Hybrid Gaussian-cubic radial basis functions for scattered data interpolation
Scattered data interpolation schemes using kriging and radial basis functions (RBFs) have the advantage of being meshless and dimensional independent; however, for the datasets having insufficient observations, RBFs have the advantage over geostatistical methods as the latter requires variogram stud...
Saved in:
Published in | Computational geosciences Vol. 22; no. 5; pp. 1203 - 1218 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.10.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Scattered data interpolation schemes using kriging and radial basis functions (RBFs) have the advantage of being meshless and dimensional independent; however, for the datasets having insufficient observations, RBFs have the advantage over geostatistical methods as the latter requires variogram study and statistical expertise. Moreover, RBFs can be used for scattered data interpolation with very good convergence, which makes them desirable for shape function interpolation in meshless methods for numerical solution of partial differential equations. For interpolation of large datasets, however, RBFs in their usual form, lead to solving an ill-conditioned system of equations, for which, a small error in the data can cause a significantly large error in the interpolated solution. In order to reduce this limitation, we propose a hybrid kernel by using the conventional Gaussian and a shape parameter independent cubic kernel. Global particle swarm optimization method has been used to analyze the optimal values of the shape parameter as well as the weight coefficients controlling the Gaussian and the cubic part in the hybridization. Through a series of numerical tests, we demonstrate that such hybridization stabilizes the interpolation scheme by yielding a far superior implementation compared to those obtained by using only the Gaussian or cubic kernels. The proposed kernel maintains the accuracy and stability at small shape parameter as well as relatively large degrees of freedom, which exhibit its potential for scattered data interpolation and intrigues its application in global as well as local meshless methods for numerical solution of PDEs. |
---|---|
AbstractList | Scattered data interpolation schemes using kriging and radial basis functions (RBFs) have the advantage of being meshless and dimensional independent; however, for the datasets having insufficient observations, RBFs have the advantage over geostatistical methods as the latter requires variogram study and statistical expertise. Moreover, RBFs can be used for scattered data interpolation with very good convergence, which makes them desirable for shape function interpolation in meshless methods for numerical solution of partial differential equations. For interpolation of large datasets, however, RBFs in their usual form, lead to solving an ill-conditioned system of equations, for which, a small error in the data can cause a significantly large error in the interpolated solution. In order to reduce this limitation, we propose a hybrid kernel by using the conventional Gaussian and a shape parameter independent cubic kernel. Global particle swarm optimization method has been used to analyze the optimal values of the shape parameter as well as the weight coefficients controlling the Gaussian and the cubic part in the hybridization. Through a series of numerical tests, we demonstrate that such hybridization stabilizes the interpolation scheme by yielding a far superior implementation compared to those obtained by using only the Gaussian or cubic kernels. The proposed kernel maintains the accuracy and stability at small shape parameter as well as relatively large degrees of freedom, which exhibit its potential for scattered data interpolation and intrigues its application in global as well as local meshless methods for numerical solution of PDEs. |
Author | Mishra, Pankaj K. Fasshauer, Gregory E. Sen, Mrinal K. Nath, Sankar K. |
Author_xml | – sequence: 1 givenname: Pankaj K. surname: Mishra fullname: Mishra, Pankaj K. email: pkmishra@gg.iitkgp.ernet.in, pankajkmishra01@gmail.com organization: Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, Department of Mathematics, Hong Kong Baptist University – sequence: 2 givenname: Sankar K. surname: Nath fullname: Nath, Sankar K. organization: Department of Geology and Geophysics, Indian Institute of Technology Kharagpur – sequence: 3 givenname: Mrinal K. surname: Sen fullname: Sen, Mrinal K. organization: Jackson School of Geosciences, University of Texas at Austin – sequence: 4 givenname: Gregory E. surname: Fasshauer fullname: Fasshauer, Gregory E. organization: Department of Applied Mathematics and Statistics, Colorado School of Mines |
BookMark | eNp1kE1LAzEQhoNUsK3-AG8LnqP52CSboxRthYoXPYdJNispa7Ymu4f-e1NW8ORp3oHnnYFnhRZxiB6hW0ruKSHqIVMitMSENlirWmF-gZZUKI5prfWi5JoRXBB1hVY5HwghWnG6RK-7k02hrbYw5RwgYjfZ4KoEbYC-spBDrropujEMsaQhVdnBOPrk26qFEaoQy3IcejgT1-iygz77m9-5Rh_PT--bHd6_bV82j3vsOJUjFjWzIJTvGs-UpiBAKcnrVjUOWFOTTjaWaauFA9EIImlNLWtLhYtOO-n4Gt3Nd49p-J58Hs1hmFIsLw0jXDEpmFSFojPl0pBz8p05pvAF6WQoMWdrZrZmijVztmZ46bC5kwsbP336u_x_6QdQPHFB |
CitedBy_id | crossref_primary_10_1016_j_enganabound_2022_11_003 crossref_primary_10_1016_j_jare_2021_03_002 crossref_primary_10_1109_ACCESS_2020_2990405 crossref_primary_10_1016_j_matcom_2024_04_003 crossref_primary_10_3390_jmse9070732 crossref_primary_10_1016_j_enganabound_2023_07_026 crossref_primary_10_1109_TIM_2022_3203097 crossref_primary_10_1109_TCYB_2022_3175533 crossref_primary_10_1016_j_measurement_2020_108238 crossref_primary_10_1093_gji_ggab536 crossref_primary_10_1115_1_4054769 crossref_primary_10_1016_j_asoc_2023_110733 crossref_primary_10_1007_s00366_023_01896_7 crossref_primary_10_3390_rs15092435 crossref_primary_10_1016_j_matcom_2024_01_007 crossref_primary_10_1007_s40314_020_01400_7 crossref_primary_10_1016_j_camwa_2018_12_027 crossref_primary_10_1364_OE_520655 crossref_primary_10_1016_j_cam_2023_115482 crossref_primary_10_1007_s00170_022_08696_1 crossref_primary_10_1155_2023_8727963 crossref_primary_10_1109_TGRS_2023_3264917 crossref_primary_10_3390_electronics10232965 crossref_primary_10_1007_s40314_021_01505_7 crossref_primary_10_1007_s40996_023_01176_w crossref_primary_10_1016_j_rinp_2021_104048 crossref_primary_10_1002_num_22499 crossref_primary_10_3934_math_20231003 crossref_primary_10_37394_23206_2021_20_17 |
Cites_doi | 10.1137/09076756X 10.1190/1.2432481 10.1016/j.enganabound.2012.07.010 10.1007/978-0-387-21606-5_1 10.1016/j.cam.2013.03.048 10.1142/6437 10.1016/j.enganabound.2014.04.019 10.7551/mitpress/7432.001.0001 10.1016/S0898-1221(00)00071-7 10.1016/j.compstruc.2006.10.013 10.1029/JB076i008p01905 10.1016/j.enganabound.2010.05.011 10.1137/110824784 10.1137/1.9781611974041 10.1016/S0898-1221(01)00299-1 10.1016/j.enganabound.2017.03.009 10.1016/j.enganabound.2009.07.003 10.1007/978-3-642-39572-7 10.1023/A:1018975909870 10.21236/ADA081688 10.1007/978-3-642-12762-5 10.1016/S0898-1221(01)00295-4 10.1016/j.camwa.2012.11.006 10.1016/j.jcp.2015.07.006 10.1016/j.jcp.2015.12.015 10.1007/s11053-015-9285-9 10.1142/9335 10.1190/segam2017-17494511.1 10.1137/060671991 |
ContentType | Journal Article |
Copyright | Springer International Publishing AG, part of Springer Nature 2018 Computational Geosciences is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: Springer International Publishing AG, part of Springer Nature 2018 – notice: Computational Geosciences is a copyright of Springer, (2018). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SC 7UA 7XB 88I 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ JQ2 K7- L.G L7M L~C L~D M0N M2P P5Z P62 PCBAR PQEST PQQKQ PQUKI Q9U |
DOI | 10.1007/s10596-018-9747-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database Natural Science Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1573-1499 |
EndPage | 1218 |
ExternalDocumentID | 10_1007_s10596_018_9747_3 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ K6V K7- KDC KOV LAK LK5 LLZTM M0N M2P M4Y M7R MA- N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P62 P9R PCBAR PF0 PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7Y Z81 ZMTXR ~02 ~A9 AACDK AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 7SC 7UA 7XB 8AL 8FD 8FK C1K F1W H8D H96 JQ2 L.G L7M L~C L~D PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c316t-542ba57ef8e2791a5a77634d78ca2840f68b29b95ca58506141b2dba535f9c6c3 |
IEDL.DBID | BENPR |
ISSN | 1420-0597 |
IngestDate | Thu Oct 10 20:57:54 EDT 2024 Thu Sep 12 19:52:20 EDT 2024 Sat Dec 16 12:01:20 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Radial basis function Multivariate interpolation 68 Particle swarm optimization Spatial data analysis 65 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-542ba57ef8e2791a5a77634d78ca2840f68b29b95ca58506141b2dba535f9c6c3 |
PQID | 2037265267 |
PQPubID | 55381 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2037265267 crossref_primary_10_1007_s10596_018_9747_3 springer_journals_10_1007_s10596_018_9747_3 |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | Modeling, Simulation and Data Analysis |
PublicationTitle | Computational geosciences |
PublicationTitleAbbrev | Comput Geosci |
PublicationYear | 2018 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | SarraSARegularized symmetric positive definite matrix factorizations for linear systems arising from RBF interpolation and differentiationEngineering Analysis with Boundary Elements201444776124510.1016/j.enganabound.2014.04.019 Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning, vol. 1. Springer series in statistics, New York (2001) ChenWFuZChenCRecent Advances in Radial Basis Function Collocation Methods2014BerlinSpringer10.1007/978-3-642-39572-7 FasshauerGEMcCourtMJStable evaluation of Gaussian radial basis function interpolantsSIAM J. Sci. Comput.2012342A737A76210.1137/110824784 Gonzalez-RodriguezPMoscosoMKindelanMLaurent expansion of the inverse of perturbed, singular matricesJ. Comput. Phys.201529930731910.1016/j.jcp.2015.07.006 HardyRLMultiquadric equations of topography and other irregular surfacesJ. Geophys. Res.19717681905191510.1029/JB076i008p01905 ShawRSrivastavaSParticle swarm optimization: a new tool to invert geophysical dataGeophysics2007722F75F8310.1190/1.2432481 Franke, R.: A Critical Comparison of Some Methods for Interpolation of Scattered Data. Final report. Defense Technical Information Center (1979) FornbergBFlyerNA Primer on Radial Basis Functions with Applications to the Geosciences. CBMS-NSF Regional Conference Series in Applied Mathematics2015PhiladelphiaSociety for Industrial and Applied Mathematics (SIAM)10.1137/1.9781611974041 Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. MHS ’95, pp 39–43 (1995) FornbergBLarssonEFlyerNStable computations with Gaussian radial basis functionsSIAM J. Sci. Comput.201133286989210.1137/09076756X FasshauerGZhangJPreconditioning of Radial Basis Function Interpolation Systems via Accelerated Iterated Approximate Moving Least Squares Approximation, Computational Methods in Applied Sciences, vol. 112009NetherlandsSpringer SarraSARadial basis function approximation methods with extended precision floating point arithmeticEngineering Analysis with Boundary Elements2011351687610.1016/j.enganabound.2010.05.011 FlyerNWrightGBFornbergBHandbook of Geomathematics, chap. Radial Basis Function-Generated Finite Differences: a Mesh-Free Method for Computational Geosciences2014BerlinSpringer130 TrauthMHMATLAB Recipes for Earth Sciences2010BerlinSpringer10.1007/978-3-642-12762-5 Mishra, P., Nath, S., Fasshauer, G., Sen, M., et al.: Frequency-domain meshless solver for acoustic wave equation using a stable radial basis-finite difference (RBF-FD) algorithm with hybrid kernels. In: 2017 SEG International Exposition and Annual Meeting. Society of Exploration Geophysicists (2017) KansaEHonYCircumventing the ill-conditioning problem with multiquadric radial basis functions: applications to elliptic partial differential equationsComputers & Mathematics with Applications2000397–812313710.1016/S0898-1221(00)00071-7 Schaback, R.: Reproduction of Polynomials by Radial Basis Functions. Wavelets, Images, and Surface Fitting (1994) RusuCRusuVArtificial Intelligence in Theory and Practice: IFIP 19th World Computer Congress, TC 12: IFIP AI 2006 Stream, August 21–24, 2006, Santiago, Chile, chap. Radial Basis Functions Versus Geostatistics in Spatial Interpolations2006BostonSpringer119128 PerezRBehdinanKParticle swarm approach for structural design optimizationComput. Struct.20078519–201579158810.1016/j.compstruc.2006.10.013 SarraSASturgillDA random variable shape parameter strategy for radial basis function approximation methodsEngineering Analysis with Boundary Elements200933111239124510.1016/j.enganabound.2009.07.003 Fasshauer, G.E., McCourt, M.: Kernel-Based Approximation Methods Using MATLAB. World Scientific, Interdisciplinary Mathematical Sciences (2015) GetoorLTaskarBIntroduction to Statistical Relational Learning2007CambridgeMIT Press Eberhart, R., Shi, Y.: Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 Congress on Evolutionary Computation, 2001, vol. 1, pp 81–86 (2001) FasshauerGFMeshfree Approximation Methods with MATLAB2007River EdgeWorld Scientific Publishing Co., Inc.10.1142/6437 SinghABiswasAApplication of global particle swarm optimization for inversion of residual gravity anomalies over geological bodies with idealized geometriesNat. Resour. Res.201525329731410.1007/s11053-015-9285-9 KindelanMMoscosoMGonzález-RodríguezPRadial basis function interpolation in the limit of increasingly flat basis functionsJ. Comput. Phys.201630722524210.1016/j.jcp.2015.12.015 FornbergBDriscollTWrightGCharlesRObservations on the behavior of radial basis function approximations near boundariesComputers & Mathematics with Applications2002433–547349010.1016/S0898-1221(01)00299-1 WahbaGSpline Models for Observational Data, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 591990Philadelphia, PASociety for Industrial and Applied Mathematics (SIAM) FornbergBPiretCA stable algorithm for flat radial basis functions on a sphereSIAM J. Sci. Comput.2007301608010.1137/060671991 MishraPKNathSKKosecGSenMKAn improved radial basis-pseudospectral method with hybrid gaussian-cubic kernelsEngineering Analysis with Boundary Elements20178016217110.1016/j.enganabound.2017.03.009 RippaSAn algorithm for selecting a good value for the parameter c in radial basis function interpolationAdv. Comput. Math.1999112-319321010.1023/A:1018975909870 LinJChenWSzeKA new radial basis function for Helmholtz problemsEngineering Analysis with Boundary Elements201236121923193010.1016/j.enganabound.2012.07.010 DriscollTAFornbergBInterpolation in the limit of increasingly flat radial basis functionsComput. Math. Appl.20024341342210.1016/S0898-1221(01)00295-4 MarchiSDSantinGA new stable basis for radial basis function interpolationJ. Comput. Appl. Math.201325311310.1016/j.cam.2013.03.048 Barnett, G.A.: A robust RBF-FD formulation based on polyharmonic splines and polynomials. Ph.D. thesis, University of Colarado, USA (2015) FornbergBLehtoEPowellCStable calculation of Gaussian-based RBF-FD stencilsComputers & Mathematics with Applications201365462763710.1016/j.camwa.2012.11.006 9747_CR5 9747_CR8 RL Hardy (9747_CR20) 1971; 76 B Fornberg (9747_CR11) 2015 9747_CR25 9747_CR1 SA Sarra (9747_CR30) 2011; 35 SD Marchi (9747_CR24) 2013; 253 9747_CR4 S Rippa (9747_CR28) 1999; 11 SA Sarra (9747_CR32) 2009; 33 A Singh (9747_CR35) 2015; 25 B Fornberg (9747_CR15) 2013; 65 M Kindelan (9747_CR22) 2016; 307 C Rusu (9747_CR29) 2006 W Chen (9747_CR2) 2014 TA Driscoll (9747_CR3) 2002; 43 P Gonzalez-Rodriguez (9747_CR19) 2015; 299 R Perez (9747_CR27) 2007; 85 SA Sarra (9747_CR31) 2014; 44 L Getoor (9747_CR18) 2007 J Lin (9747_CR23) 2012; 36 GE Fasshauer (9747_CR7) 2012; 34 9747_CR16 PK Mishra (9747_CR26) 2017; 80 9747_CR17 E Kansa (9747_CR21) 2000; 39 G Wahba (9747_CR37) 1990 G Fasshauer (9747_CR9) 2009 N Flyer (9747_CR10) 2014 B Fornberg (9747_CR13) 2002; 43 GF Fasshauer (9747_CR6) 2007 B Fornberg (9747_CR12) 2007; 30 R Shaw (9747_CR34) 2007; 72 B Fornberg (9747_CR14) 2011; 33 9747_CR33 MH Trauth (9747_CR36) 2010 |
References_xml | – ident: 9747_CR5 – start-page: 1 volume-title: Handbook of Geomathematics, chap. Radial Basis Function-Generated Finite Differences: a Mesh-Free Method for Computational Geosciences year: 2014 ident: 9747_CR10 contributor: fullname: N Flyer – volume: 33 start-page: 869 issue: 2 year: 2011 ident: 9747_CR14 publication-title: SIAM J. Sci. Comput. doi: 10.1137/09076756X contributor: fullname: B Fornberg – volume: 72 start-page: F75 issue: 2 year: 2007 ident: 9747_CR34 publication-title: Geophysics doi: 10.1190/1.2432481 contributor: fullname: R Shaw – volume: 36 start-page: 1923 issue: 12 year: 2012 ident: 9747_CR23 publication-title: Engineering Analysis with Boundary Elements doi: 10.1016/j.enganabound.2012.07.010 contributor: fullname: J Lin – ident: 9747_CR1 – ident: 9747_CR17 doi: 10.1007/978-0-387-21606-5_1 – volume-title: Spline Models for Observational Data, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 59 year: 1990 ident: 9747_CR37 contributor: fullname: G Wahba – volume: 253 start-page: 1 year: 2013 ident: 9747_CR24 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2013.03.048 contributor: fullname: SD Marchi – ident: 9747_CR33 – volume-title: Meshfree Approximation Methods with MATLAB year: 2007 ident: 9747_CR6 doi: 10.1142/6437 contributor: fullname: GF Fasshauer – volume: 44 start-page: 76 issue: 7 year: 2014 ident: 9747_CR31 publication-title: Engineering Analysis with Boundary Elements doi: 10.1016/j.enganabound.2014.04.019 contributor: fullname: SA Sarra – volume-title: Introduction to Statistical Relational Learning year: 2007 ident: 9747_CR18 doi: 10.7551/mitpress/7432.001.0001 contributor: fullname: L Getoor – volume: 39 start-page: 123 issue: 7–8 year: 2000 ident: 9747_CR21 publication-title: Computers & Mathematics with Applications doi: 10.1016/S0898-1221(00)00071-7 contributor: fullname: E Kansa – volume: 85 start-page: 1579 issue: 19–20 year: 2007 ident: 9747_CR27 publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2006.10.013 contributor: fullname: R Perez – volume: 76 start-page: 1905 issue: 8 year: 1971 ident: 9747_CR20 publication-title: J. Geophys. Res. doi: 10.1029/JB076i008p01905 contributor: fullname: RL Hardy – volume: 35 start-page: 68 issue: 1 year: 2011 ident: 9747_CR30 publication-title: Engineering Analysis with Boundary Elements doi: 10.1016/j.enganabound.2010.05.011 contributor: fullname: SA Sarra – start-page: 119 volume-title: Artificial Intelligence in Theory and Practice: IFIP 19th World Computer Congress, TC 12: IFIP AI 2006 Stream, August 21–24, 2006, Santiago, Chile, chap. Radial Basis Functions Versus Geostatistics in Spatial Interpolations year: 2006 ident: 9747_CR29 contributor: fullname: C Rusu – ident: 9747_CR4 – volume: 34 start-page: A737 issue: 2 year: 2012 ident: 9747_CR7 publication-title: SIAM J. Sci. Comput. doi: 10.1137/110824784 contributor: fullname: GE Fasshauer – volume-title: A Primer on Radial Basis Functions with Applications to the Geosciences. CBMS-NSF Regional Conference Series in Applied Mathematics year: 2015 ident: 9747_CR11 doi: 10.1137/1.9781611974041 contributor: fullname: B Fornberg – volume: 43 start-page: 473 issue: 3–5 year: 2002 ident: 9747_CR13 publication-title: Computers & Mathematics with Applications doi: 10.1016/S0898-1221(01)00299-1 contributor: fullname: B Fornberg – volume: 80 start-page: 162 year: 2017 ident: 9747_CR26 publication-title: Engineering Analysis with Boundary Elements doi: 10.1016/j.enganabound.2017.03.009 contributor: fullname: PK Mishra – volume: 33 start-page: 1239 issue: 11 year: 2009 ident: 9747_CR32 publication-title: Engineering Analysis with Boundary Elements doi: 10.1016/j.enganabound.2009.07.003 contributor: fullname: SA Sarra – volume-title: Recent Advances in Radial Basis Function Collocation Methods year: 2014 ident: 9747_CR2 doi: 10.1007/978-3-642-39572-7 contributor: fullname: W Chen – volume: 11 start-page: 193 issue: 2-3 year: 1999 ident: 9747_CR28 publication-title: Adv. Comput. Math. doi: 10.1023/A:1018975909870 contributor: fullname: S Rippa – ident: 9747_CR16 doi: 10.21236/ADA081688 – volume-title: MATLAB Recipes for Earth Sciences year: 2010 ident: 9747_CR36 doi: 10.1007/978-3-642-12762-5 contributor: fullname: MH Trauth – volume-title: Preconditioning of Radial Basis Function Interpolation Systems via Accelerated Iterated Approximate Moving Least Squares Approximation, Computational Methods in Applied Sciences, vol. 11 year: 2009 ident: 9747_CR9 contributor: fullname: G Fasshauer – volume: 43 start-page: 413 year: 2002 ident: 9747_CR3 publication-title: Comput. Math. Appl. doi: 10.1016/S0898-1221(01)00295-4 contributor: fullname: TA Driscoll – volume: 65 start-page: 627 issue: 4 year: 2013 ident: 9747_CR15 publication-title: Computers & Mathematics with Applications doi: 10.1016/j.camwa.2012.11.006 contributor: fullname: B Fornberg – volume: 299 start-page: 307 year: 2015 ident: 9747_CR19 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.07.006 contributor: fullname: P Gonzalez-Rodriguez – volume: 307 start-page: 225 year: 2016 ident: 9747_CR22 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.12.015 contributor: fullname: M Kindelan – volume: 25 start-page: 297 issue: 3 year: 2015 ident: 9747_CR35 publication-title: Nat. Resour. Res. doi: 10.1007/s11053-015-9285-9 contributor: fullname: A Singh – ident: 9747_CR8 doi: 10.1142/9335 – ident: 9747_CR25 doi: 10.1190/segam2017-17494511.1 – volume: 30 start-page: 60 issue: 1 year: 2007 ident: 9747_CR12 publication-title: SIAM J. Sci. Comput. doi: 10.1137/060671991 contributor: fullname: B Fornberg |
SSID | ssj0009731 |
Score | 2.3704927 |
Snippet | Scattered data interpolation schemes using kriging and radial basis functions (RBFs) have the advantage of being meshless and dimensional independent; however,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1203 |
SubjectTerms | Basis functions Coefficients Conditioning Data Data processing Datasets Differential equations Earth and Environmental Science Earth Sciences Finite element method Geostatistics Geotechnical Engineering & Applied Earth Sciences Hybridization Hydrogeology Interpolation Kriging interpolation Mathematical Modeling and Industrial Mathematics Mathematical models Meshless methods Neural networks Numerical methods Original Paper Parameters Partial differential equations Particle swarm optimization Radial basis function Shape Shape functions Soil Science & Conservation Stability Statistical methods |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VVkgsvBGFgjwwgVwldmwnY4X6EKhMVCpTZLu2VBUV1LRD-fXYSUN4DsxJLOV89vfZd_cdwFWslWBWBJjJ2OJoYmKsGJWYa-74sApswn2h8PCBD0bR3ZiNa0A-ri7ms3YZkcw36k-1bszny4ZufToKjOkWNJjX-6pDo9N_uu9WUrsi70IYRsSHeRNRxjJ_G-QrGlUU81tUNAeb3l5RAJjlGoU-x2TWXi1VW7_9VHD8x3_sw-6Ge6JO4SwHUDPzQ9ju571910cwHKx9-Rbqy1XmSyuxXqmpRguvXvCMHNxNM-RhMPdU5MguynSuzmkmyCeaomnRs6vIrjuGUa_7eDvAm24LWNOQLzGLiJJMGBsbIpJQMinc3hNNRKylw7DA8liRRCVMS-Zl7sIoVGTiPqHMJppregL1-cvcnAJS3BEHK6XlxhEW605NKuSMOnYVCerQsAnXpdXT10JUI63kk719Umef1NsnpU1olfOSbtZXlpKACsIZ4aIJN6Wdq8d_Dnb2r7fPYYf4icpz91pQXy5W5sJxkKW63DjdO1eO0Rw priority: 102 providerName: Springer Nature |
Title | Hybrid Gaussian-cubic radial basis functions for scattered data interpolation |
URI | https://link.springer.com/article/10.1007/s10596-018-9747-3 https://www.proquest.com/docview/2037265267 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEB4am0AuJW1T4iQ1OvSUIvBKK2n3FOzgBwkxJdSQnhZJuwJDsZOsffC_78w-WBJoT3sQq8Mnab5PmhfA98Q7o4IZcWWTwOO8SLhT0nLtNephNwqppkThh6VerOK7J_XUPLiVTVhlaxMrQ51vPb2R4yVdGqGV0Obm-YVT1yjyrjYtNI6gL6KY3LT9yXT587Eru2uqjoRRLMjlm5rWr1knzykKwI3wwKOm5vItM3Vy852HtCKe2Sl8bBQjG9dL_Ak-FJvPcDyvOvIevsDD4kBJV2xu9yUlRHK_d2vPXqnmwB-GJLUuGZFXtb8YSlRW-qqmZpEzCg9l67rTVh0Tdwar2fTX7YI3PRK4l5HecRULZ5UpQlIIk0ZWWYMWI85N4i0yzyjoxInUpcpbRcXpECUncvxFqpB67eVX6G22m-IcmNNI98HaoAuUGQHvOi7SSqImio1EDhvAdYtP9lyXwsi6oscEZoZgZgRmJgdw1SKYNaeizLo1HMCPFtVu-J-TXfx_sks4EbSMVYjdFfR2r_viG0qFnRvCUTKbD6E_nk0mS_rOf99Ph80uwdGVGP8FgRG-xA |
link.rule.ids | 315,786,790,12792,21416,27955,27956,33406,33777,41114,41556,42183,42625,43633,43838,52144,52267,74390,74657 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8MwGA46Eb2InzidmoMnJbAmTdKeRMSt6rbTBruFJE1gINtct8P-vUnaUhT0XJrD8ybv8yTvFwD3iVacWt5FVCYWxblJkKJEIqaZ08Oqa1PmC4WHI5ZN4vcpnVYPbkWVVln7xOCo84X2b-Tukk44ZhQz_rT8Qn5qlI-uViM0dsFeTBjx-zzp9ZumuzzMI4xi7AO-Ka-jmmXpHPXpt5E77k5RI_KTlxqx-Ss-GmindwyOKr0In0sDn4AdMz8F-_0wj3d7BobZ1pdcwb7cFL4cEumNmmm48h0HPqGjqFkBPXWF3QWdQIWFDh01TQ59ciiclXO2yoy4czDpvY5fMlRNSECaRGyNaIyVpNzYxGCeRpJK7vxFnPNES8c7XcsShVOVUi2pb00XxZHCufuFUJtqpskFaM0Xc3MJoGKO7K2UlhknMqy76aiIUeIUUcyJY7A2eKjxEcuyEYZoWh57MIUDU3gwBWmDTo2gqM5EIRoLtsFjjWrz-c_Frv5f7A4cZOPhQAzeRh_X4BB7k4Zkuw5orVcbc-NEw1rdhp3xDY-ku2w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELWgCMQFsYpCAR84gSyaOLaTE0JAWpZWHKjELbKdWKqE2tK0h_49M1kUgQTnyD6Ml_eceTOPkMvQGiWc6jKhQ8eCNAuZEVwzaSXwYdN1kcRC4cFQ9kfB84f4qPRPeSWrrO_E4qJOpxb_kcMjnStfCl-qG1fJIt4e4tvZF0MHKcy0VnYa62QDSTbaOIRxr2nAqwpvQi_wMfkbqTrDWZbRCZTienD0gV0z_hOjGuL5K1daQFC8S3Yq7kjvysXeI2vZZJ9s9gpv3tUBGfRXWH5Fe3qZY2kks0sztnSO3Qc-KcDVOKcIY8VOo0BWaW6L7ppZSlEoSsel51apjjsko_jx_b7PKrcEZrknF0wEvtFCZS7MfBV5WmgFd0eQqtBqwKCuk6HxIxMJqwW2qfMCz_gpDOHCRVZafkRak-kkOybUSAB-p7WTGRAOB68e40nBgR0FigOatclVHZ9kVjbFSJr2xxjMBIKZYDAT3iadOoJJdT7ypFnNNrmuo9p8_nOyk_8nuyBbsCmS16fhyynZ9nFFC91dh7QW82V2BvxhYc6LjfENZVm_oQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Gaussian-cubic+radial+basis+functions+for+scattered+data+interpolation&rft.jtitle=Computational+geosciences&rft.au=Mishra%2C+Pankaj+K.&rft.au=Nath%2C+Sankar+K.&rft.au=Sen%2C+Mrinal+K.&rft.au=Fasshauer%2C+Gregory+E.&rft.date=2018-10-01&rft.issn=1420-0597&rft.eissn=1573-1499&rft.volume=22&rft.issue=5&rft.spage=1203&rft.epage=1218&rft_id=info:doi/10.1007%2Fs10596-018-9747-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10596_018_9747_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-0597&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-0597&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-0597&client=summon |