Restricted power domination and zero forcing problems
Power domination in graphs arises from the problem of monitoring an electric power system by placing as few measurement devices in the system as possible. A power dominating set of a graph is a set of vertices that observes every vertex in the graph, following a set of rules for power system monitor...
Saved in:
Published in | Journal of combinatorial optimization Vol. 37; no. 3; pp. 935 - 956 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1382-6905 1573-2886 |
DOI | 10.1007/s10878-018-0330-6 |
Cover
Loading…
Abstract | Power domination in graphs arises from the problem of monitoring an electric power system by placing as few measurement devices in the system as possible. A power dominating set of a graph is a set of vertices that observes every vertex in the graph, following a set of rules for power system monitoring. A practical problem of interest is to determine the minimum number of additional measurement devices needed to monitor a power network when the network is expanded and the existing devices remain in place. In this paper, we study the problem of finding the smallest power dominating set that contains a given set of vertices
X
. We also study the related problem of finding the smallest zero forcing set that contains a given set of vertices
X
. The sizes of such sets in a graph
G
are respectively called the
restricted power domination number
and
restricted zero forcing number
of
G
subject to
X
. We derive several tight bounds on the restricted power domination and zero forcing numbers of graphs, and relate them to other graph parameters. We also present exact and algorithmic results for computing the restricted power domination number, including integer programs for general graphs and a linear time algorithm for graphs with bounded treewidth. We also use restricted power domination to obtain a parallel algorithm for finding minimum power dominating sets in trees. |
---|---|
AbstractList | Power domination in graphs arises from the problem of monitoring an electric power system by placing as few measurement devices in the system as possible. A power dominating set of a graph is a set of vertices that observes every vertex in the graph, following a set of rules for power system monitoring. A practical problem of interest is to determine the minimum number of additional measurement devices needed to monitor a power network when the network is expanded and the existing devices remain in place. In this paper, we study the problem of finding the smallest power dominating set that contains a given set of vertices X. We also study the related problem of finding the smallest zero forcing set that contains a given set of vertices X. The sizes of such sets in a graph G are respectively called the restricted power domination number and restricted zero forcing number of G subject to X. We derive several tight bounds on the restricted power domination and zero forcing numbers of graphs, and relate them to other graph parameters. We also present exact and algorithmic results for computing the restricted power domination number, including integer programs for general graphs and a linear time algorithm for graphs with bounded treewidth. We also use restricted power domination to obtain a parallel algorithm for finding minimum power dominating sets in trees. Power domination in graphs arises from the problem of monitoring an electric power system by placing as few measurement devices in the system as possible. A power dominating set of a graph is a set of vertices that observes every vertex in the graph, following a set of rules for power system monitoring. A practical problem of interest is to determine the minimum number of additional measurement devices needed to monitor a power network when the network is expanded and the existing devices remain in place. In this paper, we study the problem of finding the smallest power dominating set that contains a given set of vertices X . We also study the related problem of finding the smallest zero forcing set that contains a given set of vertices X . The sizes of such sets in a graph G are respectively called the restricted power domination number and restricted zero forcing number of G subject to X . We derive several tight bounds on the restricted power domination and zero forcing numbers of graphs, and relate them to other graph parameters. We also present exact and algorithmic results for computing the restricted power domination number, including integer programs for general graphs and a linear time algorithm for graphs with bounded treewidth. We also use restricted power domination to obtain a parallel algorithm for finding minimum power dominating sets in trees. |
Author | Flagg, Mary Erickson, Craig Hogben, Leslie Brimkov, Boris Bozeman, Chassidy Ferrero, Daniela |
Author_xml | – sequence: 1 givenname: Chassidy surname: Bozeman fullname: Bozeman, Chassidy organization: Department of Mathematics, Iowa State University – sequence: 2 givenname: Boris surname: Brimkov fullname: Brimkov, Boris email: boris.brimkov@rice.edu organization: Department of Computational and Applied Mathematics, Rice University – sequence: 3 givenname: Craig surname: Erickson fullname: Erickson, Craig – sequence: 4 givenname: Daniela surname: Ferrero fullname: Ferrero, Daniela organization: Department of Mathematics, Texas State University – sequence: 5 givenname: Mary surname: Flagg fullname: Flagg, Mary organization: Department of Mathematics, Computer Science and Cooperative Engineering, University of St. Thomas – sequence: 6 givenname: Leslie surname: Hogben fullname: Hogben, Leslie organization: Department of Mathematics, Iowa State University, American Institute of Mathematics |
BookMark | eNp9kEtLAzEUhYNUsK3-AHcDrkdvJpk8llJ8QUEQXYfJq0xpk5pMEf31po4gCLoI9y7Ol3PumaFJiMEhdI7hEgPwq4xBcFEDLo8QqNkRmuKWk7oRgk3KTkRTMwntCZrlvAaAstMpap9cHlJvBmerXXxzqbJx24du6GOoumCrD5di5WMyfVhVuxT1xm3zKTr23Sa7s-85Ry-3N8-L-3r5ePewuF7WhmA21FQ6x4y33gstMDWk8VZTD0JLainlVBrJ6SE_UMw0UOZMy7V11GtBiCRzdDH-W4xf9yWpWsd9CsVSNbigIMt5RcVHlUkx5-S8Mv3wdcGQun6jMKiDhxo7UqUjdehIsULiX-Qu9dsuvf_LNCOTizasXPrJ9Df0CZFxelY |
CitedBy_id | crossref_primary_10_1016_j_dam_2020_06_002 crossref_primary_10_1016_j_tcs_2019_06_008 crossref_primary_10_1002_net_22056 crossref_primary_10_1016_j_dam_2019_11_015 crossref_primary_10_1007_s10878_019_00380_7 crossref_primary_10_1007_s10878_020_00587_z crossref_primary_10_1007_s10878_019_00475_1 crossref_primary_10_1016_j_disopt_2022_100725 crossref_primary_10_1007_s00373_021_02307_8 crossref_primary_10_1007_s00373_022_02476_0 crossref_primary_10_1007_s00453_024_01283_8 crossref_primary_10_1287_ijoc_2020_1032 crossref_primary_10_1016_j_disopt_2022_100744 |
Cites_doi | 10.1016/j.disc.2006.03.037 10.1016/j.laa.2011.05.012 10.1103/PhysRevLett.99.100501 10.1007/s00453-007-9147-x 10.1007/s10878-014-9785-2 10.1016/S0012-365X(01)00371-5 10.1016/j.dam.2012.04.003 10.1007/s10878-015-9936-0 10.1016/j.laa.2010.10.015 10.1007/s10878-013-9688-7 10.1007/s10878-006-9037-1 10.1002/(SICI)1097-0118(199706)25:2<139::AID-JGT6>3.0.CO;2-N 10.1007/s10878-014-9795-0 10.1137/S0895480103432556 10.1016/j.laa.2007.10.009 10.1016/j.dam.2012.03.007 10.1137/S0895480100375831 10.1016/j.tcs.2006.04.011 10.1007/978-3-642-31770-5_33 10.1016/j.disc.2017.10.031 10.1109/CSE.2011.89 10.1007/s10878-016-0103-z |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Copyright Springer Nature B.V. 2019 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10878-018-0330-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1573-2886 |
EndPage | 956 |
ExternalDocumentID | 10_1007_s10878_018_0330_6 |
GrantInformation_xml | – fundername: National Science Foundation grantid: DMS-1128242; 1450681 funderid: http://dx.doi.org/10.13039/100000001 |
GroupedDBID | -5D -5G -BR -EM -~C .86 .DC .VR 06D 0R~ 0VY 1N0 203 29K 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9J OAM P2P P9R PF0 PT4 PT5 QOS R89 R9I RNS ROL RPX RSV S16 S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 ZMTXR -Y2 1SB 2P1 2VQ AAPKM AARHV AAYOK AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACSTC ADHKG AEBTG AEKMD AEZWR AFDZB AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHSBF AHWEU AIXLP AJBLW ATHPR AYFIA CAG CITATION COF H13 N2Q O9- OVD RNI RZC RZE RZK S1Z TEORI ABRTQ |
ID | FETCH-LOGICAL-c316t-49ee6cfdff8b814c32fdb4f08b94d44749c97410070416b046ec57bde4fb83393 |
IEDL.DBID | U2A |
ISSN | 1382-6905 |
IngestDate | Fri Jul 25 11:12:39 EDT 2025 Thu Apr 24 23:11:11 EDT 2025 Tue Jul 01 03:13:03 EDT 2025 Fri Feb 21 02:33:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | 05C50 94C15 Power domination Restricted power domination 05C69 Restricted zero forcing 05C57 Zero forcing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-49ee6cfdff8b814c32fdb4f08b94d44749c97410070416b046ec57bde4fb83393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2197409288 |
PQPubID | 2043856 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2197409288 crossref_citationtrail_10_1007_s10878_018_0330_6 crossref_primary_10_1007_s10878_018_0330_6 springer_journals_10_1007_s10878_018_0330_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Journal of combinatorial optimization |
PublicationTitleAbbrev | J Comb Optim |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | CR14 CR13 Row (CR22) 2012; 436 CR12 Wang, Chen, Lu (CR24) 2016; 31 Burgarth, Giovannetti (CR6) 2007; 99 CR10 Haynes, Hedetniemi, Slater (CR18) 1998 Xu, Kang, Shan, Zhao (CR25) 2006; 359 Goddard, Henning (CR15) 2007; 13 Zhao, Kang, Chang (CR27) 2006; 306 Haynes, Hedetniemi, Hedetniemi, Henning (CR17) 2002; 15 Barioli, Barrett, Butler, Cioabă, Cvetković, Fallat, Godsil, Haemers, Hogben, Mikkelson, Narayan, Pryporova, Sciriha, So, Stevanović, van der Holst, Van der Meulen, Wangsness (CR1) 2008; 428 Liao (CR21) 2016; 31 Hogben, Kingsley, Meyer, Walker, Young (CR20) 2012; 160 Chang, Dorbec, Montassier, Raspaud (CR8) 2012; 160 Guo, Niedermeier, Raible (CR16) 2008; 52 Edholm, Hogben, Huynh, LaGrange, Row (CR11) 2012; 436 CR4 CR3 Sanchis (CR23) 1997; 25 Chang, Roussel (CR9) 2015; 30 CR7 Benson, Ferrero, Flagg, Furst, Hogben, Vasilevska, Wissman (CR2) 2018; 70 Yang (CR26) 2017; 33 Henning (CR19) 2002; 254 Brueni, Heath (CR5) 2005; 19 330_CR3 330_CR4 GJ Chang (330_CR9) 2015; 30 J Guo (330_CR16) 2008; 52 F Barioli (330_CR1) 2008; 428 330_CR7 M Zhao (330_CR27) 2006; 306 LA Sanchis (330_CR23) 1997; 25 D Burgarth (330_CR6) 2007; 99 W Goddard (330_CR15) 2007; 13 330_CR13 330_CR14 C Wang (330_CR24) 2016; 31 330_CR10 330_CR12 L Hogben (330_CR20) 2012; 160 KF Benson (330_CR2) 2018; 70 DJ Brueni (330_CR5) 2005; 19 CJ Edholm (330_CR11) 2012; 436 B Yang (330_CR26) 2017; 33 CS Liao (330_CR21) 2016; 31 D Row (330_CR22) 2012; 436 GJ Chang (330_CR8) 2012; 160 TW Haynes (330_CR18) 1998 G Xu (330_CR25) 2006; 359 TW Haynes (330_CR17) 2002; 15 MA Henning (330_CR19) 2002; 254 |
References_xml | – volume: 306 start-page: 1812 year: 2006 end-page: 1816 ident: CR27 article-title: Power domination in graphs publication-title: Discrete Math doi: 10.1016/j.disc.2006.03.037 – volume: 436 start-page: 4423 year: 2012 end-page: 4432 ident: CR22 article-title: A technique for computing the zero forcing number of a graph with a cut-vertex publication-title: Linear Algebra Appl doi: 10.1016/j.laa.2011.05.012 – volume: 99 start-page: 100501 year: 2007 ident: CR6 article-title: Full control by locally induced relaxation publication-title: Phys Rev Lett PRL doi: 10.1103/PhysRevLett.99.100501 – volume: 70 start-page: 221 year: 2018 end-page: 235 ident: CR2 article-title: Zero forcing and power domination for graph products publication-title: Australas J Combin – ident: CR4 – ident: CR14 – ident: CR12 – volume: 52 start-page: 177 year: 2008 end-page: 202 ident: CR16 article-title: Improved algorithms and complexity results for power domination in graphs publication-title: Algorithmica doi: 10.1007/s00453-007-9147-x – ident: CR10 – volume: 31 start-page: 725 issue: 2 year: 2016 end-page: 742 ident: CR21 article-title: Power domination with bounded time constraints publication-title: J Comb Optim doi: 10.1007/s10878-014-9785-2 – volume: 254 start-page: 175 year: 2002 end-page: 189 ident: CR19 article-title: Restricted domination in graphs publication-title: Discrete Math doi: 10.1016/S0012-365X(01)00371-5 – volume: 160 start-page: 1994 issue: 13 year: 2012 end-page: 2005 ident: CR20 article-title: Propagation time for zero forcing on a graph publication-title: Discrete Appl Math doi: 10.1016/j.dam.2012.04.003 – year: 1998 ident: CR18 publication-title: Fundamentals of domination in graphs applied to electric power networks – volume: 33 start-page: 81 issue: 1 year: 2017 end-page: 105 ident: CR26 article-title: Lower bounds for positive semidefinite zero forcing and their applications publication-title: J Comb Optim doi: 10.1007/s10878-015-9936-0 – volume: 436 start-page: 4352 year: 2012 end-page: 4372 ident: CR11 article-title: Vertex and edge spread of zero forcing number, maximum nullity, and minimum rank of a graph publication-title: Linear Algebra Appl doi: 10.1016/j.laa.2010.10.015 – volume: 30 start-page: 1095 issue: 4 year: 2015 end-page: 1106 ident: CR9 article-title: On the -power domination of hypergraphs publication-title: J Comb Optim doi: 10.1007/s10878-013-9688-7 – volume: 13 start-page: 353 issue: 4 year: 2007 end-page: 363 ident: CR15 article-title: Restricted domination parameters in graphs publication-title: J Comb Optim doi: 10.1007/s10878-006-9037-1 – volume: 25 start-page: 139 year: 1997 end-page: 152 ident: CR23 article-title: Bounds related to domination in graphs with minimum degree two publication-title: J Graph Theory doi: 10.1002/(SICI)1097-0118(199706)25:2<139::AID-JGT6>3.0.CO;2-N – ident: CR3 – ident: CR13 – volume: 31 start-page: 865 issue: 2 year: 2016 end-page: 873 ident: CR24 article-title: -Power domination in block graphs publication-title: J Comb Optim doi: 10.1007/s10878-014-9795-0 – volume: 19 start-page: 744 year: 2005 end-page: 761 ident: CR5 article-title: The PMU placement problem publication-title: SIAM J Discrete Math doi: 10.1137/S0895480103432556 – volume: 428 start-page: 1628 year: 2008 end-page: 1648 ident: CR1 article-title: Zero forcing sets and the minimum rank of graphs publication-title: Linear Algebra Appl doi: 10.1016/j.laa.2007.10.009 – ident: CR7 – volume: 160 start-page: 1691 year: 2012 end-page: 1698 ident: CR8 article-title: Generalized power domination of graphs publication-title: Discrete Appl Math doi: 10.1016/j.dam.2012.03.007 – volume: 15 start-page: 519 year: 2002 end-page: 529 ident: CR17 article-title: Domination in graphs applied to electric power networks publication-title: SIAM J Discrete Math doi: 10.1137/S0895480100375831 – volume: 359 start-page: 299 year: 2006 end-page: 305 ident: CR25 article-title: Power domination in block graphs publication-title: Theor Comput Sci doi: 10.1016/j.tcs.2006.04.011 – volume: 52 start-page: 177 year: 2008 ident: 330_CR16 publication-title: Algorithmica doi: 10.1007/s00453-007-9147-x – volume: 254 start-page: 175 year: 2002 ident: 330_CR19 publication-title: Discrete Math doi: 10.1016/S0012-365X(01)00371-5 – volume: 31 start-page: 865 issue: 2 year: 2016 ident: 330_CR24 publication-title: J Comb Optim doi: 10.1007/s10878-014-9795-0 – ident: 330_CR12 doi: 10.1007/978-3-642-31770-5_33 – volume: 30 start-page: 1095 issue: 4 year: 2015 ident: 330_CR9 publication-title: J Comb Optim doi: 10.1007/s10878-013-9688-7 – volume: 160 start-page: 1691 year: 2012 ident: 330_CR8 publication-title: Discrete Appl Math doi: 10.1016/j.dam.2012.03.007 – volume: 306 start-page: 1812 year: 2006 ident: 330_CR27 publication-title: Discrete Math doi: 10.1016/j.disc.2006.03.037 – ident: 330_CR14 doi: 10.1016/j.disc.2017.10.031 – volume: 15 start-page: 519 year: 2002 ident: 330_CR17 publication-title: SIAM J Discrete Math doi: 10.1137/S0895480100375831 – volume: 31 start-page: 725 issue: 2 year: 2016 ident: 330_CR21 publication-title: J Comb Optim doi: 10.1007/s10878-014-9785-2 – volume: 70 start-page: 221 year: 2018 ident: 330_CR2 publication-title: Australas J Combin – volume: 19 start-page: 744 year: 2005 ident: 330_CR5 publication-title: SIAM J Discrete Math doi: 10.1137/S0895480103432556 – ident: 330_CR7 – ident: 330_CR10 doi: 10.1109/CSE.2011.89 – ident: 330_CR3 – ident: 330_CR13 doi: 10.1007/s10878-016-0103-z – volume: 33 start-page: 81 issue: 1 year: 2017 ident: 330_CR26 publication-title: J Comb Optim doi: 10.1007/s10878-015-9936-0 – volume: 13 start-page: 353 issue: 4 year: 2007 ident: 330_CR15 publication-title: J Comb Optim doi: 10.1007/s10878-006-9037-1 – volume: 436 start-page: 4423 year: 2012 ident: 330_CR22 publication-title: Linear Algebra Appl doi: 10.1016/j.laa.2011.05.012 – volume: 359 start-page: 299 year: 2006 ident: 330_CR25 publication-title: Theor Comput Sci doi: 10.1016/j.tcs.2006.04.011 – volume: 99 start-page: 100501 year: 2007 ident: 330_CR6 publication-title: Phys Rev Lett PRL doi: 10.1103/PhysRevLett.99.100501 – volume-title: Fundamentals of domination in graphs applied to electric power networks year: 1998 ident: 330_CR18 – volume: 428 start-page: 1628 year: 2008 ident: 330_CR1 publication-title: Linear Algebra Appl doi: 10.1016/j.laa.2007.10.009 – volume: 436 start-page: 4352 year: 2012 ident: 330_CR11 publication-title: Linear Algebra Appl doi: 10.1016/j.laa.2010.10.015 – volume: 160 start-page: 1994 issue: 13 year: 2012 ident: 330_CR20 publication-title: Discrete Appl Math doi: 10.1016/j.dam.2012.04.003 – volume: 25 start-page: 139 year: 1997 ident: 330_CR23 publication-title: J Graph Theory doi: 10.1002/(SICI)1097-0118(199706)25:2<139::AID-JGT6>3.0.CO;2-N – ident: 330_CR4 |
SSID | ssj0009054 |
Score | 2.309362 |
Snippet | Power domination in graphs arises from the problem of monitoring an electric power system by placing as few measurement devices in the system as possible. A... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 935 |
SubjectTerms | Algorithms Apexes Combinatorics Convex and Discrete Geometry Electric power systems Graph theory Graphs Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Measuring instruments Monitoring Operations Research/Decision Theory Optimization Theory of Computation Trees (mathematics) |
Title | Restricted power domination and zero forcing problems |
URI | https://link.springer.com/article/10.1007/s10878-018-0330-6 https://www.proquest.com/docview/2197409288 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwHP2h20UP4idO5-jBk1Jom6RNjkM2hzIP4mCeSvN1km6s8-Jf7y_9WKeo4LG0CfTl6z2SvAdwTQhTAtcFX-os86kU1M8U436Go0sLa3hcJs9Nn-LJjD7M2by-x100p92bLclypt667MadG2zoroQR1Dy70GVOumMnnkXD1mk3YFWSLVJHlH6s2cr8qYqvi1HLML9tipZrzfgQDmqS6A2rVj2CHZMfw_6WdSA-TTd-q8UJsGfj8jcU0kdv6XLPPL1wZ1wc6l6Wa-_DrBYe8lOFhb06RKY4hdl49HI38etABF-RMF77VBgTK6ut5ZKHVJHIakltwBFiTWlChUJ54H41QJ4lUfoaxRKpDbWSEyLIGXTyRW7OwbNCcZFIJuOEUIOywiTS2ihmNktCG0U9CBpkUlW7hbvQire09Tl2YKYIZurATOMe3GyKLCurjL8-7jdwp_WoKVKcPRPUmxHnPbhtmqB9_WtlF__6-hL2kPWI6vhNHzrr1bu5QmaxlgPoDu9fH0eDskd9AnmCxME |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgDMCAeIpCAQ9MoEhJbCf2WCGqAm0H1ErdrPg1obRqysLXc51HWxAgMUaxLeU4ts-V7z0HoVtCmBZwLgTKZFlAlaBBphkPMlhdRjjLk9J5bjhK-hP6PGXTuo67aLLdmyvJcqfeKHbjXg028iVhBGKebbQDXID7PK5J3F0r7YascrIF6gihH2uuMn8a4uthtGaY3y5Fy7Omd4gOapKIu9WsHqEtmx-j_Q3pQHgarvRWixPEXq3339BAH_Hc-55hM_M5Lh51nOUGf9jFDAM_1dAZ1yYyxSma9B7HD_2gNkQINImSZUCFtYl2xjmueEQ1iZ1R1IUcIDaUplRoCA_8p4bAsxSEvlazVBlLneKECHKGWvkst-cIO6G5SBVTSUqohbDCpsq5OGEuSyMXx20UNshIXauFe9OKN7nWOfZgSgBTejBl0kZ3qy7zSirjr8adBm5Zr5pCwu6ZQrwZc95G980UrF__OtjFv1rfoN3-eDiQg6fRyyXaAwYkqlScDmotF-_2CljGUl2Xf9UnteHGIA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QfRBvOJ0ah58UsraJmmTx6GOedkQcbC30tyepBtrffHXe7K26xQVfCy5QM9Jcr7DSb4PoUtCmBIQFzyp09SjUlAvVYx7KewuLazh0UJ5bjiKBmP6MGGTSuc0r2-71yXJ8k2DY2nKiu5M2-7KwzfumGED9zyMQP6zjjbgNA7csh6HvYZ112elqi3ASEgDWV3W_GmKr4GpQZvfCqSLuNPfRTsVYMS90sN7aM1k-2h7hUYQvoZL7tX8ALEX47Q4FEBJPHMaaFhP3X0X5wGcZhp_mPkUA1ZVMBhXgjL5IRr3715vBl4ljuApEkSFR4UxkbLaWi55QBUJrZbU-hzMrSmNqVCQKrhf9QFzSUiDjWKx1IZayQkR5Ai1smlmjhG2QnERSyajmFADKYaJpbVhxGwaBzYM28ivLZOoijncCVi8JQ3nsTNmAsZMnDGTqI2ulkNmJW3GX507tbmTagflCZykMeSeIedtdF27oGn-dbKTf_W-QJvPt_3k6X70eIq2AAyJ8lZOB7WK-bs5A8BRyPPFovoEgubKXA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Restricted+power+domination+and+zero+forcing+problems&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Bozeman%2C+Chassidy&rft.au=Brimkov%2C+Boris&rft.au=Erickson%2C+Craig&rft.au=Ferrero%2C+Daniela&rft.date=2019-04-01&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=37&rft.issue=3&rft.spage=935&rft.epage=956&rft_id=info:doi/10.1007%2Fs10878-018-0330-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10878_018_0330_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon |