Explicit Gautschi-type integrators for nonlinear multi-frequency oscillatory second-order initial value problems

The main theme of this paper is explicit Gautschi-type integrators for the nonlinear multi-frequency oscillatory second-order initial value problems of the form y ′′ = − A ( t , y ) y + f ( t , y ) , y ( t 0 ) = y 0 , y ′ ( t 0 ) = y 0 ′ . This work is important and interesting within the broader fr...

Full description

Saved in:
Bibliographic Details
Published inNumerical algorithms Vol. 81; no. 4; pp. 1275 - 1294
Main Authors Shi, Wei, Wu, Xinyuan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The main theme of this paper is explicit Gautschi-type integrators for the nonlinear multi-frequency oscillatory second-order initial value problems of the form y ′′ = − A ( t , y ) y + f ( t , y ) , y ( t 0 ) = y 0 , y ′ ( t 0 ) = y 0 ′ . This work is important and interesting within the broader framework of the subject. In fact, the Gautschi-type methods for oscillatory problems with a constant matrix A have been investigated by many authors. The key question now is that the classical variation-of-constants approach is not applicable to the oscillatory nonlinear problems with a variable coefficient matrix A ( t , y ). We consider successive approximations or locally equivalent systems for the problems, and derive efficient explicit Gautschi-type integrators. The error analysis is presented for the local approximation accordingly. Accompanying numerical results demonstrate the remarkable efficiency of the new Gautschi-type integrators in comparison with some existing numerical methods in the scientific literature.
AbstractList The main theme of this paper is explicit Gautschi-type integrators for the nonlinear multi-frequency oscillatory second-order initial value problems of the form y′′=−A(t,y)y+f(t,y),y(t0)=y0,y′(t0)=y0′. This work is important and interesting within the broader framework of the subject. In fact, the Gautschi-type methods for oscillatory problems with a constant matrix A have been investigated by many authors. The key question now is that the classical variation-of-constants approach is not applicable to the oscillatory nonlinear problems with a variable coefficient matrix A(t,y). We consider successive approximations or locally equivalent systems for the problems, and derive efficient explicit Gautschi-type integrators. The error analysis is presented for the local approximation accordingly. Accompanying numerical results demonstrate the remarkable efficiency of the new Gautschi-type integrators in comparison with some existing numerical methods in the scientific literature.
The main theme of this paper is explicit Gautschi-type integrators for the nonlinear multi-frequency oscillatory second-order initial value problems of the form y ′′ = − A ( t , y ) y + f ( t , y ) , y ( t 0 ) = y 0 , y ′ ( t 0 ) = y 0 ′ . This work is important and interesting within the broader framework of the subject. In fact, the Gautschi-type methods for oscillatory problems with a constant matrix A have been investigated by many authors. The key question now is that the classical variation-of-constants approach is not applicable to the oscillatory nonlinear problems with a variable coefficient matrix A ( t , y ). We consider successive approximations or locally equivalent systems for the problems, and derive efficient explicit Gautschi-type integrators. The error analysis is presented for the local approximation accordingly. Accompanying numerical results demonstrate the remarkable efficiency of the new Gautschi-type integrators in comparison with some existing numerical methods in the scientific literature.
Author Shi, Wei
Wu, Xinyuan
Author_xml – sequence: 1
  givenname: Wei
  surname: Shi
  fullname: Shi, Wei
  email: shuier628@163.com
  organization: College of Mathematical Sciences, Nanjing Tech University
– sequence: 2
  givenname: Xinyuan
  surname: Wu
  fullname: Wu, Xinyuan
  organization: School of Mathematical Sciences, Qufu Normal University, Department of Mathematics, Nanjing University
BookMark eNp9kE1rGzEQhkVIIbbbH5CboGe1Gu2Hdo8hpEnA0EtyFrJ25MrI0kbSlvrfV8aBQqE9zRzeZ97hWZPrEAMScgv8C3Auv2YALjvGYWC8bzomr8gKOinYKPruuu4cJINmHG7IOucD55USckXmh1-zd8YV-qiXks0Px8ppRupCwX3SJaZMbUy01nkXUCd6XHxxzCZ8WzCYE43ZOO_PyRPNaGKYWEwTpnrCFac9_an9gnROcefxmD-SD1b7jJ_e54a8fnt4uX9i2--Pz_d3W2Ya6AvrdqKZdtrg1A7cji3shLWTbGDk2HLettOIgwaw2mrTirpageNkoBe6RQvNhny-3K3F9dNc1CEuKdRKJUYY2hH6rqspuKRMijkntGpO7qjTSQFXZ7HqIlZVseosVsnKyL-Yqk8XF0NJ2vn_kuJC5toS9pj-_PRv6DdKnJJB
CitedBy_id crossref_primary_10_1007_s11075_020_00908_7
Cites_doi 10.1007/978-3-662-48156-1
10.1016/j.cpc.2009.04.005
10.1137/S1064827595295337
10.1016/j.cpc.2009.07.011
10.1016/j.cpc.2009.05.010
10.1016/j.apm.2013.01.029
10.1017/S0962492900002154
10.1016/j.cpc.2010.07.046
10.1023/A:1022049814688
10.4208/cicp.OA-2016-0141
10.1007/s00211-005-0583-8
10.1016/j.cpc.2010.09.006
10.1137/S0036142995280572
10.1016/S0377-0427(99)00340-4
10.1002/cpa.3160070404
10.1007/BF01386037
10.1007/978-3-642-35338-3
10.1016/j.apm.2010.03.018
10.1016/j.cam.2016.09.017
10.1007/s002110050456
10.1007/s10208-014-9241-9
10.1016/j.apnum.2005.09.005
10.1016/j.newast.2004.12.004
10.1016/j.camwa.2006.06.012
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Springer Science+Business Media, LLC, part of Springer Nature 2018.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2018.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s11075-018-0635-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9265
EndPage 1294
ExternalDocumentID 10_1007_s11075_018_0635_7
GrantInformation_xml – fundername: National Natural Science Foundation of China (CN)
  grantid: 11501288
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20150934
  funderid: https://doi.org/10.13039/501100004608
– fundername: Natural Science Foundation of the Jiangsu Higher Education Institutions
  grantid: 16KJB110010
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
M7S
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCJ
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~EX
-Y2
1SB
2.D
2P1
2VQ
5QI
AAOBN
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABQSL
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ARAPS
ATHPR
AYFIA
BBWZM
BENPR
BGLVJ
CAG
CCPQU
CITATION
COF
H13
HCIFZ
K7-
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
PTHSS
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCLPG
T16
TEORI
UZXMN
VFIZW
VOH
ZY4
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c316t-5b23dbaced480f941b2ffd73190e40044d9e8a11fafac428a1f2e9dc162a4ef13
IEDL.DBID BENPR
ISSN 1017-1398
IngestDate Sun Jul 20 13:41:15 EDT 2025
Tue Jul 01 00:28:19 EDT 2025
Thu Apr 24 22:59:05 EDT 2025
Fri Feb 21 02:32:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 65L05
65L06
34C15
Error analysis
Structure preservation
Kepler’s problem
65F30
Gautschi-type integrators
Oscillatory nonlinear second-order initial value problems
Oscillatory Hamiltonian systems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-5b23dbaced480f941b2ffd73190e40044d9e8a11fafac428a1f2e9dc162a4ef13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918491655
PQPubID 2043837
PageCount 20
ParticipantIDs proquest_journals_2918491655
crossref_primary_10_1007_s11075_018_0635_7
crossref_citationtrail_10_1007_s11075_018_0635_7
springer_journals_10_1007_s11075_018_0635_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190801
2019-8-00
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 8
  year: 2019
  text: 20190801
  day: 1
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical algorithms
PublicationTitleAbbrev Numer Algor
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Hochbruck, Lubich (CR5) 1999; 83
Wu, You, Shi, Wang (CR14) 2010; 181
Yang, Wu, You, Fang (CR9) 2009; 180
Wang, Wu, Meng (CR8) 2017; 313
Wu, Liu, Shi (CR16) 2015
Iserles (CR21) 2002; 42
Iserles, Munthe-Kaas, Nørsett, Zanna (CR27) 2000; 9
Gautschi (CR1) 1961; 3
Wang, Iserles, Wu (CR7) 2016; 16
Wu, Wang (CR13) 2010; 34
Hersch (CR2) 1958; 9a
Grimm (CR17) 2005; 100
Magnus (CR26) 1954; 7
Hochbruck, Lubich (CR3) 1997; 34
Wu, Wang, Shi (CR19) 2013; 37
Hairer, Nørsett, Wanner (CR23) 1993
Wu, You, Xia (CR12) 2009; 180
Wu, You, Li (CR10) 2009; 180
Mei, Liu, Wu (CR11) 2017; 22
CR25
Hale (CR18) 1980
CR22
Franco (CR6) 2006; 56
Wu, You, Wang (CR20) 2013
Wu, Wang (CR15) 2010; 181
Nyström (CR28) 1925; 50
Coleman, Duxbury (CR24) 2000; 126
Hochbruck, Lubich, Selhofer (CR4) 1998; 19
JP Coleman (635_CR24) 2000; 126
X Wu (635_CR14) 2010; 181
A Iserles (635_CR27) 2000; 9
B Wang (635_CR7) 2016; 16
M Hochbruck (635_CR4) 1998; 19
H Yang (635_CR9) 2009; 180
635_CR25
X Wu (635_CR15) 2010; 181
J Franco (635_CR6) 2006; 56
JK Hale (635_CR18) 1980
X Wu (635_CR13) 2010; 34
J Hersch (635_CR2) 1958; 9a
X Wu (635_CR19) 2013; 37
X Wu (635_CR10) 2009; 180
635_CR22
A Iserles (635_CR21) 2002; 42
M Hochbruck (635_CR3) 1997; 34
B Wang (635_CR8) 2017; 313
V Grimm (635_CR17) 2005; 100
EJ Nyström (635_CR28) 1925; 50
W Gautschi (635_CR1) 1961; 3
W Magnus (635_CR26) 1954; 7
L Mei (635_CR11) 2017; 22
X Wu (635_CR16) 2015
X Wu (635_CR20) 2013
M Hochbruck (635_CR5) 1999; 83
X Wu (635_CR12) 2009; 180
E Hairer (635_CR23) 1993
References_xml – year: 2015
  ident: CR16
  publication-title: Structure-preserving algorithms for oscillatory differential equations, vol. II
  doi: 10.1007/978-3-662-48156-1
– volume: 50
  start-page: 1
  year: 1925
  end-page: 54
  ident: CR28
  article-title: Ueber die numerische Integration von Differentialgleichungen
  publication-title: Acta. Soc. Sci. Fenn.
– ident: CR22
– volume: 180
  start-page: 1545
  year: 2009
  end-page: 1549
  ident: CR10
  article-title: Note on derivation of order conditions for ARKN methods for perturbed oscillators
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.04.005
– volume: 19
  start-page: 1552
  year: 1998
  end-page: 1574
  ident: CR4
  article-title: Exponential integrators for large systems of differential equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827595295337
– volume: 180
  start-page: 2250
  year: 2009
  end-page: 2257
  ident: CR12
  article-title: Order conditions for ARKN methods solving oscillatory systems
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.07.011
– volume: 180
  start-page: 1777
  year: 2009
  end-page: 1794
  ident: CR9
  article-title: Extended RKN-type methods for numerical integration of perturbed oscillators
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.05.010
– volume: 37
  start-page: 6505
  year: 2013
  end-page: 6518
  ident: CR19
  article-title: Effective integrators for nonlinear second-order oscillatory systems with a time-dependent frequency matrix
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2013.01.029
– volume: 9
  start-page: 215
  year: 2000
  end-page: 365
  ident: CR27
  article-title: Lie group methods
  publication-title: Acta Numerica
  doi: 10.1017/S0962492900002154
– volume: 181
  start-page: 1873
  year: 2010
  end-page: 1887
  ident: CR14
  article-title: ERKN integrators for systems of oscillatory second-order differential equations
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2010.07.046
– volume: 42
  start-page: 561
  year: 2002
  end-page: 599
  ident: CR21
  article-title: On the global error of discretization methods for highly oscillatory ordinary differential equations
  publication-title: BIT
  doi: 10.1023/A:1022049814688
– volume: 22
  start-page: 742
  year: 2017
  end-page: 764
  ident: CR11
  article-title: An essential extension of the finite-energy condition for extended Runge–Kutta–Nyström integrators when applied to nonlinear wave equations
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.OA-2016-0141
– year: 1993
  ident: CR23
  publication-title: Solving ordinary differential equations I: Nonstiff problems
– volume: 100
  start-page: 71
  year: 2005
  end-page: 89
  ident: CR17
  article-title: On error bounds for the Gautschi-type exponential integrator applied to oscillatory second-order differential equations
  publication-title: Numer. Math.
  doi: 10.1007/s00211-005-0583-8
– ident: CR25
– volume: 181
  start-page: 1955
  year: 2010
  end-page: 1962
  ident: CR15
  article-title: Multidimensional adapted Runge-Kutta-Nyström methods for oscillatory systems
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2010.09.006
– volume: 34
  start-page: 1911
  year: 1997
  end-page: 1925
  ident: CR3
  article-title: On Krylov subspace approximations to the matrix exponential operator
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142995280572
– volume: 126
  start-page: 47
  year: 2000
  end-page: 75
  ident: CR24
  article-title: Mixed collocation methods for y′′ = f(x,y)
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(99)00340-4
– volume: 7
  start-page: 649
  year: 1954
  end-page: 673
  ident: CR26
  article-title: On the exponential solution of differential equations for a linear operator
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160070404
– volume: 9a
  start-page: 129
  year: 1958
  end-page: 180
  ident: CR2
  article-title: Contribution à la méthode des équations aux différences
  publication-title: ZAMP
– volume: 3
  start-page: 381
  year: 1961
  end-page: 397
  ident: CR1
  article-title: Numerical integration of ordinary differential equations based on trigonometric polynomials
  publication-title: Numer. Math.
  doi: 10.1007/BF01386037
– year: 2013
  ident: CR20
  publication-title: Structure-preserving algorithms for oscillatory differential equations
  doi: 10.1007/978-3-642-35338-3
– volume: 34
  start-page: 3708
  year: 2010
  end-page: 3711
  ident: CR13
  article-title: Comments on “embedded pair of extended Runge-Kutta-Nystrom type methods for perturbed oscillators”
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2010.03.018
– volume: 313
  start-page: 185
  year: 2017
  end-page: 201
  ident: CR8
  article-title: Trigonometric collocation methods based on Lagrange basis polynomials for multi-frequency oscillatory second-order differential equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2016.09.017
– year: 1980
  ident: CR18
  publication-title: Ordinary differential equations
– volume: 83
  start-page: 403
  year: 1999
  end-page: 426
  ident: CR5
  article-title: A Gautschi-type method for oscillatory second-order differential equations
  publication-title: Numer. Math.
  doi: 10.1007/s002110050456
– volume: 16
  start-page: 151
  year: 2016
  end-page: 181
  ident: CR7
  article-title: Arbitrary–order trigonometric Fourier collocation methods for multi-frequency oscillatory systems
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-014-9241-9
– volume: 56
  start-page: 1040
  year: 2006
  end-page: 1053
  ident: CR6
  article-title: New methods for oscillatory systems based on ARKN methods
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2005.09.005
– volume: 83
  start-page: 403
  year: 1999
  ident: 635_CR5
  publication-title: Numer. Math.
  doi: 10.1007/s002110050456
– volume: 9a
  start-page: 129
  year: 1958
  ident: 635_CR2
  publication-title: ZAMP
– volume: 9
  start-page: 215
  year: 2000
  ident: 635_CR27
  publication-title: Acta Numerica
  doi: 10.1017/S0962492900002154
– volume: 19
  start-page: 1552
  year: 1998
  ident: 635_CR4
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827595295337
– volume: 100
  start-page: 71
  year: 2005
  ident: 635_CR17
  publication-title: Numer. Math.
  doi: 10.1007/s00211-005-0583-8
– volume: 34
  start-page: 1911
  year: 1997
  ident: 635_CR3
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142995280572
– volume: 181
  start-page: 1955
  year: 2010
  ident: 635_CR15
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2010.09.006
– volume: 50
  start-page: 1
  year: 1925
  ident: 635_CR28
  publication-title: Acta. Soc. Sci. Fenn.
– volume: 22
  start-page: 742
  year: 2017
  ident: 635_CR11
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.OA-2016-0141
– volume: 180
  start-page: 1777
  year: 2009
  ident: 635_CR9
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.05.010
– volume-title: Structure-preserving algorithms for oscillatory differential equations, vol. II
  year: 2015
  ident: 635_CR16
  doi: 10.1007/978-3-662-48156-1
– volume: 16
  start-page: 151
  year: 2016
  ident: 635_CR7
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-014-9241-9
– volume: 181
  start-page: 1873
  year: 2010
  ident: 635_CR14
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2010.07.046
– volume: 180
  start-page: 1545
  year: 2009
  ident: 635_CR10
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.04.005
– volume: 313
  start-page: 185
  year: 2017
  ident: 635_CR8
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2016.09.017
– volume-title: Structure-preserving algorithms for oscillatory differential equations
  year: 2013
  ident: 635_CR20
  doi: 10.1007/978-3-642-35338-3
– volume: 42
  start-page: 561
  year: 2002
  ident: 635_CR21
  publication-title: BIT
  doi: 10.1023/A:1022049814688
– volume: 180
  start-page: 2250
  year: 2009
  ident: 635_CR12
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.07.011
– volume-title: Solving ordinary differential equations I: Nonstiff problems
  year: 1993
  ident: 635_CR23
– volume: 34
  start-page: 3708
  year: 2010
  ident: 635_CR13
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2010.03.018
– volume: 56
  start-page: 1040
  year: 2006
  ident: 635_CR6
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2005.09.005
– volume-title: Ordinary differential equations
  year: 1980
  ident: 635_CR18
– volume: 37
  start-page: 6505
  year: 2013
  ident: 635_CR19
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2013.01.029
– volume: 3
  start-page: 381
  year: 1961
  ident: 635_CR1
  publication-title: Numer. Math.
  doi: 10.1007/BF01386037
– volume: 7
  start-page: 649
  year: 1954
  ident: 635_CR26
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160070404
– volume: 126
  start-page: 47
  year: 2000
  ident: 635_CR24
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(99)00340-4
– ident: 635_CR22
  doi: 10.1016/j.newast.2004.12.004
– ident: 635_CR25
  doi: 10.1016/j.camwa.2006.06.012
SSID ssj0010027
Score 2.1888733
Snippet The main theme of this paper is explicit Gautschi-type integrators for the nonlinear multi-frequency oscillatory second-order initial value problems of the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1275
SubjectTerms Algebra
Algorithms
Applied mathematics
Approximation
Boundary value problems
Computer Science
Error analysis
Integrators
Mathematical analysis
Numeric Computing
Numerical Analysis
Numerical methods
Ordinary differential equations
Original Paper
Theory of Computation
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50vejBx6q4vsjBkxLoI03b4yKui7CeXNhbSfOAwrIubffgv3fSNlsUFbymSSidTPJ9nck3AHfKM4kysaG5NJwypUMqPJHSgBsVMu2ncW7vDs9e-XTOXhbRorvHXblsdxeSbHbq_rIbMhWbaJZQPFYjGu_CXmSpOy7ieTDehg4s0WpCnLj9IrxJXCjzpym-HkY9wvwWFG3OmskxHHYgkYxbq57Ajl4N4agDjKRzxwqbXE0G1zaEg9lWh7U6hbVNsStkUZNnsamRyBbU_nMlTiTivawIolayagUzREmaBENqyjbD-oNYrUtcKTYUTypLnhVt1DpxigI3hyWxauGadHVpqjOYT57eHqe0q7FAZejzmkZ5EKpcSK1Y4pmU-XlgjIrRMT1t3ZupVCfC940wQiJVEb4JdKqkzwPBtPHDcxjgO-oLIAHjkVQ8SRTCHBlxoTzsKmKr8G5SLx-B5z52JjsBclsHY5n10snWPhnaJ7P2yeIR3G-HrFv1jb86XzsLZp0jVlmQIoVFCBxFI3hwVu0f_zrZ5b96X8E-Aqm0TQy8hkFdbvQNgpU6v20W5yf2d-OU
  priority: 102
  providerName: Springer Nature
Title Explicit Gautschi-type integrators for nonlinear multi-frequency oscillatory second-order initial value problems
URI https://link.springer.com/article/10.1007/s11075-018-0635-7
https://www.proquest.com/docview/2918491655
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB5Be2EPLK_VdimVD5xAFnnHOaF21RaBqBCiEpwixw-pEoJuEw78-51JnFYgwSkHO1aUefgbz_gbgFPtWaFtanmhbMIjbUIuPZnxILE6jIyfpQXdHb6dJVfz6PoxfnQHbqUrq2x9Yu2o9auiM_KLIMNYBLFMHF8u_3HqGkXZVddCYxu66IIFBl_d0Xh2d7_OI1DUVec70Rcj1hFtXrO-PIeRDxWuCY7bdMzTjzvTBm5-ypDWG89kD3YdYmTDRsT7sGVeDuCnQ4_M2WZ5AD9u1wys5SEsqbhuoRYVm8q3CkPYBafTVtbSQ7yuSoZ4lb00VBlyxerSQm5XTW31OyOWS9QRSsKzksJmzWueTlxigW7hmRFPuGGuI015BPPJ-OHvFXfdFbgK_aTicRGEupDK6Eh4Nov8IrBWp2iSniHDjnRmhPR9K61UGKRI3wYm08pPAhkZ64e_oIPfaH4DC6IkVjoRQiPAUXEitYdTZUrc7jbzih547Z_NlaMepw4Yz_mGNJmEkaMwchJGnvbgbP3KsuHd-G5yvxVX7kywzDcK04PzVoSb4S8X-_P9Ysewg5gpa2oA-9CpVm_mBHFJVQxgW0ymA-gOJ6PRjJ7Tp5vxwKkkjs6D4X_fhOcW
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQcgNJWXZ4-wKXIauI4Dx8QQsCyFJYTSNxSxw9pJQTLJgjxp_iNzOSxKyqVG-c4VuT5PP4mM_4GYMcGPrM-9bwwPuHSuojrQCsuEm8j6UKVFnR3eHiZDK7ln5v4Zg5eurswVFbZ-cTaUdt7Q__IfwuFsQhymTg-GD9w6hpF2dWuhUYDi3P3_IQhW7l_doz23RWif3J1NOBtVwFuojCpeFyIyBbaOCuzwCsZFsJ7myIUA0eAlla5TIeh114bJOc69MIpa8JEaOl8GOG8n2BBRpGiHZX1T6dZC4rx6uwqen5kVlmXRa2v6mGcRWVyGUdSEPP07Tk4I7f_5GPrY66_AkstP2WHDaC-wpy7W4Xllquy1hOUq7A4nOq9lt9gTKV8IzOq2Kl-rDBgHnH6t8s6MYr7ScmQHbO7RphDT1hdyMj9pKnkfmakqYmIpJQ_KylIt7xWBcUpRuiEbhmpkjvW9r8pv8P1h6z6D5jHb3Q_gQmZxMYmWWaRTpk40TbAoTolJXmvgqIHQbeyuWmFzqnfxm0-k2gmY-RojJyMkac9-DV9ZdyofLw3eKMzV95u-DKfwbMHe50JZ4__O9na-5Ntw-fB1fAivzi7PF-HL8jWVFN9uAHz1eTRbSIjqoqtGoYM_n407l8BtDsfOA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gujBR1Wszz14UpZm886xqLU-WjxY6C1s9gGFUkuTHvz3zibZFkUFr5vNEHZ2Z7_JzHwDcCUdHUsdaZoJHVJfKo9yhyfUDbX0fMWSKDO1w_1B2Bv6T6NgVPc5zW22uw1JVjUNhqVpWrRnUrdXhW_otZiks5jiFRvQaB020Bozs62HbmcZRjBOVxnuRFOMUCe2Yc2fRHy9mFZo81uAtLx3unuwUwNG0qk0vA9ratqE3Ro8kvpo5jhk-zPYsSZs95ecrPkBzEy63ViMC_LAFwU6tWNq_r8SSxjxPs8JIlgyrcgz-JyUyYZUz6ts6w9ieC9x15iwPMmNIy1pydyJIsZoKCbEMIcrUveoyQ9h2L1_u-3Rut8CFR4LCxpkriczLpT0Y0cnPstcrWWEy-ooc9R9maiYM6a55gLdFs60qxIpWOhyX2nmHUEDv1EdA3H9MBAyjGOJkEcEIZcOTuWRYXvXiZO1wLGLnYqajNz0xJikKxplo58U9ZMa_aRRC66Xr8wqJo6_Jp9ZDab1ocxTN0F3FuFwELTgxmp19fhXYSf_mn0Jm6933fTlcfB8CluIr5IqX_AMGsV8oc4RwxTZRblPPwERQurD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explicit+Gautschi-type+integrators+for+nonlinear+multi-frequency+oscillatory+second-order+initial+value+problems&rft.jtitle=Numerical+algorithms&rft.au=Shi%2C+Wei&rft.au=Wu%2C+Xinyuan&rft.date=2019-08-01&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=81&rft.issue=4&rft.spage=1275&rft.epage=1294&rft_id=info:doi/10.1007%2Fs11075-018-0635-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11075_018_0635_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon