Explicit Gautschi-type integrators for nonlinear multi-frequency oscillatory second-order initial value problems
The main theme of this paper is explicit Gautschi-type integrators for the nonlinear multi-frequency oscillatory second-order initial value problems of the form y ′′ = − A ( t , y ) y + f ( t , y ) , y ( t 0 ) = y 0 , y ′ ( t 0 ) = y 0 ′ . This work is important and interesting within the broader fr...
Saved in:
Published in | Numerical algorithms Vol. 81; no. 4; pp. 1275 - 1294 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The main theme of this paper is explicit Gautschi-type integrators for the nonlinear multi-frequency oscillatory second-order initial value problems of the form
y
′′
=
−
A
(
t
,
y
)
y
+
f
(
t
,
y
)
,
y
(
t
0
)
=
y
0
,
y
′
(
t
0
)
=
y
0
′
. This work is important and interesting within the broader framework of the subject. In fact, the Gautschi-type methods for oscillatory problems with a constant matrix
A
have been investigated by many authors. The key question now is that the classical variation-of-constants approach is not applicable to the oscillatory nonlinear problems with a variable coefficient matrix
A
(
t
,
y
). We consider successive approximations or locally equivalent systems for the problems, and derive efficient explicit Gautschi-type integrators. The error analysis is presented for the local approximation accordingly. Accompanying numerical results demonstrate the remarkable efficiency of the new Gautschi-type integrators in comparison with some existing numerical methods in the scientific literature. |
---|---|
AbstractList | The main theme of this paper is explicit Gautschi-type integrators for the nonlinear multi-frequency oscillatory second-order initial value problems of the form y′′=−A(t,y)y+f(t,y),y(t0)=y0,y′(t0)=y0′. This work is important and interesting within the broader framework of the subject. In fact, the Gautschi-type methods for oscillatory problems with a constant matrix A have been investigated by many authors. The key question now is that the classical variation-of-constants approach is not applicable to the oscillatory nonlinear problems with a variable coefficient matrix A(t,y). We consider successive approximations or locally equivalent systems for the problems, and derive efficient explicit Gautschi-type integrators. The error analysis is presented for the local approximation accordingly. Accompanying numerical results demonstrate the remarkable efficiency of the new Gautschi-type integrators in comparison with some existing numerical methods in the scientific literature. The main theme of this paper is explicit Gautschi-type integrators for the nonlinear multi-frequency oscillatory second-order initial value problems of the form y ′′ = − A ( t , y ) y + f ( t , y ) , y ( t 0 ) = y 0 , y ′ ( t 0 ) = y 0 ′ . This work is important and interesting within the broader framework of the subject. In fact, the Gautschi-type methods for oscillatory problems with a constant matrix A have been investigated by many authors. The key question now is that the classical variation-of-constants approach is not applicable to the oscillatory nonlinear problems with a variable coefficient matrix A ( t , y ). We consider successive approximations or locally equivalent systems for the problems, and derive efficient explicit Gautschi-type integrators. The error analysis is presented for the local approximation accordingly. Accompanying numerical results demonstrate the remarkable efficiency of the new Gautschi-type integrators in comparison with some existing numerical methods in the scientific literature. |
Author | Shi, Wei Wu, Xinyuan |
Author_xml | – sequence: 1 givenname: Wei surname: Shi fullname: Shi, Wei email: shuier628@163.com organization: College of Mathematical Sciences, Nanjing Tech University – sequence: 2 givenname: Xinyuan surname: Wu fullname: Wu, Xinyuan organization: School of Mathematical Sciences, Qufu Normal University, Department of Mathematics, Nanjing University |
BookMark | eNp9kE1rGzEQhkVIIbbbH5CboGe1Gu2Hdo8hpEnA0EtyFrJ25MrI0kbSlvrfV8aBQqE9zRzeZ97hWZPrEAMScgv8C3Auv2YALjvGYWC8bzomr8gKOinYKPruuu4cJINmHG7IOucD55USckXmh1-zd8YV-qiXks0Px8ppRupCwX3SJaZMbUy01nkXUCd6XHxxzCZ8WzCYE43ZOO_PyRPNaGKYWEwTpnrCFac9_an9gnROcefxmD-SD1b7jJ_e54a8fnt4uX9i2--Pz_d3W2Ya6AvrdqKZdtrg1A7cji3shLWTbGDk2HLettOIgwaw2mrTirpageNkoBe6RQvNhny-3K3F9dNc1CEuKdRKJUYY2hH6rqspuKRMijkntGpO7qjTSQFXZ7HqIlZVseosVsnKyL-Yqk8XF0NJ2vn_kuJC5toS9pj-_PRv6DdKnJJB |
CitedBy_id | crossref_primary_10_1007_s11075_020_00908_7 |
Cites_doi | 10.1007/978-3-662-48156-1 10.1016/j.cpc.2009.04.005 10.1137/S1064827595295337 10.1016/j.cpc.2009.07.011 10.1016/j.cpc.2009.05.010 10.1016/j.apm.2013.01.029 10.1017/S0962492900002154 10.1016/j.cpc.2010.07.046 10.1023/A:1022049814688 10.4208/cicp.OA-2016-0141 10.1007/s00211-005-0583-8 10.1016/j.cpc.2010.09.006 10.1137/S0036142995280572 10.1016/S0377-0427(99)00340-4 10.1002/cpa.3160070404 10.1007/BF01386037 10.1007/978-3-642-35338-3 10.1016/j.apm.2010.03.018 10.1016/j.cam.2016.09.017 10.1007/s002110050456 10.1007/s10208-014-9241-9 10.1016/j.apnum.2005.09.005 10.1016/j.newast.2004.12.004 10.1016/j.camwa.2006.06.012 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Springer Science+Business Media, LLC, part of Springer Nature 2018. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
DOI | 10.1007/s11075-018-0635-7 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Engineering Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics Computer Science |
EISSN | 1572-9265 |
EndPage | 1294 |
ExternalDocumentID | 10_1007_s11075_018_0635_7 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (CN) grantid: 11501288 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20150934 funderid: https://doi.org/10.13039/501100004608 – fundername: Natural Science Foundation of the Jiangsu Higher Education Institutions grantid: 16KJB110010 |
GroupedDBID | -4Z -59 -5G -BR -EM -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y M7S MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCJ SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ~EX -Y2 1SB 2.D 2P1 2VQ 5QI AAOBN AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABJCF ABQSL ABULA ACBXY ACSTC ADHKG AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFKRA AFOHR AGGDS AGQPQ AHPBZ AHWEU AIXLP AJBLW ARAPS ATHPR AYFIA BBWZM BENPR BGLVJ CAG CCPQU CITATION COF H13 HCIFZ K7- KOW N2Q NDZJH O9- OVD PHGZM PHGZT PTHSS R4E RNI RZC RZE RZK S1Z S26 S28 SCLPG T16 TEORI UZXMN VFIZW VOH ZY4 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c316t-5b23dbaced480f941b2ffd73190e40044d9e8a11fafac428a1f2e9dc162a4ef13 |
IEDL.DBID | BENPR |
ISSN | 1017-1398 |
IngestDate | Sun Jul 20 13:41:15 EDT 2025 Tue Jul 01 00:28:19 EDT 2025 Thu Apr 24 22:59:05 EDT 2025 Fri Feb 21 02:32:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | 65L05 65L06 34C15 Error analysis Structure preservation Kepler’s problem 65F30 Gautschi-type integrators Oscillatory nonlinear second-order initial value problems Oscillatory Hamiltonian systems |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-5b23dbaced480f941b2ffd73190e40044d9e8a11fafac428a1f2e9dc162a4ef13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2918491655 |
PQPubID | 2043837 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2918491655 crossref_primary_10_1007_s11075_018_0635_7 crossref_citationtrail_10_1007_s11075_018_0635_7 springer_journals_10_1007_s11075_018_0635_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190801 2019-8-00 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 8 year: 2019 text: 20190801 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Numerical algorithms |
PublicationTitleAbbrev | Numer Algor |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Hochbruck, Lubich (CR5) 1999; 83 Wu, You, Shi, Wang (CR14) 2010; 181 Yang, Wu, You, Fang (CR9) 2009; 180 Wang, Wu, Meng (CR8) 2017; 313 Wu, Liu, Shi (CR16) 2015 Iserles (CR21) 2002; 42 Iserles, Munthe-Kaas, Nørsett, Zanna (CR27) 2000; 9 Gautschi (CR1) 1961; 3 Wang, Iserles, Wu (CR7) 2016; 16 Wu, Wang (CR13) 2010; 34 Hersch (CR2) 1958; 9a Grimm (CR17) 2005; 100 Magnus (CR26) 1954; 7 Hochbruck, Lubich (CR3) 1997; 34 Wu, Wang, Shi (CR19) 2013; 37 Hairer, Nørsett, Wanner (CR23) 1993 Wu, You, Xia (CR12) 2009; 180 Wu, You, Li (CR10) 2009; 180 Mei, Liu, Wu (CR11) 2017; 22 CR25 Hale (CR18) 1980 CR22 Franco (CR6) 2006; 56 Wu, You, Wang (CR20) 2013 Wu, Wang (CR15) 2010; 181 Nyström (CR28) 1925; 50 Coleman, Duxbury (CR24) 2000; 126 Hochbruck, Lubich, Selhofer (CR4) 1998; 19 JP Coleman (635_CR24) 2000; 126 X Wu (635_CR14) 2010; 181 A Iserles (635_CR27) 2000; 9 B Wang (635_CR7) 2016; 16 M Hochbruck (635_CR4) 1998; 19 H Yang (635_CR9) 2009; 180 635_CR25 X Wu (635_CR15) 2010; 181 J Franco (635_CR6) 2006; 56 JK Hale (635_CR18) 1980 X Wu (635_CR13) 2010; 34 J Hersch (635_CR2) 1958; 9a X Wu (635_CR19) 2013; 37 X Wu (635_CR10) 2009; 180 635_CR22 A Iserles (635_CR21) 2002; 42 M Hochbruck (635_CR3) 1997; 34 B Wang (635_CR8) 2017; 313 V Grimm (635_CR17) 2005; 100 EJ Nyström (635_CR28) 1925; 50 W Gautschi (635_CR1) 1961; 3 W Magnus (635_CR26) 1954; 7 L Mei (635_CR11) 2017; 22 X Wu (635_CR16) 2015 X Wu (635_CR20) 2013 M Hochbruck (635_CR5) 1999; 83 X Wu (635_CR12) 2009; 180 E Hairer (635_CR23) 1993 |
References_xml | – year: 2015 ident: CR16 publication-title: Structure-preserving algorithms for oscillatory differential equations, vol. II doi: 10.1007/978-3-662-48156-1 – volume: 50 start-page: 1 year: 1925 end-page: 54 ident: CR28 article-title: Ueber die numerische Integration von Differentialgleichungen publication-title: Acta. Soc. Sci. Fenn. – ident: CR22 – volume: 180 start-page: 1545 year: 2009 end-page: 1549 ident: CR10 article-title: Note on derivation of order conditions for ARKN methods for perturbed oscillators publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.04.005 – volume: 19 start-page: 1552 year: 1998 end-page: 1574 ident: CR4 article-title: Exponential integrators for large systems of differential equations publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827595295337 – volume: 180 start-page: 2250 year: 2009 end-page: 2257 ident: CR12 article-title: Order conditions for ARKN methods solving oscillatory systems publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.07.011 – volume: 180 start-page: 1777 year: 2009 end-page: 1794 ident: CR9 article-title: Extended RKN-type methods for numerical integration of perturbed oscillators publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.05.010 – volume: 37 start-page: 6505 year: 2013 end-page: 6518 ident: CR19 article-title: Effective integrators for nonlinear second-order oscillatory systems with a time-dependent frequency matrix publication-title: Appl. Math. Modell. doi: 10.1016/j.apm.2013.01.029 – volume: 9 start-page: 215 year: 2000 end-page: 365 ident: CR27 article-title: Lie group methods publication-title: Acta Numerica doi: 10.1017/S0962492900002154 – volume: 181 start-page: 1873 year: 2010 end-page: 1887 ident: CR14 article-title: ERKN integrators for systems of oscillatory second-order differential equations publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2010.07.046 – volume: 42 start-page: 561 year: 2002 end-page: 599 ident: CR21 article-title: On the global error of discretization methods for highly oscillatory ordinary differential equations publication-title: BIT doi: 10.1023/A:1022049814688 – volume: 22 start-page: 742 year: 2017 end-page: 764 ident: CR11 article-title: An essential extension of the finite-energy condition for extended Runge–Kutta–Nyström integrators when applied to nonlinear wave equations publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.OA-2016-0141 – year: 1993 ident: CR23 publication-title: Solving ordinary differential equations I: Nonstiff problems – volume: 100 start-page: 71 year: 2005 end-page: 89 ident: CR17 article-title: On error bounds for the Gautschi-type exponential integrator applied to oscillatory second-order differential equations publication-title: Numer. Math. doi: 10.1007/s00211-005-0583-8 – ident: CR25 – volume: 181 start-page: 1955 year: 2010 end-page: 1962 ident: CR15 article-title: Multidimensional adapted Runge-Kutta-Nyström methods for oscillatory systems publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2010.09.006 – volume: 34 start-page: 1911 year: 1997 end-page: 1925 ident: CR3 article-title: On Krylov subspace approximations to the matrix exponential operator publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142995280572 – volume: 126 start-page: 47 year: 2000 end-page: 75 ident: CR24 article-title: Mixed collocation methods for y′′ = f(x,y) publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(99)00340-4 – volume: 7 start-page: 649 year: 1954 end-page: 673 ident: CR26 article-title: On the exponential solution of differential equations for a linear operator publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160070404 – volume: 9a start-page: 129 year: 1958 end-page: 180 ident: CR2 article-title: Contribution à la méthode des équations aux différences publication-title: ZAMP – volume: 3 start-page: 381 year: 1961 end-page: 397 ident: CR1 article-title: Numerical integration of ordinary differential equations based on trigonometric polynomials publication-title: Numer. Math. doi: 10.1007/BF01386037 – year: 2013 ident: CR20 publication-title: Structure-preserving algorithms for oscillatory differential equations doi: 10.1007/978-3-642-35338-3 – volume: 34 start-page: 3708 year: 2010 end-page: 3711 ident: CR13 article-title: Comments on “embedded pair of extended Runge-Kutta-Nystrom type methods for perturbed oscillators” publication-title: Appl. Math. Modell. doi: 10.1016/j.apm.2010.03.018 – volume: 313 start-page: 185 year: 2017 end-page: 201 ident: CR8 article-title: Trigonometric collocation methods based on Lagrange basis polynomials for multi-frequency oscillatory second-order differential equations publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2016.09.017 – year: 1980 ident: CR18 publication-title: Ordinary differential equations – volume: 83 start-page: 403 year: 1999 end-page: 426 ident: CR5 article-title: A Gautschi-type method for oscillatory second-order differential equations publication-title: Numer. Math. doi: 10.1007/s002110050456 – volume: 16 start-page: 151 year: 2016 end-page: 181 ident: CR7 article-title: Arbitrary–order trigonometric Fourier collocation methods for multi-frequency oscillatory systems publication-title: Found. Comput. Math. doi: 10.1007/s10208-014-9241-9 – volume: 56 start-page: 1040 year: 2006 end-page: 1053 ident: CR6 article-title: New methods for oscillatory systems based on ARKN methods publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2005.09.005 – volume: 83 start-page: 403 year: 1999 ident: 635_CR5 publication-title: Numer. Math. doi: 10.1007/s002110050456 – volume: 9a start-page: 129 year: 1958 ident: 635_CR2 publication-title: ZAMP – volume: 9 start-page: 215 year: 2000 ident: 635_CR27 publication-title: Acta Numerica doi: 10.1017/S0962492900002154 – volume: 19 start-page: 1552 year: 1998 ident: 635_CR4 publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827595295337 – volume: 100 start-page: 71 year: 2005 ident: 635_CR17 publication-title: Numer. Math. doi: 10.1007/s00211-005-0583-8 – volume: 34 start-page: 1911 year: 1997 ident: 635_CR3 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142995280572 – volume: 181 start-page: 1955 year: 2010 ident: 635_CR15 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2010.09.006 – volume: 50 start-page: 1 year: 1925 ident: 635_CR28 publication-title: Acta. Soc. Sci. Fenn. – volume: 22 start-page: 742 year: 2017 ident: 635_CR11 publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.OA-2016-0141 – volume: 180 start-page: 1777 year: 2009 ident: 635_CR9 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.05.010 – volume-title: Structure-preserving algorithms for oscillatory differential equations, vol. II year: 2015 ident: 635_CR16 doi: 10.1007/978-3-662-48156-1 – volume: 16 start-page: 151 year: 2016 ident: 635_CR7 publication-title: Found. Comput. Math. doi: 10.1007/s10208-014-9241-9 – volume: 181 start-page: 1873 year: 2010 ident: 635_CR14 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2010.07.046 – volume: 180 start-page: 1545 year: 2009 ident: 635_CR10 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.04.005 – volume: 313 start-page: 185 year: 2017 ident: 635_CR8 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2016.09.017 – volume-title: Structure-preserving algorithms for oscillatory differential equations year: 2013 ident: 635_CR20 doi: 10.1007/978-3-642-35338-3 – volume: 42 start-page: 561 year: 2002 ident: 635_CR21 publication-title: BIT doi: 10.1023/A:1022049814688 – volume: 180 start-page: 2250 year: 2009 ident: 635_CR12 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.07.011 – volume-title: Solving ordinary differential equations I: Nonstiff problems year: 1993 ident: 635_CR23 – volume: 34 start-page: 3708 year: 2010 ident: 635_CR13 publication-title: Appl. Math. Modell. doi: 10.1016/j.apm.2010.03.018 – volume: 56 start-page: 1040 year: 2006 ident: 635_CR6 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2005.09.005 – volume-title: Ordinary differential equations year: 1980 ident: 635_CR18 – volume: 37 start-page: 6505 year: 2013 ident: 635_CR19 publication-title: Appl. Math. Modell. doi: 10.1016/j.apm.2013.01.029 – volume: 3 start-page: 381 year: 1961 ident: 635_CR1 publication-title: Numer. Math. doi: 10.1007/BF01386037 – volume: 7 start-page: 649 year: 1954 ident: 635_CR26 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160070404 – volume: 126 start-page: 47 year: 2000 ident: 635_CR24 publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(99)00340-4 – ident: 635_CR22 doi: 10.1016/j.newast.2004.12.004 – ident: 635_CR25 doi: 10.1016/j.camwa.2006.06.012 |
SSID | ssj0010027 |
Score | 2.1888733 |
Snippet | The main theme of this paper is explicit Gautschi-type integrators for the nonlinear multi-frequency oscillatory second-order initial value problems of the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1275 |
SubjectTerms | Algebra Algorithms Applied mathematics Approximation Boundary value problems Computer Science Error analysis Integrators Mathematical analysis Numeric Computing Numerical Analysis Numerical methods Ordinary differential equations Original Paper Theory of Computation |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50vejBx6q4vsjBkxLoI03b4yKui7CeXNhbSfOAwrIubffgv3fSNlsUFbymSSidTPJ9nck3AHfKM4kysaG5NJwypUMqPJHSgBsVMu2ncW7vDs9e-XTOXhbRorvHXblsdxeSbHbq_rIbMhWbaJZQPFYjGu_CXmSpOy7ieTDehg4s0WpCnLj9IrxJXCjzpym-HkY9wvwWFG3OmskxHHYgkYxbq57Ajl4N4agDjKRzxwqbXE0G1zaEg9lWh7U6hbVNsStkUZNnsamRyBbU_nMlTiTivawIolayagUzREmaBENqyjbD-oNYrUtcKTYUTypLnhVt1DpxigI3hyWxauGadHVpqjOYT57eHqe0q7FAZejzmkZ5EKpcSK1Y4pmU-XlgjIrRMT1t3ZupVCfC940wQiJVEb4JdKqkzwPBtPHDcxjgO-oLIAHjkVQ8SRTCHBlxoTzsKmKr8G5SLx-B5z52JjsBclsHY5n10snWPhnaJ7P2yeIR3G-HrFv1jb86XzsLZp0jVlmQIoVFCBxFI3hwVu0f_zrZ5b96X8E-Aqm0TQy8hkFdbvQNgpU6v20W5yf2d-OU priority: 102 providerName: Springer Nature |
Title | Explicit Gautschi-type integrators for nonlinear multi-frequency oscillatory second-order initial value problems |
URI | https://link.springer.com/article/10.1007/s11075-018-0635-7 https://www.proquest.com/docview/2918491655 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB5Be2EPLK_VdimVD5xAFnnHOaF21RaBqBCiEpwixw-pEoJuEw78-51JnFYgwSkHO1aUefgbz_gbgFPtWaFtanmhbMIjbUIuPZnxILE6jIyfpQXdHb6dJVfz6PoxfnQHbqUrq2x9Yu2o9auiM_KLIMNYBLFMHF8u_3HqGkXZVddCYxu66IIFBl_d0Xh2d7_OI1DUVec70Rcj1hFtXrO-PIeRDxWuCY7bdMzTjzvTBm5-ypDWG89kD3YdYmTDRsT7sGVeDuCnQ4_M2WZ5AD9u1wys5SEsqbhuoRYVm8q3CkPYBafTVtbSQ7yuSoZ4lb00VBlyxerSQm5XTW31OyOWS9QRSsKzksJmzWueTlxigW7hmRFPuGGuI015BPPJ-OHvFXfdFbgK_aTicRGEupDK6Eh4Nov8IrBWp2iSniHDjnRmhPR9K61UGKRI3wYm08pPAhkZ64e_oIPfaH4DC6IkVjoRQiPAUXEitYdTZUrc7jbzih547Z_NlaMepw4Yz_mGNJmEkaMwchJGnvbgbP3KsuHd-G5yvxVX7kywzDcK04PzVoSb4S8X-_P9Ysewg5gpa2oA-9CpVm_mBHFJVQxgW0ymA-gOJ6PRjJ7Tp5vxwKkkjs6D4X_fhOcW |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQcgNJWXZ4-wKXIauI4Dx8QQsCyFJYTSNxSxw9pJQTLJgjxp_iNzOSxKyqVG-c4VuT5PP4mM_4GYMcGPrM-9bwwPuHSuojrQCsuEm8j6UKVFnR3eHiZDK7ln5v4Zg5eurswVFbZ-cTaUdt7Q__IfwuFsQhymTg-GD9w6hpF2dWuhUYDi3P3_IQhW7l_doz23RWif3J1NOBtVwFuojCpeFyIyBbaOCuzwCsZFsJ7myIUA0eAlla5TIeh114bJOc69MIpa8JEaOl8GOG8n2BBRpGiHZX1T6dZC4rx6uwqen5kVlmXRa2v6mGcRWVyGUdSEPP07Tk4I7f_5GPrY66_AkstP2WHDaC-wpy7W4Xllquy1hOUq7A4nOq9lt9gTKV8IzOq2Kl-rDBgHnH6t8s6MYr7ScmQHbO7RphDT1hdyMj9pKnkfmakqYmIpJQ_KylIt7xWBcUpRuiEbhmpkjvW9r8pv8P1h6z6D5jHb3Q_gQmZxMYmWWaRTpk40TbAoTolJXmvgqIHQbeyuWmFzqnfxm0-k2gmY-RojJyMkac9-DV9ZdyofLw3eKMzV95u-DKfwbMHe50JZ4__O9na-5Ntw-fB1fAivzi7PF-HL8jWVFN9uAHz1eTRbSIjqoqtGoYM_n407l8BtDsfOA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gujBR1Wszz14UpZm886xqLU-WjxY6C1s9gGFUkuTHvz3zibZFkUFr5vNEHZ2Z7_JzHwDcCUdHUsdaZoJHVJfKo9yhyfUDbX0fMWSKDO1w_1B2Bv6T6NgVPc5zW22uw1JVjUNhqVpWrRnUrdXhW_otZiks5jiFRvQaB020Bozs62HbmcZRjBOVxnuRFOMUCe2Yc2fRHy9mFZo81uAtLx3unuwUwNG0qk0vA9ratqE3Ro8kvpo5jhk-zPYsSZs95ecrPkBzEy63ViMC_LAFwU6tWNq_r8SSxjxPs8JIlgyrcgz-JyUyYZUz6ts6w9ieC9x15iwPMmNIy1pydyJIsZoKCbEMIcrUveoyQ9h2L1_u-3Rut8CFR4LCxpkriczLpT0Y0cnPstcrWWEy-ooc9R9maiYM6a55gLdFs60qxIpWOhyX2nmHUEDv1EdA3H9MBAyjGOJkEcEIZcOTuWRYXvXiZO1wLGLnYqajNz0xJikKxplo58U9ZMa_aRRC66Xr8wqJo6_Jp9ZDab1ocxTN0F3FuFwELTgxmp19fhXYSf_mn0Jm6933fTlcfB8CluIr5IqX_AMGsV8oc4RwxTZRblPPwERQurD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explicit+Gautschi-type+integrators+for+nonlinear+multi-frequency+oscillatory+second-order+initial+value+problems&rft.jtitle=Numerical+algorithms&rft.au=Shi%2C+Wei&rft.au=Wu%2C+Xinyuan&rft.date=2019-08-01&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=81&rft.issue=4&rft.spage=1275&rft.epage=1294&rft_id=info:doi/10.1007%2Fs11075-018-0635-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11075_018_0635_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon |