  publication-title: Rev. Endocr. Metab. Dis.
– volume: 59
  start-page: 830
  year: 2019
  end-page: 847
  ident: bb0010
  article-title: Regulation of glucose metabolism by bioactive phytochemicals for the management of type 2 diabetes mellitus
  publication-title: Crit. Rev. Food Sci.
– volume: 12
  year: 2020
  ident: bb0075
  article-title: Phlorizin ameliorates obesity-associated endotoxemia and insulin resistance in high-fat diet-fed mice by targeting the gut microbiota and intestinal barrier integrity
  publication-title: Gut Microbes
– volume: 214
  start-page: 312
  year: 2022
  end-page: 323
  ident: bb0145
  article-title: Polysaccharide from Inonotus obliquus ameliorates intestinal barrier dysfunction in mice with type 2 diabetes mellitus
  publication-title: Int. J. Biol. Macromol.
– volume: 4
  start-page: 42
  year: 2013
  ident: bb0260
  article-title: Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder
  publication-title: Mol. Autism
– volume: 2018
  year: 2018
  ident: bb0115
  article-title: Antioxidant and hypoglycemic effects of acidic-extractable polysaccharides from Cordyceps militaris on type 2 diabetes mice
  publication-title: Oxidative Med. Cell. Longev.
– volume: 9
  start-page: 2300
  year: 2018
  end-page: 2312
  ident: bb0140
  article-title: The chemical structure and antiaging bioactivity of an acid polysaccharide obtained from rose buds
  publication-title: Food Funct.
– volume: 12
  start-page: 619
  year: 2020
  ident: bb0150
  article-title: The compromised intestinal barrier induced by mycotoxins
  publication-title: Toxins
– volume: 19
  start-page: 383
  year: 2022
  end-page: 397
  ident: bb0255
  article-title: Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders
  publication-title: Nat. Rev. Gastroentero. Hepat.
– volume: 240
  year: 2020
  ident: bb0220
  article-title: Odd-numbered agaro-oligosaccharides alleviate type 2 diabetes mellitus and related colonic microbiota dysbiosis in mice
  publication-title: Carbohydr. Polym.
– volume: 41
  start-page: 678
  year: 2020
  end-page: 685
  ident: bb0070
  article-title: Fecal microbiota transplantation improves metabolism and gut microbiome composition in db/db mice
  publication-title: Acta Pharmacol. Sin.
– volume: 359
  start-page: 1376
  year: 2018
  end-page: 1383
  ident: bb0055
  article-title: Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection
  publication-title: Science
– volume: 95
  year: 2022
  ident: bb0130
  article-title: Enzymatic-extractable polysaccharides from Cordyceps militaris alleviate carbon tetrachloride-induced liver injury via Nrf2/ROS/NF-κB signaling pathway
  publication-title: J. Funct. Foods
– volume: 7
  year: 2012
  ident: bb0235
  article-title: Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats
  publication-title: Plos One
– volume: 8
  start-page: 253
  year: 2017
  end-page: 267
  ident: bb0060
  article-title: Fecal microbiota transplantation in metabolic syndrome: history, present and future
  publication-title: Gut Microbes
– year: 2021
  ident: bb0020
  article-title: IDF Diabetes Atlas (10th ED.)
– volume: 248
  year: 2020
  ident: bb0120
  article-title: Roles of gut microbiota and metabolites in a homogalacturonan-type pectic polysaccharide from Ficus pumila Linn. fruits mediated amelioration of obesity
  publication-title: Carbohydr. Polym.
– volume: 53
  start-page: 115
  year: 2019
  end-page: 124
  ident: bb0005
  article-title: Predisposing factors of type 2 diabetes mellitus and the potential protective role of native plants with functional properties
  publication-title: J. Funct. Foods
– volume: 239
  year: 2019
  ident: bb0190
  article-title: HMGB1/TLR4 promotes apoptosis and reduces autophagy of hippocampal neurons in diabetes combined with OSA
  publication-title: Life Sci.
– volume: 35
  year: 2021
  ident: bb0210
  article-title: Impaired intestinal barrier function in type 2 diabetic patients measured by serum LPS, zonulin, and IFABP
  publication-title: J. Diabetes Complicat.
– volume: 9
  start-page: 184
  year: 2021
  ident: bb0085
  article-title: Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis
  publication-title: Microbiome
– volume: 135
  year: 2020
  ident: bb0015
  article-title: A sea cucumber (Holothuria leucospilota) polysaccharide improves the gut microbiome to alleviate the symptoms of type 2 diabetes mellitus in goto-kakizaki rats
  publication-title: Food Chem. Toxicol.
– volume: 91
  year: 2021
  ident: bb0080
  article-title: Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF-kB signaling pathway
  publication-title: Int. Immunopharmacol.
– volume: 131
  year: 2020
  ident: bb0215
  article-title: Protective effects of syringin against oxidative stress and inflammation in diabetic pregnant rats via TLR4/MyD88/NF-kappaB signaling pathway
  publication-title: Biomed. Pharmacother.
– volume: 21
  start-page: 102
  year: 2015
  end-page: 111
  ident: bb0065
  article-title: Fecal microbiota transplantation broadening its application beyond intestinal disorders
  publication-title: World J. Gastroenterol.
– volume: 151
  start-page: 3026
  year: 2010
  end-page: 3037
  ident: bb0160
  article-title: Genistein induces pancreatic β-cell proliferation through activation of multiple signaling pathways and prevents insulin-deficient diabetes in mice
  publication-title: Endocrinology
– volume: 228
  start-page: 258
  year: 2019
  end-page: 265
  ident: bb0205
  article-title: Toll-like receptor 4 promotes high glucose-induced catabolic and inflammatory responses in chondrocytes in an NF-κB-dependent manner
  publication-title: Life Sci.
– volume: 116
  start-page: 15140
  year: 2019
  end-page: 15149
  ident: bb0050
  article-title: Loss of gut barrier integrity triggers activation of islet-reactive T cells and autoimmune diabetes
  publication-title: Proc.Natl. Acad. Sci. USA
– volume: 33
  start-page: 8033
  year: 2019
  end-page: 8042
  ident: bb0225
  article-title: Ingestion of resistant starch by mice markedly increases microbiome-derived metabolites
  publication-title: FASEB J.
– volume: 62
  start-page: 11884
  year: 2014
  end-page: 11891
  ident: bb0175
  article-title: Carrot juice fermented with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats
  publication-title: J. Agric. Food Chem.
– volume: 142
  start-page: 63
  year: 2016
  end-page: 72
  ident: bb0135
  article-title: Structural properties of polysaccharides from cultivated fruit bodies and mycelium of Cordyceps militaris
  publication-title: Carbohydr. Polym.
– volume: 145
  start-page: 11
  year: 2020
  end-page: 20
  ident: bb0095
  article-title: Structural characterization and immune-enhancing activity of a novel high-molecular-weight polysaccharide from Cordyceps militaris
  publication-title: Int. J. Biol. Macromol.
– volume: 64
  start-page: 23
  year: 2020
  end-page: 32
  ident: bb0245
  article-title: Effect of cinnamon essential oil on gut microbiota in the mouse model of dextran sodium sulfate-induced colitis
  publication-title: Microbiol. Immunol.
– volume: 131
  start-page: 264
  year: 2019
  end-page: 272
  ident: bb0105
  article-title: Structural characterisation and cholesterol efflux improving capacity of the novel polysaccharides from Cordyceps militaris
  publication-title: Int. J. Biol. Macromol.
– volume: 291
  year: 2022
  ident: bb0025
  article-title: The polysaccharides from the fruits of Lycium barbarum L. confer anti-diabetic effect by regulating gut microbiota and intestinal barrier
  publication-title: Carbohydr. Polym.
– volume: 8
  start-page: 1882
  year: 2017
  ident: bb0035
  article-title: Gut microbiota dysbiosis drives and implies novel therapeutic strategies for diabetes mellitus and related metabolic diseases
  publication-title: Front. Immunol.
– volume: 11
  start-page: 807
  year: 2020
  ident: bb0200
  article-title: Insight into TLR4-mediated immunomodulation in normal pregnancy and related disorders
  publication-title: Front. Immunol.
– volume: 7
  start-page: 5294
  year: 2017
  ident: bb0230
  article-title: Polydextrose changes the gut microbiome and attenuates fasting triglyceride and cholesterol levels in Western diet fed mice
  publication-title: Sci. Rep.
– volume: 95
  start-page: 1669
  year: 2017
  end-page: 1677
  ident: bb0155
  article-title: Anti-diabetic effects of Inonotus obliquus polysaccharides in streptozotocin-induced type 2 diabetic mice and potential mechanism via PI3K-Akt signal pathway
  publication-title: Biomed. Pharmacother.
– volume: 12
  start-page: 19
  year: 2021
  end-page: 46
  ident: bb0195
  article-title: Metformin regulates inflammation and fibrosis in diabetic kidney disease through TNC/TLR4/NF-κB/miR-155-5p inflammatory loop
  publication-title: WorldJ. Diabetes
– volume: 23
  start-page: 770
  year: 2016
  end-page: 784
  ident: bb0165
  article-title: Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk
  publication-title: Cell Metab.
– volume: 12
  year: 2021
  ident: bb0250
  article-title: Probiotic interventions alleviate food allergy symptoms correlated with cesarean section: a murine model
  publication-title: Front. Immunol.
– volume: 153
  year: 2022
  ident: bb0030
  article-title: Licorice extract ameliorates hyperglycemia through reshaping gut microbiota structure and inhibiting TLR4/NF-κB signaling pathway in type 2 diabetic mice
  publication-title: Food Res. Int.
– volume: 117
  year: 2021
  ident: bb0045
  article-title: Role of the gut microbiota in type 2 diabetes and related diseases
  publication-title: Metabolism
– volume: 20
  start-page: 40
  year: 2020
  end-page: 54
  ident: bb0185
  article-title: The intestinal microbiota fuelling metabolic inflammation
  publication-title: Nat. Rev. Immunol.
– volume: 235
  year: 2020
  ident: bb0110
  article-title: Structural characterization, antioxidant and immunomodulatory activities of a neutral polysaccharide from Cordyceps militaris cultivated on hull-less barley
  publication-title: Carbohydr. Polym.
– volume: 10
  start-page: 2252
  year: 2021
  ident: bb0125
  article-title: Antihyperlipidemia and gut microbiota community regulation effects of selenium-rich Cordyceps militaris polysaccharides on the high-fat diet-fed mice model
  publication-title: Foods
– volume: 105
  start-page: 517
  year: 2018
  end-page: 536
  ident: bb0100
  article-title: The potential applications of mushrooms against some facets of atherosclerosis: a review
  publication-title: Food Res. Int.
– volume: 201
  start-page: 616
  year: 2022
  end-page: 629
  ident: bb0180
  article-title: Fucoidan ameliorates glucose metabolism by the improvement of intestinal barrier and inflammatory damage in type 2 diabetic rats
  publication-title: Int. J. Biol. Macromol.
– volume: 136
  year: 2020
  ident: bb0240
  article-title: Effect of Durio zibethinus rind polysaccharide on functional constipation and intestinal microbiota in rats
  publication-title: Food Res. Int.
– volume: 157
  year: 2022
  ident: bb0090
  article-title: Polysaccharides from Cordyceps militaris prevent obesity in association with modulating gut microbiota and metabolites in high-fat diet-fed mice
  publication-title: Carbohydr. Polym.
– volume: 12
  year: 2020
  ident: 10.1016/j.ijbiomac.2023.123241_bb0075
  article-title: Phlorizin ameliorates obesity-associated endotoxemia and insulin resistance in high-fat diet-fed mice by targeting the gut microbiota and intestinal barrier integrity
  publication-title: Gut Microbes
  doi: 10.1080/19490976.2020.1842990
– volume: 95
  start-page: 1669
  year: 2017
  ident: 10.1016/j.ijbiomac.2023.123241_bb0155
  article-title: Anti-diabetic effects of Inonotus obliquus polysaccharides in streptozotocin-induced type 2 diabetic mice and potential mechanism via PI3K-Akt signal pathway
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2017.09.104
– volume: 228
  start-page: 258
  year: 2019
  ident: 10.1016/j.ijbiomac.2023.123241_bb0205
  article-title: Toll-like receptor 4 promotes high glucose-induced catabolic and inflammatory responses in chondrocytes in an NF-κB-dependent manner
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2019.04.011
– volume: 7
  year: 2012
  ident: 10.1016/j.ijbiomac.2023.123241_bb0235
  article-title: Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats
  publication-title: Plos One
– volume: 116
  start-page: 15140
  year: 2019
  ident: 10.1016/j.ijbiomac.2023.123241_bb0050
  article-title: Loss of gut barrier integrity triggers activation of islet-reactive T cells and autoimmune diabetes
  publication-title: Proc.Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1814558116
– volume: 15
  start-page: 189
  year: 2014
  ident: 10.1016/j.ijbiomac.2023.123241_bb0170
  article-title: Gut microbiota and GLP-1
  publication-title: Rev. Endocr. Metab. Dis.
  doi: 10.1007/s11154-014-9288-6
– year: 2021
  ident: 10.1016/j.ijbiomac.2023.123241_bb0020
– volume: 135
  year: 2020
  ident: 10.1016/j.ijbiomac.2023.123241_bb0015
  article-title: A sea cucumber (Holothuria leucospilota) polysaccharide improves the gut microbiome to alleviate the symptoms of type 2 diabetes mellitus in goto-kakizaki rats
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2019.110886
– volume: 239
  year: 2019
  ident: 10.1016/j.ijbiomac.2023.123241_bb0190
  article-title: HMGB1/TLR4 promotes apoptosis and reduces autophagy of hippocampal neurons in diabetes combined with OSA
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2019.117020
– volume: 10
  start-page: 2252
  year: 2021
  ident: 10.1016/j.ijbiomac.2023.123241_bb0125
  article-title: Antihyperlipidemia and gut microbiota community regulation effects of selenium-rich Cordyceps militaris polysaccharides on the high-fat diet-fed mice model
  publication-title: Foods
  doi: 10.3390/foods10102252
– volume: 21
  start-page: 102
  year: 2015
  ident: 10.1016/j.ijbiomac.2023.123241_bb0065
  article-title: Fecal microbiota transplantation broadening its application beyond intestinal disorders
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v21.i1.102
– volume: 33
  start-page: 8033
  year: 2019
  ident: 10.1016/j.ijbiomac.2023.123241_bb0225
  article-title: Ingestion of resistant starch by mice markedly increases microbiome-derived metabolites
  publication-title: FASEB J.
  doi: 10.1096/fj.201900177R
– volume: 201
  start-page: 616
  year: 2022
  ident: 10.1016/j.ijbiomac.2023.123241_bb0180
  article-title: Fucoidan ameliorates glucose metabolism by the improvement of intestinal barrier and inflammatory damage in type 2 diabetic rats
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2022.01.102
– volume: 12
  start-page: 19
  year: 2021
  ident: 10.1016/j.ijbiomac.2023.123241_bb0195
  article-title: Metformin regulates inflammation and fibrosis in diabetic kidney disease through TNC/TLR4/NF-κB/miR-155-5p inflammatory loop
  publication-title: WorldJ. Diabetes
  doi: 10.4239/wjd.v12.i1.19
– volume: 145
  start-page: 11
  year: 2020
  ident: 10.1016/j.ijbiomac.2023.123241_bb0095
  article-title: Structural characterization and immune-enhancing activity of a novel high-molecular-weight polysaccharide from Cordyceps militaris
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.12.115
– volume: 4
  start-page: 42
  year: 2013
  ident: 10.1016/j.ijbiomac.2023.123241_bb0260
  article-title: Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder
  publication-title: Mol. Autism
  doi: 10.1186/2040-2392-4-42
– volume: 131
  start-page: 264
  year: 2019
  ident: 10.1016/j.ijbiomac.2023.123241_bb0105
  article-title: Structural characterisation and cholesterol efflux improving capacity of the novel polysaccharides from Cordyceps militaris
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.03.078
– volume: 7
  start-page: 5294
  year: 2017
  ident: 10.1016/j.ijbiomac.2023.123241_bb0230
  article-title: Polydextrose changes the gut microbiome and attenuates fasting triglyceride and cholesterol levels in Western diet fed mice
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05259-3
– volume: 151
  start-page: 3026
  year: 2010
  ident: 10.1016/j.ijbiomac.2023.123241_bb0160
  article-title: Genistein induces pancreatic β-cell proliferation through activation of multiple signaling pathways and prevents insulin-deficient diabetes in mice
  publication-title: Endocrinology
  doi: 10.1210/en.2009-1294
– volume: 23
  start-page: 770
  year: 2016
  ident: 10.1016/j.ijbiomac.2023.123241_bb0165
  article-title: Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.04.011
– volume: 11
  start-page: 807
  year: 2020
  ident: 10.1016/j.ijbiomac.2023.123241_bb0200
  article-title: Insight into TLR4-mediated immunomodulation in normal pregnancy and related disorders
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.00807
– volume: 117
  year: 2021
  ident: 10.1016/j.ijbiomac.2023.123241_bb0045
  article-title: Role of the gut microbiota in type 2 diabetes and related diseases
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2021.154712
– volume: 91
  year: 2021
  ident: 10.1016/j.ijbiomac.2023.123241_bb0080
  article-title: Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF-kB signaling pathway
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2020.107272
– volume: 20
  start-page: 40
  year: 2020
  ident: 10.1016/j.ijbiomac.2023.123241_bb0185
  article-title: The intestinal microbiota fuelling metabolic inflammation
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-019-0198-4
– volume: 240
  year: 2020
  ident: 10.1016/j.ijbiomac.2023.123241_bb0220
  article-title: Odd-numbered agaro-oligosaccharides alleviate type 2 diabetes mellitus and related colonic microbiota dysbiosis in mice
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2020.116261
– volume: 157
  year: 2022
  ident: 10.1016/j.ijbiomac.2023.123241_bb0090
  article-title: Polysaccharides from Cordyceps militaris prevent obesity in association with modulating gut microbiota and metabolites in high-fat diet-fed mice
  publication-title: Carbohydr. Polym.
– volume: 53
  start-page: 115
  year: 2019
  ident: 10.1016/j.ijbiomac.2023.123241_bb0005
  article-title: Predisposing factors of type 2 diabetes mellitus and the potential protective role of native plants with functional properties
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2018.12.001
– volume: 214
  start-page: 312
  year: 2022
  ident: 10.1016/j.ijbiomac.2023.123241_bb0145
  article-title: Polysaccharide from Inonotus obliquus ameliorates intestinal barrier dysfunction in mice with type 2 diabetes mellitus
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2022.06.071
– volume: 359
  start-page: 1376
  year: 2018
  ident: 10.1016/j.ijbiomac.2023.123241_bb0055
  article-title: Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection
  publication-title: Science
  doi: 10.1126/science.aar3318
– volume: 59
  start-page: 830
  year: 2019
  ident: 10.1016/j.ijbiomac.2023.123241_bb0010
  article-title: Regulation of glucose metabolism by bioactive phytochemicals for the management of type 2 diabetes mellitus
  publication-title: Crit. Rev. Food Sci.
  doi: 10.1080/10408398.2018.1501658
– volume: 62
  start-page: 11884
  year: 2014
  ident: 10.1016/j.ijbiomac.2023.123241_bb0175
  article-title: Carrot juice fermented with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf503681r
– volume: 19
  start-page: 383
  year: 2022
  ident: 10.1016/j.ijbiomac.2023.123241_bb0255
  article-title: Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders
  publication-title: Nat. Rev. Gastroentero. Hepat.
  doi: 10.1038/s41575-022-00581-2
– volume: 35
  year: 2021
  ident: 10.1016/j.ijbiomac.2023.123241_bb0210
  article-title: Impaired intestinal barrier function in type 2 diabetic patients measured by serum LPS, zonulin, and IFABP
  publication-title: J. Diabetes Complicat.
  doi: 10.1016/j.jdiacomp.2020.107766
– volume: 153
  year: 2022
  ident: 10.1016/j.ijbiomac.2023.123241_bb0030
  article-title: Licorice extract ameliorates hyperglycemia through reshaping gut microbiota structure and inhibiting TLR4/NF-κB signaling pathway in type 2 diabetic mice
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2022.110945
– volume: 64
  start-page: 23
  year: 2020
  ident: 10.1016/j.ijbiomac.2023.123241_bb0245
  article-title: Effect of cinnamon essential oil on gut microbiota in the mouse model of dextran sodium sulfate-induced colitis
  publication-title: Microbiol. Immunol.
  doi: 10.1111/1348-0421.12749
– volume: 291
  year: 2022
  ident: 10.1016/j.ijbiomac.2023.123241_bb0025
  article-title: The polysaccharides from the fruits of Lycium barbarum L. confer anti-diabetic effect by regulating gut microbiota and intestinal barrier
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2022.119626
– volume: 41
  start-page: 678
  year: 2020
  ident: 10.1016/j.ijbiomac.2023.123241_bb0070
  article-title: Fecal microbiota transplantation improves metabolism and gut microbiome composition in db/db mice
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/s41401-019-0330-9
– volume: 248
  year: 2020
  ident: 10.1016/j.ijbiomac.2023.123241_bb0120
  article-title: Roles of gut microbiota and metabolites in a homogalacturonan-type pectic polysaccharide from Ficus pumila Linn. fruits mediated amelioration of obesity
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2020.116780
– volume: 8
  start-page: 253
  year: 2017
  ident: 10.1016/j.ijbiomac.2023.123241_bb0060
  article-title: Fecal microbiota transplantation in metabolic syndrome: history, present and future
  publication-title: Gut Microbes
  doi: 10.1080/19490976.2017.1293224
– volume: 105
  start-page: 517
  year: 2018
  ident: 10.1016/j.ijbiomac.2023.123241_bb0100
  article-title: The potential applications of mushrooms against some facets of atherosclerosis: a review
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2017.11.023
– volume: 136
  year: 2020
  ident: 10.1016/j.ijbiomac.2023.123241_bb0240
  article-title: Effect of Durio zibethinus rind polysaccharide on functional constipation and intestinal microbiota in rats
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2020.109316
– volume: 142
  start-page: 63
  year: 2016
  ident: 10.1016/j.ijbiomac.2023.123241_bb0135
  article-title: Structural properties of polysaccharides from cultivated fruit bodies and mycelium of Cordyceps militaris
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2016.01.040
– volume: 9
  start-page: 455
  year: 2020
  ident: 10.1016/j.ijbiomac.2023.123241_bb0040
  article-title: Promising treatment for type 2 diabetes: fecal microbiota transplantation reverses insulin resistance and impaired islets
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2019.00455
– volume: 9
  start-page: 184
  year: 2021
  ident: 10.1016/j.ijbiomac.2023.123241_bb0085
  article-title: Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis
  publication-title: Microbiome
  doi: 10.1186/s40168-021-01115-9
– volume: 235
  year: 2020
  ident: 10.1016/j.ijbiomac.2023.123241_bb0110
  article-title: Structural characterization, antioxidant and immunomodulatory activities of a neutral polysaccharide from Cordyceps militaris cultivated on hull-less barley
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2020.115969
– volume: 8
  start-page: 1882
  year: 2017
  ident: 10.1016/j.ijbiomac.2023.123241_bb0035
  article-title: Gut microbiota dysbiosis drives and implies novel therapeutic strategies for diabetes mellitus and related metabolic diseases
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2017.01882
– volume: 9
  start-page: 2300
  year: 2018
  ident: 10.1016/j.ijbiomac.2023.123241_bb0140
  article-title: The chemical structure and antiaging bioactivity of an acid polysaccharide obtained from rose buds
  publication-title: Food Funct.
  doi: 10.1039/C8FO00206A
– volume: 131
  year: 2020
  ident: 10.1016/j.ijbiomac.2023.123241_bb0215
  article-title: Protective effects of syringin against oxidative stress and inflammation in diabetic pregnant rats via TLR4/MyD88/NF-kappaB signaling pathway
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2020.110681
– volume: 12
  year: 2021
  ident: 10.1016/j.ijbiomac.2023.123241_bb0250
  article-title: Probiotic interventions alleviate food allergy symptoms correlated with cesarean section: a murine model
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2021.741371
– volume: 95
  year: 2022
  ident: 10.1016/j.ijbiomac.2023.123241_bb0130
  article-title: Enzymatic-extractable polysaccharides from Cordyceps militaris alleviate carbon tetrachloride-induced liver injury via Nrf2/ROS/NF-κB signaling pathway
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2022.105152
– volume: 2018
  year: 2018
  ident: 10.1016/j.ijbiomac.2023.123241_bb0115
  article-title: Antioxidant and hypoglycemic effects of acidic-extractable polysaccharides from Cordyceps militaris on type 2 diabetes mice
  publication-title: Oxidative Med. Cell. Longev.
  doi: 10.1155/2018/9150807
– volume: 12
  start-page: 619
  year: 2020
  ident: 10.1016/j.ijbiomac.2023.123241_bb0150
  article-title: The compromised intestinal barrier induced by mycotoxins
  publication-title: Toxins
  doi: 10.3390/toxins12100619
SSID ssj0006518
Score 2.5551255
Snippet The relationship between gut microbiota and type 2 diabetes mellitus (T2DM) has attracted increasing attention. In our work, one purified fraction a (AEPSa)...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 123241
SubjectTerms Animals
blood lipids
Cordyceps - metabolism
Cordyceps militaris
Cordyceps militaris polysaccharides
Diabetes Mellitus, Type 2 - drug therapy
Enterococcus
Gastrointestinal Microbiome
glucose
glycemic effect
Gut microbiota
high fat diet
hormone secretion
Hypoglycemic activity
Intestinal barrier
intestinal microorganisms
intestines
lipid metabolism
Mice
NF-kappa B - metabolism
noninsulin-dependent diabetes mellitus
polysaccharides
Polysaccharides - pharmacology
prebiotics
protein synthesis
streptozotocin
tight junctions
TLR4/NF-κB pathway
Toll-like receptor 4
Toll-Like Receptor 4 - metabolism
Title Cordyceps militaris polysaccharide alleviates diabetic symptoms by regulating gut microbiota against TLR4/NF-κB pathway
URI https://dx.doi.org/10.1016/j.ijbiomac.2023.123241
https://www.ncbi.nlm.nih.gov/pubmed/36641024
https://www.proquest.com/docview/2765778900
https://www.proquest.com/docview/2834203205
Volume 230
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtswECUS59Beiu512gYs0KssUVwkHlOjhrv5UCRAbgRJUYGM2BYiOYku_bB-RL4pHC1Ge0hz6EWABI5AcCjOIzXzHkIffQQ2xmYusFLzgGWpDExEXMCZFRmngugY6p1_LMT8lH0942d7aDrUwkBaZb_2d2t6u1r3T8J-NMOyKEJIS_LhCURvWmIzto8OYioFH6GD4y_f5ovdgix4e8wH7QMw-KNQeDkpllDnroHNMKaTFmCQ-2LUfRi0jUWzp-hJDyLxcdfPZ2jPrZ-jR9NBu-0Fupn6PWVjXVnhVUvD7T9lXG4umkpbqLMqModBROWqAKiJuwPYwuKqWZX1ZlVh0-DLTqXehzZ8vq39ezrKplpjfa4LjyrxyfefLFzMgtvfnzAoG1_r5iU6nX0-mc6DXmMhsJSIOuCWaS408a7UkubGyJxbk8WRdcCkb_0mUxKrTZRKzYxklnEKl8TINLUmoa_QaL1ZuzcIa9CmikieEr8FMzmw2Hh4Rlic0YRFuR0jPoyqsj0BOehgXKgh02ypBm8o8IbqvDFG4c6u7Cg4HrSQg9PUX5NJ-TjxoO2HwcvKOw1-n-i122wrFSeCJ1A3HP2jTUpZq0nPx-h1N0V2faZCMA_n2OF_9O4tegx3XRLcOzSqL7fuvUdFtTlC-5Nf5Kif-3f9Zg5Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVKWZQNorw6QMFIbDOJ40fiJYw6GmA6CzSVurNsx6ky6sxETQbIhg_jI_gmfPMoZVG6YJNFch1Zvo7vsXPvOQi98xHYGJu5wErNA5alMjARcQFnVmScCqJjqHc-XYjZGft0zs_30GSohYG0yn7t79b0drXu74T9aIZlUYSQluTDE4jetMRm7B66zzhNIK9v_ONPnofg7SEfWAdgfqNMeDUuVlDlroHLMKbjFl6Q2yLUbQi0jUTTR-hhDyHx-66Xh2jPbR6jg8mg3PYEfZ_4HWVjXVnhdUvC7T9kXG4vm0pbqLIqModBQuVrAUATd8evhcVVsy7r7brCpsFXnUa9D2z4Ylf793SETbXG-kIXHlPi5fwLCxfT4NfPDxh0jb_p5ik6m54sJ7OgV1gILCWiDrhlmgtNvCO1pLkxMufWZHFkHfDoW7_FlMRqE6VSMyOZ9QMMl8TINLUmoc_Q_ma7cUcIa1CmikieEr8BMzlw2HhwRlic0YRFuR0hPoyqsj39OKhgXKohz2ylBm8o8IbqvDFC4XW7siPguLOFHJym_ppKykeJO9u-HbysvNPg54neuO2uUnEieAJVw9E_bFLKWkV6PkLPuyly3WcqBPNgjr34j969QQez5elczT8uPr9ED-BJlw73Cu3XVzt37PFRbV638_83TaoPGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cordyceps+militaris+polysaccharide+alleviates+diabetic+symptoms+by+regulating+gut+microbiota+against+TLR4%2FNF-%CE%BAB+pathway&rft.jtitle=International+journal+of+biological+macromolecules&rft.au=Zhao%2C+Huajie&rft.au=Li%2C+Min&rft.au=Liu%2C+Liang&rft.au=Li%2C+Duan&rft.date=2023-03-01&rft.pub=Elsevier+B.V&rft.issn=0141-8130&rft.eissn=1879-0003&rft.volume=230&rft_id=info:doi/10.1016%2Fj.ijbiomac.2023.123241&rft.externalDocID=S0141813023001174
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-8130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-8130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-8130&client=summon