glabcmcmc : a Python package for ABC-MCMC with local and global moves

We introduce a new Python package glabcmcmc, which implements an approximate Bayesian computation Markov chain Monte Carlo (ABC-MCMC) algorithm that combines global and local proposal strategies to address the limitations of standard ABC-MCMC. The proposed package includes key innovations such as th...

Full description

Saved in:
Bibliographic Details
Published inStatistical theory and related fields Vol. 9; no. 2; pp. 168 - 177
Main Authors Cao, Xuefei, Wang, Shijia, Zhou, Yongdao
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 03.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We introduce a new Python package glabcmcmc, which implements an approximate Bayesian computation Markov chain Monte Carlo (ABC-MCMC) algorithm that combines global and local proposal strategies to address the limitations of standard ABC-MCMC. The proposed package includes key innovations such as the determination of global proposal frequencies, the implementation of a hybrid ABC-MCMC algorithm integrating global and local proposals, and an adaptive version that utilizes normalizing flows and gradient-based computations for enhanced proposal mechanisms. The functionality of the software package is demonstrated through illustrative examples.
AbstractList We introduce a new Python package glabcmcmc, which implements an approximate Bayesian computation Markov chain Monte Carlo (ABC-MCMC) algorithm that combines global and local proposal strategies to address the limitations of standard ABC-MCMC. The proposed package includes key innovations such as the determination of global proposal frequencies, the implementation of a hybrid ABC-MCMC algorithm integrating global and local proposals, and an adaptive version that utilizes normalizing flows and gradient-based computations for enhanced proposal mechanisms. The functionality of the software package is demonstrated through illustrative examples.
Author Zhou, Yongdao
Wang, Shijia
Cao, Xuefei
Author_xml – sequence: 1
  givenname: Xuefei
  surname: Cao
  fullname: Cao, Xuefei
– sequence: 2
  givenname: Shijia
  orcidid: 0000-0003-0339-1716
  surname: Wang
  fullname: Wang, Shijia
– sequence: 3
  givenname: Yongdao
  surname: Zhou
  fullname: Zhou, Yongdao
BookMark eNo9kM1OwkAUhScGExF5BJN5geK989epO2xQSSC60PXkdvpDsXRISzS8vSBIzuKcnMW3-G7ZoA1twdg9wgTBwoNQsVbCJBMBQk-ESrQGfcWGxz9SIo4Hl22SGzbu-zUAoNVgJA7ZrGoo85tD-CMn_r7frULLt-S_qCp4GTo-fUqjZbpM-U-9W_EmeGo4tTmvmpAd5iZ8F_0duy6p6YvxuUfs83n2kb5Gi7eXeTpdRF6i2UU6VhJ8LqzBWJH2RIASKbdeGWG0lChFktiSZJZDjjkqjEWBNiafWalJjtj8xM0Drd22qzfU7V2g2v0doascdbvaN4WzJsuL0pJBUgohy5K41JkBQm09EBxY-sTyXej7rigvPAR3VOv-1bqjWndWK38BAKBqPw
Cites_doi 10.1073/pnas.0306899100
10.1093/genetics/162.4.2025
10.1093/oxfordjournals.molbev.a026091
10.1534/genetics.109.102509
10.1080/10618600.2013.866048
10.1111/mee3.2012.3.issue-3
10.1080/10618600.2024.2379349
10.1111/2041-210X.12050
10.1080/01621459.2013.864178
10.1186/1471-2105-11-116
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1080/24754269.2025.2495505
DatabaseName CrossRef
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 2475-4277
EndPage 177
ExternalDocumentID oai_doaj_org_article_86bdef8a61a4410bb97f5b60a158c0a0
10_1080_24754269_2025_2495505
GroupedDBID 0YH
30N
AAYXX
ACGFS
ADFNY
ADWHR
AECIN
AEEWU
AEISY
AIYEW
ALMA_UNASSIGNED_HOLDINGS
ALQZU
APAHL
BLEHA
CCCUG
CITATION
EBS
GROUPED_DOAJ
H13
KYCEM
LJTGL
M4Z
SOJIQ
TDBHL
TFL
TFW
TTHFI
UK4
ID FETCH-LOGICAL-c316t-57430cd286174a5caa0131ad8c4626533132998fa3bd0d1d14172e187acb835a3
IEDL.DBID DOA
ISSN 2475-4269
IngestDate Wed Aug 27 01:29:53 EDT 2025
Sun Jul 06 05:09:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-57430cd286174a5caa0131ad8c4626533132998fa3bd0d1d14172e187acb835a3
ORCID 0000-0003-0339-1716
OpenAccessLink https://doaj.org/article/86bdef8a61a4410bb97f5b60a158c0a0
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_86bdef8a61a4410bb97f5b60a158c0a0
crossref_primary_10_1080_24754269_2025_2495505
PublicationCentury 2000
PublicationDate 2025-04-03
PublicationDateYYYYMMDD 2025-04-03
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-03
  day: 03
PublicationDecade 2020
PublicationTitle Statistical theory and related fields
PublicationYear 2025
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References Raynal L. (e_1_3_3_12_1) 2019; 35
Liepe J. (e_1_3_3_8_1) 2010; 26
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
e_1_3_3_14_1
e_1_3_3_13_1
e_1_3_3_3_1
e_1_3_3_10_1
e_1_3_3_2_1
e_1_3_3_5_1
e_1_3_3_4_1
e_1_3_3_11_1
References_xml – ident: e_1_3_3_9_1
  doi: 10.1073/pnas.0306899100
– ident: e_1_3_3_3_1
  doi: 10.1093/genetics/162.4.2025
– ident: e_1_3_3_11_1
  doi: 10.1093/oxfordjournals.molbev.a026091
– ident: e_1_3_3_13_1
  doi: 10.1534/genetics.109.102509
– volume: 35
  start-page: 1720
  issue: 10
  year: 2019
  ident: e_1_3_3_12_1
  article-title: ABC random forests for Bayesian parameter inference
  publication-title: Bioinformatics (Oxford, England)
– ident: e_1_3_3_10_1
  doi: 10.1080/10618600.2013.866048
– ident: e_1_3_3_6_1
  doi: 10.1111/mee3.2012.3.issue-3
– ident: e_1_3_3_4_1
– ident: e_1_3_3_5_1
  doi: 10.1080/10618600.2024.2379349
– ident: e_1_3_3_7_1
  doi: 10.1111/2041-210X.12050
– ident: e_1_3_3_2_1
  doi: 10.1080/01621459.2013.864178
– volume: 26
  start-page: 1797
  issue: 14
  year: 2010
  ident: e_1_3_3_8_1
  article-title: ABC-SysBio–approximate Bayesian computation in Python with GPU support
  publication-title: Bioinformatics (Oxford, England)
– ident: e_1_3_3_14_1
  doi: 10.1186/1471-2105-11-116
SSID ssj0001850631
Score 2.287928
Snippet We introduce a new Python package glabcmcmc, which implements an approximate Bayesian computation Markov chain Monte Carlo (ABC-MCMC) algorithm that combines...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 168
SubjectTerms Approximate Bayesian Computation
global-local proposal
Markov chain Monte Carlo
Title glabcmcmc : a Python package for ABC-MCMC with local and global moves
URI https://doaj.org/article/86bdef8a61a4410bb97f5b60a158c0a0
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagUxfEU5RH5YHVrfNw7LC1gapCasVApW6RX1lQUwQFiX_PnZOibCwo2ymKrHOS-76T7_sIubNVHKVe5czlVcoAgVcst3nKcm59bG1s8-A8t1hm81X6tBbrjtUXnglr5IGbxI1VZpyvlM4iDZWbG5PLSpiM60goy3Vg61DzOmQqdFdQiC2YEcapFAznNffjO4qPMYYhoIexGKH7skD7uk5h6uj3h0IzOyZHLUKkk2ZlJ-TA16ekj6Cw0VQ-Iw8AeY3dwHVPNX3-xvF_Ctz3Ff4NFEAonUwLtigWBcUuKw3liura0Ub9g262X_7jnKxmjy_FnLVuCMwmUbZjAmo9ty5WgDlSLazWKJWjnbIpkBJAbWgZn6tKJ8ZxF7koBWziIyW1NQCzdHJBevW29peEVhJ4DJfGY9dHSPhmpXEGkCGQscTEckBG-1SUb43oRRm1WqL73JWYu7LN3YBMMWG_N6NmdQjATpbtTpZ_7eTVfzzkmvRxYeFsTXJDerv3T38LsGFnhuQw4ctheE9-AErcuI8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=glabcmcmc%3A+a+Python+package+for+ABC-MCMC+with+local+and+global+moves&rft.jtitle=Statistical+theory+and+related+fields&rft.au=Xuefei+Cao&rft.au=Shijia+Wang&rft.au=Yongdao+Zhou&rft.date=2025-04-03&rft.pub=Taylor+%26+Francis+Group&rft.issn=2475-4269&rft.eissn=2475-4277&rft.volume=9&rft.issue=2&rft.spage=168&rft.epage=177&rft_id=info:doi/10.1080%2F24754269.2025.2495505&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_86bdef8a61a4410bb97f5b60a158c0a0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-4269&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-4269&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-4269&client=summon