Highly reversible and long-lived zinc anode assisted by polymer-based hydrophilic coating

Rechargeable aqueous zinc-ion batteries (AZIBs) are the most promising candidates for the energy storage due to their high safety, rich resources, and large specific capacity. However, AZIBs using neutral or slightly acidic electrolytes still face side effects and zinc dendrites on the anode surface...

Full description

Saved in:
Bibliographic Details
Published inFrontiers of materials science Vol. 17; no. 4
Main Authors Chen, Hang, Yuan, Xinghan, Qin, Hongmei, Xiong, Chuanxi
Format Journal Article
LanguageEnglish
Published Beijing Higher Education Press 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2095-025X
2095-0268
DOI10.1007/s11706-023-0668-2

Cover

Abstract Rechargeable aqueous zinc-ion batteries (AZIBs) are the most promising candidates for the energy storage due to their high safety, rich resources, and large specific capacity. However, AZIBs using neutral or slightly acidic electrolytes still face side effects and zinc dendrites on the anode surface. To stabilize the Zn anode, a chemically stable and multi-functional coating of polyvinylidene fluoride (PVDF) and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) was prepared on the Zn surface. The anhydride groups in 6FDA can improve the hydrophilicity, promoting the migration of zinc ions. Besides, PVDF is compatible with 6FDA because of the presence of organic F-containing groups, which can also effectively reduce the nucleation overpotential and exhibit the dendrite-free Zn deposition/stripping. The PVDF/6FDA@Zn symmetric cell can cycle for 5000 h at a current density of 0.5 mA·cm −2 , maintaining the extremely low polarization voltage and overpotential of 28 and 8 mV, respectively. The PVDF/6FDA@Zn∥MnO 2 full cell can remain a specific capacity of ∼90 mAh·g −1 after 2000 cycles at 1.5 A·g −1 . This simple method achieves a reversible Zn anode, providing an inspiring strategy for ultra-long-cycle AZIBs.
AbstractList Rechargeable aqueous zinc-ion batteries (AZIBs) are the most promising candidates for the energy storage due to their high safety, rich resources, and large specific capacity. However, AZIBs using neutral or slightly acidic electrolytes still face side effects and zinc dendrites on the anode surface. To stabilize the Zn anode, a chemically stable and multi-functional coating of polyvinylidene fluoride (PVDF) and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) was prepared on the Zn surface. The anhydride groups in 6FDA can improve the hydrophilicity, promoting the migration of zinc ions. Besides, PVDF is compatible with 6FDA because of the presence of organic F-containing groups, which can also effectively reduce the nucleation overpotential and exhibit the dendrite-free Zn deposition/stripping. The PVDF/6FDA@Zn symmetric cell can cycle for 5000 h at a current density of 0.5 mA·cm −2 , maintaining the extremely low polarization voltage and overpotential of 28 and 8 mV, respectively. The PVDF/6FDA@Zn∥MnO 2 full cell can remain a specific capacity of ∼90 mAh·g −1 after 2000 cycles at 1.5 A·g −1 . This simple method achieves a reversible Zn anode, providing an inspiring strategy for ultra-long-cycle AZIBs.
Rechargeable aqueous zinc-ion batteries (AZIBs) are the most promising candidates for the energy storage due to their high safety, rich resources, and large specific capacity. However, AZIBs using neutral or slightly acidic electrolytes still face side effects and zinc dendrites on the anode surface. To stabilize the Zn anode, a chemically stable and multi-functional coating of polyvinylidene fluoride (PVDF) and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) was prepared on the Zn surface. The anhydride groups in 6FDA can improve the hydrophilicity, promoting the migration of zinc ions. Besides, PVDF is compatible with 6FDA because of the presence of organic F-containing groups, which can also effectively reduce the nucleation overpotential and exhibit the dendrite-free Zn deposition/stripping. The PVDF/6FDA@Zn symmetric cell can cycle for 5000 h at a current density of 0.5 mA·cm−2, maintaining the extremely low polarization voltage and overpotential of 28 and 8 mV, respectively. The PVDF/6FDA@Zn∥MnO2 full cell can remain a specific capacity of ∼90 mAh·g−1 after 2000 cycles at 1.5 A·g−1. This simple method achieves a reversible Zn anode, providing an inspiring strategy for ultra-long-cycle AZIBs.
ArticleNumber 230668
Author Chen, Hang
Xiong, Chuanxi
Yuan, Xinghan
Qin, Hongmei
Author_xml – sequence: 1
  givenname: Hang
  surname: Chen
  fullname: Chen, Hang
  organization: School of Materials Science and Engineering, Wuhan University of Technology
– sequence: 2
  givenname: Xinghan
  surname: Yuan
  fullname: Yuan, Xinghan
  organization: School of Materials Science and Engineering, Wuhan University of Technology
– sequence: 3
  givenname: Hongmei
  surname: Qin
  fullname: Qin, Hongmei
  organization: School of Materials Science and Engineering, Wuhan University of Technology
– sequence: 4
  givenname: Chuanxi
  surname: Xiong
  fullname: Xiong, Chuanxi
  email: cxiong@whut.edu.cn
  organization: School of Materials Science and Engineering, Wuhan University of Technology
BookMark eNp9kF1LwzAYhYNMcM79AO8KXlfz0STtpQx1wsAbBb0KSZp2GV0yk25Qf70ZFQVB35u8nJwnOZxzMHHeGQAuEbxGEPKbiBCHLIeY5JCxMscnYIphRZPCysn3Tl_PwDzGDUxDEa0KNAVvS9uuuyEL5mBCtKozmXR11nnX5p09mDr7sE4nzdfpJkYb-6SpIdv5btiakCsZk7Ae6uB3a9tZnWkve-vaC3DayC6a-dc5Ay_3d8-LZb56enhc3K5yTRDrc4p4UdSsUAyXlDemLpHBuiEcSkIVp0hpVVasqrVBSnJGJdcNrEuIJDcSKjIDV-O7u-Df9yb2YuP3waUvBS6rsiCEYJJcfHTp4GMMphHa9imnd32QthMIimOVYqxSpCrFsUqBE4l-kbtgtzIM_zJ4ZGLyutaEn0x_Q59wzoiT
CitedBy_id crossref_primary_10_1016_j_est_2024_113434
crossref_primary_10_1039_D4EE03628J
Cites_doi 10.1016/j.jallcom.2023.169510
10.1016/j.nanoen.2020.104523
10.1002/batt.202100394
10.1039/D2MH00973K
10.1002/advs.202100309
10.1002/tcr.202200114
10.1039/D1SE01317C
10.1016/j.cej.2021.128584
10.1002/smtd.202201572
10.1016/j.jpowsour.2023.232808
10.1002/cey2.67
10.1002/sus2.118
10.1002/adfm.202200429
10.1002/smll.202104148
10.1021/acs.chemrev.9b00463
10.1016/j.est.2018.12.001
10.1016/j.ensm.2021.02.016
10.1016/j.nanoen.2023.108306
10.1002/aenm.202001310
10.1002/anie.201813223
10.1016/j.ensm.2021.02.042
10.1016/j.nanoen.2018.12.086
10.1002/adma.202001854
10.1002/aenm.202203542
10.1038/s41563-018-0063-z
10.1039/D1EE01851E
10.1002/adfm.202213510
10.1021/acsami.9b16125
10.1007/s10853-018-3069-7
10.1016/j.cej.2022.136217
10.1039/C9EE00596J
10.1016/j.ensm.2020.04.038
10.1002/adfm.202001263
10.1016/j.ensm.2021.06.008
10.1016/j.jelechem.2019.01.014
10.1007/s12274-022-5270-x
10.1002/advs.202206995
10.1016/j.cej.2023.141272
10.1016/j.xcrp.2022.101070
ContentType Journal Article
Copyright Higher Education Press 2023
Higher Education Press 2023.
Copyright_xml – notice: Higher Education Press 2023
– notice: Higher Education Press 2023.
DBID AAYXX
CITATION
DOI 10.1007/s11706-023-0668-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2095-0268
ExternalDocumentID 10_1007_s11706_023_0668_2
GroupedDBID -58
-5G
-BR
-EM
-~C
.VR
06C
06D
0R~
0VY
1-T
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
40E
5VS
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
B-.
BDATZ
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P4S
P9N
PF0
PT4
QOR
R89
R9I
ROL
RSV
S16
S3B
SAP
SCL
SCM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z7R
Z7V
Z7X
Z85
ZMTXR
~A9
-SB
-S~
AAPKM
AAXDM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CAJEB
CITATION
Q--
U1G
U5L
ABRTQ
ID FETCH-LOGICAL-c316t-51744d64b62857fed81e2cf370a35b751bcb8969dce1ba765a7cf0d801a7ea0b3
IEDL.DBID AGYKE
ISSN 2095-025X
IngestDate Tue Aug 12 16:42:26 EDT 2025
Tue Jul 01 02:09:54 EDT 2025
Thu Apr 24 22:58:45 EDT 2025
Fri Feb 21 02:41:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords aqueous zinc ion battery
composite film
zinc anode
polyvinylidene fluoride
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-51744d64b62857fed81e2cf370a35b751bcb8969dce1ba765a7cf0d801a7ea0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2898433323
PQPubID 2044428
ParticipantIDs proquest_journals_2898433323
crossref_citationtrail_10_1007_s11706_023_0668_2
crossref_primary_10_1007_s11706_023_0668_2
springer_journals_10_1007_s11706_023_0668_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Frontiers of materials science
PublicationTitleAbbrev Front. Mater. Sci
PublicationYear 2023
Publisher Higher Education Press
Springer Nature B.V
Publisher_xml – name: Higher Education Press
– name: Springer Nature B.V
References Yang, Li, Liu (CR12) 2020; 32
Mitha, Mi, Dong (CR22) 2019; 836
Zhao, Zhao, Hu (CR26) 2019; 12
Hu, Li, Wang (CR14) 2023; 10
Yang, Lv, Li (CR11) 2022; 18
Yang, Zhao, Wang (CR13) 2023; 33
Zhang, Sun, Zhen (CR4) 2021; 37
Wang, Sun, Wu (CR16) 2023; 3
Chen, Yuan, Xia (CR28) 2021; 8
Hao, Li, Zhang (CR35) 2020; 30
Zhou, Du, Li (CR17) 2022; 9
Wang, Wang, Zhou (CR32) 2023; 947
Wei, Zhang, Ren (CR33) 2023; 457
Shang, Kundu (CR10) 2022; 5
Zhang, Wang, Hu (CR37) 2021; 5
Khalifa, El-Safty, Reda (CR1) 2021; 37
Wang, Borodin, Gao (CR7) 2018; 17
Ge, Zhang, Song (CR36) 2022; 32
Chayambuka, Mulder, Danilov (CR3) 2020; 10
Jia, Wang, Tawiah (CR9) 2020; 70
Zhao, Yang, Han (CR40) 2023; 13
Li, Wei, Lei (CR15) 2023; 563
Yang, Liu, Tang (CR23) 2019; 54
Xie, Li, Wang (CR38) 2020; 2
Ren, Tang, Zhao (CR19) 2023; 109
Niu, Li, Cai (CR30) 2022; 442
Hieu, So, Kim (CR31) 2021; 411
Wang, Borodin, Gao (CR25) 2018; 17
Zhao, Zhang, Yang (CR27) 2019; 57
Guo, Cong, Guo (CR20) 2020; 30
Lee, Song, Kim (CR39) 2022; 3
Glatz, Tervoort, Kundu (CR8) 2020; 12
Tao, Feng, Liu (CR34) 2023; 16
Hosaka, Kubota, Hameed (CR5) 2020; 120
Zeng, Chalise, Lubner (CR2) 2021; 41
Liu, Li, Ji (CR6) 2022; 22
Nie, Cheng, Sun (CR18) 2023; 7
Chladil, Cech, Smejkal (CR21) 2019; 21
Zeng, Xie, Liu (CR29) 2021; 14
Naveed, Yang, Yang (CR24) 2019; 58
X Ge (668_CR36) 2022; 32
K Chayambuka (668_CR3) 2020; 10
Q Ren (668_CR19) 2023; 109
L T Hieu (668_CR31) 2021; 411
H Khalifa (668_CR1) 2021; 37
Z Zhang (668_CR37) 2021; 5
C Xie (668_CR38) 2020; 2
Y Shang (668_CR10) 2022; 5
W Guo (668_CR20) 2020; 30
S Lee (668_CR39) 2022; 3
T Wei (668_CR33) 2023; 457
Y Liu (668_CR6) 2022; 22
J Zhao (668_CR27) 2019; 57
D Li (668_CR15) 2023; 563
X Yang (668_CR23) 2019; 54
X Wang (668_CR32) 2023; 947
X Zhang (668_CR4) 2021; 37
F Wang (668_CR25) 2018; 17
Q Yang (668_CR12) 2020; 32
F Tao (668_CR34) 2023; 16
Z Yang (668_CR11) 2022; 18
B Niu (668_CR30) 2022; 442
P Chen (668_CR28) 2021; 8
Y Zeng (668_CR2) 2021; 41
A Naveed (668_CR24) 2019; 58
R Zhao (668_CR40) 2023; 13
J Yang (668_CR13) 2023; 33
A Mitha (668_CR22) 2019; 836
X Zeng (668_CR29) 2021; 14
H Glatz (668_CR8) 2020; 12
Z Zhao (668_CR26) 2019; 12
Y Hu (668_CR14) 2023; 10
F Wang (668_CR7) 2018; 17
X Wang (668_CR16) 2023; 3
L F Zhou (668_CR17) 2022; 9
J Hao (668_CR35) 2020; 30
H Jia (668_CR9) 2020; 70
W Nie (668_CR18) 2023; 7
L Chladil (668_CR21) 2019; 21
T Hosaka (668_CR5) 2020; 120
References_xml – volume: 947
  start-page: 169510
  year: 2023
  ident: CR32
  article-title: construction of multifunctional protection interface for ultra-stable zinc anodes
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2023.169510
– volume: 70
  start-page: 104523
  year: 2020
  ident: CR9
  article-title: Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104523
– volume: 5
  start-page: e202100394
  issue: 5
  year: 2022
  ident: CR10
  article-title: Understanding and performance of the zinc anode cycling in aqueous zinc-ion batteries and a roadmap for the future
  publication-title: Batteries & Supercaps
  doi: 10.1002/batt.202100394
– volume: 9
  start-page: 2722
  issue: 11
  year: 2022
  end-page: 2751
  ident: CR17
  article-title: A strategy for anode modification for future zinc-based battery application
  publication-title: Materials Horizons
  doi: 10.1039/D2MH00973K
– volume: 8
  start-page: 2100309
  issue: 11
  year: 2021
  ident: CR28
  article-title: An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries
  publication-title: Advanced Science
  doi: 10.1002/advs.202100309
– volume: 22
  start-page: e202200114
  issue: 10
  year: 2022
  ident: CR6
  article-title: Scientific challenges and improvement strategies of Zn-based anodes for aqueous Zn-ion batteries
  publication-title: Chemical Record
  doi: 10.1002/tcr.202200114
– volume: 5
  start-page: 5843
  issue: 22
  year: 2021
  end-page: 5850
  ident: CR37
  article-title: An self-assembled 3D zincophilic heterogeneous metal layer on a zinc metal surface for dendrite-free aqueous zinc-ion batteries
  publication-title: Sustainable Energy & Fuels
  doi: 10.1039/D1SE01317C
– volume: 411
  start-page: 128584
  year: 2021
  ident: CR31
  article-title: Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2021.128584
– volume: 7
  start-page: 2201572
  year: 2023
  ident: CR18
  article-title: Design strategies toward high-performance Zn metal anode
  publication-title: Small Methods
  doi: 10.1002/smtd.202201572
– volume: 563
  start-page: 232808
  year: 2023
  ident: CR15
  article-title: crosslinked hybrid aluminum polymer film for high-performance solid electrolyte interphase of lithium metal battery
  publication-title: Journal of Power Sources
  doi: 10.1016/j.jpowsour.2023.232808
– volume: 2
  start-page: 540
  issue: 4
  year: 2020
  end-page: 560
  ident: CR38
  article-title: Issues and solutions toward zinc anode in aqueous zinc-ion batteries: a mini review
  publication-title: Carbon Energy
  doi: 10.1002/cey2.67
– volume: 3
  start-page: 180
  issue: 2
  year: 2023
  end-page: 206
  ident: CR16
  article-title: Recent progress of dendrite-free stable zinc anodes for advanced zinc-based rechargeable batteries: fundamentals, challenges, and perspectives
  publication-title: SusMat
  doi: 10.1002/sus2.118
– volume: 32
  start-page: 2200429
  issue: 26
  year: 2022
  ident: CR36
  article-title: Single-ion-functionalized nanocellulose membranes enable lean-electrolyte and deeply cycled aqueous zinc-metal batteries
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.202200429
– volume: 18
  start-page: 2104148
  issue: 43
  year: 2022
  ident: CR11
  article-title: Revealing the two-dimensional surface diffusion mechanism for zinc dendrite formation on zinc anode
  publication-title: Small
  doi: 10.1002/smll.202104148
– volume: 120
  start-page: 6358
  issue: 14
  year: 2020
  end-page: 6466
  ident: CR5
  article-title: Research development on K-ion batteries
  publication-title: Chemical Reviews
  doi: 10.1021/acs.chemrev.9b00463
– volume: 21
  start-page: 295
  year: 2019
  end-page: 300
  ident: CR21
  article-title: Study of zinc deposited in the presence of organic additives for zinc-based secondary batteries
  publication-title: Journal of Energy Storage
  doi: 10.1016/j.est.2018.12.001
– volume: 37
  start-page: 363
  year: 2021
  end-page: 377
  ident: CR1
  article-title: One-dimensional hierarchical anode/cathode materials engineering for high-performance lithium-ion batteries
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2021.02.016
– volume: 109
  start-page: 108306
  year: 2023
  ident: CR19
  article-title: A zincophilic interface coating for the suppression of dendrite growth in zinc anodes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108306
– volume: 10
  start-page: 2001310
  issue: 38
  year: 2020
  ident: CR3
  article-title: From Li-ion batteries toward Na-ion chemistries: challenges and opportunities
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202001310
– volume: 58
  start-page: 2760
  issue: 9
  year: 2019
  end-page: 2764
  ident: CR24
  article-title: Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.201813223
– volume: 37
  start-page: 628
  year: 2021
  end-page: 647
  ident: CR4
  article-title: Recent progress in flame-retardant separators for safe lithium-ion batteries
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2021.02.042
– volume: 57
  start-page: 625
  year: 2019
  end-page: 634
  ident: CR27
  article-title: “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.086
– volume: 32
  start-page: 2001854
  issue: 48
  year: 2020
  ident: CR12
  article-title: Dendrites in Zn-based batteries
  publication-title: Advanced Materials
  doi: 10.1002/adma.202001854
– volume: 13
  start-page: 2203542
  issue: 8
  year: 2023
  ident: CR40
  article-title: Stabilizing Zn metal anodes via cation/anion regulation toward high energy density Zn-ion batteries
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202203542
– volume: 17
  start-page: 543
  issue: 6
  year: 2018
  end-page: 549
  ident: CR25
  article-title: Highly reversible zinc metal anode for aqueous batteries
  publication-title: Nature Materials
  doi: 10.1038/s41563-018-0063-z
– volume: 14
  start-page: 5947
  issue: 11
  year: 2021
  end-page: 5957
  ident: CR29
  article-title: Bio-inspired design of an multifunctional polymeric solid–electrolyte interphase for Zn metal anode cycling at 30 mA·cm and 30 mAh·cm
  publication-title: Energy & Environmental Science
  doi: 10.1039/D1EE01851E
– volume: 33
  start-page: 2213510
  issue: 14
  year: 2023
  ident: CR13
  article-title: Insights on artificial interphases of Zn and electrolyte: protection mechanisms, constructing techniques, applicability, and prospective
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.202213510
– volume: 12
  start-page: 3522
  issue: 3
  year: 2020
  end-page: 3530
  ident: CR8
  article-title: Unveiling critical insight into the Zn metal anode cyclability in mildly acidic aqueous electrolytes: implications for aqueous zinc batteries
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.9b16125
– volume: 54
  start-page: 3536
  issue: 4
  year: 2019
  end-page: 3546
  ident: CR23
  article-title: Effective inhibition of zinc dendrites during electrodeposition using thiourea derivatives as additives
  publication-title: Journal of Materials Science
  doi: 10.1007/s10853-018-3069-7
– volume: 442
  start-page: 136217
  year: 2022
  ident: CR30
  article-title: Robust Zn anode enabled by a hydrophilic adhesive coating for long-life zinc-ion hybrid supercapacitors
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2022.136217
– volume: 12
  start-page: 1938
  issue: 6
  year: 2019
  end-page: 1949
  ident: CR26
  article-title: Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase
  publication-title: Energy & Environmental Science
  doi: 10.1039/C9EE00596J
– volume: 30
  start-page: 104
  year: 2020
  end-page: 112
  ident: CR20
  article-title: Dendrite-free Zn anode with dual channel 3D porous frameworks for rechargeable Zn batteries
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2020.04.038
– volume: 30
  start-page: 2001263
  issue: 30
  year: 2020
  ident: CR35
  article-title: Designing dendrite-free zinc anodes for advanced aqueous zinc batteries
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.202001263
– volume: 41
  start-page: 264
  year: 2021
  end-page: 288
  ident: CR2
  article-title: A review of thermal physics and management inside lithium-ion batteries for high energy density and fast charging
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2021.06.008
– volume: 836
  start-page: 1
  year: 2019
  end-page: 6
  ident: CR22
  article-title: Thixotropic gel electrolyte containing poly (ethylene glycol) with high zinc ion concentration for the secondary aqueous Zn/LiMn O battery
  publication-title: Journal of Electroanalytical Chemistry
  doi: 10.1016/j.jelechem.2019.01.014
– volume: 16
  start-page: 6789
  issue: 5
  year: 2023
  end-page: 6797
  ident: CR34
  article-title: Suppressing interfacial side reactions of zinc metal anode via isolation effect toward high-performance aqueous zinc-ion batteries
  publication-title: Nano Research
  doi: 10.1007/s12274-022-5270-x
– volume: 17
  start-page: 543
  issue: 6
  year: 2018
  end-page: 549
  ident: CR7
  article-title: Highly reversible zinc metal anode for aqueous batteries
  publication-title: Nature Materials
  doi: 10.1038/s41563-018-0063-z
– volume: 10
  start-page: 2206995
  issue: 12
  year: 2023
  ident: CR14
  article-title: Suppressing local dendrite hotspots via current density redistribution using a superlithiophilic membrane for stable lithium metal anode
  publication-title: Advanced Science
  doi: 10.1002/advs.202206995
– volume: 457
  start-page: 141272
  year: 2023
  ident: CR33
  article-title: Reconstructing anode/electrolyte interface and solvation structure towards high stable zinc anode
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2023.141272
– volume: 3
  start-page: 101070
  issue: 10
  year: 2022
  ident: CR39
  article-title: Ion-selective and chemical-protective elastic block copolymer interphase for durable zinc metal anode
  publication-title: Cell Reports Physical Science
  doi: 10.1016/j.xcrp.2022.101070
– volume: 58
  start-page: 2760
  issue: 9
  year: 2019
  ident: 668_CR24
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.201813223
– volume: 17
  start-page: 543
  issue: 6
  year: 2018
  ident: 668_CR7
  publication-title: Nature Materials
  doi: 10.1038/s41563-018-0063-z
– volume: 32
  start-page: 2001854
  issue: 48
  year: 2020
  ident: 668_CR12
  publication-title: Advanced Materials
  doi: 10.1002/adma.202001854
– volume: 3
  start-page: 180
  issue: 2
  year: 2023
  ident: 668_CR16
  publication-title: SusMat
  doi: 10.1002/sus2.118
– volume: 10
  start-page: 2001310
  issue: 38
  year: 2020
  ident: 668_CR3
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202001310
– volume: 563
  start-page: 232808
  year: 2023
  ident: 668_CR15
  publication-title: Journal of Power Sources
  doi: 10.1016/j.jpowsour.2023.232808
– volume: 120
  start-page: 6358
  issue: 14
  year: 2020
  ident: 668_CR5
  publication-title: Chemical Reviews
  doi: 10.1021/acs.chemrev.9b00463
– volume: 836
  start-page: 1
  year: 2019
  ident: 668_CR22
  publication-title: Journal of Electroanalytical Chemistry
  doi: 10.1016/j.jelechem.2019.01.014
– volume: 18
  start-page: 2104148
  issue: 43
  year: 2022
  ident: 668_CR11
  publication-title: Small
  doi: 10.1002/smll.202104148
– volume: 947
  start-page: 169510
  year: 2023
  ident: 668_CR32
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2023.169510
– volume: 37
  start-page: 363
  year: 2021
  ident: 668_CR1
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2021.02.016
– volume: 32
  start-page: 2200429
  issue: 26
  year: 2022
  ident: 668_CR36
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.202200429
– volume: 411
  start-page: 128584
  year: 2021
  ident: 668_CR31
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2021.128584
– volume: 37
  start-page: 628
  year: 2021
  ident: 668_CR4
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2021.02.042
– volume: 12
  start-page: 1938
  issue: 6
  year: 2019
  ident: 668_CR26
  publication-title: Energy & Environmental Science
  doi: 10.1039/C9EE00596J
– volume: 457
  start-page: 141272
  year: 2023
  ident: 668_CR33
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2023.141272
– volume: 30
  start-page: 104
  year: 2020
  ident: 668_CR20
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2020.04.038
– volume: 8
  start-page: 2100309
  issue: 11
  year: 2021
  ident: 668_CR28
  publication-title: Advanced Science
  doi: 10.1002/advs.202100309
– volume: 57
  start-page: 625
  year: 2019
  ident: 668_CR27
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.086
– volume: 30
  start-page: 2001263
  issue: 30
  year: 2020
  ident: 668_CR35
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.202001263
– volume: 12
  start-page: 3522
  issue: 3
  year: 2020
  ident: 668_CR8
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.9b16125
– volume: 21
  start-page: 295
  year: 2019
  ident: 668_CR21
  publication-title: Journal of Energy Storage
  doi: 10.1016/j.est.2018.12.001
– volume: 14
  start-page: 5947
  issue: 11
  year: 2021
  ident: 668_CR29
  publication-title: Energy & Environmental Science
  doi: 10.1039/D1EE01851E
– volume: 5
  start-page: 5843
  issue: 22
  year: 2021
  ident: 668_CR37
  publication-title: Sustainable Energy & Fuels
  doi: 10.1039/D1SE01317C
– volume: 442
  start-page: 136217
  year: 2022
  ident: 668_CR30
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2022.136217
– volume: 54
  start-page: 3536
  issue: 4
  year: 2019
  ident: 668_CR23
  publication-title: Journal of Materials Science
  doi: 10.1007/s10853-018-3069-7
– volume: 2
  start-page: 540
  issue: 4
  year: 2020
  ident: 668_CR38
  publication-title: Carbon Energy
  doi: 10.1002/cey2.67
– volume: 3
  start-page: 101070
  issue: 10
  year: 2022
  ident: 668_CR39
  publication-title: Cell Reports Physical Science
  doi: 10.1016/j.xcrp.2022.101070
– volume: 41
  start-page: 264
  year: 2021
  ident: 668_CR2
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2021.06.008
– volume: 17
  start-page: 543
  issue: 6
  year: 2018
  ident: 668_CR25
  publication-title: Nature Materials
  doi: 10.1038/s41563-018-0063-z
– volume: 109
  start-page: 108306
  year: 2023
  ident: 668_CR19
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108306
– volume: 70
  start-page: 104523
  year: 2020
  ident: 668_CR9
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104523
– volume: 22
  start-page: e202200114
  issue: 10
  year: 2022
  ident: 668_CR6
  publication-title: Chemical Record
  doi: 10.1002/tcr.202200114
– volume: 5
  start-page: e202100394
  issue: 5
  year: 2022
  ident: 668_CR10
  publication-title: Batteries & Supercaps
  doi: 10.1002/batt.202100394
– volume: 33
  start-page: 2213510
  issue: 14
  year: 2023
  ident: 668_CR13
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.202213510
– volume: 10
  start-page: 2206995
  issue: 12
  year: 2023
  ident: 668_CR14
  publication-title: Advanced Science
  doi: 10.1002/advs.202206995
– volume: 9
  start-page: 2722
  issue: 11
  year: 2022
  ident: 668_CR17
  publication-title: Materials Horizons
  doi: 10.1039/D2MH00973K
– volume: 13
  start-page: 2203542
  issue: 8
  year: 2023
  ident: 668_CR40
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202203542
– volume: 16
  start-page: 6789
  issue: 5
  year: 2023
  ident: 668_CR34
  publication-title: Nano Research
  doi: 10.1007/s12274-022-5270-x
– volume: 7
  start-page: 2201572
  year: 2023
  ident: 668_CR18
  publication-title: Small Methods
  doi: 10.1002/smtd.202201572
SSID ssj0000515941
Score 2.3023171
Snippet Rechargeable aqueous zinc-ion batteries (AZIBs) are the most promising candidates for the energy storage due to their high safety, rich resources, and large...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anhydrides
Chemistry and Materials Science
Electrode polarization
Electrolytes
Energy storage
Manganese dioxide
Materials Science
Nucleation
Polyvinylidene fluorides
Rechargeable batteries
Research Article
Side effects
Title Highly reversible and long-lived zinc anode assisted by polymer-based hydrophilic coating
URI https://link.springer.com/article/10.1007/s11706-023-0668-2
https://www.proquest.com/docview/2898433323
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgjSgU5IEJ5CqJnYfHCgEVSExUKlPkVwARkqqUofx6zm1CoAIk1vih5B6-i-_uO4ATJhTjgfWpFkFMeSY5FYlilAVo_GziWfSRXLbFbdQf8OthOKzquF_rbPc6JDk7qZtiN4f0QtHGuKp5ZO8yrIR-IpIWrPSu7m-aqxXXtkTMelYG3qz-OBzW8cyf9vlukRo3cyEyOjM4lxtwV7_qPM_kufs2UV39voDi-M9v2YT1ygElvbnEbMGSLbZh7Qss4Q7cu-SPfEocutMYVSa3RBaG5GXxQHM8HQ15fyo0PisNjqBSuStToqZkVObTFzumzjQa8jg143LkLmw00aV0-dW7MLi8uDvv06oFA9XMjybU4VhzE3HlKi3jzJrEt4HOWOxJFqo49JVWiYiE0dZXMo5CGevMM2j2ZGylp9getIqysPtAjBHKWCUSnQVcCoUckjG6k9yii2KNbINXsyHVFT65a5ORpw2ysqNailRLHdXSoA2nn0tGc3COvyZ3at6mlZ6-pvi7mXDGUDLbcFazqhn-dbODf80-hFXXpX6eBdOB1mT8Zo_Ql5mo40p2j2F5EPQ-AC336oc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4DMCAeIry9MAEspTEzsNjhUDlObVSmSK_AkghqdoylF_PXZq0gACJNXY83J19n8933xFyyqXmInA-MzKImciUYDLRnPEAnJ9LPAcYCbMtHqJOT9z0w35dxz1qst2bJ8nqpJ4XuyHTCwMfg1XzoN5FsgxYIMG2Bb2gPQusYNMSWXWsDLyq-jjsN6-ZP63y1R_NQea3d9HK3VxtkPUaJ9L2VLGbZMEVW2TtE3vgNnnEHI18QpGECa78OndUFZbmZfHEcjjELH1_KQx8Ky2MgO1jZJPqCR2U-eTVDRl6MEufJ3ZYDjCuYqgpFaZB75De1WX3osPqTgnMcD8aM6SbFjYSGgsi48zZxHeByXjsKR7qOPS10YmMpDXO1yqOQhWbzLPgnVTslKf5LlkqysLtEWqt1NZpmZgsEEpqEKWKAfUJB0jCWdUiXiOv1NQ04tjNIk_nBMgo4hREnKKI06BFzma_DKYcGn9NPmyUkNbbaZTCrTARnIMBtch5o5j58K-L7f9r9glZ6XTv79K764fbA7KKjeWniSuHZGk8fHNHAD_G-rgytw9tN8-6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI54SAgOiKcYzxw4gaK1TfrIcQKm8RDiwKRxqvIqIJV22sZh_HrsrWWAAIlrk-ZgO_kcx_5MyDGXmovA-czIIGYiU4LJRHPGAwA_l3gOfCTMtriNOl1x1Qt7VZ_TYZ3tXj9JTmsakKWpGDX7NmvOCt-Q9YUB3mAFPah6nizCaeyjoXeD1keQBRuYyEn3ysCbVCKHvfpl86dVvmLTzOH89kY6gZ72GlmtfEbamip5ncy5YoOsfGIS3CQPmK-RjykSMsH1X-eOqsLSvCweWQ4HmqVvz4WBb6WFEdgHGOWkekz7ZT5-cQOGaGbp09gOyj7GWAw1pcKU6C3SbV_cn3VY1TWBGe5HI4bU08JGQmNxZJw5m_guMBmPPcVDHYe-NjqRkbTG-VrFUahik3kWkErFTnmab5OFoizcDqHWSm2dlonJAqGkBlGqGDxA4cCrcFY1iFfLKzUVpTh2tsjTGRkyijgFEaco4jRokJOPX_pTPo2_Ju_XSkirrTVM4YaYCM7BmBrktFbMbPjXxXb_NfuILN2dt9Oby9vrPbKMPeanOSz7ZGE0eHUH4ImM9OHE2t4BnTjT9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+reversible+and+long-lived+zinc+anode+assisted+by+polymer-based+hydrophilic+coating&rft.jtitle=Frontiers+of+materials+science&rft.au=Chen%2C+Hang&rft.au=Yuan%2C+Xinghan&rft.au=Qin%2C+Hongmei&rft.au=Xiong%2C+Chuanxi&rft.date=2023-12-01&rft.issn=2095-025X&rft.eissn=2095-0268&rft.volume=17&rft.issue=4&rft_id=info:doi/10.1007%2Fs11706-023-0668-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11706_023_0668_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-025X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-025X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-025X&client=summon