Restricted power domination and zero forcing problems

Power domination in graphs arises from the problem of monitoring an electric power system by placing as few measurement devices in the system as possible. A power dominating set of a graph is a set of vertices that observes every vertex in the graph, following a set of rules for power system monitor...

Full description

Saved in:
Bibliographic Details
Published inJournal of combinatorial optimization Vol. 37; no. 3; pp. 935 - 956
Main Authors Bozeman, Chassidy, Brimkov, Boris, Erickson, Craig, Ferrero, Daniela, Flagg, Mary, Hogben, Leslie
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1382-6905
1573-2886
DOI10.1007/s10878-018-0330-6

Cover

Loading…
Abstract Power domination in graphs arises from the problem of monitoring an electric power system by placing as few measurement devices in the system as possible. A power dominating set of a graph is a set of vertices that observes every vertex in the graph, following a set of rules for power system monitoring. A practical problem of interest is to determine the minimum number of additional measurement devices needed to monitor a power network when the network is expanded and the existing devices remain in place. In this paper, we study the problem of finding the smallest power dominating set that contains a given set of vertices X . We also study the related problem of finding the smallest zero forcing set that contains a given set of vertices X . The sizes of such sets in a graph G are respectively called the restricted power domination number and restricted zero forcing number of G subject to X . We derive several tight bounds on the restricted power domination and zero forcing numbers of graphs, and relate them to other graph parameters. We also present exact and algorithmic results for computing the restricted power domination number, including integer programs for general graphs and a linear time algorithm for graphs with bounded treewidth. We also use restricted power domination to obtain a parallel algorithm for finding minimum power dominating sets in trees.
AbstractList Power domination in graphs arises from the problem of monitoring an electric power system by placing as few measurement devices in the system as possible. A power dominating set of a graph is a set of vertices that observes every vertex in the graph, following a set of rules for power system monitoring. A practical problem of interest is to determine the minimum number of additional measurement devices needed to monitor a power network when the network is expanded and the existing devices remain in place. In this paper, we study the problem of finding the smallest power dominating set that contains a given set of vertices X. We also study the related problem of finding the smallest zero forcing set that contains a given set of vertices X. The sizes of such sets in a graph G are respectively called the restricted power domination number and restricted zero forcing number of G subject to X. We derive several tight bounds on the restricted power domination and zero forcing numbers of graphs, and relate them to other graph parameters. We also present exact and algorithmic results for computing the restricted power domination number, including integer programs for general graphs and a linear time algorithm for graphs with bounded treewidth. We also use restricted power domination to obtain a parallel algorithm for finding minimum power dominating sets in trees.
Power domination in graphs arises from the problem of monitoring an electric power system by placing as few measurement devices in the system as possible. A power dominating set of a graph is a set of vertices that observes every vertex in the graph, following a set of rules for power system monitoring. A practical problem of interest is to determine the minimum number of additional measurement devices needed to monitor a power network when the network is expanded and the existing devices remain in place. In this paper, we study the problem of finding the smallest power dominating set that contains a given set of vertices X . We also study the related problem of finding the smallest zero forcing set that contains a given set of vertices X . The sizes of such sets in a graph G are respectively called the restricted power domination number and restricted zero forcing number of G subject to X . We derive several tight bounds on the restricted power domination and zero forcing numbers of graphs, and relate them to other graph parameters. We also present exact and algorithmic results for computing the restricted power domination number, including integer programs for general graphs and a linear time algorithm for graphs with bounded treewidth. We also use restricted power domination to obtain a parallel algorithm for finding minimum power dominating sets in trees.
Author Flagg, Mary
Erickson, Craig
Hogben, Leslie
Brimkov, Boris
Bozeman, Chassidy
Ferrero, Daniela
Author_xml – sequence: 1
  givenname: Chassidy
  surname: Bozeman
  fullname: Bozeman, Chassidy
  organization: Department of Mathematics, Iowa State University
– sequence: 2
  givenname: Boris
  surname: Brimkov
  fullname: Brimkov, Boris
  email: boris.brimkov@rice.edu
  organization: Department of Computational and Applied Mathematics, Rice University
– sequence: 3
  givenname: Craig
  surname: Erickson
  fullname: Erickson, Craig
– sequence: 4
  givenname: Daniela
  surname: Ferrero
  fullname: Ferrero, Daniela
  organization: Department of Mathematics, Texas State University
– sequence: 5
  givenname: Mary
  surname: Flagg
  fullname: Flagg, Mary
  organization: Department of Mathematics, Computer Science and Cooperative Engineering, University of St. Thomas
– sequence: 6
  givenname: Leslie
  surname: Hogben
  fullname: Hogben, Leslie
  organization: Department of Mathematics, Iowa State University, American Institute of Mathematics
BookMark eNp9kEtLAzEUhYNUsK3-AHcDrkdvJpk8llJ8QUEQXYfJq0xpk5pMEf31po4gCLoI9y7Ol3PumaFJiMEhdI7hEgPwq4xBcFEDLo8QqNkRmuKWk7oRgk3KTkRTMwntCZrlvAaAstMpap9cHlJvBmerXXxzqbJx24du6GOoumCrD5di5WMyfVhVuxT1xm3zKTr23Sa7s-85Ry-3N8-L-3r5ePewuF7WhmA21FQ6x4y33gstMDWk8VZTD0JLainlVBrJ6SE_UMw0UOZMy7V11GtBiCRzdDH-W4xf9yWpWsd9CsVSNbigIMt5RcVHlUkx5-S8Mv3wdcGQun6jMKiDhxo7UqUjdehIsULiX-Qu9dsuvf_LNCOTizasXPrJ9Df0CZFxelY
CitedBy_id crossref_primary_10_1016_j_dam_2020_06_002
crossref_primary_10_1016_j_tcs_2019_06_008
crossref_primary_10_1002_net_22056
crossref_primary_10_1016_j_dam_2019_11_015
crossref_primary_10_1007_s10878_019_00380_7
crossref_primary_10_1007_s10878_020_00587_z
crossref_primary_10_1007_s10878_019_00475_1
crossref_primary_10_1016_j_disopt_2022_100725
crossref_primary_10_1007_s00373_021_02307_8
crossref_primary_10_1007_s00373_022_02476_0
crossref_primary_10_1007_s00453_024_01283_8
crossref_primary_10_1287_ijoc_2020_1032
crossref_primary_10_1016_j_disopt_2022_100744
Cites_doi 10.1016/j.disc.2006.03.037
10.1016/j.laa.2011.05.012
10.1103/PhysRevLett.99.100501
10.1007/s00453-007-9147-x
10.1007/s10878-014-9785-2
10.1016/S0012-365X(01)00371-5
10.1016/j.dam.2012.04.003
10.1007/s10878-015-9936-0
10.1016/j.laa.2010.10.015
10.1007/s10878-013-9688-7
10.1007/s10878-006-9037-1
10.1002/(SICI)1097-0118(199706)25:2<139::AID-JGT6>3.0.CO;2-N
10.1007/s10878-014-9795-0
10.1137/S0895480103432556
10.1016/j.laa.2007.10.009
10.1016/j.dam.2012.03.007
10.1137/S0895480100375831
10.1016/j.tcs.2006.04.011
10.1007/978-3-642-31770-5_33
10.1016/j.disc.2017.10.031
10.1109/CSE.2011.89
10.1007/s10878-016-0103-z
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
DOI 10.1007/s10878-018-0330-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2886
EndPage 956
ExternalDocumentID 10_1007_s10878_018_0330_6
GrantInformation_xml – fundername: National Science Foundation
  grantid: DMS-1128242; 1450681
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID -5D
-5G
-BR
-EM
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
-Y2
1SB
2P1
2VQ
AAPKM
AARHV
AAYOK
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEKMD
AEZWR
AFDZB
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
CAG
CITATION
COF
H13
N2Q
O9-
OVD
RNI
RZC
RZE
RZK
S1Z
TEORI
ABRTQ
ID FETCH-LOGICAL-c316t-49ee6cfdff8b814c32fdb4f08b94d44749c97410070416b046ec57bde4fb83393
IEDL.DBID U2A
ISSN 1382-6905
IngestDate Fri Jul 25 11:12:39 EDT 2025
Thu Apr 24 23:11:11 EDT 2025
Tue Jul 01 03:13:03 EDT 2025
Fri Feb 21 02:33:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 05C50
94C15
Power domination
Restricted power domination
05C69
Restricted zero forcing
05C57
Zero forcing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-49ee6cfdff8b814c32fdb4f08b94d44749c97410070416b046ec57bde4fb83393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2197409288
PQPubID 2043856
PageCount 22
ParticipantIDs proquest_journals_2197409288
crossref_citationtrail_10_1007_s10878_018_0330_6
crossref_primary_10_1007_s10878_018_0330_6
springer_journals_10_1007_s10878_018_0330_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Journal of combinatorial optimization
PublicationTitleAbbrev J Comb Optim
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CR14
CR13
Row (CR22) 2012; 436
CR12
Wang, Chen, Lu (CR24) 2016; 31
Burgarth, Giovannetti (CR6) 2007; 99
CR10
Haynes, Hedetniemi, Slater (CR18) 1998
Xu, Kang, Shan, Zhao (CR25) 2006; 359
Goddard, Henning (CR15) 2007; 13
Zhao, Kang, Chang (CR27) 2006; 306
Haynes, Hedetniemi, Hedetniemi, Henning (CR17) 2002; 15
Barioli, Barrett, Butler, Cioabă, Cvetković, Fallat, Godsil, Haemers, Hogben, Mikkelson, Narayan, Pryporova, Sciriha, So, Stevanović, van der Holst, Van der Meulen, Wangsness (CR1) 2008; 428
Liao (CR21) 2016; 31
Hogben, Kingsley, Meyer, Walker, Young (CR20) 2012; 160
Chang, Dorbec, Montassier, Raspaud (CR8) 2012; 160
Guo, Niedermeier, Raible (CR16) 2008; 52
Edholm, Hogben, Huynh, LaGrange, Row (CR11) 2012; 436
CR4
CR3
Sanchis (CR23) 1997; 25
Chang, Roussel (CR9) 2015; 30
CR7
Benson, Ferrero, Flagg, Furst, Hogben, Vasilevska, Wissman (CR2) 2018; 70
Yang (CR26) 2017; 33
Henning (CR19) 2002; 254
Brueni, Heath (CR5) 2005; 19
330_CR3
330_CR4
GJ Chang (330_CR9) 2015; 30
J Guo (330_CR16) 2008; 52
F Barioli (330_CR1) 2008; 428
330_CR7
M Zhao (330_CR27) 2006; 306
LA Sanchis (330_CR23) 1997; 25
D Burgarth (330_CR6) 2007; 99
W Goddard (330_CR15) 2007; 13
330_CR13
330_CR14
C Wang (330_CR24) 2016; 31
330_CR10
330_CR12
L Hogben (330_CR20) 2012; 160
KF Benson (330_CR2) 2018; 70
DJ Brueni (330_CR5) 2005; 19
CJ Edholm (330_CR11) 2012; 436
B Yang (330_CR26) 2017; 33
CS Liao (330_CR21) 2016; 31
D Row (330_CR22) 2012; 436
GJ Chang (330_CR8) 2012; 160
TW Haynes (330_CR18) 1998
G Xu (330_CR25) 2006; 359
TW Haynes (330_CR17) 2002; 15
MA Henning (330_CR19) 2002; 254
References_xml – volume: 306
  start-page: 1812
  year: 2006
  end-page: 1816
  ident: CR27
  article-title: Power domination in graphs
  publication-title: Discrete Math
  doi: 10.1016/j.disc.2006.03.037
– volume: 436
  start-page: 4423
  year: 2012
  end-page: 4432
  ident: CR22
  article-title: A technique for computing the zero forcing number of a graph with a cut-vertex
  publication-title: Linear Algebra Appl
  doi: 10.1016/j.laa.2011.05.012
– volume: 99
  start-page: 100501
  year: 2007
  ident: CR6
  article-title: Full control by locally induced relaxation
  publication-title: Phys Rev Lett PRL
  doi: 10.1103/PhysRevLett.99.100501
– volume: 70
  start-page: 221
  year: 2018
  end-page: 235
  ident: CR2
  article-title: Zero forcing and power domination for graph products
  publication-title: Australas J Combin
– ident: CR4
– ident: CR14
– ident: CR12
– volume: 52
  start-page: 177
  year: 2008
  end-page: 202
  ident: CR16
  article-title: Improved algorithms and complexity results for power domination in graphs
  publication-title: Algorithmica
  doi: 10.1007/s00453-007-9147-x
– ident: CR10
– volume: 31
  start-page: 725
  issue: 2
  year: 2016
  end-page: 742
  ident: CR21
  article-title: Power domination with bounded time constraints
  publication-title: J Comb Optim
  doi: 10.1007/s10878-014-9785-2
– volume: 254
  start-page: 175
  year: 2002
  end-page: 189
  ident: CR19
  article-title: Restricted domination in graphs
  publication-title: Discrete Math
  doi: 10.1016/S0012-365X(01)00371-5
– volume: 160
  start-page: 1994
  issue: 13
  year: 2012
  end-page: 2005
  ident: CR20
  article-title: Propagation time for zero forcing on a graph
  publication-title: Discrete Appl Math
  doi: 10.1016/j.dam.2012.04.003
– year: 1998
  ident: CR18
  publication-title: Fundamentals of domination in graphs applied to electric power networks
– volume: 33
  start-page: 81
  issue: 1
  year: 2017
  end-page: 105
  ident: CR26
  article-title: Lower bounds for positive semidefinite zero forcing and their applications
  publication-title: J Comb Optim
  doi: 10.1007/s10878-015-9936-0
– volume: 436
  start-page: 4352
  year: 2012
  end-page: 4372
  ident: CR11
  article-title: Vertex and edge spread of zero forcing number, maximum nullity, and minimum rank of a graph
  publication-title: Linear Algebra Appl
  doi: 10.1016/j.laa.2010.10.015
– volume: 30
  start-page: 1095
  issue: 4
  year: 2015
  end-page: 1106
  ident: CR9
  article-title: On the -power domination of hypergraphs
  publication-title: J Comb Optim
  doi: 10.1007/s10878-013-9688-7
– volume: 13
  start-page: 353
  issue: 4
  year: 2007
  end-page: 363
  ident: CR15
  article-title: Restricted domination parameters in graphs
  publication-title: J Comb Optim
  doi: 10.1007/s10878-006-9037-1
– volume: 25
  start-page: 139
  year: 1997
  end-page: 152
  ident: CR23
  article-title: Bounds related to domination in graphs with minimum degree two
  publication-title: J Graph Theory
  doi: 10.1002/(SICI)1097-0118(199706)25:2<139::AID-JGT6>3.0.CO;2-N
– ident: CR3
– ident: CR13
– volume: 31
  start-page: 865
  issue: 2
  year: 2016
  end-page: 873
  ident: CR24
  article-title: -Power domination in block graphs
  publication-title: J Comb Optim
  doi: 10.1007/s10878-014-9795-0
– volume: 19
  start-page: 744
  year: 2005
  end-page: 761
  ident: CR5
  article-title: The PMU placement problem
  publication-title: SIAM J Discrete Math
  doi: 10.1137/S0895480103432556
– volume: 428
  start-page: 1628
  year: 2008
  end-page: 1648
  ident: CR1
  article-title: Zero forcing sets and the minimum rank of graphs
  publication-title: Linear Algebra Appl
  doi: 10.1016/j.laa.2007.10.009
– ident: CR7
– volume: 160
  start-page: 1691
  year: 2012
  end-page: 1698
  ident: CR8
  article-title: Generalized power domination of graphs
  publication-title: Discrete Appl Math
  doi: 10.1016/j.dam.2012.03.007
– volume: 15
  start-page: 519
  year: 2002
  end-page: 529
  ident: CR17
  article-title: Domination in graphs applied to electric power networks
  publication-title: SIAM J Discrete Math
  doi: 10.1137/S0895480100375831
– volume: 359
  start-page: 299
  year: 2006
  end-page: 305
  ident: CR25
  article-title: Power domination in block graphs
  publication-title: Theor Comput Sci
  doi: 10.1016/j.tcs.2006.04.011
– volume: 52
  start-page: 177
  year: 2008
  ident: 330_CR16
  publication-title: Algorithmica
  doi: 10.1007/s00453-007-9147-x
– volume: 254
  start-page: 175
  year: 2002
  ident: 330_CR19
  publication-title: Discrete Math
  doi: 10.1016/S0012-365X(01)00371-5
– volume: 31
  start-page: 865
  issue: 2
  year: 2016
  ident: 330_CR24
  publication-title: J Comb Optim
  doi: 10.1007/s10878-014-9795-0
– ident: 330_CR12
  doi: 10.1007/978-3-642-31770-5_33
– volume: 30
  start-page: 1095
  issue: 4
  year: 2015
  ident: 330_CR9
  publication-title: J Comb Optim
  doi: 10.1007/s10878-013-9688-7
– volume: 160
  start-page: 1691
  year: 2012
  ident: 330_CR8
  publication-title: Discrete Appl Math
  doi: 10.1016/j.dam.2012.03.007
– volume: 306
  start-page: 1812
  year: 2006
  ident: 330_CR27
  publication-title: Discrete Math
  doi: 10.1016/j.disc.2006.03.037
– ident: 330_CR14
  doi: 10.1016/j.disc.2017.10.031
– volume: 15
  start-page: 519
  year: 2002
  ident: 330_CR17
  publication-title: SIAM J Discrete Math
  doi: 10.1137/S0895480100375831
– volume: 31
  start-page: 725
  issue: 2
  year: 2016
  ident: 330_CR21
  publication-title: J Comb Optim
  doi: 10.1007/s10878-014-9785-2
– volume: 70
  start-page: 221
  year: 2018
  ident: 330_CR2
  publication-title: Australas J Combin
– volume: 19
  start-page: 744
  year: 2005
  ident: 330_CR5
  publication-title: SIAM J Discrete Math
  doi: 10.1137/S0895480103432556
– ident: 330_CR7
– ident: 330_CR10
  doi: 10.1109/CSE.2011.89
– ident: 330_CR3
– ident: 330_CR13
  doi: 10.1007/s10878-016-0103-z
– volume: 33
  start-page: 81
  issue: 1
  year: 2017
  ident: 330_CR26
  publication-title: J Comb Optim
  doi: 10.1007/s10878-015-9936-0
– volume: 13
  start-page: 353
  issue: 4
  year: 2007
  ident: 330_CR15
  publication-title: J Comb Optim
  doi: 10.1007/s10878-006-9037-1
– volume: 436
  start-page: 4423
  year: 2012
  ident: 330_CR22
  publication-title: Linear Algebra Appl
  doi: 10.1016/j.laa.2011.05.012
– volume: 359
  start-page: 299
  year: 2006
  ident: 330_CR25
  publication-title: Theor Comput Sci
  doi: 10.1016/j.tcs.2006.04.011
– volume: 99
  start-page: 100501
  year: 2007
  ident: 330_CR6
  publication-title: Phys Rev Lett PRL
  doi: 10.1103/PhysRevLett.99.100501
– volume-title: Fundamentals of domination in graphs applied to electric power networks
  year: 1998
  ident: 330_CR18
– volume: 428
  start-page: 1628
  year: 2008
  ident: 330_CR1
  publication-title: Linear Algebra Appl
  doi: 10.1016/j.laa.2007.10.009
– volume: 436
  start-page: 4352
  year: 2012
  ident: 330_CR11
  publication-title: Linear Algebra Appl
  doi: 10.1016/j.laa.2010.10.015
– volume: 160
  start-page: 1994
  issue: 13
  year: 2012
  ident: 330_CR20
  publication-title: Discrete Appl Math
  doi: 10.1016/j.dam.2012.04.003
– volume: 25
  start-page: 139
  year: 1997
  ident: 330_CR23
  publication-title: J Graph Theory
  doi: 10.1002/(SICI)1097-0118(199706)25:2<139::AID-JGT6>3.0.CO;2-N
– ident: 330_CR4
SSID ssj0009054
Score 2.309362
Snippet Power domination in graphs arises from the problem of monitoring an electric power system by placing as few measurement devices in the system as possible. A...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 935
SubjectTerms Algorithms
Apexes
Combinatorics
Convex and Discrete Geometry
Electric power systems
Graph theory
Graphs
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Measuring instruments
Monitoring
Operations Research/Decision Theory
Optimization
Theory of Computation
Trees (mathematics)
Title Restricted power domination and zero forcing problems
URI https://link.springer.com/article/10.1007/s10878-018-0330-6
https://www.proquest.com/docview/2197409288
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwHP2h20UP4idO5-jBk1Jom6RNjkM2hzIP4mCeSvN1km6s8-Jf7y_9WKeo4LG0CfTl6z2SvAdwTQhTAtcFX-os86kU1M8U436Go0sLa3hcJs9Nn-LJjD7M2by-x100p92bLclypt667MadG2zoroQR1Dy70GVOumMnnkXD1mk3YFWSLVJHlH6s2cr8qYqvi1HLML9tipZrzfgQDmqS6A2rVj2CHZMfw_6WdSA-TTd-q8UJsGfj8jcU0kdv6XLPPL1wZ1wc6l6Wa-_DrBYe8lOFhb06RKY4hdl49HI38etABF-RMF77VBgTK6ut5ZKHVJHIakltwBFiTWlChUJ54H41QJ4lUfoaxRKpDbWSEyLIGXTyRW7OwbNCcZFIJuOEUIOywiTS2ihmNktCG0U9CBpkUlW7hbvQire09Tl2YKYIZurATOMe3GyKLCurjL8-7jdwp_WoKVKcPRPUmxHnPbhtmqB9_WtlF__6-hL2kPWI6vhNHzrr1bu5QmaxlgPoDu9fH0eDskd9AnmCxME
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgDMCAeIpCAQ9MoEhJbCf2WCGqAm0H1ErdrPg1obRqysLXc51HWxAgMUaxLeU4ts-V7z0HoVtCmBZwLgTKZFlAlaBBphkPMlhdRjjLk9J5bjhK-hP6PGXTuo67aLLdmyvJcqfeKHbjXg028iVhBGKebbQDXID7PK5J3F0r7YascrIF6gihH2uuMn8a4uthtGaY3y5Fy7Omd4gOapKIu9WsHqEtmx-j_Q3pQHgarvRWixPEXq3339BAH_Hc-55hM_M5Lh51nOUGf9jFDAM_1dAZ1yYyxSma9B7HD_2gNkQINImSZUCFtYl2xjmueEQ1iZ1R1IUcIDaUplRoCA_8p4bAsxSEvlazVBlLneKECHKGWvkst-cIO6G5SBVTSUqohbDCpsq5OGEuSyMXx20UNshIXauFe9OKN7nWOfZgSgBTejBl0kZ3qy7zSirjr8adBm5Zr5pCwu6ZQrwZc95G980UrF__OtjFv1rfoN3-eDiQg6fRyyXaAwYkqlScDmotF-_2CljGUl2Xf9UnteHGIA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QfRBvOJ0ah58UsraJmmTx6GOedkQcbC30tyepBtrffHXe7K26xQVfCy5QM9Jcr7DSb4PoUtCmBIQFzyp09SjUlAvVYx7KewuLazh0UJ5bjiKBmP6MGGTSuc0r2-71yXJ8k2DY2nKiu5M2-7KwzfumGED9zyMQP6zjjbgNA7csh6HvYZ112elqi3ASEgDWV3W_GmKr4GpQZvfCqSLuNPfRTsVYMS90sN7aM1k-2h7hUYQvoZL7tX8ALEX47Q4FEBJPHMaaFhP3X0X5wGcZhp_mPkUA1ZVMBhXgjL5IRr3715vBl4ljuApEkSFR4UxkbLaWi55QBUJrZbU-hzMrSmNqVCQKrhf9QFzSUiDjWKx1IZayQkR5Ai1smlmjhG2QnERSyajmFADKYaJpbVhxGwaBzYM28ivLZOoijncCVi8JQ3nsTNmAsZMnDGTqI2ulkNmJW3GX507tbmTagflCZykMeSeIedtdF27oGn-dbKTf_W-QJvPt_3k6X70eIq2AAyJ8lZOB7WK-bs5A8BRyPPFovoEgubKXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Restricted+power+domination+and+zero+forcing+problems&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Bozeman%2C+Chassidy&rft.au=Brimkov%2C+Boris&rft.au=Erickson%2C+Craig&rft.au=Ferrero%2C+Daniela&rft.date=2019-04-01&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=37&rft.issue=3&rft.spage=935&rft.epage=956&rft_id=info:doi/10.1007%2Fs10878-018-0330-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10878_018_0330_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon