Highly reversible and long-lived zinc anode assisted by polymer-based hydrophilic coating
Rechargeable aqueous zinc-ion batteries (AZIBs) are the most promising candidates for the energy storage due to their high safety, rich resources, and large specific capacity. However, AZIBs using neutral or slightly acidic electrolytes still face side effects and zinc dendrites on the anode surface...
Saved in:
Published in | Frontiers of materials science Vol. 17; no. 4 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Higher Education Press
01.12.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2095-025X 2095-0268 |
DOI | 10.1007/s11706-023-0668-2 |
Cover
Abstract | Rechargeable aqueous zinc-ion batteries (AZIBs) are the most promising candidates for the energy storage due to their high safety, rich resources, and large specific capacity. However, AZIBs using neutral or slightly acidic electrolytes still face side effects and zinc dendrites on the anode surface. To stabilize the Zn anode, a chemically stable and multi-functional coating of polyvinylidene fluoride (PVDF) and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) was prepared on the Zn surface. The anhydride groups in 6FDA can improve the hydrophilicity, promoting the migration of zinc ions. Besides, PVDF is compatible with 6FDA because of the presence of organic F-containing groups, which can also effectively reduce the nucleation overpotential and exhibit the dendrite-free Zn deposition/stripping. The PVDF/6FDA@Zn symmetric cell can cycle for 5000 h at a current density of 0.5 mA·cm
−2
, maintaining the extremely low polarization voltage and overpotential of 28 and 8 mV, respectively. The PVDF/6FDA@Zn∥MnO
2
full cell can remain a specific capacity of ∼90 mAh·g
−1
after 2000 cycles at 1.5 A·g
−1
. This simple method achieves a reversible Zn anode, providing an inspiring strategy for ultra-long-cycle AZIBs. |
---|---|
AbstractList | Rechargeable aqueous zinc-ion batteries (AZIBs) are the most promising candidates for the energy storage due to their high safety, rich resources, and large specific capacity. However, AZIBs using neutral or slightly acidic electrolytes still face side effects and zinc dendrites on the anode surface. To stabilize the Zn anode, a chemically stable and multi-functional coating of polyvinylidene fluoride (PVDF) and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) was prepared on the Zn surface. The anhydride groups in 6FDA can improve the hydrophilicity, promoting the migration of zinc ions. Besides, PVDF is compatible with 6FDA because of the presence of organic F-containing groups, which can also effectively reduce the nucleation overpotential and exhibit the dendrite-free Zn deposition/stripping. The PVDF/6FDA@Zn symmetric cell can cycle for 5000 h at a current density of 0.5 mA·cm
−2
, maintaining the extremely low polarization voltage and overpotential of 28 and 8 mV, respectively. The PVDF/6FDA@Zn∥MnO
2
full cell can remain a specific capacity of ∼90 mAh·g
−1
after 2000 cycles at 1.5 A·g
−1
. This simple method achieves a reversible Zn anode, providing an inspiring strategy for ultra-long-cycle AZIBs. Rechargeable aqueous zinc-ion batteries (AZIBs) are the most promising candidates for the energy storage due to their high safety, rich resources, and large specific capacity. However, AZIBs using neutral or slightly acidic electrolytes still face side effects and zinc dendrites on the anode surface. To stabilize the Zn anode, a chemically stable and multi-functional coating of polyvinylidene fluoride (PVDF) and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) was prepared on the Zn surface. The anhydride groups in 6FDA can improve the hydrophilicity, promoting the migration of zinc ions. Besides, PVDF is compatible with 6FDA because of the presence of organic F-containing groups, which can also effectively reduce the nucleation overpotential and exhibit the dendrite-free Zn deposition/stripping. The PVDF/6FDA@Zn symmetric cell can cycle for 5000 h at a current density of 0.5 mA·cm−2, maintaining the extremely low polarization voltage and overpotential of 28 and 8 mV, respectively. The PVDF/6FDA@Zn∥MnO2 full cell can remain a specific capacity of ∼90 mAh·g−1 after 2000 cycles at 1.5 A·g−1. This simple method achieves a reversible Zn anode, providing an inspiring strategy for ultra-long-cycle AZIBs. |
ArticleNumber | 230668 |
Author | Chen, Hang Xiong, Chuanxi Yuan, Xinghan Qin, Hongmei |
Author_xml | – sequence: 1 givenname: Hang surname: Chen fullname: Chen, Hang organization: School of Materials Science and Engineering, Wuhan University of Technology – sequence: 2 givenname: Xinghan surname: Yuan fullname: Yuan, Xinghan organization: School of Materials Science and Engineering, Wuhan University of Technology – sequence: 3 givenname: Hongmei surname: Qin fullname: Qin, Hongmei organization: School of Materials Science and Engineering, Wuhan University of Technology – sequence: 4 givenname: Chuanxi surname: Xiong fullname: Xiong, Chuanxi email: cxiong@whut.edu.cn organization: School of Materials Science and Engineering, Wuhan University of Technology |
BookMark | eNp9kF1LwzAYhYNMcM79AO8KXlfz0STtpQx1wsAbBb0KSZp2GV0yk25Qf70ZFQVB35u8nJwnOZxzMHHeGQAuEbxGEPKbiBCHLIeY5JCxMscnYIphRZPCysn3Tl_PwDzGDUxDEa0KNAVvS9uuuyEL5mBCtKozmXR11nnX5p09mDr7sE4nzdfpJkYb-6SpIdv5btiakCsZk7Ae6uB3a9tZnWkve-vaC3DayC6a-dc5Ay_3d8-LZb56enhc3K5yTRDrc4p4UdSsUAyXlDemLpHBuiEcSkIVp0hpVVasqrVBSnJGJdcNrEuIJDcSKjIDV-O7u-Df9yb2YuP3waUvBS6rsiCEYJJcfHTp4GMMphHa9imnd32QthMIimOVYqxSpCrFsUqBE4l-kbtgtzIM_zJ4ZGLyutaEn0x_Q59wzoiT |
CitedBy_id | crossref_primary_10_1016_j_est_2024_113434 crossref_primary_10_1039_D4EE03628J |
Cites_doi | 10.1016/j.jallcom.2023.169510 10.1016/j.nanoen.2020.104523 10.1002/batt.202100394 10.1039/D2MH00973K 10.1002/advs.202100309 10.1002/tcr.202200114 10.1039/D1SE01317C 10.1016/j.cej.2021.128584 10.1002/smtd.202201572 10.1016/j.jpowsour.2023.232808 10.1002/cey2.67 10.1002/sus2.118 10.1002/adfm.202200429 10.1002/smll.202104148 10.1021/acs.chemrev.9b00463 10.1016/j.est.2018.12.001 10.1016/j.ensm.2021.02.016 10.1016/j.nanoen.2023.108306 10.1002/aenm.202001310 10.1002/anie.201813223 10.1016/j.ensm.2021.02.042 10.1016/j.nanoen.2018.12.086 10.1002/adma.202001854 10.1002/aenm.202203542 10.1038/s41563-018-0063-z 10.1039/D1EE01851E 10.1002/adfm.202213510 10.1021/acsami.9b16125 10.1007/s10853-018-3069-7 10.1016/j.cej.2022.136217 10.1039/C9EE00596J 10.1016/j.ensm.2020.04.038 10.1002/adfm.202001263 10.1016/j.ensm.2021.06.008 10.1016/j.jelechem.2019.01.014 10.1007/s12274-022-5270-x 10.1002/advs.202206995 10.1016/j.cej.2023.141272 10.1016/j.xcrp.2022.101070 |
ContentType | Journal Article |
Copyright | Higher Education Press 2023 Higher Education Press 2023. |
Copyright_xml | – notice: Higher Education Press 2023 – notice: Higher Education Press 2023. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11706-023-0668-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2095-0268 |
ExternalDocumentID | 10_1007_s11706_023_0668_2 |
GroupedDBID | -58 -5G -BR -EM -~C .VR 06C 06D 0R~ 0VY 1-T 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 40E 5VS 95- 95. 95~ 96X AAAVM AABHQ AACDK AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ AXYYD B-. BDATZ BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXD I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J P4S P9N PF0 PT4 QOR R89 R9I ROL RSV S16 S3B SAP SCL SCM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TSG TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z7R Z7V Z7X Z85 ZMTXR ~A9 -SB -S~ AAPKM AAXDM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CAJEB CITATION Q-- U1G U5L ABRTQ |
ID | FETCH-LOGICAL-c316t-51744d64b62857fed81e2cf370a35b751bcb8969dce1ba765a7cf0d801a7ea0b3 |
IEDL.DBID | AGYKE |
ISSN | 2095-025X |
IngestDate | Tue Aug 12 16:42:26 EDT 2025 Tue Jul 01 02:09:54 EDT 2025 Thu Apr 24 22:58:45 EDT 2025 Fri Feb 21 02:41:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | aqueous zinc ion battery composite film zinc anode polyvinylidene fluoride |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-51744d64b62857fed81e2cf370a35b751bcb8969dce1ba765a7cf0d801a7ea0b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2898433323 |
PQPubID | 2044428 |
ParticipantIDs | proquest_journals_2898433323 crossref_citationtrail_10_1007_s11706_023_0668_2 crossref_primary_10_1007_s11706_023_0668_2 springer_journals_10_1007_s11706_023_0668_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Frontiers of materials science |
PublicationTitleAbbrev | Front. Mater. Sci |
PublicationYear | 2023 |
Publisher | Higher Education Press Springer Nature B.V |
Publisher_xml | – name: Higher Education Press – name: Springer Nature B.V |
References | Yang, Li, Liu (CR12) 2020; 32 Mitha, Mi, Dong (CR22) 2019; 836 Zhao, Zhao, Hu (CR26) 2019; 12 Hu, Li, Wang (CR14) 2023; 10 Yang, Lv, Li (CR11) 2022; 18 Yang, Zhao, Wang (CR13) 2023; 33 Zhang, Sun, Zhen (CR4) 2021; 37 Wang, Sun, Wu (CR16) 2023; 3 Chen, Yuan, Xia (CR28) 2021; 8 Hao, Li, Zhang (CR35) 2020; 30 Zhou, Du, Li (CR17) 2022; 9 Wang, Wang, Zhou (CR32) 2023; 947 Wei, Zhang, Ren (CR33) 2023; 457 Shang, Kundu (CR10) 2022; 5 Zhang, Wang, Hu (CR37) 2021; 5 Khalifa, El-Safty, Reda (CR1) 2021; 37 Wang, Borodin, Gao (CR7) 2018; 17 Ge, Zhang, Song (CR36) 2022; 32 Chayambuka, Mulder, Danilov (CR3) 2020; 10 Jia, Wang, Tawiah (CR9) 2020; 70 Zhao, Yang, Han (CR40) 2023; 13 Li, Wei, Lei (CR15) 2023; 563 Yang, Liu, Tang (CR23) 2019; 54 Xie, Li, Wang (CR38) 2020; 2 Ren, Tang, Zhao (CR19) 2023; 109 Niu, Li, Cai (CR30) 2022; 442 Hieu, So, Kim (CR31) 2021; 411 Wang, Borodin, Gao (CR25) 2018; 17 Zhao, Zhang, Yang (CR27) 2019; 57 Guo, Cong, Guo (CR20) 2020; 30 Lee, Song, Kim (CR39) 2022; 3 Glatz, Tervoort, Kundu (CR8) 2020; 12 Tao, Feng, Liu (CR34) 2023; 16 Hosaka, Kubota, Hameed (CR5) 2020; 120 Zeng, Chalise, Lubner (CR2) 2021; 41 Liu, Li, Ji (CR6) 2022; 22 Nie, Cheng, Sun (CR18) 2023; 7 Chladil, Cech, Smejkal (CR21) 2019; 21 Zeng, Xie, Liu (CR29) 2021; 14 Naveed, Yang, Yang (CR24) 2019; 58 X Ge (668_CR36) 2022; 32 K Chayambuka (668_CR3) 2020; 10 Q Ren (668_CR19) 2023; 109 L T Hieu (668_CR31) 2021; 411 H Khalifa (668_CR1) 2021; 37 Z Zhang (668_CR37) 2021; 5 C Xie (668_CR38) 2020; 2 Y Shang (668_CR10) 2022; 5 W Guo (668_CR20) 2020; 30 S Lee (668_CR39) 2022; 3 T Wei (668_CR33) 2023; 457 Y Liu (668_CR6) 2022; 22 J Zhao (668_CR27) 2019; 57 D Li (668_CR15) 2023; 563 X Yang (668_CR23) 2019; 54 X Wang (668_CR32) 2023; 947 X Zhang (668_CR4) 2021; 37 F Wang (668_CR25) 2018; 17 Q Yang (668_CR12) 2020; 32 F Tao (668_CR34) 2023; 16 Z Yang (668_CR11) 2022; 18 B Niu (668_CR30) 2022; 442 P Chen (668_CR28) 2021; 8 Y Zeng (668_CR2) 2021; 41 A Naveed (668_CR24) 2019; 58 R Zhao (668_CR40) 2023; 13 J Yang (668_CR13) 2023; 33 A Mitha (668_CR22) 2019; 836 X Zeng (668_CR29) 2021; 14 H Glatz (668_CR8) 2020; 12 Z Zhao (668_CR26) 2019; 12 Y Hu (668_CR14) 2023; 10 F Wang (668_CR7) 2018; 17 X Wang (668_CR16) 2023; 3 L F Zhou (668_CR17) 2022; 9 J Hao (668_CR35) 2020; 30 H Jia (668_CR9) 2020; 70 W Nie (668_CR18) 2023; 7 L Chladil (668_CR21) 2019; 21 T Hosaka (668_CR5) 2020; 120 |
References_xml | – volume: 947 start-page: 169510 year: 2023 ident: CR32 article-title: construction of multifunctional protection interface for ultra-stable zinc anodes publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2023.169510 – volume: 70 start-page: 104523 year: 2020 ident: CR9 article-title: Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104523 – volume: 5 start-page: e202100394 issue: 5 year: 2022 ident: CR10 article-title: Understanding and performance of the zinc anode cycling in aqueous zinc-ion batteries and a roadmap for the future publication-title: Batteries & Supercaps doi: 10.1002/batt.202100394 – volume: 9 start-page: 2722 issue: 11 year: 2022 end-page: 2751 ident: CR17 article-title: A strategy for anode modification for future zinc-based battery application publication-title: Materials Horizons doi: 10.1039/D2MH00973K – volume: 8 start-page: 2100309 issue: 11 year: 2021 ident: CR28 article-title: An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries publication-title: Advanced Science doi: 10.1002/advs.202100309 – volume: 22 start-page: e202200114 issue: 10 year: 2022 ident: CR6 article-title: Scientific challenges and improvement strategies of Zn-based anodes for aqueous Zn-ion batteries publication-title: Chemical Record doi: 10.1002/tcr.202200114 – volume: 5 start-page: 5843 issue: 22 year: 2021 end-page: 5850 ident: CR37 article-title: An self-assembled 3D zincophilic heterogeneous metal layer on a zinc metal surface for dendrite-free aqueous zinc-ion batteries publication-title: Sustainable Energy & Fuels doi: 10.1039/D1SE01317C – volume: 411 start-page: 128584 year: 2021 ident: CR31 article-title: Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2021.128584 – volume: 7 start-page: 2201572 year: 2023 ident: CR18 article-title: Design strategies toward high-performance Zn metal anode publication-title: Small Methods doi: 10.1002/smtd.202201572 – volume: 563 start-page: 232808 year: 2023 ident: CR15 article-title: crosslinked hybrid aluminum polymer film for high-performance solid electrolyte interphase of lithium metal battery publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2023.232808 – volume: 2 start-page: 540 issue: 4 year: 2020 end-page: 560 ident: CR38 article-title: Issues and solutions toward zinc anode in aqueous zinc-ion batteries: a mini review publication-title: Carbon Energy doi: 10.1002/cey2.67 – volume: 3 start-page: 180 issue: 2 year: 2023 end-page: 206 ident: CR16 article-title: Recent progress of dendrite-free stable zinc anodes for advanced zinc-based rechargeable batteries: fundamentals, challenges, and perspectives publication-title: SusMat doi: 10.1002/sus2.118 – volume: 32 start-page: 2200429 issue: 26 year: 2022 ident: CR36 article-title: Single-ion-functionalized nanocellulose membranes enable lean-electrolyte and deeply cycled aqueous zinc-metal batteries publication-title: Advanced Functional Materials doi: 10.1002/adfm.202200429 – volume: 18 start-page: 2104148 issue: 43 year: 2022 ident: CR11 article-title: Revealing the two-dimensional surface diffusion mechanism for zinc dendrite formation on zinc anode publication-title: Small doi: 10.1002/smll.202104148 – volume: 120 start-page: 6358 issue: 14 year: 2020 end-page: 6466 ident: CR5 article-title: Research development on K-ion batteries publication-title: Chemical Reviews doi: 10.1021/acs.chemrev.9b00463 – volume: 21 start-page: 295 year: 2019 end-page: 300 ident: CR21 article-title: Study of zinc deposited in the presence of organic additives for zinc-based secondary batteries publication-title: Journal of Energy Storage doi: 10.1016/j.est.2018.12.001 – volume: 37 start-page: 363 year: 2021 end-page: 377 ident: CR1 article-title: One-dimensional hierarchical anode/cathode materials engineering for high-performance lithium-ion batteries publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2021.02.016 – volume: 109 start-page: 108306 year: 2023 ident: CR19 article-title: A zincophilic interface coating for the suppression of dendrite growth in zinc anodes publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108306 – volume: 10 start-page: 2001310 issue: 38 year: 2020 ident: CR3 article-title: From Li-ion batteries toward Na-ion chemistries: challenges and opportunities publication-title: Advanced Energy Materials doi: 10.1002/aenm.202001310 – volume: 58 start-page: 2760 issue: 9 year: 2019 end-page: 2764 ident: CR24 article-title: Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.201813223 – volume: 37 start-page: 628 year: 2021 end-page: 647 ident: CR4 article-title: Recent progress in flame-retardant separators for safe lithium-ion batteries publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2021.02.042 – volume: 57 start-page: 625 year: 2019 end-page: 634 ident: CR27 article-title: “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.086 – volume: 32 start-page: 2001854 issue: 48 year: 2020 ident: CR12 article-title: Dendrites in Zn-based batteries publication-title: Advanced Materials doi: 10.1002/adma.202001854 – volume: 13 start-page: 2203542 issue: 8 year: 2023 ident: CR40 article-title: Stabilizing Zn metal anodes via cation/anion regulation toward high energy density Zn-ion batteries publication-title: Advanced Energy Materials doi: 10.1002/aenm.202203542 – volume: 17 start-page: 543 issue: 6 year: 2018 end-page: 549 ident: CR25 article-title: Highly reversible zinc metal anode for aqueous batteries publication-title: Nature Materials doi: 10.1038/s41563-018-0063-z – volume: 14 start-page: 5947 issue: 11 year: 2021 end-page: 5957 ident: CR29 article-title: Bio-inspired design of an multifunctional polymeric solid–electrolyte interphase for Zn metal anode cycling at 30 mA·cm and 30 mAh·cm publication-title: Energy & Environmental Science doi: 10.1039/D1EE01851E – volume: 33 start-page: 2213510 issue: 14 year: 2023 ident: CR13 article-title: Insights on artificial interphases of Zn and electrolyte: protection mechanisms, constructing techniques, applicability, and prospective publication-title: Advanced Functional Materials doi: 10.1002/adfm.202213510 – volume: 12 start-page: 3522 issue: 3 year: 2020 end-page: 3530 ident: CR8 article-title: Unveiling critical insight into the Zn metal anode cyclability in mildly acidic aqueous electrolytes: implications for aqueous zinc batteries publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.9b16125 – volume: 54 start-page: 3536 issue: 4 year: 2019 end-page: 3546 ident: CR23 article-title: Effective inhibition of zinc dendrites during electrodeposition using thiourea derivatives as additives publication-title: Journal of Materials Science doi: 10.1007/s10853-018-3069-7 – volume: 442 start-page: 136217 year: 2022 ident: CR30 article-title: Robust Zn anode enabled by a hydrophilic adhesive coating for long-life zinc-ion hybrid supercapacitors publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2022.136217 – volume: 12 start-page: 1938 issue: 6 year: 2019 end-page: 1949 ident: CR26 article-title: Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase publication-title: Energy & Environmental Science doi: 10.1039/C9EE00596J – volume: 30 start-page: 104 year: 2020 end-page: 112 ident: CR20 article-title: Dendrite-free Zn anode with dual channel 3D porous frameworks for rechargeable Zn batteries publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2020.04.038 – volume: 30 start-page: 2001263 issue: 30 year: 2020 ident: CR35 article-title: Designing dendrite-free zinc anodes for advanced aqueous zinc batteries publication-title: Advanced Functional Materials doi: 10.1002/adfm.202001263 – volume: 41 start-page: 264 year: 2021 end-page: 288 ident: CR2 article-title: A review of thermal physics and management inside lithium-ion batteries for high energy density and fast charging publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2021.06.008 – volume: 836 start-page: 1 year: 2019 end-page: 6 ident: CR22 article-title: Thixotropic gel electrolyte containing poly (ethylene glycol) with high zinc ion concentration for the secondary aqueous Zn/LiMn O battery publication-title: Journal of Electroanalytical Chemistry doi: 10.1016/j.jelechem.2019.01.014 – volume: 16 start-page: 6789 issue: 5 year: 2023 end-page: 6797 ident: CR34 article-title: Suppressing interfacial side reactions of zinc metal anode via isolation effect toward high-performance aqueous zinc-ion batteries publication-title: Nano Research doi: 10.1007/s12274-022-5270-x – volume: 17 start-page: 543 issue: 6 year: 2018 end-page: 549 ident: CR7 article-title: Highly reversible zinc metal anode for aqueous batteries publication-title: Nature Materials doi: 10.1038/s41563-018-0063-z – volume: 10 start-page: 2206995 issue: 12 year: 2023 ident: CR14 article-title: Suppressing local dendrite hotspots via current density redistribution using a superlithiophilic membrane for stable lithium metal anode publication-title: Advanced Science doi: 10.1002/advs.202206995 – volume: 457 start-page: 141272 year: 2023 ident: CR33 article-title: Reconstructing anode/electrolyte interface and solvation structure towards high stable zinc anode publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2023.141272 – volume: 3 start-page: 101070 issue: 10 year: 2022 ident: CR39 article-title: Ion-selective and chemical-protective elastic block copolymer interphase for durable zinc metal anode publication-title: Cell Reports Physical Science doi: 10.1016/j.xcrp.2022.101070 – volume: 58 start-page: 2760 issue: 9 year: 2019 ident: 668_CR24 publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.201813223 – volume: 17 start-page: 543 issue: 6 year: 2018 ident: 668_CR7 publication-title: Nature Materials doi: 10.1038/s41563-018-0063-z – volume: 32 start-page: 2001854 issue: 48 year: 2020 ident: 668_CR12 publication-title: Advanced Materials doi: 10.1002/adma.202001854 – volume: 3 start-page: 180 issue: 2 year: 2023 ident: 668_CR16 publication-title: SusMat doi: 10.1002/sus2.118 – volume: 10 start-page: 2001310 issue: 38 year: 2020 ident: 668_CR3 publication-title: Advanced Energy Materials doi: 10.1002/aenm.202001310 – volume: 563 start-page: 232808 year: 2023 ident: 668_CR15 publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2023.232808 – volume: 120 start-page: 6358 issue: 14 year: 2020 ident: 668_CR5 publication-title: Chemical Reviews doi: 10.1021/acs.chemrev.9b00463 – volume: 836 start-page: 1 year: 2019 ident: 668_CR22 publication-title: Journal of Electroanalytical Chemistry doi: 10.1016/j.jelechem.2019.01.014 – volume: 18 start-page: 2104148 issue: 43 year: 2022 ident: 668_CR11 publication-title: Small doi: 10.1002/smll.202104148 – volume: 947 start-page: 169510 year: 2023 ident: 668_CR32 publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2023.169510 – volume: 37 start-page: 363 year: 2021 ident: 668_CR1 publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2021.02.016 – volume: 32 start-page: 2200429 issue: 26 year: 2022 ident: 668_CR36 publication-title: Advanced Functional Materials doi: 10.1002/adfm.202200429 – volume: 411 start-page: 128584 year: 2021 ident: 668_CR31 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2021.128584 – volume: 37 start-page: 628 year: 2021 ident: 668_CR4 publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2021.02.042 – volume: 12 start-page: 1938 issue: 6 year: 2019 ident: 668_CR26 publication-title: Energy & Environmental Science doi: 10.1039/C9EE00596J – volume: 457 start-page: 141272 year: 2023 ident: 668_CR33 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2023.141272 – volume: 30 start-page: 104 year: 2020 ident: 668_CR20 publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2020.04.038 – volume: 8 start-page: 2100309 issue: 11 year: 2021 ident: 668_CR28 publication-title: Advanced Science doi: 10.1002/advs.202100309 – volume: 57 start-page: 625 year: 2019 ident: 668_CR27 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.086 – volume: 30 start-page: 2001263 issue: 30 year: 2020 ident: 668_CR35 publication-title: Advanced Functional Materials doi: 10.1002/adfm.202001263 – volume: 12 start-page: 3522 issue: 3 year: 2020 ident: 668_CR8 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.9b16125 – volume: 21 start-page: 295 year: 2019 ident: 668_CR21 publication-title: Journal of Energy Storage doi: 10.1016/j.est.2018.12.001 – volume: 14 start-page: 5947 issue: 11 year: 2021 ident: 668_CR29 publication-title: Energy & Environmental Science doi: 10.1039/D1EE01851E – volume: 5 start-page: 5843 issue: 22 year: 2021 ident: 668_CR37 publication-title: Sustainable Energy & Fuels doi: 10.1039/D1SE01317C – volume: 442 start-page: 136217 year: 2022 ident: 668_CR30 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2022.136217 – volume: 54 start-page: 3536 issue: 4 year: 2019 ident: 668_CR23 publication-title: Journal of Materials Science doi: 10.1007/s10853-018-3069-7 – volume: 2 start-page: 540 issue: 4 year: 2020 ident: 668_CR38 publication-title: Carbon Energy doi: 10.1002/cey2.67 – volume: 3 start-page: 101070 issue: 10 year: 2022 ident: 668_CR39 publication-title: Cell Reports Physical Science doi: 10.1016/j.xcrp.2022.101070 – volume: 41 start-page: 264 year: 2021 ident: 668_CR2 publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2021.06.008 – volume: 17 start-page: 543 issue: 6 year: 2018 ident: 668_CR25 publication-title: Nature Materials doi: 10.1038/s41563-018-0063-z – volume: 109 start-page: 108306 year: 2023 ident: 668_CR19 publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108306 – volume: 70 start-page: 104523 year: 2020 ident: 668_CR9 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104523 – volume: 22 start-page: e202200114 issue: 10 year: 2022 ident: 668_CR6 publication-title: Chemical Record doi: 10.1002/tcr.202200114 – volume: 5 start-page: e202100394 issue: 5 year: 2022 ident: 668_CR10 publication-title: Batteries & Supercaps doi: 10.1002/batt.202100394 – volume: 33 start-page: 2213510 issue: 14 year: 2023 ident: 668_CR13 publication-title: Advanced Functional Materials doi: 10.1002/adfm.202213510 – volume: 10 start-page: 2206995 issue: 12 year: 2023 ident: 668_CR14 publication-title: Advanced Science doi: 10.1002/advs.202206995 – volume: 9 start-page: 2722 issue: 11 year: 2022 ident: 668_CR17 publication-title: Materials Horizons doi: 10.1039/D2MH00973K – volume: 13 start-page: 2203542 issue: 8 year: 2023 ident: 668_CR40 publication-title: Advanced Energy Materials doi: 10.1002/aenm.202203542 – volume: 16 start-page: 6789 issue: 5 year: 2023 ident: 668_CR34 publication-title: Nano Research doi: 10.1007/s12274-022-5270-x – volume: 7 start-page: 2201572 year: 2023 ident: 668_CR18 publication-title: Small Methods doi: 10.1002/smtd.202201572 |
SSID | ssj0000515941 |
Score | 2.3023171 |
Snippet | Rechargeable aqueous zinc-ion batteries (AZIBs) are the most promising candidates for the energy storage due to their high safety, rich resources, and large... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anhydrides Chemistry and Materials Science Electrode polarization Electrolytes Energy storage Manganese dioxide Materials Science Nucleation Polyvinylidene fluorides Rechargeable batteries Research Article Side effects |
Title | Highly reversible and long-lived zinc anode assisted by polymer-based hydrophilic coating |
URI | https://link.springer.com/article/10.1007/s11706-023-0668-2 https://www.proquest.com/docview/2898433323 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgjSgU5IEJ5CqJnYfHCgEVSExUKlPkVwARkqqUofx6zm1CoAIk1vih5B6-i-_uO4ATJhTjgfWpFkFMeSY5FYlilAVo_GziWfSRXLbFbdQf8OthOKzquF_rbPc6JDk7qZtiN4f0QtHGuKp5ZO8yrIR-IpIWrPSu7m-aqxXXtkTMelYG3qz-OBzW8cyf9vlukRo3cyEyOjM4lxtwV7_qPM_kufs2UV39voDi-M9v2YT1ygElvbnEbMGSLbZh7Qss4Q7cu-SPfEocutMYVSa3RBaG5GXxQHM8HQ15fyo0PisNjqBSuStToqZkVObTFzumzjQa8jg143LkLmw00aV0-dW7MLi8uDvv06oFA9XMjybU4VhzE3HlKi3jzJrEt4HOWOxJFqo49JVWiYiE0dZXMo5CGevMM2j2ZGylp9getIqysPtAjBHKWCUSnQVcCoUckjG6k9yii2KNbINXsyHVFT65a5ORpw2ysqNailRLHdXSoA2nn0tGc3COvyZ3at6mlZ6-pvi7mXDGUDLbcFazqhn-dbODf80-hFXXpX6eBdOB1mT8Zo_Ql5mo40p2j2F5EPQ-AC336oc |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4DMCAeIry9MAEspTEzsNjhUDlObVSmSK_AkghqdoylF_PXZq0gACJNXY83J19n8933xFyyqXmInA-MzKImciUYDLRnPEAnJ9LPAcYCbMtHqJOT9z0w35dxz1qst2bJ8nqpJ4XuyHTCwMfg1XzoN5FsgxYIMG2Bb2gPQusYNMSWXWsDLyq-jjsN6-ZP63y1R_NQea3d9HK3VxtkPUaJ9L2VLGbZMEVW2TtE3vgNnnEHI18QpGECa78OndUFZbmZfHEcjjELH1_KQx8Ky2MgO1jZJPqCR2U-eTVDRl6MEufJ3ZYDjCuYqgpFaZB75De1WX3osPqTgnMcD8aM6SbFjYSGgsi48zZxHeByXjsKR7qOPS10YmMpDXO1yqOQhWbzLPgnVTslKf5LlkqysLtEWqt1NZpmZgsEEpqEKWKAfUJB0jCWdUiXiOv1NQ04tjNIk_nBMgo4hREnKKI06BFzma_DKYcGn9NPmyUkNbbaZTCrTARnIMBtch5o5j58K-L7f9r9glZ6XTv79K764fbA7KKjeWniSuHZGk8fHNHAD_G-rgytw9tN8-6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI54SAgOiKcYzxw4gaK1TfrIcQKm8RDiwKRxqvIqIJV22sZh_HrsrWWAAIlrk-ZgO_kcx_5MyDGXmovA-czIIGYiU4LJRHPGAwA_l3gOfCTMtriNOl1x1Qt7VZ_TYZ3tXj9JTmsakKWpGDX7NmvOCt-Q9YUB3mAFPah6nizCaeyjoXeD1keQBRuYyEn3ysCbVCKHvfpl86dVvmLTzOH89kY6gZ72GlmtfEbamip5ncy5YoOsfGIS3CQPmK-RjykSMsH1X-eOqsLSvCweWQ4HmqVvz4WBb6WFEdgHGOWkekz7ZT5-cQOGaGbp09gOyj7GWAw1pcKU6C3SbV_cn3VY1TWBGe5HI4bU08JGQmNxZJw5m_guMBmPPcVDHYe-NjqRkbTG-VrFUahik3kWkErFTnmab5OFoizcDqHWSm2dlonJAqGkBlGqGDxA4cCrcFY1iFfLKzUVpTh2tsjTGRkyijgFEaco4jRokJOPX_pTPo2_Ju_XSkirrTVM4YaYCM7BmBrktFbMbPjXxXb_NfuILN2dt9Oby9vrPbKMPeanOSz7ZGE0eHUH4ImM9OHE2t4BnTjT9g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+reversible+and+long-lived+zinc+anode+assisted+by+polymer-based+hydrophilic+coating&rft.jtitle=Frontiers+of+materials+science&rft.au=Chen%2C+Hang&rft.au=Yuan%2C+Xinghan&rft.au=Qin%2C+Hongmei&rft.au=Xiong%2C+Chuanxi&rft.date=2023-12-01&rft.issn=2095-025X&rft.eissn=2095-0268&rft.volume=17&rft.issue=4&rft_id=info:doi/10.1007%2Fs11706-023-0668-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11706_023_0668_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-025X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-025X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-025X&client=summon |