Proofs of some conjectures of Chan on Appell–Lerch sums
On page 3 of his lost notebook, Ramanujan defines the Appell–Lerch sum ϕ ( q ) : = ∑ n = 0 ∞ ( - q ; q ) 2 n q n + 1 ( q ; q 2 ) n + 1 2 , which is connected to some of his sixth order mock theta functions. Let ∑ n = 1 ∞ a ( n ) q n : = ϕ ( q ) . In this paper, we find a representation of the genera...
Saved in:
Published in | The Ramanujan journal Vol. 51; no. 1; pp. 99 - 115 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | On page 3 of his lost notebook, Ramanujan defines the Appell–Lerch sum
ϕ
(
q
)
:
=
∑
n
=
0
∞
(
-
q
;
q
)
2
n
q
n
+
1
(
q
;
q
2
)
n
+
1
2
,
which is connected to some of his sixth order mock theta functions. Let
∑
n
=
1
∞
a
(
n
)
q
n
:
=
ϕ
(
q
)
. In this paper, we find a representation of the generating function of
a
(
10
n
+
9
)
in terms of
q
-products. As corollaries, we deduce the congruences
a
(
50
n
+
19
)
≡
a
(
50
n
+
39
)
≡
a
(
50
n
+
49
)
≡
0
(
mod
25
)
as well as
a
(
1250
n
+
250
r
+
219
)
≡
0
(
mod
125
)
, where
r
=
1
, 3, and 4. The first three congruences were conjectured by Chan in 2012, whereas the congruences modulo 125 are new. We also prove two more conjectural congruences of Chan for the coefficients of two Appell–Lerch sums. |
---|---|
AbstractList | On page 3 of his lost notebook, Ramanujan defines the Appell–Lerch sum ϕ(q):=∑n=0∞(-q;q)2nqn+1(q;q2)n+12,which is connected to some of his sixth order mock theta functions. Let ∑n=1∞a(n)qn:=ϕ(q). In this paper, we find a representation of the generating function of a(10n+9) in terms of q-products. As corollaries, we deduce the congruences a(50n+19)≡a(50n+39)≡a(50n+49)≡0(mod25) as well as a(1250n+250r+219)≡0(mod125), where r=1, 3, and 4. The first three congruences were conjectured by Chan in 2012, whereas the congruences modulo 125 are new. We also prove two more conjectural congruences of Chan for the coefficients of two Appell–Lerch sums. On page 3 of his lost notebook, Ramanujan defines the Appell–Lerch sum ϕ ( q ) : = ∑ n = 0 ∞ ( - q ; q ) 2 n q n + 1 ( q ; q 2 ) n + 1 2 , which is connected to some of his sixth order mock theta functions. Let ∑ n = 1 ∞ a ( n ) q n : = ϕ ( q ) . In this paper, we find a representation of the generating function of a ( 10 n + 9 ) in terms of q -products. As corollaries, we deduce the congruences a ( 50 n + 19 ) ≡ a ( 50 n + 39 ) ≡ a ( 50 n + 49 ) ≡ 0 ( mod 25 ) as well as a ( 1250 n + 250 r + 219 ) ≡ 0 ( mod 125 ) , where r = 1 , 3, and 4. The first three congruences were conjectured by Chan in 2012, whereas the congruences modulo 125 are new. We also prove two more conjectural congruences of Chan for the coefficients of two Appell–Lerch sums. |
Author | Baruah, Nayandeep Deka Begum, Nilufar Mana |
Author_xml | – sequence: 1 givenname: Nayandeep Deka surname: Baruah fullname: Baruah, Nayandeep Deka email: nayan@tezu.ernet.in organization: Department of Mathematical Sciences, Tezpur University – sequence: 2 givenname: Nilufar Mana surname: Begum fullname: Begum, Nilufar Mana organization: Department of Mathematical Sciences, Tezpur University |
BookMark | eNp1kM1KAzEUhYNUsK0-gLsB19Gb3MxPlqX4BwVd6DqkmTvW0k7GpAN15zv4hj6JqSO4cnXvPZxzLnwTNmp9S4ydC7gUAOVVFEKg5iAqns6C74_YWOSl5BoBR2nHSnIFGk7YJMY1ACjAcsz0Y_C-iZlvsui3lDnfrsnt-kA_2nxl28y32azraLP5-vhcUHCrLPbbeMqOG7uJdPY7p-z55vppfscXD7f389mCOxTFjiudNxacqK3Kl4pAiqqWTVEToXW2Au0UqJpy61RZl8ukWCSlVe4EFpXLccouht4u-Lee4s6sfR_a9NJIRIkFoqqSSwwuF3yMgRrThdetDe9GgDkQMgMhkwiZAyGzTxk5ZGLyti8U_pr_D30DzHlrCw |
CitedBy_id | crossref_primary_10_1016_j_jmaa_2024_128260 crossref_primary_10_2989_16073606_2023_2255383 crossref_primary_10_1007_s11139_022_00643_8 crossref_primary_10_1142_S1793042121500202 |
Cites_doi | 10.1016/j.aim.2014.07.018 10.1090/S0002-9939-2010-10538-5 10.1142/S1793042112500066 10.1007/s11005-005-0039-1 10.1007/978-1-4612-0965-2 10.24033/asens.236 10.1090/stml/034 10.1016/0001-8708(91)90083-J 10.1007/s11139-012-9379-5 10.1016/j.jmaa.2017.11.035 10.1112/plms/pdu007 10.24033/asens.248 10.1093/qjmath/53.2.147 10.1142/S1793042118501191 10.24033/asens.272 10.1007/s00208-016-1390-5 10.4064/aa153-2-3 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Copyright Springer Nature B.V. 2020 |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Copyright Springer Nature B.V. 2020 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11139-018-0076-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1572-9303 |
EndPage | 115 |
ExternalDocumentID | 10_1007_s11139_018_0076_x |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 29P 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 6TJ 8TC 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P9R PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7U ZMTXR ~A9 AACDK AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AIGIU CITATION H13 |
ID | FETCH-LOGICAL-c316t-495fa0c1da45b4e0218d2f6dee3aca809c404de5ac47d7ba80a3e4945c1368c53 |
IEDL.DBID | AGYKE |
ISSN | 1382-4090 |
IngestDate | Thu Oct 10 23:02:44 EDT 2024 Thu Sep 12 19:18:42 EDT 2024 Sat Dec 16 12:00:38 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Mock theta function Theta function Congruence Primary 11P83 Appell–Lerch sum Secondary 33D15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-495fa0c1da45b4e0218d2f6dee3aca809c404de5ac47d7ba80a3e4945c1368c53 |
PQID | 2332363348 |
PQPubID | 2043831 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2332363348 crossref_primary_10_1007_s11139_018_0076_x springer_journals_10_1007_s11139_018_0076_x |
PublicationCentury | 2000 |
PublicationDate | 1-2020 2020-1-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 1-2020 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan |
PublicationTitle | The Ramanujan journal |
PublicationTitleAbbrev | Ramanujan J |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Berndt (CR7) 1991 Appell (CR4) 1886; 3 Qu, Wang, Yao (CR20) 2018; 460 Mortenson (CR16) 2012; 29 Mortenson (CR17) 2014; 264 Berndt (CR6) 2006 Choi (CR10) 2002; 53 Appell (CR3) 1885; 2 Ramanujan (CR18) 1919; 19 Hikami (CR14) 2006; 75 Lerch (CR15) 1892; 24 Baruah, Begum (CR5) 2018; 14 CR11 CR22 Hickerson, Mortenson (CR13) 2017; 367 Chan, Mao (CR9) 2012; 8 Andrews, Hickerson (CR1) 1991; 89 Hickerson, Mortenson (CR12) 2014; 109 Ramanujan (CR19) 1988 Chan (CR8) 2012; 153 Appell (CR2) 1884; 1 Waldherr (CR21) 2011; 139 P Appell (76_CR3) 1885; 2 S Ramanujan (76_CR19) 1988 DR Hickerson (76_CR12) 2014; 109 BC Berndt (76_CR6) 2006 Y-S Choi (76_CR10) 2002; 53 S Ramanujan (76_CR18) 1919; 19 GE Andrews (76_CR1) 1991; 89 SH Chan (76_CR8) 2012; 153 SH Chan (76_CR9) 2012; 8 P Appell (76_CR4) 1886; 3 ND Baruah (76_CR5) 2018; 14 M Lerch (76_CR15) 1892; 24 ET Mortenson (76_CR17) 2014; 264 ET Mortenson (76_CR16) 2012; 29 BC Berndt (76_CR7) 1991 M Waldherr (76_CR21) 2011; 139 76_CR11 76_CR22 P Appell (76_CR2) 1884; 1 DR Hickerson (76_CR13) 2017; 367 YK Qu (76_CR20) 2018; 460 K Hikami (76_CR14) 2006; 75 |
References_xml | – ident: CR22 – volume: 264 start-page: 236 year: 2014 end-page: 260 ident: CR17 article-title: On the dual nature of partial theta functions and Appell-Lerch sums publication-title: Adv. Math. doi: 10.1016/j.aim.2014.07.018 contributor: fullname: Mortenson – volume: 139 start-page: 865 year: 2011 end-page: 879 ident: CR21 article-title: On certain explicit congruences for mock theta functions publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-2010-10538-5 contributor: fullname: Waldherr – volume: 8 start-page: 111 year: 2012 end-page: 123 ident: CR9 article-title: Two congruences for Appell-Lerch sums publication-title: Int. J. Number Theory doi: 10.1142/S1793042112500066 contributor: fullname: Mao – volume: 75 start-page: 93 year: 2006 end-page: 98 ident: CR14 article-title: Transformation formula of the “second” order mock theta function publication-title: Lett. Math. Phys. doi: 10.1007/s11005-005-0039-1 contributor: fullname: Hikami – year: 1991 ident: CR7 publication-title: Ramanujan’s Notebooks, Part III doi: 10.1007/978-1-4612-0965-2 contributor: fullname: Berndt – volume: 1 start-page: 135 year: 1884 end-page: 164 ident: CR2 article-title: Sur les fonctions doublement périodiques de troisième espèce publication-title: Ann. Sci. Éc. Norm. Supér. doi: 10.24033/asens.236 contributor: fullname: Appell – ident: CR11 – volume: 24 start-page: 465 year: 1892 end-page: 480 ident: CR15 article-title: Poznámky k theorii funkcĺ elliptických publication-title: Prag. České Ak. Fr. Jos. Rozpr. contributor: fullname: Lerch – year: 1988 ident: CR19 publication-title: The Lost Notebook and Other Unpublished Papers contributor: fullname: Ramanujan – year: 2006 ident: CR6 publication-title: Number Theory in the Spirit of Ramanujan doi: 10.1090/stml/034 contributor: fullname: Berndt – volume: 89 start-page: 60 year: 1991 end-page: 105 ident: CR1 article-title: Ramanujan’s ‘lost’ notebook VII: the sixth order mock theta functions publication-title: Adv. Math. doi: 10.1016/0001-8708(91)90083-J contributor: fullname: Hickerson – volume: 29 start-page: 121 year: 2012 end-page: 133 ident: CR16 article-title: Ramanujan’s $_{1}\psi _{1}$ summation, Hecke-type double sums, and Appell-Lerch sums publication-title: Ramanujan J. doi: 10.1007/s11139-012-9379-5 contributor: fullname: Mortenson – volume: 460 start-page: 232 year: 2018 end-page: 238 ident: CR20 article-title: Generalizations of some conjectures of Chan on congruences for Appell-Lerch sums publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2017.11.035 contributor: fullname: Yao – volume: 19 start-page: 207 year: 1919 end-page: 210 ident: CR18 article-title: Some properties of $p(n)$, the number of partitions of $n$ publication-title: Proc. Camb. Philos. Soc. contributor: fullname: Ramanujan – volume: 109 start-page: 382 year: 2014 end-page: 422 ident: CR12 article-title: Hecke-type double sums, Appell-Lerch sums, and mock theta functions, I publication-title: Proc. Lond. Math. Soc. doi: 10.1112/plms/pdu007 contributor: fullname: Mortenson – volume: 2 start-page: 9 year: 1885 end-page: 36 ident: CR3 article-title: Développements en série des fonctions doublement périodiques de troisième espèce publication-title: Ann. Sci. Éc. Norm. Supér. doi: 10.24033/asens.248 contributor: fullname: Appell – volume: 53 start-page: 147 year: 2002 end-page: 159 ident: CR10 article-title: Identities for Ramanujan’s sixth-order mock theta functions publication-title: Q. J. Math. doi: 10.1093/qjmath/53.2.147 contributor: fullname: Choi – volume: 14 start-page: 1995 year: 2018 end-page: 2011 ident: CR5 article-title: On exact generating functions for the number of partitions into distinct parts publication-title: Int. J. Number Theory doi: 10.1142/S1793042118501191 contributor: fullname: Begum – volume: 3 start-page: 9 year: 1886 end-page: 42 ident: CR4 article-title: Sur les fonctions doublement périodiques de troisi‘eme esp‘ece publication-title: Ann. Sci. Éc. Norm. Supér. doi: 10.24033/asens.272 contributor: fullname: Appell – volume: 367 start-page: 373 year: 2017 end-page: 395 ident: CR13 article-title: Dyson’s ranks and Appell-Lerch sums publication-title: Math. Ann. doi: 10.1007/s00208-016-1390-5 contributor: fullname: Mortenson – volume: 153 start-page: 161 year: 2012 end-page: 189 ident: CR8 article-title: Congruences for Ramanujan’s $\phi $ function publication-title: Acta Arith. doi: 10.4064/aa153-2-3 contributor: fullname: Chan – volume: 1 start-page: 135 year: 1884 ident: 76_CR2 publication-title: Ann. Sci. Éc. Norm. Supér. doi: 10.24033/asens.236 contributor: fullname: P Appell – volume: 53 start-page: 147 year: 2002 ident: 76_CR10 publication-title: Q. J. Math. doi: 10.1093/qjmath/53.2.147 contributor: fullname: Y-S Choi – ident: 76_CR11 – volume: 19 start-page: 207 year: 1919 ident: 76_CR18 publication-title: Proc. Camb. Philos. Soc. contributor: fullname: S Ramanujan – volume: 75 start-page: 93 year: 2006 ident: 76_CR14 publication-title: Lett. Math. Phys. doi: 10.1007/s11005-005-0039-1 contributor: fullname: K Hikami – volume: 153 start-page: 161 year: 2012 ident: 76_CR8 publication-title: Acta Arith. doi: 10.4064/aa153-2-3 contributor: fullname: SH Chan – volume: 14 start-page: 1995 year: 2018 ident: 76_CR5 publication-title: Int. J. Number Theory doi: 10.1142/S1793042118501191 contributor: fullname: ND Baruah – volume: 367 start-page: 373 year: 2017 ident: 76_CR13 publication-title: Math. Ann. doi: 10.1007/s00208-016-1390-5 contributor: fullname: DR Hickerson – volume: 109 start-page: 382 year: 2014 ident: 76_CR12 publication-title: Proc. Lond. Math. Soc. doi: 10.1112/plms/pdu007 contributor: fullname: DR Hickerson – volume-title: Ramanujan’s Notebooks, Part III year: 1991 ident: 76_CR7 doi: 10.1007/978-1-4612-0965-2 contributor: fullname: BC Berndt – volume: 460 start-page: 232 year: 2018 ident: 76_CR20 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2017.11.035 contributor: fullname: YK Qu – volume-title: Number Theory in the Spirit of Ramanujan year: 2006 ident: 76_CR6 doi: 10.1090/stml/034 contributor: fullname: BC Berndt – volume: 89 start-page: 60 year: 1991 ident: 76_CR1 publication-title: Adv. Math. doi: 10.1016/0001-8708(91)90083-J contributor: fullname: GE Andrews – volume: 3 start-page: 9 year: 1886 ident: 76_CR4 publication-title: Ann. Sci. Éc. Norm. Supér. doi: 10.24033/asens.272 contributor: fullname: P Appell – volume: 8 start-page: 111 year: 2012 ident: 76_CR9 publication-title: Int. J. Number Theory doi: 10.1142/S1793042112500066 contributor: fullname: SH Chan – volume: 139 start-page: 865 year: 2011 ident: 76_CR21 publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-2010-10538-5 contributor: fullname: M Waldherr – ident: 76_CR22 – volume-title: The Lost Notebook and Other Unpublished Papers year: 1988 ident: 76_CR19 contributor: fullname: S Ramanujan – volume: 2 start-page: 9 year: 1885 ident: 76_CR3 publication-title: Ann. Sci. Éc. Norm. Supér. doi: 10.24033/asens.248 contributor: fullname: P Appell – volume: 24 start-page: 465 year: 1892 ident: 76_CR15 publication-title: Prag. České Ak. Fr. Jos. Rozpr. contributor: fullname: M Lerch – volume: 29 start-page: 121 year: 2012 ident: 76_CR16 publication-title: Ramanujan J. doi: 10.1007/s11139-012-9379-5 contributor: fullname: ET Mortenson – volume: 264 start-page: 236 year: 2014 ident: 76_CR17 publication-title: Adv. Math. doi: 10.1016/j.aim.2014.07.018 contributor: fullname: ET Mortenson |
SSID | ssj0004037 |
Score | 2.2415195 |
Snippet | On page 3 of his lost notebook, Ramanujan defines the Appell–Lerch sum
ϕ
(
q
)
:
=
∑
n
=
0
∞
(
-
q
;
q
)
2
n
q
n
+
1
(
q
;
q
2
)
n
+
1
2
,
which is connected... On page 3 of his lost notebook, Ramanujan defines the Appell–Lerch sum ϕ(q):=∑n=0∞(-q;q)2nqn+1(q;q2)n+12,which is connected to some of his sixth order mock... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 99 |
SubjectTerms | Combinatorics Congruences Field Theory and Polynomials Fourier Analysis Functions of a Complex Variable Mathematics Mathematics and Statistics Number Theory Sums |
Title | Proofs of some conjectures of Chan on Appell–Lerch sums |
URI | https://link.springer.com/article/10.1007/s11139-018-0076-x https://www.proquest.com/docview/2332363348 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVKe4EDO6JQUA6cQKmSeGl8rFBLxSYOVCqnyHacAy0JIqmEOPEP_CFfwjhLI7ZDr040UsbjzHsezzNCJxq7hBLh22Ev8mzCiLQlB5biRIwLZQS7RH7a4paNxuRyQicN5C22LuJpt6pI5j_qutfNBbACzNe3TfXIBtzYKvtOW_2Lh6tB3Q3p5EqZRlwP2BFf1DL_MvI9G9UQ80dVNE82w42iATDNNQrNGZNpd57Jrnr7reC4xHdsovUSe1r9Ili2UEPH22jtZiHcmu4gfgdIOkqtJLLS5ElbwJYfiypDPmZ6EawktgC76tns8_3jWsM6sSCa0100Hg7uz0d2ebuCrbDLMhuYUSQc5YaCUEm0yfWhF7FQayyU8B2uiENCTWHGemFPwojAmnBClYuZryjeQ804ifU-snhII6aJKwCNEOn3uJSOYjQC01JSqtvotPJy8FyIaAS1XLLxRwD-CIw_gtc26lTzEJTrKQ08jD3MTNdwG51Vfq0f_2vsYKm3D9GqZ-h0vsPSQc3sZa6PAHNk8rgMsmO0Mvb6X8Dpznw |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQGYAB8SkKBTwwgSwl8UfisUJUBdqKoZW6WbbjDKg0iBSJkf_AP-SXcE6TRiAYWO3ohpdT7j2f7wWhC0dDxplOSBpnEWGCGWIkqJQgE1Jbb9ily9sWI9GfsLspn1Zz3EV9271uSZZf6mbYLQS2AtI3Ib59RIA4rnt7dW-YP4m6zTBkUBplem89EEdy1cr8LcT3YtQwzB9N0bLW9HbQdkUScXf5VnfRmpvvoa3hymG12EfyAShvVuA8w0X-5DDI2sdlO6Bc80MDOJ9jIJluNvt8_xg4SGgMaVccoEnvZnzdJ9VvEIiloVgQkDCZDmyYasYNc74op1EmUueotjoJpGUBSx0HaOM0NrCiqWOScRtSkVhOD1Frns_dEcIy5ZlwLNRAG5hJYmlMYAXPILQxnLs2uqzxUM9LtwvV-Bp78BSApzx46q2NOjViqkr8QkWURlT48d42uqpRbLb_DHb8r6fP0UZ_PByowe3o_gRtRl4Dl8ciHdRavLy6UyAKC3NWJsYX0Wu0Yw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5EQfQgPrFadQ-elNAk-0hyLGqpWksPFnoLu5vdg9SkmAge_Q_-Q3-Js3k0KHrwuhsG8mXCfLMz8y1C55p4lFEROklgfIdyKh0ZQZbiGh4JZQW7RNltMebDKb2bsVl9z2nedLs3JclqpsGqNKVFb5GYXjv45gFzgTQ4dGwpyQESuQaRiNievqnfbwcj3VI00-rsQaIULcuav5n4HphatvmjQFrGncE22qoJI-5XX3gHreh0F20-LNVW8z0UTYD-mhxnBufZs8bwLk9VaaBcswMEOEsxEE49n3--f4w0ODcGF8z30XRw83g1dOorERxFPF44kM4Y4SovEZRJqm2ATnzDE62JUCJ0I0VdmmgGMAdJIGFFEE0jypRHeKgYOUCraZbqQ4SjhBmuqSeAQlAZBpGUruLMgGkpGdMddNHgES8q5Yu41Ti24MUAXmzBi986qNsgFtc_QR77hPiE21HfDrpsUGy3_zR29K-nz9D65HoQj27H98dow7fpcHlC0kWrxcurPgHOUMjT0i--AKYyuKg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proofs+of+some+conjectures+of+Chan+on+Appell%E2%80%93Lerch+sums&rft.jtitle=The+Ramanujan+journal&rft.au=Nayandeep+Deka+Baruah&rft.au=Nilufar+Mana+Begum&rft.date=2020-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1382-4090&rft.eissn=1572-9303&rft.volume=51&rft.issue=1&rft.spage=99&rft.epage=115&rft_id=info:doi/10.1007%2Fs11139-018-0076-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-4090&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-4090&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-4090&client=summon |