Proofs of some conjectures of Chan on Appell–Lerch sums

On page 3 of his lost notebook, Ramanujan defines the Appell–Lerch sum ϕ ( q ) : = ∑ n = 0 ∞ ( - q ; q ) 2 n q n + 1 ( q ; q 2 ) n + 1 2 , which is connected to some of his sixth order mock theta functions. Let ∑ n = 1 ∞ a ( n ) q n : = ϕ ( q ) . In this paper, we find a representation of the genera...

Full description

Saved in:
Bibliographic Details
Published inThe Ramanujan journal Vol. 51; no. 1; pp. 99 - 115
Main Authors Baruah, Nayandeep Deka, Begum, Nilufar Mana
Format Journal Article
LanguageEnglish
Published New York Springer US 2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract On page 3 of his lost notebook, Ramanujan defines the Appell–Lerch sum ϕ ( q ) : = ∑ n = 0 ∞ ( - q ; q ) 2 n q n + 1 ( q ; q 2 ) n + 1 2 , which is connected to some of his sixth order mock theta functions. Let ∑ n = 1 ∞ a ( n ) q n : = ϕ ( q ) . In this paper, we find a representation of the generating function of a ( 10 n + 9 ) in terms of q -products. As corollaries, we deduce the congruences a ( 50 n + 19 ) ≡ a ( 50 n + 39 ) ≡ a ( 50 n + 49 ) ≡ 0 ( mod 25 ) as well as a ( 1250 n + 250 r + 219 ) ≡ 0 ( mod 125 ) , where r = 1 , 3, and 4. The first three congruences were conjectured by Chan in 2012, whereas the congruences modulo 125 are new. We also prove two more conjectural congruences of Chan for the coefficients of two Appell–Lerch sums.
AbstractList On page 3 of his lost notebook, Ramanujan defines the Appell–Lerch sum ϕ(q):=∑n=0∞(-q;q)2nqn+1(q;q2)n+12,which is connected to some of his sixth order mock theta functions. Let ∑n=1∞a(n)qn:=ϕ(q). In this paper, we find a representation of the generating function of a(10n+9) in terms of q-products. As corollaries, we deduce the congruences a(50n+19)≡a(50n+39)≡a(50n+49)≡0(mod25) as well as a(1250n+250r+219)≡0(mod125), where r=1, 3, and 4. The first three congruences were conjectured by Chan in 2012, whereas the congruences modulo 125 are new. We also prove two more conjectural congruences of Chan for the coefficients of two Appell–Lerch sums.
On page 3 of his lost notebook, Ramanujan defines the Appell–Lerch sum ϕ ( q ) : = ∑ n = 0 ∞ ( - q ; q ) 2 n q n + 1 ( q ; q 2 ) n + 1 2 , which is connected to some of his sixth order mock theta functions. Let ∑ n = 1 ∞ a ( n ) q n : = ϕ ( q ) . In this paper, we find a representation of the generating function of a ( 10 n + 9 ) in terms of q -products. As corollaries, we deduce the congruences a ( 50 n + 19 ) ≡ a ( 50 n + 39 ) ≡ a ( 50 n + 49 ) ≡ 0 ( mod 25 ) as well as a ( 1250 n + 250 r + 219 ) ≡ 0 ( mod 125 ) , where r = 1 , 3, and 4. The first three congruences were conjectured by Chan in 2012, whereas the congruences modulo 125 are new. We also prove two more conjectural congruences of Chan for the coefficients of two Appell–Lerch sums.
Author Baruah, Nayandeep Deka
Begum, Nilufar Mana
Author_xml – sequence: 1
  givenname: Nayandeep Deka
  surname: Baruah
  fullname: Baruah, Nayandeep Deka
  email: nayan@tezu.ernet.in
  organization: Department of Mathematical Sciences, Tezpur University
– sequence: 2
  givenname: Nilufar Mana
  surname: Begum
  fullname: Begum, Nilufar Mana
  organization: Department of Mathematical Sciences, Tezpur University
BookMark eNp1kM1KAzEUhYNUsK0-gLsB19Gb3MxPlqX4BwVd6DqkmTvW0k7GpAN15zv4hj6JqSO4cnXvPZxzLnwTNmp9S4ydC7gUAOVVFEKg5iAqns6C74_YWOSl5BoBR2nHSnIFGk7YJMY1ACjAcsz0Y_C-iZlvsui3lDnfrsnt-kA_2nxl28y32azraLP5-vhcUHCrLPbbeMqOG7uJdPY7p-z55vppfscXD7f389mCOxTFjiudNxacqK3Kl4pAiqqWTVEToXW2Au0UqJpy61RZl8ukWCSlVe4EFpXLccouht4u-Lee4s6sfR_a9NJIRIkFoqqSSwwuF3yMgRrThdetDe9GgDkQMgMhkwiZAyGzTxk5ZGLyti8U_pr_D30DzHlrCw
CitedBy_id crossref_primary_10_1016_j_jmaa_2024_128260
crossref_primary_10_2989_16073606_2023_2255383
crossref_primary_10_1007_s11139_022_00643_8
crossref_primary_10_1142_S1793042121500202
Cites_doi 10.1016/j.aim.2014.07.018
10.1090/S0002-9939-2010-10538-5
10.1142/S1793042112500066
10.1007/s11005-005-0039-1
10.1007/978-1-4612-0965-2
10.24033/asens.236
10.1090/stml/034
10.1016/0001-8708(91)90083-J
10.1007/s11139-012-9379-5
10.1016/j.jmaa.2017.11.035
10.1112/plms/pdu007
10.24033/asens.248
10.1093/qjmath/53.2.147
10.1142/S1793042118501191
10.24033/asens.272
10.1007/s00208-016-1390-5
10.4064/aa153-2-3
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Copyright Springer Nature B.V. 2020
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Copyright Springer Nature B.V. 2020
DBID AAYXX
CITATION
DOI 10.1007/s11139-018-0076-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1572-9303
EndPage 115
ExternalDocumentID 10_1007_s11139_018_0076_x
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
29P
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
6TJ
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9R
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7U
ZMTXR
~A9
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AIGIU
CITATION
H13
ID FETCH-LOGICAL-c316t-495fa0c1da45b4e0218d2f6dee3aca809c404de5ac47d7ba80a3e4945c1368c53
IEDL.DBID AGYKE
ISSN 1382-4090
IngestDate Thu Oct 10 23:02:44 EDT 2024
Thu Sep 12 19:18:42 EDT 2024
Sat Dec 16 12:00:38 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Mock theta function
Theta function
Congruence
Primary 11P83
Appell–Lerch sum
Secondary 33D15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-495fa0c1da45b4e0218d2f6dee3aca809c404de5ac47d7ba80a3e4945c1368c53
PQID 2332363348
PQPubID 2043831
PageCount 17
ParticipantIDs proquest_journals_2332363348
crossref_primary_10_1007_s11139_018_0076_x
springer_journals_10_1007_s11139_018_0076_x
PublicationCentury 2000
PublicationDate 1-2020
2020-1-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 1-2020
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan
PublicationTitle The Ramanujan journal
PublicationTitleAbbrev Ramanujan J
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Berndt (CR7) 1991
Appell (CR4) 1886; 3
Qu, Wang, Yao (CR20) 2018; 460
Mortenson (CR16) 2012; 29
Mortenson (CR17) 2014; 264
Berndt (CR6) 2006
Choi (CR10) 2002; 53
Appell (CR3) 1885; 2
Ramanujan (CR18) 1919; 19
Hikami (CR14) 2006; 75
Lerch (CR15) 1892; 24
Baruah, Begum (CR5) 2018; 14
CR11
CR22
Hickerson, Mortenson (CR13) 2017; 367
Chan, Mao (CR9) 2012; 8
Andrews, Hickerson (CR1) 1991; 89
Hickerson, Mortenson (CR12) 2014; 109
Ramanujan (CR19) 1988
Chan (CR8) 2012; 153
Appell (CR2) 1884; 1
Waldherr (CR21) 2011; 139
P Appell (76_CR3) 1885; 2
S Ramanujan (76_CR19) 1988
DR Hickerson (76_CR12) 2014; 109
BC Berndt (76_CR6) 2006
Y-S Choi (76_CR10) 2002; 53
S Ramanujan (76_CR18) 1919; 19
GE Andrews (76_CR1) 1991; 89
SH Chan (76_CR8) 2012; 153
SH Chan (76_CR9) 2012; 8
P Appell (76_CR4) 1886; 3
ND Baruah (76_CR5) 2018; 14
M Lerch (76_CR15) 1892; 24
ET Mortenson (76_CR17) 2014; 264
ET Mortenson (76_CR16) 2012; 29
BC Berndt (76_CR7) 1991
M Waldherr (76_CR21) 2011; 139
76_CR11
76_CR22
P Appell (76_CR2) 1884; 1
DR Hickerson (76_CR13) 2017; 367
YK Qu (76_CR20) 2018; 460
K Hikami (76_CR14) 2006; 75
References_xml – ident: CR22
– volume: 264
  start-page: 236
  year: 2014
  end-page: 260
  ident: CR17
  article-title: On the dual nature of partial theta functions and Appell-Lerch sums
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2014.07.018
  contributor:
    fullname: Mortenson
– volume: 139
  start-page: 865
  year: 2011
  end-page: 879
  ident: CR21
  article-title: On certain explicit congruences for mock theta functions
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-2010-10538-5
  contributor:
    fullname: Waldherr
– volume: 8
  start-page: 111
  year: 2012
  end-page: 123
  ident: CR9
  article-title: Two congruences for Appell-Lerch sums
  publication-title: Int. J. Number Theory
  doi: 10.1142/S1793042112500066
  contributor:
    fullname: Mao
– volume: 75
  start-page: 93
  year: 2006
  end-page: 98
  ident: CR14
  article-title: Transformation formula of the “second” order mock theta function
  publication-title: Lett. Math. Phys.
  doi: 10.1007/s11005-005-0039-1
  contributor:
    fullname: Hikami
– year: 1991
  ident: CR7
  publication-title: Ramanujan’s Notebooks, Part III
  doi: 10.1007/978-1-4612-0965-2
  contributor:
    fullname: Berndt
– volume: 1
  start-page: 135
  year: 1884
  end-page: 164
  ident: CR2
  article-title: Sur les fonctions doublement périodiques de troisième espèce
  publication-title: Ann. Sci. Éc. Norm. Supér.
  doi: 10.24033/asens.236
  contributor:
    fullname: Appell
– ident: CR11
– volume: 24
  start-page: 465
  year: 1892
  end-page: 480
  ident: CR15
  article-title: Poznámky k theorii funkcĺ elliptických
  publication-title: Prag. České Ak. Fr. Jos. Rozpr.
  contributor:
    fullname: Lerch
– year: 1988
  ident: CR19
  publication-title: The Lost Notebook and Other Unpublished Papers
  contributor:
    fullname: Ramanujan
– year: 2006
  ident: CR6
  publication-title: Number Theory in the Spirit of Ramanujan
  doi: 10.1090/stml/034
  contributor:
    fullname: Berndt
– volume: 89
  start-page: 60
  year: 1991
  end-page: 105
  ident: CR1
  article-title: Ramanujan’s ‘lost’ notebook VII: the sixth order mock theta functions
  publication-title: Adv. Math.
  doi: 10.1016/0001-8708(91)90083-J
  contributor:
    fullname: Hickerson
– volume: 29
  start-page: 121
  year: 2012
  end-page: 133
  ident: CR16
  article-title: Ramanujan’s $_{1}\psi _{1}$ summation, Hecke-type double sums, and Appell-Lerch sums
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-012-9379-5
  contributor:
    fullname: Mortenson
– volume: 460
  start-page: 232
  year: 2018
  end-page: 238
  ident: CR20
  article-title: Generalizations of some conjectures of Chan on congruences for Appell-Lerch sums
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2017.11.035
  contributor:
    fullname: Yao
– volume: 19
  start-page: 207
  year: 1919
  end-page: 210
  ident: CR18
  article-title: Some properties of $p(n)$, the number of partitions of $n$
  publication-title: Proc. Camb. Philos. Soc.
  contributor:
    fullname: Ramanujan
– volume: 109
  start-page: 382
  year: 2014
  end-page: 422
  ident: CR12
  article-title: Hecke-type double sums, Appell-Lerch sums, and mock theta functions, I
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/plms/pdu007
  contributor:
    fullname: Mortenson
– volume: 2
  start-page: 9
  year: 1885
  end-page: 36
  ident: CR3
  article-title: Développements en série des fonctions doublement périodiques de troisième espèce
  publication-title: Ann. Sci. Éc. Norm. Supér.
  doi: 10.24033/asens.248
  contributor:
    fullname: Appell
– volume: 53
  start-page: 147
  year: 2002
  end-page: 159
  ident: CR10
  article-title: Identities for Ramanujan’s sixth-order mock theta functions
  publication-title: Q. J. Math.
  doi: 10.1093/qjmath/53.2.147
  contributor:
    fullname: Choi
– volume: 14
  start-page: 1995
  year: 2018
  end-page: 2011
  ident: CR5
  article-title: On exact generating functions for the number of partitions into distinct parts
  publication-title: Int. J. Number Theory
  doi: 10.1142/S1793042118501191
  contributor:
    fullname: Begum
– volume: 3
  start-page: 9
  year: 1886
  end-page: 42
  ident: CR4
  article-title: Sur les fonctions doublement périodiques de troisi‘eme esp‘ece
  publication-title: Ann. Sci. Éc. Norm. Supér.
  doi: 10.24033/asens.272
  contributor:
    fullname: Appell
– volume: 367
  start-page: 373
  year: 2017
  end-page: 395
  ident: CR13
  article-title: Dyson’s ranks and Appell-Lerch sums
  publication-title: Math. Ann.
  doi: 10.1007/s00208-016-1390-5
  contributor:
    fullname: Mortenson
– volume: 153
  start-page: 161
  year: 2012
  end-page: 189
  ident: CR8
  article-title: Congruences for Ramanujan’s $\phi $ function
  publication-title: Acta Arith.
  doi: 10.4064/aa153-2-3
  contributor:
    fullname: Chan
– volume: 1
  start-page: 135
  year: 1884
  ident: 76_CR2
  publication-title: Ann. Sci. Éc. Norm. Supér.
  doi: 10.24033/asens.236
  contributor:
    fullname: P Appell
– volume: 53
  start-page: 147
  year: 2002
  ident: 76_CR10
  publication-title: Q. J. Math.
  doi: 10.1093/qjmath/53.2.147
  contributor:
    fullname: Y-S Choi
– ident: 76_CR11
– volume: 19
  start-page: 207
  year: 1919
  ident: 76_CR18
  publication-title: Proc. Camb. Philos. Soc.
  contributor:
    fullname: S Ramanujan
– volume: 75
  start-page: 93
  year: 2006
  ident: 76_CR14
  publication-title: Lett. Math. Phys.
  doi: 10.1007/s11005-005-0039-1
  contributor:
    fullname: K Hikami
– volume: 153
  start-page: 161
  year: 2012
  ident: 76_CR8
  publication-title: Acta Arith.
  doi: 10.4064/aa153-2-3
  contributor:
    fullname: SH Chan
– volume: 14
  start-page: 1995
  year: 2018
  ident: 76_CR5
  publication-title: Int. J. Number Theory
  doi: 10.1142/S1793042118501191
  contributor:
    fullname: ND Baruah
– volume: 367
  start-page: 373
  year: 2017
  ident: 76_CR13
  publication-title: Math. Ann.
  doi: 10.1007/s00208-016-1390-5
  contributor:
    fullname: DR Hickerson
– volume: 109
  start-page: 382
  year: 2014
  ident: 76_CR12
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/plms/pdu007
  contributor:
    fullname: DR Hickerson
– volume-title: Ramanujan’s Notebooks, Part III
  year: 1991
  ident: 76_CR7
  doi: 10.1007/978-1-4612-0965-2
  contributor:
    fullname: BC Berndt
– volume: 460
  start-page: 232
  year: 2018
  ident: 76_CR20
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2017.11.035
  contributor:
    fullname: YK Qu
– volume-title: Number Theory in the Spirit of Ramanujan
  year: 2006
  ident: 76_CR6
  doi: 10.1090/stml/034
  contributor:
    fullname: BC Berndt
– volume: 89
  start-page: 60
  year: 1991
  ident: 76_CR1
  publication-title: Adv. Math.
  doi: 10.1016/0001-8708(91)90083-J
  contributor:
    fullname: GE Andrews
– volume: 3
  start-page: 9
  year: 1886
  ident: 76_CR4
  publication-title: Ann. Sci. Éc. Norm. Supér.
  doi: 10.24033/asens.272
  contributor:
    fullname: P Appell
– volume: 8
  start-page: 111
  year: 2012
  ident: 76_CR9
  publication-title: Int. J. Number Theory
  doi: 10.1142/S1793042112500066
  contributor:
    fullname: SH Chan
– volume: 139
  start-page: 865
  year: 2011
  ident: 76_CR21
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-2010-10538-5
  contributor:
    fullname: M Waldherr
– ident: 76_CR22
– volume-title: The Lost Notebook and Other Unpublished Papers
  year: 1988
  ident: 76_CR19
  contributor:
    fullname: S Ramanujan
– volume: 2
  start-page: 9
  year: 1885
  ident: 76_CR3
  publication-title: Ann. Sci. Éc. Norm. Supér.
  doi: 10.24033/asens.248
  contributor:
    fullname: P Appell
– volume: 24
  start-page: 465
  year: 1892
  ident: 76_CR15
  publication-title: Prag. České Ak. Fr. Jos. Rozpr.
  contributor:
    fullname: M Lerch
– volume: 29
  start-page: 121
  year: 2012
  ident: 76_CR16
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-012-9379-5
  contributor:
    fullname: ET Mortenson
– volume: 264
  start-page: 236
  year: 2014
  ident: 76_CR17
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2014.07.018
  contributor:
    fullname: ET Mortenson
SSID ssj0004037
Score 2.2415195
Snippet On page 3 of his lost notebook, Ramanujan defines the Appell–Lerch sum ϕ ( q ) : = ∑ n = 0 ∞ ( - q ; q ) 2 n q n + 1 ( q ; q 2 ) n + 1 2 , which is connected...
On page 3 of his lost notebook, Ramanujan defines the Appell–Lerch sum ϕ(q):=∑n=0∞(-q;q)2nqn+1(q;q2)n+12,which is connected to some of his sixth order mock...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 99
SubjectTerms Combinatorics
Congruences
Field Theory and Polynomials
Fourier Analysis
Functions of a Complex Variable
Mathematics
Mathematics and Statistics
Number Theory
Sums
Title Proofs of some conjectures of Chan on Appell–Lerch sums
URI https://link.springer.com/article/10.1007/s11139-018-0076-x
https://www.proquest.com/docview/2332363348
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVKe4EDO6JQUA6cQKmSeGl8rFBLxSYOVCqnyHacAy0JIqmEOPEP_CFfwjhLI7ZDr040UsbjzHsezzNCJxq7hBLh22Ev8mzCiLQlB5biRIwLZQS7RH7a4paNxuRyQicN5C22LuJpt6pI5j_qutfNBbACzNe3TfXIBtzYKvtOW_2Lh6tB3Q3p5EqZRlwP2BFf1DL_MvI9G9UQ80dVNE82w42iATDNNQrNGZNpd57Jrnr7reC4xHdsovUSe1r9Ili2UEPH22jtZiHcmu4gfgdIOkqtJLLS5ElbwJYfiypDPmZ6EawktgC76tns8_3jWsM6sSCa0100Hg7uz0d2ebuCrbDLMhuYUSQc5YaCUEm0yfWhF7FQayyU8B2uiENCTWHGemFPwojAmnBClYuZryjeQ804ifU-snhII6aJKwCNEOn3uJSOYjQC01JSqtvotPJy8FyIaAS1XLLxRwD-CIw_gtc26lTzEJTrKQ08jD3MTNdwG51Vfq0f_2vsYKm3D9GqZ-h0vsPSQc3sZa6PAHNk8rgMsmO0Mvb6X8Dpznw
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQGYAB8SkKBTwwgSwl8UfisUJUBdqKoZW6WbbjDKg0iBSJkf_AP-SXcE6TRiAYWO3ohpdT7j2f7wWhC0dDxplOSBpnEWGCGWIkqJQgE1Jbb9ily9sWI9GfsLspn1Zz3EV9271uSZZf6mbYLQS2AtI3Ib59RIA4rnt7dW-YP4m6zTBkUBplem89EEdy1cr8LcT3YtQwzB9N0bLW9HbQdkUScXf5VnfRmpvvoa3hymG12EfyAShvVuA8w0X-5DDI2sdlO6Bc80MDOJ9jIJluNvt8_xg4SGgMaVccoEnvZnzdJ9VvEIiloVgQkDCZDmyYasYNc74op1EmUueotjoJpGUBSx0HaOM0NrCiqWOScRtSkVhOD1Frns_dEcIy5ZlwLNRAG5hJYmlMYAXPILQxnLs2uqzxUM9LtwvV-Bp78BSApzx46q2NOjViqkr8QkWURlT48d42uqpRbLb_DHb8r6fP0UZ_PByowe3o_gRtRl4Dl8ciHdRavLy6UyAKC3NWJsYX0Wu0Yw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5EQfQgPrFadQ-elNAk-0hyLGqpWksPFnoLu5vdg9SkmAge_Q_-Q3-Js3k0KHrwuhsG8mXCfLMz8y1C55p4lFEROklgfIdyKh0ZQZbiGh4JZQW7RNltMebDKb2bsVl9z2nedLs3JclqpsGqNKVFb5GYXjv45gFzgTQ4dGwpyQESuQaRiNievqnfbwcj3VI00-rsQaIULcuav5n4HphatvmjQFrGncE22qoJI-5XX3gHreh0F20-LNVW8z0UTYD-mhxnBufZs8bwLk9VaaBcswMEOEsxEE49n3--f4w0ODcGF8z30XRw83g1dOorERxFPF44kM4Y4SovEZRJqm2ATnzDE62JUCJ0I0VdmmgGMAdJIGFFEE0jypRHeKgYOUCraZbqQ4SjhBmuqSeAQlAZBpGUruLMgGkpGdMddNHgES8q5Yu41Ti24MUAXmzBi986qNsgFtc_QR77hPiE21HfDrpsUGy3_zR29K-nz9D65HoQj27H98dow7fpcHlC0kWrxcurPgHOUMjT0i--AKYyuKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proofs+of+some+conjectures+of+Chan+on+Appell%E2%80%93Lerch+sums&rft.jtitle=The+Ramanujan+journal&rft.au=Nayandeep+Deka+Baruah&rft.au=Nilufar+Mana+Begum&rft.date=2020-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1382-4090&rft.eissn=1572-9303&rft.volume=51&rft.issue=1&rft.spage=99&rft.epage=115&rft_id=info:doi/10.1007%2Fs11139-018-0076-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-4090&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-4090&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-4090&client=summon