Raman scattering investigation of twisted WS2/MoS2 heterostructures: interlayer mechanical coupling versus charge transfer
Twisted van der Waals homo- and hetero-structures have aroused great attentions due to their unique physical properties, providing a new platform to explore the novel two-dimensional (2D) condensed matter physics. The robust dependence of phonon vibrations and electronic band structures on the twist...
Saved in:
Published in | Nano research Vol. 14; no. 7; pp. 2215 - 2223 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Tsinghua University Press
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Twisted van der Waals homo- and hetero-structures have aroused great attentions due to their unique physical properties, providing a new platform to explore the novel two-dimensional (2D) condensed matter physics. The robust dependence of phonon vibrations and electronic band structures on the twist angle has been intensively observed in transition metal dichalcogenide (TMD) homo-structures. However, the effects of twist angle on the lattice vibrational properties in the TMD heterostructures have not caused enough attention. Here, we report the distinct evolutions of Raman scattering and the underlying interlayer interactions in the twisted WS
2
/MoS
2
heterostructures. The shifts and linewidths of E
2g
(Γ) and A
1g
(Γ) phonon modes are found to be twist angle dependent. In particular, analogous to that of the twisted TMD homostructures, the frequency separations between E
2g
(Γ) and A
1g
(Γ) modes of MoS
2
and WS
2
in the twisted heterostructures varying with twist angle correlate with the interlayer mechanical coupling, essentially originating from the spacing-related repulsion between sulfur atoms. Moreover, the opposite shift behaviors and broadening of A
1g
(Γ) modes caused by charge transfer are also observed in the twisted heterostructures. The calculated interlayer distances and band alignment of twisted WS
2
/MoS
2
through density functional theory further evidence our interpretations on the roles of the interlayer mechanical coupling and charge transfer in variations of Raman features. Such understanding and controlling of interlayer interaction through the stacking orientation are significant for future optoelectronic device design based on the newly emerged 2D heterostructures. |
---|---|
AbstractList | Twisted van der Waals homo- and hetero-structures have aroused great attentions due to their unique physical properties, providing a new platform to explore the novel two-dimensional (2D) condensed matter physics. The robust dependence of phonon vibrations and electronic band structures on the twist angle has been intensively observed in transition metal dichalcogenide (TMD) homo-structures. However, the effects of twist angle on the lattice vibrational properties in the TMD heterostructures have not caused enough attention. Here, we report the distinct evolutions of Raman scattering and the underlying interlayer interactions in the twisted WS
2
/MoS
2
heterostructures. The shifts and linewidths of E
2g
(Γ) and A
1g
(Γ) phonon modes are found to be twist angle dependent. In particular, analogous to that of the twisted TMD homostructures, the frequency separations between E
2g
(Γ) and A
1g
(Γ) modes of MoS
2
and WS
2
in the twisted heterostructures varying with twist angle correlate with the interlayer mechanical coupling, essentially originating from the spacing-related repulsion between sulfur atoms. Moreover, the opposite shift behaviors and broadening of A
1g
(Γ) modes caused by charge transfer are also observed in the twisted heterostructures. The calculated interlayer distances and band alignment of twisted WS
2
/MoS
2
through density functional theory further evidence our interpretations on the roles of the interlayer mechanical coupling and charge transfer in variations of Raman features. Such understanding and controlling of interlayer interaction through the stacking orientation are significant for future optoelectronic device design based on the newly emerged 2D heterostructures. Twisted van der Waals homo- and hetero-structures have aroused great attentions due to their unique physical properties, providing a new platform to explore the novel two-dimensional (2D) condensed matter physics. The robust dependence of phonon vibrations and electronic band structures on the twist angle has been intensively observed in transition metal dichalcogenide (TMD) homo-structures. However, the effects of twist angle on the lattice vibrational properties in the TMD heterostructures have not caused enough attention. Here, we report the distinct evolutions of Raman scattering and the underlying interlayer interactions in the twisted WS2/MoS2 heterostructures. The shifts and linewidths of E2g(Γ) and A1g(Γ) phonon modes are found to be twist angle dependent. In particular, analogous to that of the twisted TMD homostructures, the frequency separations between E2g(Γ) and A1g(Γ) modes of MoS2 and WS2 in the twisted heterostructures varying with twist angle correlate with the interlayer mechanical coupling, essentially originating from the spacing-related repulsion between sulfur atoms. Moreover, the opposite shift behaviors and broadening of A1g(Γ) modes caused by charge transfer are also observed in the twisted heterostructures. The calculated interlayer distances and band alignment of twisted WS2/MoS2 through density functional theory further evidence our interpretations on the roles of the interlayer mechanical coupling and charge transfer in variations of Raman features. Such understanding and controlling of interlayer interaction through the stacking orientation are significant for future optoelectronic device design based on the newly emerged 2D heterostructures. |
Author | Zhou, Jiadong Ai, Wei Cong, Chunxiao Yang, Weihuang Wu, Lishu Wang, Yanlong Chen, Yu Feng, Shun Liu, Zheng Shang, Jingzhi Zhang, Hongbo Yu, Ting |
Author_xml | – sequence: 1 givenname: Lishu surname: Wu fullname: Wu, Lishu organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University – sequence: 2 givenname: Chunxiao surname: Cong fullname: Cong, Chunxiao email: cxcong@fudan.edu.cn organization: School of Information Science and Technology, Fudan University – sequence: 3 givenname: Jingzhi surname: Shang fullname: Shang, Jingzhi email: iamjzshang@nwpu.edu.cn organization: Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University – sequence: 4 givenname: Weihuang surname: Yang fullname: Yang, Weihuang organization: Engineering Research Center of Smart Microsensors and Microsystems, Ministry of Education, College of Electronics and Information, Hangzhou Dianzi University – sequence: 5 givenname: Yu surname: Chen fullname: Chen, Yu organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University – sequence: 6 givenname: Jiadong surname: Zhou fullname: Zhou, Jiadong organization: School of Materials Science and Engineering, Nanyang Technological University – sequence: 7 givenname: Wei surname: Ai fullname: Ai, Wei organization: Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University – sequence: 8 givenname: Yanlong surname: Wang fullname: Wang, Yanlong organization: Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences – sequence: 9 givenname: Shun surname: Feng fullname: Feng, Shun organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University – sequence: 10 givenname: Hongbo surname: Zhang fullname: Zhang, Hongbo organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University – sequence: 11 givenname: Zheng surname: Liu fullname: Liu, Zheng organization: School of Materials Science and Engineering, Nanyang Technological University – sequence: 12 givenname: Ting surname: Yu fullname: Yu, Ting email: yuting@ntu.edu.sg organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University |
BookMark | eNp9kEtLxDAQgIMouD5-gLeA52qSptvWmyy-QBF84DFM0-ka6aZrkq7UX2_WKoKguSRM5pvHt0M2bWeRkAPOjjhj-bHnQuQyYYIlKS_TZNggE16WRcLi2fx-cyG3yY73L4xNBZfFhLzfwQIs9RpCQGfsnBq7Qh_MHILpLO0aGt6MD1jTp3txfNPdC_qMMbXzwfU69A79SWRipIUBHV2gfgZrNLRUd_2yXZdcofO9p_HDzZEGB9Y36PbIVgOtx_2ve5c8np89zC6T69uLq9npdaJTPg1JilDkKOS0EbWsUAtgZVpWdQOMST2FLM8AoMrKKpcVLyOUYtRQMV6xOm14uksOx7pL1732cTf10vXOxpZKZLKQmWSiiFn5mKXjat5ho7QJnw7ivKZVnKm1aDWKVrGDWotWQyT5L3LpzALc8C8jRsYv19LR_cz0N_QBf6uV5A |
CitedBy_id | crossref_primary_10_1016_j_jechem_2024_01_076 crossref_primary_10_1007_s11705_023_2382_0 crossref_primary_10_1021_acsanm_2c05240 crossref_primary_10_1021_acsnano_2c10092 crossref_primary_10_1016_j_surfcoat_2025_132034 crossref_primary_10_1039_D4MH01456A crossref_primary_10_1021_acs_jpclett_5c00004 crossref_primary_10_1002_ange_202422393 crossref_primary_10_1016_j_apsusc_2024_161843 crossref_primary_10_1039_D3RA02952B crossref_primary_10_1021_acs_chemrev_3c00627 crossref_primary_10_3390_app14052179 crossref_primary_10_1002_anie_202422393 crossref_primary_10_1021_acs_nanolett_3c03324 crossref_primary_10_1038_s41699_022_00308_6 crossref_primary_10_1209_0295_5075_accdfe crossref_primary_10_1007_s12274_022_4964_4 crossref_primary_10_1039_D2NH00226D crossref_primary_10_1021_acsnano_1c03779 crossref_primary_10_3390_nano14030248 crossref_primary_10_1016_j_jallcom_2024_174177 crossref_primary_10_1021_acsaelm_3c00529 crossref_primary_10_1007_s12274_021_3806_0 crossref_primary_10_1002_adom_202202495 crossref_primary_10_1039_D1TC03662A crossref_primary_10_1007_s12274_022_5007_x crossref_primary_10_1021_acsnano_2c00914 crossref_primary_10_1088_1361_6633_acfe89 crossref_primary_10_1007_s12274_024_6936_3 crossref_primary_10_3390_ma17163933 crossref_primary_10_1016_j_jallcom_2022_165286 crossref_primary_10_1016_j_apcatb_2023_122554 crossref_primary_10_1021_acsnano_3c07665 crossref_primary_10_1021_acsami_1c24368 crossref_primary_10_1063_5_0106676 crossref_primary_10_1007_s11467_023_1355_6 crossref_primary_10_1039_D1TA10788G crossref_primary_10_1016_j_est_2024_113193 |
Cites_doi | 10.1038/s41586-019-0986-9 10.1002/adom.201500301 10.1021/acs.nanolett.6b02111 10.1038/ncomms12512 10.1038/nmat4091 10.1002/adma.201504631 10.1021/acsnano.6b01486 10.1103/PhysRevB.87.081307 10.1021/nl500515q 10.1002/smll.201805503 10.1038/nmat4205 10.1038/ncomms7242 10.1038/s41586-019-0975-z 10.1088/0953-8984/28/35/353002 10.1021/nn504229z 10.1038/s41586-019-0976-y 10.1021/nn501779y 10.1007/s12274-015-0762-6 10.1038/nphoton.2015.282 10.1021/nl501077m 10.1021/acs.jpclett.8b03596 10.1038/nmat3505 10.1021/acsnano.7b08253 10.1103/PhysRevB.47.558 10.1103/PhysRevLett.105.136805 10.1021/acs.nanolett.5b02423 10.1063/1.4817409 10.1021/nn5059908 10.1021/acs.nanolett.5b01055 10.1038/nature12385 10.1038/nmat4218 10.1021/cm502170q 10.1007/s12274-019-2513-6 10.1021/nn505736z 10.1021/acs.nanolett.5b05015 10.1038/nmat4064 10.1021/nn1003937 10.1002/aelm.201600298 10.1002/adma.201906536 10.1039/c3nr03052k 10.1021/acsnano.7b00640 10.1038/ncomms5709 10.1002/advs.201700086 10.1021/acs.chemmater.8b01672 10.1021/nl501988y 10.1002/jcc.20495 10.1002/adom.201300428 10.1038/nmat3633 10.1038/ncomms5966 10.1038/s41586-019-0957-1 10.1007/s12274-017-1792-z 10.1002/adma.201804979 10.1021/acsnano.5b01884 10.1063/1.4774090 10.1021/nn507278b 10.1039/C4CS00282B 10.1038/nnano.2012.96 10.1038/s41565-018-0301-1 10.1103/PhysRevB.97.245427 10.1002/smll.201202876 10.1103/PhysRevB.84.155413 10.1021/nl5014597 10.1103/PhysRevB.85.161403 10.1038/nnano.2014.167 |
ContentType | Journal Article |
Copyright | Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
Copyright_xml | – notice: Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
DBID | AAYXX CITATION 3V. 7QF 7QO 7QQ 7SE 7SR 7U5 7X7 7XB 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H8G HCIFZ JG9 K9. KB. L7M LK8 M0S M7P P64 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s12274-020-3193-y |
DatabaseName | CrossRef ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Corrosion Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Materials Research Database ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Biological Science Collection ProQuest Central (New) Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Copper Technical Reference Library Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection METADEX Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1998-0000 |
EndPage | 2223 |
ExternalDocumentID | 10_1007_s12274_020_3193_y |
GroupedDBID | -58 -5G -BR -EM -~C 06C 06D 0R~ 0VY 123 1N0 29M 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 6NX 7X7 8AO 8FE 8FG 8FH 8FI 8FJ 95- 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACCUX ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADFRT ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP CW9 D1I DDRTE DNIVK DPUIP DU5 E3Z EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRJ FRP FRRFC FSGXE FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HH5 HMCUK HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD J-C JBSCW JZLTJ KB. KOV LK8 LLZTM M4Y M7P N2Q NPVJJ NQJWS NU0 O9- O9J OK1 P2P P9N PDBOC PQQKQ PROAC PT4 Q2X QOR R89 R9I RNS ROL RSV S1Z S27 S3B SCL SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR ~A9 AAPKM AAYXX ABFSG ACMFV ACSTC ADHKG AEZWR AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT TGP 7QF 7QO 7QQ 7SE 7SR 7U5 7XB 8BQ 8FD 8FK AZQEC DWQXO FR3 GNUQQ H8G JG9 K9. L7M P64 PKEHL PQEST PQGLB PQUKI PRINS |
ID | FETCH-LOGICAL-c316t-3ea87e246f2d4bec2a0939bdfa004c6a575aaab59b74b19c313e020b01b0d3f13 |
IEDL.DBID | U2A |
ISSN | 1998-0124 |
IngestDate | Sat Aug 23 14:55:43 EDT 2025 Tue Jul 01 01:46:58 EDT 2025 Thu Apr 24 23:10:39 EDT 2025 Fri Feb 21 02:48:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | van der Waals heterostructures interlayer coupling Raman scattering charge transfer twist angle |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-3ea87e246f2d4bec2a0939bdfa004c6a575aaab59b74b19c313e020b01b0d3f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2548454028 |
PQPubID | 326270 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2548454028 crossref_citationtrail_10_1007_s12274_020_3193_y crossref_primary_10_1007_s12274_020_3193_y springer_journals_10_1007_s12274_020_3193_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210700 2021-07-00 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 7 year: 2021 text: 20210700 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Nano research |
PublicationTitleAbbrev | Nano Res |
PublicationYear | 2021 |
Publisher | Tsinghua University Press |
Publisher_xml | – name: Tsinghua University Press |
References | Chakraborty, Bera, Muthu, Bhowmick, Waghmare, Sood (CR59) 2012; 85 Puretzky, Liang, Li, Xiao, Wang, Mahjouri-Samani, Basile, Idrobo, Sumpter, Meunier (CR13) 2015; 9 Van Der Zande, Huang, Chenet, Berkelbach, You, Lee, Heinz, Reichman, Muller, Hone (CR36) 2013; 12 Grimme (CR64) 2006; 27 Zheng, Sun, Zhou, Liu, Liu, Shen, Fan (CR18) 2015; 3 Ceballos, Bellus, Chiu, Zhao (CR27) 2014; 8 Rivera, Schaibley, Jones, Ross, Wu, Aivazian, Klement, Seyler, Clark, Ghimire (CR28) 2015; 6 Kang, Tongay, Zhou, Li, Wu (CR40) 2013; 102 Huang, Ling, Liang, Kong, Terrones, Meunier, Dresselhaus (CR20) 2014; 14 Lee, Yan, Brus, Heinz, Hone, Ryu (CR53) 2010; 4 Roy, Tosun, Cao, Fang, Lien, Zhao, Chen, Chueh, Guo, Javey (CR15) 2015; 9 Alexeev, Ruiz-Tijerina, Danovich, Hamer, Terry, Nayak, Ahn, Pak, Lee, Sohn (CR11) 2019; 567 Huang, Liang, Ling, Puretzky, Geohegan, Sumpter, Kong, Meunier, Dresselhaus (CR17) 2016; 16 Gong, Zhang, Wang, Colombo, Wallace, Cho (CR39) 2013; 103 Li, Wu, Huang, Yin, Liu, Zhang (CR6) 2014; 8 Huang, Wu, Sanchez, Peters, Beanland, Ross, Rivera, Yao, Cobden, Xu (CR30) 2014; 13 Seyler, Rivera, Yu, Wilson, Ray, Mandrus, Yan, Yao, Xu (CR9) 2019; 567 Rigos, Hill, Li, Chernikov, Heinz (CR22) 2015; 15 Torun, Miranda, Molina-Sánchez, Wirtz (CR31) 2018; 97 Chen, Wen, Zhang, Wu, Gong, Zhang, Yuan, Yi, Lou, Ajayan (CR45) 2016; 7 Rice, Young, Zan, Bangert, Wolverson, Georgiou, Jalil, Novoselov (CR57) 2013; 87 Wang, Cong, Yang, Shang, Peimyoo, Chen, Kang, Wang, Huang, Yu (CR61) 2015; 8 Feng, Cong, Peimyoo, Chen, Shang, Zou, Cao, Wu, Zhang, Eginligil (CR34) 2018; 11 Feng, Cong, Konabe, Zhang, Shang, Chen, Zou, Cao, Wu, Peimyoo (CR43) 2019; 15 Zhang, Qiao, Shi, Wu, Jiang, Tan (CR58) 2015; 44 Zhang, Hong, Lian, Ma, Xu, Zhou, Fu, Liu, Meng (CR23) 2017; 4 Li, Huang, Zhong, Li, Wang, Li, Wei (CR4) 2016; 2 Tran, Moody, Wu, Lu, Choi, Kim, Rai, Sanchez, Quan, Singh (CR10) 2019; 567 Wang, Xia (CR2) 2015; 14 Mak, He, Lee, Lee, Hone, Heinz, Shan (CR41) 2013; 12 Zhou, Zhao, Zhu (CR25) 2019; 10 Chiu, Li, Zhang, Hsu, Chang, Terrones, Terrones, Li (CR12) 2014; 8 Wang, Huang, Tian, Ceballos, Lin, Mahjouri-Samani, Boulesbaa, Puretzky, Rouleau, Yoon (CR26) 2016; 10 Jin, Regan, Yan, Utama, Wang, Zhao, Qin, Yang, Zheng, Shi (CR8) 2019; 567 Sun, Li, Wang, Zhang, Li, Duan, Duan (CR5) 2019; 12 Geim, Grigorieva (CR1) 2013; 499 Nayak, Horbatenko, Ahn, Kim, Lee, Ma, Jang, Lim, Kim, Ryu (CR47) 2017; 11 Zhao, Ghorannevis, Amara, Pang, Toh, Zhang, Kloc, Tan, Eda (CR52) 2013; 5 Dadgar, Scullion, Kang, Esposito, Yang, Herman, Pimenta, Santos, Pasupathy (CR54) 2018; 30 Tongay, Fan, Kang, Park, Koldemir, Suh, Narang, Liu, Ji, Li (CR24) 2014; 14 Van Der Zande, Kunstmann, Chernikov, Chenet, You, Zhang, Huang, Berkelbach, Wang, Zhang (CR16) 2014; 14 Saito, Tatsumi, Huang, Ling, Dresselhaus (CR62) 2016; 28 Kresse, Hafner (CR63) 1993; 47 Mak, Lee, Hone, Shan, Heinz (CR51) 2010; 105 Withers, Del Pozo-Zamudio, Mishchenko, Rooney, Gholinia, Watanabe, Taniguchi, Haigh, Geim, Tartakovskii (CR7) 2015; 14 Mak, He, Shan, Heinz (CR42) 2012; 7 Gong, Lin, Wang, Shi, Lei, Lin, Zou, Ye, Vajtai, Yakobson (CR49) 2014; 13 Cong, Yu (CR38) 2014; 5 Wang, Cong, Qiu, Yu (CR55) 2013; 9 Lin, Ling, Yu, Huang, Hsu, Lee, Kong, Dresselhaus, Palacios (CR50) 2014; 14 Mak, Shan (CR46) 2018; 13 Chen, Peng, Cong, Shang, Wu, Yang, Zhou, Yu, Zhang, Wang (CR37) 2019; 31 Cong, Shang, Wu, Cao, Peimyoo, Qiu, Sun, Yu (CR32) 2014; 2 Liu, Lu, Ho, Hu, Dang, Carvalho, Tan, Tok, Sow (CR35) 2016; 16 Okada, Kutana, Kureishi, Kobayashi, Saito, Saito, Watanabe, Taniguchi, Gupta, Miyata (CR48) 2018; 12 Hong, Kim, Shi, Zhang, Jin, Sun, Tongay, Wu, Zhang, Wang (CR21) 2014; 9 Gong, Lei, Ye, Li, He, Keyshar, Zhang, Wang, Lou, Liu (CR29) 2015; 15 Molina-Sánchez, Wirtz (CR56) 2011; 84 Zhang, Wang, Chen, Sun, Wu, Jia, Lu, Yu, Chen, Zhu (CR60) 2016; 28 Lim, Yoon, Kim, Jang, Shin (CR14) 2014; 26 Liu, Zhang, Cao, Jin, Qiu, Zhou, Zettl, Yang, Louie, Wang (CR19) 2014; 5 Mak, Shan (CR3) 2016; 10 Shang, Shen, Cong, Peimyoo, Cao, Eginligil, Yu (CR44) 2015; 9 Zhou, Lin, Sims, Jiang, Cong, Brehm, Zhang, Niu, Chen, Zhou (CR33) 2020; 32 S J Zheng (3193_CR18) 2015; 3 A M Van Der Zande (3193_CR16) 2014; 14 C Gong (3193_CR39) 2013; 103 Y Chen (3193_CR37) 2019; 31 C X Cong (3193_CR38) 2014; 5 J Zhang (3193_CR23) 2017; 4 Y L Wang (3193_CR61) 2015; 8 K F Mak (3193_CR51) 2010; 105 H Z Zhou (3193_CR25) 2019; 10 H Lim (3193_CR14) 2014; 26 K H Liu (3193_CR19) 2014; 5 C X Cong (3193_CR32) 2014; 2 K F Mak (3193_CR42) 2012; 7 G Z Sun (3193_CR5) 2019; 12 S Grimme (3193_CR64) 2006; 27 K Wang (3193_CR26) 2016; 10 A A Puretzky (3193_CR13) 2015; 9 P Rivera (3193_CR28) 2015; 6 E Torun (3193_CR31) 2018; 97 W J Zhao (3193_CR52) 2013; 5 H W Liu (3193_CR35) 2016; 16 A M Van Der Zande (3193_CR36) 2013; 12 K F Mak (3193_CR3) 2016; 10 X P Hong (3193_CR21) 2014; 9 C H Jin (3193_CR8) 2019; 567 A Molina-Sánchez (3193_CR56) 2011; 84 R Saito (3193_CR62) 2016; 28 J Zhang (3193_CR60) 2016; 28 M H Chiu (3193_CR12) 2014; 8 Y X Lin (3193_CR50) 2014; 14 A K Geim (3193_CR1) 2013; 499 K Tran (3193_CR10) 2019; 567 A M Dadgar (3193_CR54) 2018; 30 J D Zhou (3193_CR33) 2020; 32 K F Mak (3193_CR46) 2018; 13 C M Huang (3193_CR30) 2014; 13 Y L Wang (3193_CR55) 2013; 9 K F Mak (3193_CR41) 2013; 12 P K Nayak (3193_CR47) 2017; 11 H L Chen (3193_CR45) 2016; 7 B Li (3193_CR4) 2016; 2 E M Alexeev (3193_CR11) 2019; 567 X Zhang (3193_CR58) 2015; 44 M Okada (3193_CR48) 2018; 12 C Rice (3193_CR57) 2013; 87 S Tongay (3193_CR24) 2014; 14 S X Huang (3193_CR17) 2016; 16 S X Huang (3193_CR20) 2014; 14 Y J Gong (3193_CR49) 2014; 13 H Li (3193_CR6) 2014; 8 F Ceballos (3193_CR27) 2014; 8 J Z Shang (3193_CR44) 2015; 9 B Chakraborty (3193_CR59) 2012; 85 T Roy (3193_CR15) 2015; 9 F Withers (3193_CR7) 2015; 14 J Kang (3193_CR40) 2013; 102 S Feng (3193_CR34) 2018; 11 G Kresse (3193_CR63) 1993; 47 Y J Gong (3193_CR29) 2015; 15 X M Wang (3193_CR2) 2015; 14 C Lee (3193_CR53) 2010; 4 A F Rigos (3193_CR22) 2015; 15 S Feng (3193_CR43) 2019; 15 K L Seyler (3193_CR9) 2019; 567 |
References_xml | – volume: 4 start-page: 2695 year: 2010 end-page: 2700 ident: CR53 article-title: Anomalous lattice vibrations of single- and few-layer MoS publication-title: ACS Nano – volume: 7 start-page: 494 year: 2012 end-page: 498 ident: CR42 article-title: Control of valley polarization in monolayer MoS by optical helicity publication-title: Nat. Nanotechnol. – volume: 3 start-page: 1600 year: 2015 end-page: 1605 ident: CR18 article-title: Coupling and interlayer exciton in twist-stacked WS bilayers publication-title: Adv. Opt. Mater. – volume: 103 start-page: 053513 year: 2013 ident: CR39 article-title: Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors publication-title: Appl. Phys. Lett. – volume: 7 start-page: 12512 year: 2016 ident: CR45 article-title: Ultrafast formation of interlayer hot excitons in atomically thin MoS /WS heterostructures publication-title: Nat. Commun. – volume: 12 start-page: 554 year: 2013 end-page: 561 ident: CR36 article-title: Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide publication-title: Nat. Mater. – volume: 97 start-page: 245427 year: 2018 ident: CR31 article-title: Interlayer and intralayer excitons in MoS /WS and MoSe /WSe heterobilayers publication-title: Phys. Rev. B – volume: 14 start-page: 301 year: 2015 end-page: 306 ident: CR7 article-title: Light-emitting diodes by band-structure engineering in van der Waals heterostructures publication-title: Nat. Mater. – volume: 2 start-page: 131 year: 2014 end-page: 136 ident: CR32 article-title: Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS monolayer from chemical vapor deposition publication-title: Adv. Opt. Mater. – volume: 2 start-page: 1600298 year: 2016 ident: CR4 article-title: Direct vapor phase growth and optoelectronic application of large band offset SnS /MoS vertical bilayer heterostructures with high lattice mismatch publication-title: Adv. Electron. Mater. – volume: 5 start-page: 9677 year: 2013 end-page: 9683 ident: CR52 article-title: Lattice dynamics in mono- and few-layer sheets of WS and WSe publication-title: Nanoscale – volume: 9 start-page: 682 year: 2014 end-page: 686 ident: CR21 article-title: Ultrafast charge transfer in atomically thin MoS /WS heterostructures publication-title: Nat. Nanotechnol. – volume: 28 start-page: 353002 year: 2016 ident: CR62 article-title: Raman spectroscopy of transition metal dichalcogenides publication-title: J. Phys. Condens. Matter – volume: 567 start-page: 66 year: 2019 end-page: 70 ident: CR9 article-title: Signatures of moiré-trapped valley excitons in MoSe /WSe heterobilayers publication-title: Nature – volume: 8 start-page: 6563 year: 2014 end-page: 6570 ident: CR6 article-title: A universal, rapid method for clean transfer of nanostructures onto various substrates publication-title: ACS Nano – volume: 44 start-page: 2757 year: 2015 end-page: 2785 ident: CR58 article-title: Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material publication-title: Chem. Soc. Rev. – volume: 9 start-page: 6333 year: 2015 end-page: 6342 ident: CR13 article-title: Low-frequency Raman fingerprints of two-dimensional metal dichalcogenide layer stacking configurations publication-title: ACS Nano – volume: 87 start-page: 081307 year: 2013 ident: CR57 article-title: Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS publication-title: Phys. Rev. B – volume: 31 start-page: 1804979 year: 2019 ident: CR37 article-title: In-plane anisotropic thermal conductivity of few-layered transition metal dichalcogenide Td-WTe2 publication-title: Adv. Mater. – volume: 14 start-page: 3185 year: 2014 end-page: 3190 ident: CR24 article-title: Tuning interlayer coupling in large-area heterostructures with CVD-Grown MoS and WS monolayers publication-title: Nano Lett. – volume: 27 start-page: 1787 year: 2006 end-page: 1799 ident: CR64 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: J. Comput. Chem. – volume: 12 start-page: 2781 year: 2019 end-page: 2787 ident: CR5 article-title: Selective growth of wide band gap atomically thin Sb O inorganic molecular crystal on WS publication-title: Nano Res. – volume: 84 start-page: 155413 year: 2011 ident: CR56 article-title: Phonons in single-layer and few-layer MoS and WS publication-title: Phys. Rev. B – volume: 567 start-page: 71 year: 2019 end-page: 75 ident: CR10 article-title: Evidence for moiré excitons in van der Waals heterostructures publication-title: Nature – volume: 14 start-page: 5569 year: 2014 end-page: 5576 ident: CR50 article-title: Dielectric screening of excitons and trions in single-layer MoS publication-title: Nano Lett. – volume: 8 start-page: 12717 year: 2014 end-page: 12724 ident: CR27 article-title: Ultrafast charge separation and indirect exciton formation in a MoS -MoSe van der waals heterostructure publication-title: ACS Nano – volume: 499 start-page: 419 year: 2013 end-page: 425 ident: CR1 article-title: Van der Waals heterostructures publication-title: Nature – volume: 5 start-page: 4966 year: 2014 ident: CR19 article-title: Evolution of interlayer coupling in twisted molybdenum disulfide bilayers publication-title: Nat. Commun. – volume: 16 start-page: 5559 year: 2016 end-page: 5567 ident: CR35 article-title: Fluorescence concentric triangles: A case of chemical heterogeneity in WS atomic monolayer publication-title: Nano Lett. – volume: 11 start-page: 1744 year: 2018 end-page: 1754 ident: CR34 article-title: Tunable excitonic emission of monolayer WS for the optical detection of DNA nucleobases publication-title: Nano Res. – volume: 567 start-page: 76 year: 2019 end-page: 80 ident: CR8 article-title: Observation of moiré excitons in WSe /WS heterostructure superlattices publication-title: Nature – volume: 10 start-page: 150 year: 2019 end-page: 155 ident: CR25 article-title: Dielectric environment-robust ultrafast charge transfer between two atomic layers publication-title: J. Phys. Chem. Lett. – volume: 47 start-page: 558 year: 1993 end-page: 561 ident: CR63 article-title: molecular dynamics for liquid metals publication-title: Phys. Rev. B – volume: 567 start-page: 81 year: 2019 end-page: 86 ident: CR11 article-title: Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures publication-title: Nature – volume: 12 start-page: 2498 year: 2018 end-page: 2505 ident: CR48 article-title: Direct and indirect interlayer excitons in a van der waals heterostructure of hBN/WS /MoS /hBN publication-title: ACS Nano – volume: 15 start-page: 1805503 year: 2019 ident: CR43 article-title: Engineering valley polarization of monolayer WS : A physical doping approach publication-title: Small – volume: 105 start-page: 136805 year: 2010 ident: CR51 article-title: Atomically thin MoS : A new direct-gap semiconductor publication-title: Phys. Rev. Lett. – volume: 9 start-page: 647 year: 2015 end-page: 655 ident: CR44 article-title: Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor publication-title: ACS Nano – volume: 6 start-page: 6242 year: 2015 ident: CR28 article-title: Observation of long-lived interlayer excitons in monolayer MoSe -WSe heterostructures publication-title: Nat. Commun. – volume: 12 start-page: 207 year: 2013 end-page: 211 ident: CR41 article-title: Tightly bound trions in monolayer MoS publication-title: Nat. Mater. – volume: 13 start-page: 1096 year: 2014 end-page: 1101 ident: CR30 article-title: Lateral heterojunctions within monolayer MoSe -WSe semiconductors publication-title: Nat. Mater. – volume: 85 start-page: 161403 year: 2012 ident: CR59 article-title: Symmetry-dependent phonon renormalization in monolayer MoS transistor publication-title: Phys. Rev. B – volume: 13 start-page: 1135 year: 2014 end-page: 1142 ident: CR49 article-title: Vertical and in-plane heterostructures from WS /MoS monolayers publication-title: Nat. Mater. – volume: 9 start-page: 2857 year: 2013 end-page: 2861 ident: CR55 article-title: Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS under uniaxial strain publication-title: Small – volume: 4 start-page: 1700086 year: 2017 ident: CR23 article-title: Interlayer-state-coupling dependent ultrafast charge transfer in MoS /WS Bilayers publication-title: Adv. Sci. – volume: 10 start-page: 6612 year: 2016 end-page: 6622 ident: CR26 article-title: Interlayer coupling in twisted WSe /WS bilayer heterostructures revealed by optical spectroscopy publication-title: ACS Nano – volume: 10 start-page: 216 year: 2016 end-page: 226 ident: CR3 article-title: Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides publication-title: Nat. Photonics – volume: 14 start-page: 264 year: 2015 end-page: 265 ident: CR2 article-title: Stacked 2D materials shed light publication-title: Nat. Mater. – volume: 26 start-page: 4891 year: 2014 end-page: 4903 ident: CR14 article-title: Stacking of two-dimensional materials in lateral and vertical directions publication-title: Chem. Mater. – volume: 8 start-page: 2562 year: 2015 end-page: 2572 ident: CR61 article-title: Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS publication-title: Nano Res. – volume: 14 start-page: 3869 year: 2014 end-page: 3875 ident: CR16 article-title: Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist publication-title: Nano Lett. – volume: 15 start-page: 6135 year: 2015 end-page: 6141 ident: CR29 article-title: Two-step growth of two-dimensional WSe /MoSe heterostructures publication-title: Nano Lett. – volume: 15 start-page: 5033 year: 2015 end-page: 5038 ident: CR22 article-title: Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS /WS and MoSe /WSe publication-title: Nano Lett. – volume: 9 start-page: 2071 year: 2015 end-page: 2079 ident: CR15 article-title: Dual-gated MoS /WSe van der waals tunnel diodes and transistors publication-title: ACS Nano – volume: 8 start-page: 9649 year: 2014 end-page: 9656 ident: CR12 article-title: Spectroscopic Signatures for Interlayer Coupling in MoS -WSe2 van der Waals Stacking publication-title: ACS Nano – volume: 102 start-page: 012111 year: 2013 ident: CR40 article-title: Band offsets and heterostructures of two-dimensional semiconductors publication-title: Appl. Phys. Lett. – volume: 14 start-page: 5500 year: 2014 end-page: 5508 ident: CR20 article-title: Probing the interlayer coupling of twisted bilayer MoS using photoluminescence spectroscopy publication-title: Nano Lett. – volume: 11 start-page: 4041 year: 2017 end-page: 4050 ident: CR47 article-title: Probing evolution of twist-angle-dependent interlayer excitons in MoSe /WSe van der waals heterostructures publication-title: ACS Nano – volume: 32 start-page: 1906536 year: 2020 ident: CR33 article-title: Synthesis of Co-Doped MoS monolayers with enhanced valley splitting publication-title: Adv. Mater. – volume: 5 start-page: 4709 year: 2014 ident: CR38 article-title: Enhanced ultra-low-frequency interlayer shear modes in folded graphene layers publication-title: Nat. Commun. – volume: 13 start-page: 974 year: 2018 end-page: 976 ident: CR46 article-title: Opportunities and challenges of interlayer exciton control and manipulation publication-title: Nat. Nanotechnol. – volume: 30 start-page: 5148 year: 2018 end-page: 5155 ident: CR54 article-title: Strain engineering and Raman spectroscopy of monolayer transition metal dichalcogenides publication-title: Chem. Mater. – volume: 28 start-page: 1950 year: 2016 end-page: 1956 ident: CR60 article-title: Observation of Strong Interlayer Coupling in MoS /WS Heterostructures publication-title: Adv. Mater. – volume: 16 start-page: 1435 year: 2016 end-page: 1444 ident: CR17 article-title: Low-frequency interlayer Raman modes to probe interface of twisted bilayer MoS publication-title: Nano Lett. – volume: 567 start-page: 81 year: 2019 ident: 3193_CR11 publication-title: Nature doi: 10.1038/s41586-019-0986-9 – volume: 3 start-page: 1600 year: 2015 ident: 3193_CR18 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201500301 – volume: 16 start-page: 5559 year: 2016 ident: 3193_CR35 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b02111 – volume: 7 start-page: 12512 year: 2016 ident: 3193_CR45 publication-title: Nat. Commun. doi: 10.1038/ncomms12512 – volume: 13 start-page: 1135 year: 2014 ident: 3193_CR49 publication-title: Nat. Mater. doi: 10.1038/nmat4091 – volume: 28 start-page: 1950 year: 2016 ident: 3193_CR60 publication-title: Adv. Mater. doi: 10.1002/adma.201504631 – volume: 10 start-page: 6612 year: 2016 ident: 3193_CR26 publication-title: ACS Nano doi: 10.1021/acsnano.6b01486 – volume: 87 start-page: 081307 year: 2013 ident: 3193_CR57 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.081307 – volume: 14 start-page: 3185 year: 2014 ident: 3193_CR24 publication-title: Nano Lett. doi: 10.1021/nl500515q – volume: 15 start-page: 1805503 year: 2019 ident: 3193_CR43 publication-title: Small doi: 10.1002/smll.201805503 – volume: 14 start-page: 301 year: 2015 ident: 3193_CR7 publication-title: Nat. Mater. doi: 10.1038/nmat4205 – volume: 6 start-page: 6242 year: 2015 ident: 3193_CR28 publication-title: Nat. Commun. doi: 10.1038/ncomms7242 – volume: 567 start-page: 71 year: 2019 ident: 3193_CR10 publication-title: Nature doi: 10.1038/s41586-019-0975-z – volume: 28 start-page: 353002 year: 2016 ident: 3193_CR62 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/28/35/353002 – volume: 8 start-page: 9649 year: 2014 ident: 3193_CR12 publication-title: ACS Nano doi: 10.1021/nn504229z – volume: 567 start-page: 76 year: 2019 ident: 3193_CR8 publication-title: Nature doi: 10.1038/s41586-019-0976-y – volume: 8 start-page: 6563 year: 2014 ident: 3193_CR6 publication-title: ACS Nano doi: 10.1021/nn501779y – volume: 8 start-page: 2562 year: 2015 ident: 3193_CR61 publication-title: Nano Res. doi: 10.1007/s12274-015-0762-6 – volume: 10 start-page: 216 year: 2016 ident: 3193_CR3 publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.282 – volume: 14 start-page: 3869 year: 2014 ident: 3193_CR16 publication-title: Nano Lett. doi: 10.1021/nl501077m – volume: 10 start-page: 150 year: 2019 ident: 3193_CR25 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b03596 – volume: 12 start-page: 207 year: 2013 ident: 3193_CR41 publication-title: Nat. Mater. doi: 10.1038/nmat3505 – volume: 12 start-page: 2498 year: 2018 ident: 3193_CR48 publication-title: ACS Nano doi: 10.1021/acsnano.7b08253 – volume: 47 start-page: 558 year: 1993 ident: 3193_CR63 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 105 start-page: 136805 year: 2010 ident: 3193_CR51 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.136805 – volume: 15 start-page: 6135 year: 2015 ident: 3193_CR29 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02423 – volume: 103 start-page: 053513 year: 2013 ident: 3193_CR39 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4817409 – volume: 9 start-page: 647 year: 2015 ident: 3193_CR44 publication-title: ACS Nano doi: 10.1021/nn5059908 – volume: 15 start-page: 5033 year: 2015 ident: 3193_CR22 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01055 – volume: 499 start-page: 419 year: 2013 ident: 3193_CR1 publication-title: Nature doi: 10.1038/nature12385 – volume: 14 start-page: 264 year: 2015 ident: 3193_CR2 publication-title: Nat. Mater. doi: 10.1038/nmat4218 – volume: 26 start-page: 4891 year: 2014 ident: 3193_CR14 publication-title: Chem. Mater. doi: 10.1021/cm502170q – volume: 12 start-page: 2781 year: 2019 ident: 3193_CR5 publication-title: Nano Res. doi: 10.1007/s12274-019-2513-6 – volume: 8 start-page: 12717 year: 2014 ident: 3193_CR27 publication-title: ACS Nano doi: 10.1021/nn505736z – volume: 16 start-page: 1435 year: 2016 ident: 3193_CR17 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b05015 – volume: 13 start-page: 1096 year: 2014 ident: 3193_CR30 publication-title: Nat. Mater. doi: 10.1038/nmat4064 – volume: 4 start-page: 2695 year: 2010 ident: 3193_CR53 publication-title: ACS Nano doi: 10.1021/nn1003937 – volume: 2 start-page: 1600298 year: 2016 ident: 3193_CR4 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201600298 – volume: 32 start-page: 1906536 year: 2020 ident: 3193_CR33 publication-title: Adv. Mater. doi: 10.1002/adma.201906536 – volume: 5 start-page: 9677 year: 2013 ident: 3193_CR52 publication-title: Nanoscale doi: 10.1039/c3nr03052k – volume: 11 start-page: 4041 year: 2017 ident: 3193_CR47 publication-title: ACS Nano doi: 10.1021/acsnano.7b00640 – volume: 5 start-page: 4709 year: 2014 ident: 3193_CR38 publication-title: Nat. Commun. doi: 10.1038/ncomms5709 – volume: 4 start-page: 1700086 year: 2017 ident: 3193_CR23 publication-title: Adv. Sci. doi: 10.1002/advs.201700086 – volume: 30 start-page: 5148 year: 2018 ident: 3193_CR54 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01672 – volume: 14 start-page: 5569 year: 2014 ident: 3193_CR50 publication-title: Nano Lett. doi: 10.1021/nl501988y – volume: 27 start-page: 1787 year: 2006 ident: 3193_CR64 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 2 start-page: 131 year: 2014 ident: 3193_CR32 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201300428 – volume: 12 start-page: 554 year: 2013 ident: 3193_CR36 publication-title: Nat. Mater. doi: 10.1038/nmat3633 – volume: 5 start-page: 4966 year: 2014 ident: 3193_CR19 publication-title: Nat. Commun. doi: 10.1038/ncomms5966 – volume: 567 start-page: 66 year: 2019 ident: 3193_CR9 publication-title: Nature doi: 10.1038/s41586-019-0957-1 – volume: 11 start-page: 1744 year: 2018 ident: 3193_CR34 publication-title: Nano Res. doi: 10.1007/s12274-017-1792-z – volume: 31 start-page: 1804979 year: 2019 ident: 3193_CR37 publication-title: Adv. Mater. doi: 10.1002/adma.201804979 – volume: 9 start-page: 6333 year: 2015 ident: 3193_CR13 publication-title: ACS Nano doi: 10.1021/acsnano.5b01884 – volume: 102 start-page: 012111 year: 2013 ident: 3193_CR40 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4774090 – volume: 9 start-page: 2071 year: 2015 ident: 3193_CR15 publication-title: ACS Nano doi: 10.1021/nn507278b – volume: 44 start-page: 2757 year: 2015 ident: 3193_CR58 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00282B – volume: 7 start-page: 494 year: 2012 ident: 3193_CR42 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.96 – volume: 13 start-page: 974 year: 2018 ident: 3193_CR46 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0301-1 – volume: 97 start-page: 245427 year: 2018 ident: 3193_CR31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.245427 – volume: 9 start-page: 2857 year: 2013 ident: 3193_CR55 publication-title: Small doi: 10.1002/smll.201202876 – volume: 84 start-page: 155413 year: 2011 ident: 3193_CR56 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.155413 – volume: 14 start-page: 5500 year: 2014 ident: 3193_CR20 publication-title: Nano Lett. doi: 10.1021/nl5014597 – volume: 85 start-page: 161403 year: 2012 ident: 3193_CR59 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.161403 – volume: 9 start-page: 682 year: 2014 ident: 3193_CR21 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.167 |
SSID | ssj0062148 |
Score | 2.474393 |
Snippet | Twisted van der Waals homo- and hetero-structures have aroused great attentions due to their unique physical properties, providing a new platform to explore... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2215 |
SubjectTerms | Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Charge transfer Chemical vapor deposition Chemistry and Materials Science Condensed Matter Physics Coupling Density functional theory Heterostructures Interlayers Lattice vibration Materials Science Mechanical properties Molybdenum disulfide Nanotechnology Optical properties Optoelectronic devices Phonons Physical properties Physics Raman spectra Research Article Sulfur Transition metal compounds Tungsten disulfide Vibrations |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5aEfQgPrFaJQdPSnA32UfXi4hYRKgHtdjbkmQTFequui2iv96ZdLergp7zOORLMt8kM98QcqBCIME2DpgNVcYCILRMeaHHuPY10FllhSva17-OLgfB1TAcVg9uZRVWWd-J7qLOCo1v5MfgyHRRLY53T19eGVaNwt_VqoTGPFlA6TLc1fFw5nBF3HfVs6ZpZGDI6l9NlzrHwR9jnssfTgT7-GmXGrL563_UmZ3eKlmp-CI9mwK8RuZMvk6Wv6kIrpNFF8Wpyw3yeSOfZU5L7UQzoZE-NTIaRU4LS8fviGtG72_5cb-45fQR42GKqYzsBHzvE4oKEm8jCVycPhtMDEYcqS4mmLz7QDGOY1JSJ7Fk6NgRX_O2SQa9i7vzS1YVV2Ba-NGYCSO7seFBZHkWAJBceolIVGYlHBsdSaBxUkoVJioOlJ_AIGFgtZTnKy8T1hdbpJUXudkmVMLS-nHW5eDuBhIMnA9ukpDCaM8KK2WbePXSprpSHscCGKO00UxGNFKYP0U00o82OZwNeZnKbvzXuVPjlVYnsEyb_dImRzWGTfOfk-38P9kuWeIY1eICdjukBeiYPaAlY7Xv9t4Xx4ffwA priority: 102 providerName: ProQuest |
Title | Raman scattering investigation of twisted WS2/MoS2 heterostructures: interlayer mechanical coupling versus charge transfer |
URI | https://link.springer.com/article/10.1007/s12274-020-3193-y https://www.proquest.com/docview/2548454028 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5WTx7EJ1ZrycGTEswm-_RWpVUURazFelqS3USFdlf6QOqvd5LuuioqeNmFzeOQb5P5hsx8g9C-9IAE68Al2pMpcYHQEkk9SljiJEBnpea2aN_VtX_ecy_6Xr_I4x6X0e7llaQ9qatkNwYeFKE24zfiZFZDSx647iaOq8da5fHrM8eWzJrnjoH1Kq8yf5riqzGqGOa3S1FrazqraKUgibg1R3UNLahsHS1_kg7cQG-3YigyPE6sPiZ8ws-VYkae4VzjyauBMMX3XXZ0lXcZfjKhL_lcMXYKbvYxNmIRo4EA2o2HyuQAG8hwkk9Nnu4jNiEb0zG2akoKTyzHVaNN1Ou0707PSVFHgSTc8SeEKxEGirm-ZqkLmDFBIx7JVAvYIYkvgLEJIaQXycCVTgSDuII1ktSRNOXa4VtoMcsztY2wgAV1gjRk4Nm6AmyZAx4RF1wlVHMtRB3RckHjpBAZN7UuBnElj2wwiGH-2GAQz-ro4GPIy1xh46_OjRKluNhs4xh83NAICbKwjg5L5KrmXyfb-VfvXePS0yJMrIEWASy1B4RkIpuoFvQDeIadsyZaap09XLbhfdK-vrlt2p_zHYHF3ro |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1RECocqkKp2BZaH9oLlUViJ9ndSlWFgGUpLAc-BLfUdmyoBAmQXaHtj-pv7IyzIS0S3Dg7thTPi-dNPPMG4JOOkQS7dsRdrDMeIaHlOogDLkxokM5qJ33TvsFB0j-JfpzFZ1Pwp66FobTK-kz0B3VWGPpHvo6BTIfU4kTn-_UNp65RdLtat9CoYLFnx3cYspXfdrfQvp-F6G0fb_b5pKsANzJMhlxa1WlbESVOZBG-gVAY1Hd15hTixSQK-YtSSsdd3Y502MVJ0iKn0kGog0y6UOK6L2AmkujJqTK9t1Of_IkIfbeuqmwNHWd9i-pL9QTGfzzw9cpdycf_-8GG3D64j_VurvcaXk34KduoALUAUzZfhPl_VAsXYdZnjZryDfw-VFcqZ6XxIp04yH41sh1FzgrHhneEo4ydHon1QXEk2AXl3xSVbO0IY_2vjBQrbi8Vcn92ZakQmXDDTDGiYuFzRnkjo5J5SSfLhp5o29slOHmWbX8L03mR22VgCrc2bGcdgeF1pNChhhiWSSWtCZx0SrUgqLc2NROlc2q4cZk2Gs1kjRTXT8ka6bgFa_dTriuZj6ceXqntlU6--DJt8NmCL7UNm-FHF3v39GIf4WX_eLCf7u8e7L2HOUEZNT5ZeAWm0VJ2FSnRUH_wOGTw87mB_xcChx03 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrUD0gEoBsfQDH-ACsjax87FbCaFCu2opXVUtFb0F27EBqU3aZlfV8tP4dcw4CQEkeus5iaX1vM28F8-8AXihYyTBLo24i3XOIyS0XAdxwIUJDdJZ7aQf2ncwSXZPog-n8ekC_Gx7Yaissn0n-hd1Xhr6Rj5AITMktzgxHLimLOJwe_z24pLTBCk6aW3HadQQ2bfza5Rv1Zu9bYz1SyHGO5_e7_JmwgA3MkymXFo1TK2IEifyCH-NUCjwRzp3CrFjEoVcRiml45FOIx2O8CFpkV_pINRBLl0ocd07sJiSKurB4rudyeFRmwcSEfrZXXUTG6bR9kzVN-4JVIM88N3LI8nnf2fFjur-czrrk954GR40bJVt1fB6CAu2WIGlPzwMV-CuryE11SP4caTOVcEq4y078SL73pl4lAUrHZteE6py9vlYDA7KY8G-UTVOWZvYzlD5bzLyr7g6U6gE2LmltmRCETPljFqHvzKqIplVzBs8WTb1tNtePYaTW9n4J9ArysI-BaZwa8M0HwoU25HC9BqiSJNKWhM46ZTqQ9BubWYa33Mav3GWdY7NFI0M188oGtm8D69-P3JRm37cdPNaG6-s-f9XWYfWPrxuY9hd_u9iz25e7DncQ9BnH_cm-6twX1B5ja8cXoMeBsquIz-a6o0GiAy-3Db2fwH6IiLJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Raman+scattering+investigation+of+twisted+WS2%2FMoS2+heterostructures%3A+interlayer+mechanical+coupling+versus+charge+transfer&rft.jtitle=Nano+research&rft.au=Wu%2C+Lishu&rft.au=Cong%2C+Chunxiao&rft.au=Shang%2C+Jingzhi&rft.au=Yang%2C+Weihuang&rft.date=2021-07-01&rft.pub=Tsinghua+University+Press&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=14&rft.issue=7&rft.spage=2215&rft.epage=2223&rft_id=info:doi/10.1007%2Fs12274-020-3193-y&rft.externalDocID=10_1007_s12274_020_3193_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1998-0124&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1998-0124&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1998-0124&client=summon |