Color and depth image registration algorithm based on multi-vector-fields constraints
Image registration, which aim to establish a reliable feature relationship between images, is a critical problem in the field of image processing. In order to enhance the accuracy of color and depth image registration, this paper proposes an novel image registration algorithm based on multi-vector-f...
Saved in:
Published in | Multimedia tools and applications Vol. 78; no. 17; pp. 24301 - 24319 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Image registration, which aim to establish a reliable feature relationship between images, is a critical problem in the field of image processing. In order to enhance the accuracy of color and depth image registration, this paper proposes an novel image registration algorithm based on multi-vector-fields constraints. We first initialize the edge information features of color and depth images, and establish putative correspondences based on edge information. Consider the correlation between the images, establish the functional relationships of the multi-vector-fields constraints based on the relationships. In the reproducing nuclear Hilbert space (RKHS), this constraint is added to the probability model, and the model parameters are optimized using the EM algorithm. Finally, the probability of corresponding edge points of the image is obtained. In order to further improve registration accuracy, this paper will change the input from one pair to two pairs and let the feature transformation relationship between images be iteratively evaluated using the parameter model. Taking publicly available RGB-D images as experimental subjects, results show that for single object image registration, the algorithm image registration accuracy in this paper is improved by about 5% compared with SC, ICP, and CPD algorithms. In addition, artificial noise was used to test the proposed algorithm’s anti-noise ability, results show that the proposed algorithm has superior anti-noise ability relative to SC, ICP and CPD algorithms. |
---|---|
AbstractList | Image registration, which aim to establish a reliable feature relationship between images, is a critical problem in the field of image processing. In order to enhance the accuracy of color and depth image registration, this paper proposes an novel image registration algorithm based on multi-vector-fields constraints. We first initialize the edge information features of color and depth images, and establish putative correspondences based on edge information. Consider the correlation between the images, establish the functional relationships of the multi-vector-fields constraints based on the relationships. In the reproducing nuclear Hilbert space (RKHS), this constraint is added to the probability model, and the model parameters are optimized using the EM algorithm. Finally, the probability of corresponding edge points of the image is obtained. In order to further improve registration accuracy, this paper will change the input from one pair to two pairs and let the feature transformation relationship between images be iteratively evaluated using the parameter model. Taking publicly available RGB-D images as experimental subjects, results show that for single object image registration, the algorithm image registration accuracy in this paper is improved by about 5% compared with SC, ICP, and CPD algorithms. In addition, artificial noise was used to test the proposed algorithm’s anti-noise ability, results show that the proposed algorithm has superior anti-noise ability relative to SC, ICP and CPD algorithms. |
Author | Xie, Liang Peng, Li Zhou, Huabing Zhang, Yanduo Li, Xiaolin Li, Daoqing Chen, Deng |
Author_xml | – sequence: 1 givenname: Xiaolin surname: Li fullname: Li, Xiaolin organization: Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology – sequence: 2 givenname: Daoqing surname: Li fullname: Li, Daoqing organization: Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology – sequence: 3 givenname: Li surname: Peng fullname: Peng, Li organization: Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology – sequence: 4 givenname: Huabing orcidid: 0000-0001-5007-7303 surname: Zhou fullname: Zhou, Huabing email: zhouhuabing@gmail.com organization: Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology – sequence: 5 givenname: Deng surname: Chen fullname: Chen, Deng organization: Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology – sequence: 6 givenname: Yanduo surname: Zhang fullname: Zhang, Yanduo organization: Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology – sequence: 7 givenname: Liang surname: Xie fullname: Xie, Liang organization: Department of Mathematics, Wuhan University of Techonology |
BookMark | eNp9kEtLAzEYRYNUsFZ_gLuA62heM8kspfiCghu7DjOZZJoyTWqSCv57M1YQBF0lhHu-7-acg5kP3gBwRfANwVjcJkIwpwgTiQTmEvETMCeVYEgISmblziRGosLkDJyntMWY1BXlc7BehjFE2Poe9mafN9Dt2sHAaAaXcmyzCx624xCiy5sd7NpkeliedocxO_RudA4RWWfGPkEd_IQ4n9MFOLXtmMzl97kA64f71-UTWr08Pi_vVkgzUmfEbS07brSlnRRcs0ZXFetMp5nVAjeCWSNLU6sbIruGVVRyyi3vGmoZaa1mC3B9nLuP4e1gUlbbcIi-rFSU1LQhVLCmpMQxpWNIKRqrtMtfX5vqjopgNTlUR4eqOFSTQ8ULSX6R-1gExY9_GXpkUsn6wcSfTn9Dn9xfhm0 |
CitedBy_id | crossref_primary_10_1007_s11042_020_10194_z crossref_primary_10_1007_s00500_020_05067_4 crossref_primary_10_1016_j_biosystemseng_2023_06_002 crossref_primary_10_1002_cpe_5834 crossref_primary_10_1016_j_biosystemseng_2022_05_008 crossref_primary_10_1109_TG_2021_3068426 crossref_primary_10_1007_s00500_020_05128_8 |
Cites_doi | 10.1109/TKDE.2017.2785784 10.1016/j.inffus.2018.02.004 10.1016/j.biomaterials.2017.05.015 10.1016/j.patcog.2013.05.017 10.1145/358669.358692 10.1109/TIP.2009.2036668 10.1006/cviu.1999.0832 10.1186/1297-9686-32-2-143 10.1023/B:VISI.0000029664.99615.94 10.1016/j.patcog.2014.09.005 10.1109/TKDE.2016.2562624 10.1088/0031-9155/46/3/201 10.1109/34.993558 10.1109/TIP.2014.2307478 10.1016/S0262-8856(03)00137-9 10.1016/j.ins.2017.07.010 10.1109/TIP.2015.2467217 10.1007/s11042-014-1982-6 10.1109/TGRS.2015.2441954 10.1109/TSP.2014.2388434 10.1016/j.inffus.2018.09.004 10.1016/j.inffus.2016.02.001 10.1109/ACCESS.2018.2876884 10.24963/ijcai.2017/437 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Multimedia Tools and Applications is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Multimedia Tools and Applications is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s11042-018-7048-4 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest_Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 24319 |
ExternalDocumentID | 10_1007_s11042_018_7048_4 |
GrantInformation_xml | – fundername: Natural Science Foundation of China Open University grantid: G16F2505Q – fundername: National Natural Science Foundation of China under grantid: 41501505 |
GroupedDBID | -4Z -59 -5G -BR -EM -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 203 29M 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX -Y2 1SB 2.D 28- 2P1 2VQ 3EH 5QI AAOBN AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACMFV ACSTC ADHKG ADKFA AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGJBK AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF H13 KOW N2Q NDZJH O9- OVD PHGZM PHGZT R4E RNI RZC RZE RZK S1Z S26 S28 SCJ SCLPG T16 TEORI UZXMN VFIZW 3V. 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c316t-4f68b4ecf2b874c39c553bebc3fc70973fe8001fc918b93528424f4b92f31afc3 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Mon Jul 21 01:46:06 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 Tue Jul 01 02:06:56 EDT 2025 Fri Feb 21 02:37:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | Multi-vector-fields constraints Image registration Depth image EM algorithm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-4f68b4ecf2b874c39c553bebc3fc70973fe8001fc918b93528424f4b92f31afc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5007-7303 |
PQID | 2162912739 |
PQPubID | 54626 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2162912739 crossref_citationtrail_10_1007_s11042_018_7048_4 crossref_primary_10_1007_s11042_018_7048_4 springer_journals_10_1007_s11042_018_7048_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Ma, Zhao, Tian, Yuille, Tu (CR13) 2014; 23 Zhou, Ma, Yang (CR24) 2016; 13 Ma, Zhao, Tian (CR12) 2013; 46 Chum, Matas (CR2) 2005; 1 Ma, Yu, Liang (CR21) 2019; 48 Lowe (CR11) 2004; 60 Jing, Su, Nie (CR9) 2018; PP Belongie, Malik, Puzicha (CR1) 2002; 24 Ma, Zhao, Ma, Tian (CR14) 2015; 48 Zhu, Shen, Xie (CR26) 2017; 29 Ma, Zhao, Yuille (CR17) 2016; 25 Ma, Qiu, Zhao (CR15) 2015; 63 Jean-Louis, Van (CR7) 2000; 32 Essmaeel, Gallo, Damiani, Pietro, Dipanda (CR3) 2015; 74 Jackson, Goshtasby (CR6) 2010; 19 Jorge-Peas, Bov, Sanen (CR10) 2017; 136 Jing, Su, Nie (CR8) 2018; PP Ma, Zhou, Zhao (CR16) 2015; 53 CR25 Fischler, Bolles (CR4) 1981; 24 CR23 Ma, Chen, Li (CR18) 2016; 31 Hill, Batchelor, Holden, Hawkes (CR5) 2001; 46 Torr, Zisserman (CR22) 2000; 78 Ma, Ma, Li (CR20) 2019; 45 Zitová, Flusser (CR27) 2003; 21 Ma, Jiang, Liu, Li (CR19) 2017; 417 K Essmaeel (7048_CR3) 2015; 74 DG Lowe (7048_CR11) 2004; 60 J Ma (7048_CR21) 2019; 48 7048_CR23 A Jorge-Peas (7048_CR10) 2017; 136 J Ma (7048_CR19) 2017; 417 J Ma (7048_CR13) 2014; 23 P Jing (7048_CR8) 2018; PP 7048_CR25 J Ma (7048_CR16) 2015; 53 B Zitová (7048_CR27) 2003; 21 O Chum (7048_CR2) 2005; 1 PHS Torr (7048_CR22) 2000; 78 F Jean-Louis (7048_CR7) 2000; 32 H Zhou (7048_CR24) 2016; 13 L Zhu (7048_CR26) 2017; 29 MA Fischler (7048_CR4) 1981; 24 J Ma (7048_CR20) 2019; 45 DL Hill (7048_CR5) 2001; 46 J Ma (7048_CR14) 2015; 48 P Jing (7048_CR9) 2018; PP J Ma (7048_CR17) 2016; 25 J Ma (7048_CR18) 2016; 31 J Ma (7048_CR15) 2015; 63 S Belongie (7048_CR1) 2002; 24 BP Jackson (7048_CR6) 2010; 19 J Ma (7048_CR12) 2013; 46 |
References_xml | – volume: PP start-page: 1519 issue: 99 year: 2018 end-page: 1532 ident: CR9 article-title: Low-rank multi-view embedding learning for micro-video popularity prediction[J] publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2017.2785784 – volume: 45 start-page: 153 year: 2019 end-page: 178 ident: CR20 article-title: Infrared and visible image fusion methods and applications: a survey publication-title: Inf Fusion doi: 10.1016/j.inffus.2018.02.004 – volume: 136 start-page: 86 year: 2017 end-page: 97 ident: CR10 article-title: 3D full-field quantification of cell-induced large deformations in fibrillar biomaterials by combining non-rigid image registration with label-free second harmonic generation[J] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.05.015 – volume: 46 start-page: 3519 issue: 12 year: 2013 end-page: 3532 ident: CR12 article-title: Regularized vector field learning with sparse approximation for mismatch removal publication-title: Pattern Recognit doi: 10.1016/j.patcog.2013.05.017 – volume: 24 start-page: 381 issue: 6 year: 1981 end-page: 395 ident: CR4 article-title: Random sample consensus: a paradigm for model fitting with application to image analysis and automated cartography publication-title: Commun ACM doi: 10.1145/358669.358692 – volume: 19 start-page: 795 issue: 3 year: 2010 end-page: 804 ident: CR6 article-title: Registering aerial video images using the projective constraint [J] publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2009.2036668 – volume: 1 start-page: 220 year: 2005 end-page: 226 ident: CR2 article-title: Matching with PROSAC – progressive sample consensus publication-title: Proc IEEE Conf Comput Vis Pattern Recog – volume: 78 start-page: 138 issue: 1 year: 2000 end-page: 156 ident: CR22 article-title: MLESAC: a new robust estimator with application to estimating image geometry publication-title: Comput Vis Image Under-stand doi: 10.1006/cviu.1999.0832 – volume: 32 start-page: 143 issue: 2 year: 2000 end-page: 163 ident: CR7 article-title: The PX-EM algorithm for fast stable fitting of Henderson’s mixed model[J] publication-title: Gen Select Evol doi: 10.1186/1297-9686-32-2-143 – volume: 60 start-page: 91 issue: 2 year: 2004 end-page: 110 ident: CR11 article-title: Distinctive image features from scale invariant keypoints[J] publication-title: Int J Comput Vis doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 48 start-page: 772 issue: 3 year: 2015 end-page: 784 ident: CR14 article-title: Non-rigid visible and infrared face registration via regularized Gaussian fields criterion publication-title: Pattern Recogn doi: 10.1016/j.patcog.2014.09.005 – ident: CR25 – ident: CR23 – volume: 29 start-page: 472 issue: 2 year: 2017 end-page: 486 ident: CR26 article-title: Unsupervised visual hashing with semantic assistant for content-based image retrieval[J] publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2016.2562624 – volume: 46 start-page: R1 issue: 3 year: 2001 end-page: 45 ident: CR5 article-title: Medical image registration publication-title: Phys Med Biol doi: 10.1088/0031-9155/46/3/201 – volume: 24 start-page: 509 issue: 24 year: 2002 end-page: 522 ident: CR1 article-title: Shape matching and object recognition using shape contexts publication-title: PAMI doi: 10.1109/34.993558 – volume: 13 start-page: 374 issue: 3 year: 2016 end-page: 378 ident: CR24 article-title: Nonrigid feature matching for remote sensing images via probabilistic inference with global and local regularizations[J] publication-title: IEEE Geosc Rem Sens Lett – volume: 23 start-page: 1706 issue: 4 year: 2014 end-page: 1721 ident: CR13 article-title: Robust point matching via vector field consensus publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2014.2307478 – volume: 21 start-page: 977 issue: 11 year: 2003 end-page: 1000 ident: CR27 article-title: Image registration methods: a survey publication-title: Image Vis Comput doi: 10.1016/S0262-8856(03)00137-9 – volume: 417 start-page: 128 year: 2017 end-page: 142 ident: CR19 article-title: Feature guided Gaussian mixture model with semi-supervised EM and local geometric constraint for retinal image registration publication-title: Inf Sci doi: 10.1016/j.ins.2017.07.010 – volume: PP start-page: 1 issue: 99 year: 2018 end-page: 1 ident: CR8 article-title: A framework of joint low-rank and sparse regression for image memorability prediction[J] publication-title: IEEE Trans Circ Syst Vid Technol – volume: 25 start-page: 53 issue: 1 year: 2016 end-page: 64 ident: CR17 article-title: Non-rigid point set registration by preserving global and local structures publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2015.2467217 – volume: 74 start-page: 7331 issue: 17 year: 2015 end-page: 7354 ident: CR3 article-title: Comparison of methods for filtering for kinect depth data publication-title: Multimed Tools Appl doi: 10.1007/s11042-014-1982-6 – volume: 53 start-page: 6469 issue: 12 year: 2015 end-page: 6481 ident: CR16 article-title: Robust feature matching for remote sensing image registration via locally linear transforming[J] publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2015.2441954 – volume: 63 start-page: 1115 issue: 5 year: 2015 end-page: 1129 ident: CR15 article-title: Robust L2E estimation of transformation for non-rigid registration publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2014.2388434 – volume: 48 start-page: 11 year: 2019 end-page: 26 ident: CR21 article-title: FusionGAN: a generative adversarial network for infrared and visible image fusion publication-title: Inf Fusion doi: 10.1016/j.inffus.2018.09.004 – volume: 31 start-page: 100 year: 2016 end-page: 109 ident: CR18 article-title: Infrared and visible image fusion via gradient transfer and total variation minimization publication-title: Inf Fusion doi: 10.1016/j.inffus.2016.02.001 – volume: 136 start-page: 86 year: 2017 ident: 7048_CR10 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.05.015 – volume: 48 start-page: 772 issue: 3 year: 2015 ident: 7048_CR14 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2014.09.005 – volume: 53 start-page: 6469 issue: 12 year: 2015 ident: 7048_CR16 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2015.2441954 – volume: 32 start-page: 143 issue: 2 year: 2000 ident: 7048_CR7 publication-title: Gen Select Evol doi: 10.1186/1297-9686-32-2-143 – volume: 63 start-page: 1115 issue: 5 year: 2015 ident: 7048_CR15 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2014.2388434 – volume: 24 start-page: 509 issue: 24 year: 2002 ident: 7048_CR1 publication-title: PAMI doi: 10.1109/34.993558 – ident: 7048_CR25 doi: 10.1109/ACCESS.2018.2876884 – volume: 60 start-page: 91 issue: 2 year: 2004 ident: 7048_CR11 publication-title: Int J Comput Vis doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 48 start-page: 11 year: 2019 ident: 7048_CR21 publication-title: Inf Fusion doi: 10.1016/j.inffus.2018.09.004 – volume: PP start-page: 1 issue: 99 year: 2018 ident: 7048_CR8 publication-title: IEEE Trans Circ Syst Vid Technol – ident: 7048_CR23 doi: 10.24963/ijcai.2017/437 – volume: 1 start-page: 220 year: 2005 ident: 7048_CR2 publication-title: Proc IEEE Conf Comput Vis Pattern Recog – volume: 25 start-page: 53 issue: 1 year: 2016 ident: 7048_CR17 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2015.2467217 – volume: 45 start-page: 153 year: 2019 ident: 7048_CR20 publication-title: Inf Fusion doi: 10.1016/j.inffus.2018.02.004 – volume: PP start-page: 1519 issue: 99 year: 2018 ident: 7048_CR9 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2017.2785784 – volume: 46 start-page: 3519 issue: 12 year: 2013 ident: 7048_CR12 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2013.05.017 – volume: 24 start-page: 381 issue: 6 year: 1981 ident: 7048_CR4 publication-title: Commun ACM doi: 10.1145/358669.358692 – volume: 46 start-page: R1 issue: 3 year: 2001 ident: 7048_CR5 publication-title: Phys Med Biol doi: 10.1088/0031-9155/46/3/201 – volume: 417 start-page: 128 year: 2017 ident: 7048_CR19 publication-title: Inf Sci doi: 10.1016/j.ins.2017.07.010 – volume: 13 start-page: 374 issue: 3 year: 2016 ident: 7048_CR24 publication-title: IEEE Geosc Rem Sens Lett – volume: 31 start-page: 100 year: 2016 ident: 7048_CR18 publication-title: Inf Fusion doi: 10.1016/j.inffus.2016.02.001 – volume: 29 start-page: 472 issue: 2 year: 2017 ident: 7048_CR26 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2016.2562624 – volume: 19 start-page: 795 issue: 3 year: 2010 ident: 7048_CR6 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2009.2036668 – volume: 23 start-page: 1706 issue: 4 year: 2014 ident: 7048_CR13 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2014.2307478 – volume: 21 start-page: 977 issue: 11 year: 2003 ident: 7048_CR27 publication-title: Image Vis Comput doi: 10.1016/S0262-8856(03)00137-9 – volume: 74 start-page: 7331 issue: 17 year: 2015 ident: 7048_CR3 publication-title: Multimed Tools Appl doi: 10.1007/s11042-014-1982-6 – volume: 78 start-page: 138 issue: 1 year: 2000 ident: 7048_CR22 publication-title: Comput Vis Image Under-stand doi: 10.1006/cviu.1999.0832 |
SSID | ssj0016524 |
Score | 2.2309537 |
Snippet | Image registration, which aim to establish a reliable feature relationship between images, is a critical problem in the field of image processing. In order to... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 24301 |
SubjectTerms | Accuracy Algorithms Color Computer Communication Networks Computer Science Constraints Data Structures and Information Theory Hilbert space Image enhancement Image processing Image registration Multimedia Information Systems Noise Parameters Registration Special Purpose and Application-Based Systems |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46L3rwx1ScTsnBkxJomjRtjmM4hqAnC7uVJk3cYOvGWv37TbpkVVHBa5uG8l7y3pe8974HwK3iAQ9FIpDEubAlORRxljBk0a7SQnONbaHw0zMbp_RxEk1cHXfls919SLKx1G2xG7alJAFOUBzYW7BdsBfZo7tZxGk42IYOWOQ62SYBMu4Q-1DmT1N8dUYtwvwWFG18zegYHDqQCAcbrZ6AHVV2wZFvwADdfuyCg09sgqcgHRpDtoZ5WcBCreopnC2MsYC29YInx4X5_HW5ntXTBbTuq4DmUZNSiN6b23vUJLRVUFrUaJtH1NUZSEcPL8Mxcl0TkCSY1YhqlgiqpDYqiKkkXEYREUpIomVsyXm0MiARa8lxIrgld6Eh1VTwUBOca0nOQadcluoCQBURRohkOc8pLeJCNKedRAUkkoWOkh4IvPgy6SjF7c_Ns5YM2Uo8MxLPrMQz2gN3209WGz6Nvwb3vU4yt7WqLMQs5NigLt4D915P7etfJ7v81-grsG-gkcsm64NOvX5T1wZ-1OKmWW4fKADQyQ priority: 102 providerName: Springer Nature |
Title | Color and depth image registration algorithm based on multi-vector-fields constraints |
URI | https://link.springer.com/article/10.1007/s11042-018-7048-4 https://www.proquest.com/docview/2162912739 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH-i9MIOGx-b6NZVPuw0ZC2OHdc-TV3VgkCgaaJSOUWxY1Okfo1m-_vnFxw6kODqxFbynv3ez-8T4IvTiU6NMtSywmBKjqBaKkkR7TpvvPYME4Uvr-TZRJxPs2k0uG1iWGUjE2tBXa4s2si_pUymmgVlq7-vf1PsGoXe1dhCowXtIIJVuHy1f4yufv569CPILLa1VQkNupE1fs06eY5hakrCFO0naFV7qpm2cPOZh7RWPON9eBsRIxk8sPgAdtzyEN413RhIPJyH8Oa_0oJHMBkGqXZPimVJSreuZuRuESQHwT4MTaVcUsxvwx9WswVBXVaSMFTHF9K_tSmf1tFtG2IRQmIniWrzHibj0fXwjMYWCtRyJisqvFRGOOsDP_rCcm2zjBtnLPe2j5V6vAuIkXmrmTIaK72IVHhhdOo5K7zlH2B3uVq6YyAu45JzKwtdCFH2S1NffZRLeGZLn6kOJA35chvri-PHzfNtZWSkeB4oniPFc9GBr49T1g_FNV57udvwJI_nbJNvd0UHTho-bR-_uNjH1xf7BHsBGMVYsi7sVvd_3OcAPirTg5Yan_agPTi9uRj14n4Lo5N08A8crtkT |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPRQOUB5Vl1LwAS5FFnHseO0DQhWwLM8TK3ELsWOXSrAsbNqqf6q_EU82ZgEJblzzsJzxeOaL5_EBrDud6NQoQy0rDJbkCKqlkhTRrvPGa8-wUPj0THZ74ugiu5iA_7EWBtMqo02sDXV5a_GMfCtlMtUsOFu9M7ijyBqF0dVIoTFSi2P372_4ZRtuH-6F9d1I087--W6XNqwC1HImKyq8VEY468MU28JybbOMG2cs97aNzWu8CyCKeauZMhqbn4hUeGF06jkrvOVh3En4ED5L445SnYPHqIXMGhJdldDgiVmMotalegwLYRKmaDvBM7znfnAMbl_EY2s31_kEsw0-JT9GCjUPE66_AHOR-4E0pmABZp40MlyE3m6wofek6JekdIPqivy6CXaKIOtD7MtLiuufQZ7V1Q1Bz1mScKnOZqR_6sABrXPphsQiYEXeimq4BL13Ee1nmOrf9t0XIC7jknMrC10IUbZLU_9oKZfwzJY-Uy1Iovhy23Qzx8ld5-M-zCjxPEg8R4nnogXfH18ZjFp5vPXwSlyTvNnVw3ysgy3YjOs0vv3qYMtvD7YGH7vnpyf5yeHZ8VeYDpCsyWJbganq_rf7FmBPZVZrXSNw-d7K_QAs7xGB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RTxQxEJ7gkRh5EEUJp6h90BdNw3bb7W4fCFHgAqIXYryEt3XbbTkSuDvuVg1_jV9HZ6_l1ETeeN3dNs10dmbamfk-gLdWJSrVhaaGVRpbcgRVspAUo13rtFOOYaPw1748GIjPJ9nJElzHXhgsq4w2sTXU9djgHflWymSqmHe2asuFsojjvd7O5JIigxRmWiOdxlxFjuzVb398m20f7vm9fpemvf3vuwc0MAxQw5lsqHCy0MIa55ebC8OVyTKurTbcmRyBbJz1ARVzRrFCKwRCEalwQqvUcVY5w_28D2A596eipAPLn_b7x99ucxgyC5S6RUK9X2Yxp9o27jFsi0lYQfMEb_T-9oqLUPef7Gzr9HpP4HGIVsnHuXo9hSU7WoPVyARBgmFYg5U_YA2fwWDXW9QpqUY1qe2kGZKzC2-1CHJARJReUp2feok2wwuCfrQm_lFb20h_tWkE2lbWzYjB8BVZLJrZcxjci3DXoTMaj-wGEJtxybmRlaqEqPNat8euwiY8M7XLii4kUXylCdjmuLjzcoHKjBIvvcRLlHgpuvD-dshkDuxx18ebcU_K8I_PyoVGduFD3KfF6_9O9uLuyd7AQ6_Y5ZfD_tFLeOTjs1DStgmdZvrTvvIxUKNfB2Uj8OO-9fsGjBEXEw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Color+and+depth+image+registration+algorithm+based+on+multi-vector-fields+constraints&rft.jtitle=Multimedia+tools+and+applications&rft.au=Li%2C+Xiaolin&rft.au=Li%2C+Daoqing&rft.au=Li%2C+Peng&rft.au=Zhou%2C+Huabing&rft.date=2019-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=78&rft.issue=17&rft.spage=24301&rft.epage=24319&rft_id=info:doi/10.1007%2Fs11042-018-7048-4&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |