Raman scattering investigation of twisted WS2/MoS2 heterostructures: interlayer mechanical coupling versus charge transfer

Twisted van der Waals homo- and hetero-structures have aroused great attentions due to their unique physical properties, providing a new platform to explore the novel two-dimensional (2D) condensed matter physics. The robust dependence of phonon vibrations and electronic band structures on the twist...

Full description

Saved in:
Bibliographic Details
Published inNano research Vol. 14; no. 7; pp. 2215 - 2223
Main Authors Wu, Lishu, Cong, Chunxiao, Shang, Jingzhi, Yang, Weihuang, Chen, Yu, Zhou, Jiadong, Ai, Wei, Wang, Yanlong, Feng, Shun, Zhang, Hongbo, Liu, Zheng, Yu, Ting
Format Journal Article
LanguageEnglish
Published Beijing Tsinghua University Press 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Twisted van der Waals homo- and hetero-structures have aroused great attentions due to their unique physical properties, providing a new platform to explore the novel two-dimensional (2D) condensed matter physics. The robust dependence of phonon vibrations and electronic band structures on the twist angle has been intensively observed in transition metal dichalcogenide (TMD) homo-structures. However, the effects of twist angle on the lattice vibrational properties in the TMD heterostructures have not caused enough attention. Here, we report the distinct evolutions of Raman scattering and the underlying interlayer interactions in the twisted WS 2 /MoS 2 heterostructures. The shifts and linewidths of E 2g (Γ) and A 1g (Γ) phonon modes are found to be twist angle dependent. In particular, analogous to that of the twisted TMD homostructures, the frequency separations between E 2g (Γ) and A 1g (Γ) modes of MoS 2 and WS 2 in the twisted heterostructures varying with twist angle correlate with the interlayer mechanical coupling, essentially originating from the spacing-related repulsion between sulfur atoms. Moreover, the opposite shift behaviors and broadening of A 1g (Γ) modes caused by charge transfer are also observed in the twisted heterostructures. The calculated interlayer distances and band alignment of twisted WS 2 /MoS 2 through density functional theory further evidence our interpretations on the roles of the interlayer mechanical coupling and charge transfer in variations of Raman features. Such understanding and controlling of interlayer interaction through the stacking orientation are significant for future optoelectronic device design based on the newly emerged 2D heterostructures.
AbstractList Twisted van der Waals homo- and hetero-structures have aroused great attentions due to their unique physical properties, providing a new platform to explore the novel two-dimensional (2D) condensed matter physics. The robust dependence of phonon vibrations and electronic band structures on the twist angle has been intensively observed in transition metal dichalcogenide (TMD) homo-structures. However, the effects of twist angle on the lattice vibrational properties in the TMD heterostructures have not caused enough attention. Here, we report the distinct evolutions of Raman scattering and the underlying interlayer interactions in the twisted WS 2 /MoS 2 heterostructures. The shifts and linewidths of E 2g (Γ) and A 1g (Γ) phonon modes are found to be twist angle dependent. In particular, analogous to that of the twisted TMD homostructures, the frequency separations between E 2g (Γ) and A 1g (Γ) modes of MoS 2 and WS 2 in the twisted heterostructures varying with twist angle correlate with the interlayer mechanical coupling, essentially originating from the spacing-related repulsion between sulfur atoms. Moreover, the opposite shift behaviors and broadening of A 1g (Γ) modes caused by charge transfer are also observed in the twisted heterostructures. The calculated interlayer distances and band alignment of twisted WS 2 /MoS 2 through density functional theory further evidence our interpretations on the roles of the interlayer mechanical coupling and charge transfer in variations of Raman features. Such understanding and controlling of interlayer interaction through the stacking orientation are significant for future optoelectronic device design based on the newly emerged 2D heterostructures.
Twisted van der Waals homo- and hetero-structures have aroused great attentions due to their unique physical properties, providing a new platform to explore the novel two-dimensional (2D) condensed matter physics. The robust dependence of phonon vibrations and electronic band structures on the twist angle has been intensively observed in transition metal dichalcogenide (TMD) homo-structures. However, the effects of twist angle on the lattice vibrational properties in the TMD heterostructures have not caused enough attention. Here, we report the distinct evolutions of Raman scattering and the underlying interlayer interactions in the twisted WS2/MoS2 heterostructures. The shifts and linewidths of E2g(Γ) and A1g(Γ) phonon modes are found to be twist angle dependent. In particular, analogous to that of the twisted TMD homostructures, the frequency separations between E2g(Γ) and A1g(Γ) modes of MoS2 and WS2 in the twisted heterostructures varying with twist angle correlate with the interlayer mechanical coupling, essentially originating from the spacing-related repulsion between sulfur atoms. Moreover, the opposite shift behaviors and broadening of A1g(Γ) modes caused by charge transfer are also observed in the twisted heterostructures. The calculated interlayer distances and band alignment of twisted WS2/MoS2 through density functional theory further evidence our interpretations on the roles of the interlayer mechanical coupling and charge transfer in variations of Raman features. Such understanding and controlling of interlayer interaction through the stacking orientation are significant for future optoelectronic device design based on the newly emerged 2D heterostructures.
Author Zhou, Jiadong
Ai, Wei
Cong, Chunxiao
Yang, Weihuang
Wu, Lishu
Wang, Yanlong
Chen, Yu
Feng, Shun
Liu, Zheng
Shang, Jingzhi
Zhang, Hongbo
Yu, Ting
Author_xml – sequence: 1
  givenname: Lishu
  surname: Wu
  fullname: Wu, Lishu
  organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University
– sequence: 2
  givenname: Chunxiao
  surname: Cong
  fullname: Cong, Chunxiao
  email: cxcong@fudan.edu.cn
  organization: School of Information Science and Technology, Fudan University
– sequence: 3
  givenname: Jingzhi
  surname: Shang
  fullname: Shang, Jingzhi
  email: iamjzshang@nwpu.edu.cn
  organization: Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University
– sequence: 4
  givenname: Weihuang
  surname: Yang
  fullname: Yang, Weihuang
  organization: Engineering Research Center of Smart Microsensors and Microsystems, Ministry of Education, College of Electronics and Information, Hangzhou Dianzi University
– sequence: 5
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
  organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University
– sequence: 6
  givenname: Jiadong
  surname: Zhou
  fullname: Zhou, Jiadong
  organization: School of Materials Science and Engineering, Nanyang Technological University
– sequence: 7
  givenname: Wei
  surname: Ai
  fullname: Ai, Wei
  organization: Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University
– sequence: 8
  givenname: Yanlong
  surname: Wang
  fullname: Wang, Yanlong
  organization: Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
– sequence: 9
  givenname: Shun
  surname: Feng
  fullname: Feng, Shun
  organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University
– sequence: 10
  givenname: Hongbo
  surname: Zhang
  fullname: Zhang, Hongbo
  organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University
– sequence: 11
  givenname: Zheng
  surname: Liu
  fullname: Liu, Zheng
  organization: School of Materials Science and Engineering, Nanyang Technological University
– sequence: 12
  givenname: Ting
  surname: Yu
  fullname: Yu, Ting
  email: yuting@ntu.edu.sg
  organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University
BookMark eNp9kEtLxDAQgIMouD5-gLeA52qSptvWmyy-QBF84DFM0-ka6aZrkq7UX2_WKoKguSRM5pvHt0M2bWeRkAPOjjhj-bHnQuQyYYIlKS_TZNggE16WRcLi2fx-cyG3yY73L4xNBZfFhLzfwQIs9RpCQGfsnBq7Qh_MHILpLO0aGt6MD1jTp3txfNPdC_qMMbXzwfU69A79SWRipIUBHV2gfgZrNLRUd_2yXZdcofO9p_HDzZEGB9Y36PbIVgOtx_2ve5c8np89zC6T69uLq9npdaJTPg1JilDkKOS0EbWsUAtgZVpWdQOMST2FLM8AoMrKKpcVLyOUYtRQMV6xOm14uksOx7pL1732cTf10vXOxpZKZLKQmWSiiFn5mKXjat5ho7QJnw7ivKZVnKm1aDWKVrGDWotWQyT5L3LpzALc8C8jRsYv19LR_cz0N_QBf6uV5A
CitedBy_id crossref_primary_10_1016_j_jechem_2024_01_076
crossref_primary_10_1007_s11705_023_2382_0
crossref_primary_10_1021_acsanm_2c05240
crossref_primary_10_1021_acsnano_2c10092
crossref_primary_10_1016_j_surfcoat_2025_132034
crossref_primary_10_1039_D4MH01456A
crossref_primary_10_1021_acs_jpclett_5c00004
crossref_primary_10_1002_ange_202422393
crossref_primary_10_1016_j_apsusc_2024_161843
crossref_primary_10_1039_D3RA02952B
crossref_primary_10_1021_acs_chemrev_3c00627
crossref_primary_10_3390_app14052179
crossref_primary_10_1002_anie_202422393
crossref_primary_10_1021_acs_nanolett_3c03324
crossref_primary_10_1038_s41699_022_00308_6
crossref_primary_10_1209_0295_5075_accdfe
crossref_primary_10_1007_s12274_022_4964_4
crossref_primary_10_1039_D2NH00226D
crossref_primary_10_1021_acsnano_1c03779
crossref_primary_10_3390_nano14030248
crossref_primary_10_1016_j_jallcom_2024_174177
crossref_primary_10_1021_acsaelm_3c00529
crossref_primary_10_1007_s12274_021_3806_0
crossref_primary_10_1002_adom_202202495
crossref_primary_10_1039_D1TC03662A
crossref_primary_10_1007_s12274_022_5007_x
crossref_primary_10_1021_acsnano_2c00914
crossref_primary_10_1088_1361_6633_acfe89
crossref_primary_10_1007_s12274_024_6936_3
crossref_primary_10_3390_ma17163933
crossref_primary_10_1016_j_jallcom_2022_165286
crossref_primary_10_1016_j_apcatb_2023_122554
crossref_primary_10_1021_acsnano_3c07665
crossref_primary_10_1021_acsami_1c24368
crossref_primary_10_1063_5_0106676
crossref_primary_10_1007_s11467_023_1355_6
crossref_primary_10_1039_D1TA10788G
crossref_primary_10_1016_j_est_2024_113193
Cites_doi 10.1038/s41586-019-0986-9
10.1002/adom.201500301
10.1021/acs.nanolett.6b02111
10.1038/ncomms12512
10.1038/nmat4091
10.1002/adma.201504631
10.1021/acsnano.6b01486
10.1103/PhysRevB.87.081307
10.1021/nl500515q
10.1002/smll.201805503
10.1038/nmat4205
10.1038/ncomms7242
10.1038/s41586-019-0975-z
10.1088/0953-8984/28/35/353002
10.1021/nn504229z
10.1038/s41586-019-0976-y
10.1021/nn501779y
10.1007/s12274-015-0762-6
10.1038/nphoton.2015.282
10.1021/nl501077m
10.1021/acs.jpclett.8b03596
10.1038/nmat3505
10.1021/acsnano.7b08253
10.1103/PhysRevB.47.558
10.1103/PhysRevLett.105.136805
10.1021/acs.nanolett.5b02423
10.1063/1.4817409
10.1021/nn5059908
10.1021/acs.nanolett.5b01055
10.1038/nature12385
10.1038/nmat4218
10.1021/cm502170q
10.1007/s12274-019-2513-6
10.1021/nn505736z
10.1021/acs.nanolett.5b05015
10.1038/nmat4064
10.1021/nn1003937
10.1002/aelm.201600298
10.1002/adma.201906536
10.1039/c3nr03052k
10.1021/acsnano.7b00640
10.1038/ncomms5709
10.1002/advs.201700086
10.1021/acs.chemmater.8b01672
10.1021/nl501988y
10.1002/jcc.20495
10.1002/adom.201300428
10.1038/nmat3633
10.1038/ncomms5966
10.1038/s41586-019-0957-1
10.1007/s12274-017-1792-z
10.1002/adma.201804979
10.1021/acsnano.5b01884
10.1063/1.4774090
10.1021/nn507278b
10.1039/C4CS00282B
10.1038/nnano.2012.96
10.1038/s41565-018-0301-1
10.1103/PhysRevB.97.245427
10.1002/smll.201202876
10.1103/PhysRevB.84.155413
10.1021/nl5014597
10.1103/PhysRevB.85.161403
10.1038/nnano.2014.167
ContentType Journal Article
Copyright Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7QF
7QO
7QQ
7SE
7SR
7U5
7X7
7XB
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H8G
HCIFZ
JG9
K9.
KB.
L7M
LK8
M0S
M7P
P64
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s12274-020-3193-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Corrosion Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Copper Technical Reference Library
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
METADEX
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
DatabaseTitleList
Materials Research Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1998-0000
EndPage 2223
ExternalDocumentID 10_1007_s12274_020_3193_y
GroupedDBID -58
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
123
1N0
29M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
6NX
7X7
8AO
8FE
8FG
8FH
8FI
8FJ
95-
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACCUX
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADFRT
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRJ
FRP
FRRFC
FSGXE
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HH5
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
J-C
JBSCW
JZLTJ
KB.
KOV
LK8
LLZTM
M4Y
M7P
N2Q
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P2P
P9N
PDBOC
PQQKQ
PROAC
PT4
Q2X
QOR
R89
R9I
RNS
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
TGP
7QF
7QO
7QQ
7SE
7SR
7U5
7XB
8BQ
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H8G
JG9
K9.
L7M
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
ID FETCH-LOGICAL-c316t-3ea87e246f2d4bec2a0939bdfa004c6a575aaab59b74b19c313e020b01b0d3f13
IEDL.DBID U2A
ISSN 1998-0124
IngestDate Sat Aug 23 14:55:43 EDT 2025
Tue Jul 01 01:46:58 EDT 2025
Thu Apr 24 23:10:39 EDT 2025
Fri Feb 21 02:48:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords van der Waals heterostructures
interlayer coupling
Raman scattering
charge transfer
twist angle
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-3ea87e246f2d4bec2a0939bdfa004c6a575aaab59b74b19c313e020b01b0d3f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2548454028
PQPubID 326270
PageCount 9
ParticipantIDs proquest_journals_2548454028
crossref_citationtrail_10_1007_s12274_020_3193_y
crossref_primary_10_1007_s12274_020_3193_y
springer_journals_10_1007_s12274_020_3193_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210700
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 7
  year: 2021
  text: 20210700
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Nano research
PublicationTitleAbbrev Nano Res
PublicationYear 2021
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References Chakraborty, Bera, Muthu, Bhowmick, Waghmare, Sood (CR59) 2012; 85
Puretzky, Liang, Li, Xiao, Wang, Mahjouri-Samani, Basile, Idrobo, Sumpter, Meunier (CR13) 2015; 9
Van Der Zande, Huang, Chenet, Berkelbach, You, Lee, Heinz, Reichman, Muller, Hone (CR36) 2013; 12
Grimme (CR64) 2006; 27
Zheng, Sun, Zhou, Liu, Liu, Shen, Fan (CR18) 2015; 3
Ceballos, Bellus, Chiu, Zhao (CR27) 2014; 8
Rivera, Schaibley, Jones, Ross, Wu, Aivazian, Klement, Seyler, Clark, Ghimire (CR28) 2015; 6
Kang, Tongay, Zhou, Li, Wu (CR40) 2013; 102
Huang, Ling, Liang, Kong, Terrones, Meunier, Dresselhaus (CR20) 2014; 14
Lee, Yan, Brus, Heinz, Hone, Ryu (CR53) 2010; 4
Roy, Tosun, Cao, Fang, Lien, Zhao, Chen, Chueh, Guo, Javey (CR15) 2015; 9
Alexeev, Ruiz-Tijerina, Danovich, Hamer, Terry, Nayak, Ahn, Pak, Lee, Sohn (CR11) 2019; 567
Huang, Liang, Ling, Puretzky, Geohegan, Sumpter, Kong, Meunier, Dresselhaus (CR17) 2016; 16
Gong, Zhang, Wang, Colombo, Wallace, Cho (CR39) 2013; 103
Li, Wu, Huang, Yin, Liu, Zhang (CR6) 2014; 8
Huang, Wu, Sanchez, Peters, Beanland, Ross, Rivera, Yao, Cobden, Xu (CR30) 2014; 13
Seyler, Rivera, Yu, Wilson, Ray, Mandrus, Yan, Yao, Xu (CR9) 2019; 567
Rigos, Hill, Li, Chernikov, Heinz (CR22) 2015; 15
Torun, Miranda, Molina-Sánchez, Wirtz (CR31) 2018; 97
Chen, Wen, Zhang, Wu, Gong, Zhang, Yuan, Yi, Lou, Ajayan (CR45) 2016; 7
Rice, Young, Zan, Bangert, Wolverson, Georgiou, Jalil, Novoselov (CR57) 2013; 87
Wang, Cong, Yang, Shang, Peimyoo, Chen, Kang, Wang, Huang, Yu (CR61) 2015; 8
Feng, Cong, Peimyoo, Chen, Shang, Zou, Cao, Wu, Zhang, Eginligil (CR34) 2018; 11
Feng, Cong, Konabe, Zhang, Shang, Chen, Zou, Cao, Wu, Peimyoo (CR43) 2019; 15
Zhang, Qiao, Shi, Wu, Jiang, Tan (CR58) 2015; 44
Zhang, Hong, Lian, Ma, Xu, Zhou, Fu, Liu, Meng (CR23) 2017; 4
Li, Huang, Zhong, Li, Wang, Li, Wei (CR4) 2016; 2
Tran, Moody, Wu, Lu, Choi, Kim, Rai, Sanchez, Quan, Singh (CR10) 2019; 567
Wang, Xia (CR2) 2015; 14
Mak, He, Lee, Lee, Hone, Heinz, Shan (CR41) 2013; 12
Zhou, Zhao, Zhu (CR25) 2019; 10
Chiu, Li, Zhang, Hsu, Chang, Terrones, Terrones, Li (CR12) 2014; 8
Wang, Huang, Tian, Ceballos, Lin, Mahjouri-Samani, Boulesbaa, Puretzky, Rouleau, Yoon (CR26) 2016; 10
Jin, Regan, Yan, Utama, Wang, Zhao, Qin, Yang, Zheng, Shi (CR8) 2019; 567
Sun, Li, Wang, Zhang, Li, Duan, Duan (CR5) 2019; 12
Geim, Grigorieva (CR1) 2013; 499
Nayak, Horbatenko, Ahn, Kim, Lee, Ma, Jang, Lim, Kim, Ryu (CR47) 2017; 11
Zhao, Ghorannevis, Amara, Pang, Toh, Zhang, Kloc, Tan, Eda (CR52) 2013; 5
Dadgar, Scullion, Kang, Esposito, Yang, Herman, Pimenta, Santos, Pasupathy (CR54) 2018; 30
Tongay, Fan, Kang, Park, Koldemir, Suh, Narang, Liu, Ji, Li (CR24) 2014; 14
Van Der Zande, Kunstmann, Chernikov, Chenet, You, Zhang, Huang, Berkelbach, Wang, Zhang (CR16) 2014; 14
Saito, Tatsumi, Huang, Ling, Dresselhaus (CR62) 2016; 28
Kresse, Hafner (CR63) 1993; 47
Mak, Lee, Hone, Shan, Heinz (CR51) 2010; 105
Withers, Del Pozo-Zamudio, Mishchenko, Rooney, Gholinia, Watanabe, Taniguchi, Haigh, Geim, Tartakovskii (CR7) 2015; 14
Mak, He, Shan, Heinz (CR42) 2012; 7
Gong, Lin, Wang, Shi, Lei, Lin, Zou, Ye, Vajtai, Yakobson (CR49) 2014; 13
Cong, Yu (CR38) 2014; 5
Wang, Cong, Qiu, Yu (CR55) 2013; 9
Lin, Ling, Yu, Huang, Hsu, Lee, Kong, Dresselhaus, Palacios (CR50) 2014; 14
Mak, Shan (CR46) 2018; 13
Chen, Peng, Cong, Shang, Wu, Yang, Zhou, Yu, Zhang, Wang (CR37) 2019; 31
Cong, Shang, Wu, Cao, Peimyoo, Qiu, Sun, Yu (CR32) 2014; 2
Liu, Lu, Ho, Hu, Dang, Carvalho, Tan, Tok, Sow (CR35) 2016; 16
Okada, Kutana, Kureishi, Kobayashi, Saito, Saito, Watanabe, Taniguchi, Gupta, Miyata (CR48) 2018; 12
Hong, Kim, Shi, Zhang, Jin, Sun, Tongay, Wu, Zhang, Wang (CR21) 2014; 9
Gong, Lei, Ye, Li, He, Keyshar, Zhang, Wang, Lou, Liu (CR29) 2015; 15
Molina-Sánchez, Wirtz (CR56) 2011; 84
Zhang, Wang, Chen, Sun, Wu, Jia, Lu, Yu, Chen, Zhu (CR60) 2016; 28
Lim, Yoon, Kim, Jang, Shin (CR14) 2014; 26
Liu, Zhang, Cao, Jin, Qiu, Zhou, Zettl, Yang, Louie, Wang (CR19) 2014; 5
Mak, Shan (CR3) 2016; 10
Shang, Shen, Cong, Peimyoo, Cao, Eginligil, Yu (CR44) 2015; 9
Zhou, Lin, Sims, Jiang, Cong, Brehm, Zhang, Niu, Chen, Zhou (CR33) 2020; 32
S J Zheng (3193_CR18) 2015; 3
A M Van Der Zande (3193_CR16) 2014; 14
C Gong (3193_CR39) 2013; 103
Y Chen (3193_CR37) 2019; 31
C X Cong (3193_CR38) 2014; 5
J Zhang (3193_CR23) 2017; 4
Y L Wang (3193_CR61) 2015; 8
K F Mak (3193_CR51) 2010; 105
H Z Zhou (3193_CR25) 2019; 10
H Lim (3193_CR14) 2014; 26
K H Liu (3193_CR19) 2014; 5
C X Cong (3193_CR32) 2014; 2
K F Mak (3193_CR42) 2012; 7
G Z Sun (3193_CR5) 2019; 12
S Grimme (3193_CR64) 2006; 27
K Wang (3193_CR26) 2016; 10
A A Puretzky (3193_CR13) 2015; 9
P Rivera (3193_CR28) 2015; 6
E Torun (3193_CR31) 2018; 97
W J Zhao (3193_CR52) 2013; 5
H W Liu (3193_CR35) 2016; 16
A M Van Der Zande (3193_CR36) 2013; 12
K F Mak (3193_CR3) 2016; 10
X P Hong (3193_CR21) 2014; 9
C H Jin (3193_CR8) 2019; 567
A Molina-Sánchez (3193_CR56) 2011; 84
R Saito (3193_CR62) 2016; 28
J Zhang (3193_CR60) 2016; 28
M H Chiu (3193_CR12) 2014; 8
Y X Lin (3193_CR50) 2014; 14
A K Geim (3193_CR1) 2013; 499
K Tran (3193_CR10) 2019; 567
A M Dadgar (3193_CR54) 2018; 30
J D Zhou (3193_CR33) 2020; 32
K F Mak (3193_CR46) 2018; 13
C M Huang (3193_CR30) 2014; 13
Y L Wang (3193_CR55) 2013; 9
K F Mak (3193_CR41) 2013; 12
P K Nayak (3193_CR47) 2017; 11
H L Chen (3193_CR45) 2016; 7
B Li (3193_CR4) 2016; 2
E M Alexeev (3193_CR11) 2019; 567
X Zhang (3193_CR58) 2015; 44
M Okada (3193_CR48) 2018; 12
C Rice (3193_CR57) 2013; 87
S Tongay (3193_CR24) 2014; 14
S X Huang (3193_CR17) 2016; 16
S X Huang (3193_CR20) 2014; 14
Y J Gong (3193_CR49) 2014; 13
H Li (3193_CR6) 2014; 8
F Ceballos (3193_CR27) 2014; 8
J Z Shang (3193_CR44) 2015; 9
B Chakraborty (3193_CR59) 2012; 85
T Roy (3193_CR15) 2015; 9
F Withers (3193_CR7) 2015; 14
J Kang (3193_CR40) 2013; 102
S Feng (3193_CR34) 2018; 11
G Kresse (3193_CR63) 1993; 47
Y J Gong (3193_CR29) 2015; 15
X M Wang (3193_CR2) 2015; 14
C Lee (3193_CR53) 2010; 4
A F Rigos (3193_CR22) 2015; 15
S Feng (3193_CR43) 2019; 15
K L Seyler (3193_CR9) 2019; 567
References_xml – volume: 4
  start-page: 2695
  year: 2010
  end-page: 2700
  ident: CR53
  article-title: Anomalous lattice vibrations of single- and few-layer MoS
  publication-title: ACS Nano
– volume: 7
  start-page: 494
  year: 2012
  end-page: 498
  ident: CR42
  article-title: Control of valley polarization in monolayer MoS by optical helicity
  publication-title: Nat. Nanotechnol.
– volume: 3
  start-page: 1600
  year: 2015
  end-page: 1605
  ident: CR18
  article-title: Coupling and interlayer exciton in twist-stacked WS bilayers
  publication-title: Adv. Opt. Mater.
– volume: 103
  start-page: 053513
  year: 2013
  ident: CR39
  article-title: Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 12512
  year: 2016
  ident: CR45
  article-title: Ultrafast formation of interlayer hot excitons in atomically thin MoS /WS heterostructures
  publication-title: Nat. Commun.
– volume: 12
  start-page: 554
  year: 2013
  end-page: 561
  ident: CR36
  article-title: Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide
  publication-title: Nat. Mater.
– volume: 97
  start-page: 245427
  year: 2018
  ident: CR31
  article-title: Interlayer and intralayer excitons in MoS /WS and MoSe /WSe heterobilayers
  publication-title: Phys. Rev. B
– volume: 14
  start-page: 301
  year: 2015
  end-page: 306
  ident: CR7
  article-title: Light-emitting diodes by band-structure engineering in van der Waals heterostructures
  publication-title: Nat. Mater.
– volume: 2
  start-page: 131
  year: 2014
  end-page: 136
  ident: CR32
  article-title: Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS monolayer from chemical vapor deposition
  publication-title: Adv. Opt. Mater.
– volume: 2
  start-page: 1600298
  year: 2016
  ident: CR4
  article-title: Direct vapor phase growth and optoelectronic application of large band offset SnS /MoS vertical bilayer heterostructures with high lattice mismatch
  publication-title: Adv. Electron. Mater.
– volume: 5
  start-page: 9677
  year: 2013
  end-page: 9683
  ident: CR52
  article-title: Lattice dynamics in mono- and few-layer sheets of WS and WSe
  publication-title: Nanoscale
– volume: 9
  start-page: 682
  year: 2014
  end-page: 686
  ident: CR21
  article-title: Ultrafast charge transfer in atomically thin MoS /WS heterostructures
  publication-title: Nat. Nanotechnol.
– volume: 28
  start-page: 353002
  year: 2016
  ident: CR62
  article-title: Raman spectroscopy of transition metal dichalcogenides
  publication-title: J. Phys. Condens. Matter
– volume: 567
  start-page: 66
  year: 2019
  end-page: 70
  ident: CR9
  article-title: Signatures of moiré-trapped valley excitons in MoSe /WSe heterobilayers
  publication-title: Nature
– volume: 8
  start-page: 6563
  year: 2014
  end-page: 6570
  ident: CR6
  article-title: A universal, rapid method for clean transfer of nanostructures onto various substrates
  publication-title: ACS Nano
– volume: 44
  start-page: 2757
  year: 2015
  end-page: 2785
  ident: CR58
  article-title: Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 6333
  year: 2015
  end-page: 6342
  ident: CR13
  article-title: Low-frequency Raman fingerprints of two-dimensional metal dichalcogenide layer stacking configurations
  publication-title: ACS Nano
– volume: 87
  start-page: 081307
  year: 2013
  ident: CR57
  article-title: Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS
  publication-title: Phys. Rev. B
– volume: 31
  start-page: 1804979
  year: 2019
  ident: CR37
  article-title: In-plane anisotropic thermal conductivity of few-layered transition metal dichalcogenide Td-WTe2
  publication-title: Adv. Mater.
– volume: 14
  start-page: 3185
  year: 2014
  end-page: 3190
  ident: CR24
  article-title: Tuning interlayer coupling in large-area heterostructures with CVD-Grown MoS and WS monolayers
  publication-title: Nano Lett.
– volume: 27
  start-page: 1787
  year: 2006
  end-page: 1799
  ident: CR64
  article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction
  publication-title: J. Comput. Chem.
– volume: 12
  start-page: 2781
  year: 2019
  end-page: 2787
  ident: CR5
  article-title: Selective growth of wide band gap atomically thin Sb O inorganic molecular crystal on WS
  publication-title: Nano Res.
– volume: 84
  start-page: 155413
  year: 2011
  ident: CR56
  article-title: Phonons in single-layer and few-layer MoS and WS
  publication-title: Phys. Rev. B
– volume: 567
  start-page: 71
  year: 2019
  end-page: 75
  ident: CR10
  article-title: Evidence for moiré excitons in van der Waals heterostructures
  publication-title: Nature
– volume: 14
  start-page: 5569
  year: 2014
  end-page: 5576
  ident: CR50
  article-title: Dielectric screening of excitons and trions in single-layer MoS
  publication-title: Nano Lett.
– volume: 8
  start-page: 12717
  year: 2014
  end-page: 12724
  ident: CR27
  article-title: Ultrafast charge separation and indirect exciton formation in a MoS -MoSe van der waals heterostructure
  publication-title: ACS Nano
– volume: 499
  start-page: 419
  year: 2013
  end-page: 425
  ident: CR1
  article-title: Van der Waals heterostructures
  publication-title: Nature
– volume: 5
  start-page: 4966
  year: 2014
  ident: CR19
  article-title: Evolution of interlayer coupling in twisted molybdenum disulfide bilayers
  publication-title: Nat. Commun.
– volume: 16
  start-page: 5559
  year: 2016
  end-page: 5567
  ident: CR35
  article-title: Fluorescence concentric triangles: A case of chemical heterogeneity in WS atomic monolayer
  publication-title: Nano Lett.
– volume: 11
  start-page: 1744
  year: 2018
  end-page: 1754
  ident: CR34
  article-title: Tunable excitonic emission of monolayer WS for the optical detection of DNA nucleobases
  publication-title: Nano Res.
– volume: 567
  start-page: 76
  year: 2019
  end-page: 80
  ident: CR8
  article-title: Observation of moiré excitons in WSe /WS heterostructure superlattices
  publication-title: Nature
– volume: 10
  start-page: 150
  year: 2019
  end-page: 155
  ident: CR25
  article-title: Dielectric environment-robust ultrafast charge transfer between two atomic layers
  publication-title: J. Phys. Chem. Lett.
– volume: 47
  start-page: 558
  year: 1993
  end-page: 561
  ident: CR63
  article-title: molecular dynamics for liquid metals
  publication-title: Phys. Rev. B
– volume: 567
  start-page: 81
  year: 2019
  end-page: 86
  ident: CR11
  article-title: Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures
  publication-title: Nature
– volume: 12
  start-page: 2498
  year: 2018
  end-page: 2505
  ident: CR48
  article-title: Direct and indirect interlayer excitons in a van der waals heterostructure of hBN/WS /MoS /hBN
  publication-title: ACS Nano
– volume: 15
  start-page: 1805503
  year: 2019
  ident: CR43
  article-title: Engineering valley polarization of monolayer WS : A physical doping approach
  publication-title: Small
– volume: 105
  start-page: 136805
  year: 2010
  ident: CR51
  article-title: Atomically thin MoS : A new direct-gap semiconductor
  publication-title: Phys. Rev. Lett.
– volume: 9
  start-page: 647
  year: 2015
  end-page: 655
  ident: CR44
  article-title: Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor
  publication-title: ACS Nano
– volume: 6
  start-page: 6242
  year: 2015
  ident: CR28
  article-title: Observation of long-lived interlayer excitons in monolayer MoSe -WSe heterostructures
  publication-title: Nat. Commun.
– volume: 12
  start-page: 207
  year: 2013
  end-page: 211
  ident: CR41
  article-title: Tightly bound trions in monolayer MoS
  publication-title: Nat. Mater.
– volume: 13
  start-page: 1096
  year: 2014
  end-page: 1101
  ident: CR30
  article-title: Lateral heterojunctions within monolayer MoSe -WSe semiconductors
  publication-title: Nat. Mater.
– volume: 85
  start-page: 161403
  year: 2012
  ident: CR59
  article-title: Symmetry-dependent phonon renormalization in monolayer MoS transistor
  publication-title: Phys. Rev. B
– volume: 13
  start-page: 1135
  year: 2014
  end-page: 1142
  ident: CR49
  article-title: Vertical and in-plane heterostructures from WS /MoS monolayers
  publication-title: Nat. Mater.
– volume: 9
  start-page: 2857
  year: 2013
  end-page: 2861
  ident: CR55
  article-title: Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS under uniaxial strain
  publication-title: Small
– volume: 4
  start-page: 1700086
  year: 2017
  ident: CR23
  article-title: Interlayer-state-coupling dependent ultrafast charge transfer in MoS /WS Bilayers
  publication-title: Adv. Sci.
– volume: 10
  start-page: 6612
  year: 2016
  end-page: 6622
  ident: CR26
  article-title: Interlayer coupling in twisted WSe /WS bilayer heterostructures revealed by optical spectroscopy
  publication-title: ACS Nano
– volume: 10
  start-page: 216
  year: 2016
  end-page: 226
  ident: CR3
  article-title: Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides
  publication-title: Nat. Photonics
– volume: 14
  start-page: 264
  year: 2015
  end-page: 265
  ident: CR2
  article-title: Stacked 2D materials shed light
  publication-title: Nat. Mater.
– volume: 26
  start-page: 4891
  year: 2014
  end-page: 4903
  ident: CR14
  article-title: Stacking of two-dimensional materials in lateral and vertical directions
  publication-title: Chem. Mater.
– volume: 8
  start-page: 2562
  year: 2015
  end-page: 2572
  ident: CR61
  article-title: Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS
  publication-title: Nano Res.
– volume: 14
  start-page: 3869
  year: 2014
  end-page: 3875
  ident: CR16
  article-title: Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist
  publication-title: Nano Lett.
– volume: 15
  start-page: 6135
  year: 2015
  end-page: 6141
  ident: CR29
  article-title: Two-step growth of two-dimensional WSe /MoSe heterostructures
  publication-title: Nano Lett.
– volume: 15
  start-page: 5033
  year: 2015
  end-page: 5038
  ident: CR22
  article-title: Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS /WS and MoSe /WSe
  publication-title: Nano Lett.
– volume: 9
  start-page: 2071
  year: 2015
  end-page: 2079
  ident: CR15
  article-title: Dual-gated MoS /WSe van der waals tunnel diodes and transistors
  publication-title: ACS Nano
– volume: 8
  start-page: 9649
  year: 2014
  end-page: 9656
  ident: CR12
  article-title: Spectroscopic Signatures for Interlayer Coupling in MoS -WSe2 van der Waals Stacking
  publication-title: ACS Nano
– volume: 102
  start-page: 012111
  year: 2013
  ident: CR40
  article-title: Band offsets and heterostructures of two-dimensional semiconductors
  publication-title: Appl. Phys. Lett.
– volume: 14
  start-page: 5500
  year: 2014
  end-page: 5508
  ident: CR20
  article-title: Probing the interlayer coupling of twisted bilayer MoS using photoluminescence spectroscopy
  publication-title: Nano Lett.
– volume: 11
  start-page: 4041
  year: 2017
  end-page: 4050
  ident: CR47
  article-title: Probing evolution of twist-angle-dependent interlayer excitons in MoSe /WSe van der waals heterostructures
  publication-title: ACS Nano
– volume: 32
  start-page: 1906536
  year: 2020
  ident: CR33
  article-title: Synthesis of Co-Doped MoS monolayers with enhanced valley splitting
  publication-title: Adv. Mater.
– volume: 5
  start-page: 4709
  year: 2014
  ident: CR38
  article-title: Enhanced ultra-low-frequency interlayer shear modes in folded graphene layers
  publication-title: Nat. Commun.
– volume: 13
  start-page: 974
  year: 2018
  end-page: 976
  ident: CR46
  article-title: Opportunities and challenges of interlayer exciton control and manipulation
  publication-title: Nat. Nanotechnol.
– volume: 30
  start-page: 5148
  year: 2018
  end-page: 5155
  ident: CR54
  article-title: Strain engineering and Raman spectroscopy of monolayer transition metal dichalcogenides
  publication-title: Chem. Mater.
– volume: 28
  start-page: 1950
  year: 2016
  end-page: 1956
  ident: CR60
  article-title: Observation of Strong Interlayer Coupling in MoS /WS Heterostructures
  publication-title: Adv. Mater.
– volume: 16
  start-page: 1435
  year: 2016
  end-page: 1444
  ident: CR17
  article-title: Low-frequency interlayer Raman modes to probe interface of twisted bilayer MoS
  publication-title: Nano Lett.
– volume: 567
  start-page: 81
  year: 2019
  ident: 3193_CR11
  publication-title: Nature
  doi: 10.1038/s41586-019-0986-9
– volume: 3
  start-page: 1600
  year: 2015
  ident: 3193_CR18
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201500301
– volume: 16
  start-page: 5559
  year: 2016
  ident: 3193_CR35
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b02111
– volume: 7
  start-page: 12512
  year: 2016
  ident: 3193_CR45
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12512
– volume: 13
  start-page: 1135
  year: 2014
  ident: 3193_CR49
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4091
– volume: 28
  start-page: 1950
  year: 2016
  ident: 3193_CR60
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504631
– volume: 10
  start-page: 6612
  year: 2016
  ident: 3193_CR26
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01486
– volume: 87
  start-page: 081307
  year: 2013
  ident: 3193_CR57
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.081307
– volume: 14
  start-page: 3185
  year: 2014
  ident: 3193_CR24
  publication-title: Nano Lett.
  doi: 10.1021/nl500515q
– volume: 15
  start-page: 1805503
  year: 2019
  ident: 3193_CR43
  publication-title: Small
  doi: 10.1002/smll.201805503
– volume: 14
  start-page: 301
  year: 2015
  ident: 3193_CR7
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4205
– volume: 6
  start-page: 6242
  year: 2015
  ident: 3193_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7242
– volume: 567
  start-page: 71
  year: 2019
  ident: 3193_CR10
  publication-title: Nature
  doi: 10.1038/s41586-019-0975-z
– volume: 28
  start-page: 353002
  year: 2016
  ident: 3193_CR62
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/28/35/353002
– volume: 8
  start-page: 9649
  year: 2014
  ident: 3193_CR12
  publication-title: ACS Nano
  doi: 10.1021/nn504229z
– volume: 567
  start-page: 76
  year: 2019
  ident: 3193_CR8
  publication-title: Nature
  doi: 10.1038/s41586-019-0976-y
– volume: 8
  start-page: 6563
  year: 2014
  ident: 3193_CR6
  publication-title: ACS Nano
  doi: 10.1021/nn501779y
– volume: 8
  start-page: 2562
  year: 2015
  ident: 3193_CR61
  publication-title: Nano Res.
  doi: 10.1007/s12274-015-0762-6
– volume: 10
  start-page: 216
  year: 2016
  ident: 3193_CR3
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.282
– volume: 14
  start-page: 3869
  year: 2014
  ident: 3193_CR16
  publication-title: Nano Lett.
  doi: 10.1021/nl501077m
– volume: 10
  start-page: 150
  year: 2019
  ident: 3193_CR25
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b03596
– volume: 12
  start-page: 207
  year: 2013
  ident: 3193_CR41
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3505
– volume: 12
  start-page: 2498
  year: 2018
  ident: 3193_CR48
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08253
– volume: 47
  start-page: 558
  year: 1993
  ident: 3193_CR63
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 105
  start-page: 136805
  year: 2010
  ident: 3193_CR51
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.136805
– volume: 15
  start-page: 6135
  year: 2015
  ident: 3193_CR29
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02423
– volume: 103
  start-page: 053513
  year: 2013
  ident: 3193_CR39
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4817409
– volume: 9
  start-page: 647
  year: 2015
  ident: 3193_CR44
  publication-title: ACS Nano
  doi: 10.1021/nn5059908
– volume: 15
  start-page: 5033
  year: 2015
  ident: 3193_CR22
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01055
– volume: 499
  start-page: 419
  year: 2013
  ident: 3193_CR1
  publication-title: Nature
  doi: 10.1038/nature12385
– volume: 14
  start-page: 264
  year: 2015
  ident: 3193_CR2
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4218
– volume: 26
  start-page: 4891
  year: 2014
  ident: 3193_CR14
  publication-title: Chem. Mater.
  doi: 10.1021/cm502170q
– volume: 12
  start-page: 2781
  year: 2019
  ident: 3193_CR5
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2513-6
– volume: 8
  start-page: 12717
  year: 2014
  ident: 3193_CR27
  publication-title: ACS Nano
  doi: 10.1021/nn505736z
– volume: 16
  start-page: 1435
  year: 2016
  ident: 3193_CR17
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b05015
– volume: 13
  start-page: 1096
  year: 2014
  ident: 3193_CR30
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4064
– volume: 4
  start-page: 2695
  year: 2010
  ident: 3193_CR53
  publication-title: ACS Nano
  doi: 10.1021/nn1003937
– volume: 2
  start-page: 1600298
  year: 2016
  ident: 3193_CR4
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201600298
– volume: 32
  start-page: 1906536
  year: 2020
  ident: 3193_CR33
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906536
– volume: 5
  start-page: 9677
  year: 2013
  ident: 3193_CR52
  publication-title: Nanoscale
  doi: 10.1039/c3nr03052k
– volume: 11
  start-page: 4041
  year: 2017
  ident: 3193_CR47
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00640
– volume: 5
  start-page: 4709
  year: 2014
  ident: 3193_CR38
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5709
– volume: 4
  start-page: 1700086
  year: 2017
  ident: 3193_CR23
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700086
– volume: 30
  start-page: 5148
  year: 2018
  ident: 3193_CR54
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b01672
– volume: 14
  start-page: 5569
  year: 2014
  ident: 3193_CR50
  publication-title: Nano Lett.
  doi: 10.1021/nl501988y
– volume: 27
  start-page: 1787
  year: 2006
  ident: 3193_CR64
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 2
  start-page: 131
  year: 2014
  ident: 3193_CR32
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201300428
– volume: 12
  start-page: 554
  year: 2013
  ident: 3193_CR36
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3633
– volume: 5
  start-page: 4966
  year: 2014
  ident: 3193_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5966
– volume: 567
  start-page: 66
  year: 2019
  ident: 3193_CR9
  publication-title: Nature
  doi: 10.1038/s41586-019-0957-1
– volume: 11
  start-page: 1744
  year: 2018
  ident: 3193_CR34
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1792-z
– volume: 31
  start-page: 1804979
  year: 2019
  ident: 3193_CR37
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804979
– volume: 9
  start-page: 6333
  year: 2015
  ident: 3193_CR13
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01884
– volume: 102
  start-page: 012111
  year: 2013
  ident: 3193_CR40
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4774090
– volume: 9
  start-page: 2071
  year: 2015
  ident: 3193_CR15
  publication-title: ACS Nano
  doi: 10.1021/nn507278b
– volume: 44
  start-page: 2757
  year: 2015
  ident: 3193_CR58
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00282B
– volume: 7
  start-page: 494
  year: 2012
  ident: 3193_CR42
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.96
– volume: 13
  start-page: 974
  year: 2018
  ident: 3193_CR46
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0301-1
– volume: 97
  start-page: 245427
  year: 2018
  ident: 3193_CR31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.245427
– volume: 9
  start-page: 2857
  year: 2013
  ident: 3193_CR55
  publication-title: Small
  doi: 10.1002/smll.201202876
– volume: 84
  start-page: 155413
  year: 2011
  ident: 3193_CR56
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.155413
– volume: 14
  start-page: 5500
  year: 2014
  ident: 3193_CR20
  publication-title: Nano Lett.
  doi: 10.1021/nl5014597
– volume: 85
  start-page: 161403
  year: 2012
  ident: 3193_CR59
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.161403
– volume: 9
  start-page: 682
  year: 2014
  ident: 3193_CR21
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.167
SSID ssj0062148
Score 2.474393
Snippet Twisted van der Waals homo- and hetero-structures have aroused great attentions due to their unique physical properties, providing a new platform to explore...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2215
SubjectTerms Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Charge transfer
Chemical vapor deposition
Chemistry and Materials Science
Condensed Matter Physics
Coupling
Density functional theory
Heterostructures
Interlayers
Lattice vibration
Materials Science
Mechanical properties
Molybdenum disulfide
Nanotechnology
Optical properties
Optoelectronic devices
Phonons
Physical properties
Physics
Raman spectra
Research Article
Sulfur
Transition metal compounds
Tungsten disulfide
Vibrations
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5aEfQgPrFaJQdPSnA32UfXi4hYRKgHtdjbkmQTFequui2iv96ZdLergp7zOORLMt8kM98QcqBCIME2DpgNVcYCILRMeaHHuPY10FllhSva17-OLgfB1TAcVg9uZRVWWd-J7qLOCo1v5MfgyHRRLY53T19eGVaNwt_VqoTGPFlA6TLc1fFw5nBF3HfVs6ZpZGDI6l9NlzrHwR9jnssfTgT7-GmXGrL563_UmZ3eKlmp-CI9mwK8RuZMvk6Wv6kIrpNFF8Wpyw3yeSOfZU5L7UQzoZE-NTIaRU4LS8fviGtG72_5cb-45fQR42GKqYzsBHzvE4oKEm8jCVycPhtMDEYcqS4mmLz7QDGOY1JSJ7Fk6NgRX_O2SQa9i7vzS1YVV2Ba-NGYCSO7seFBZHkWAJBceolIVGYlHBsdSaBxUkoVJioOlJ_AIGFgtZTnKy8T1hdbpJUXudkmVMLS-nHW5eDuBhIMnA9ukpDCaM8KK2WbePXSprpSHscCGKO00UxGNFKYP0U00o82OZwNeZnKbvzXuVPjlVYnsEyb_dImRzWGTfOfk-38P9kuWeIY1eICdjukBeiYPaAlY7Xv9t4Xx4ffwA
  priority: 102
  providerName: ProQuest
Title Raman scattering investigation of twisted WS2/MoS2 heterostructures: interlayer mechanical coupling versus charge transfer
URI https://link.springer.com/article/10.1007/s12274-020-3193-y
https://www.proquest.com/docview/2548454028
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5WTx7EJ1ZrycGTEswm-_RWpVUURazFelqS3USFdlf6QOqvd5LuuioqeNmFzeOQb5P5hsx8g9C-9IAE68Al2pMpcYHQEkk9SljiJEBnpea2aN_VtX_ecy_6Xr_I4x6X0e7llaQ9qatkNwYeFKE24zfiZFZDSx647iaOq8da5fHrM8eWzJrnjoH1Kq8yf5riqzGqGOa3S1FrazqraKUgibg1R3UNLahsHS1_kg7cQG-3YigyPE6sPiZ8ws-VYkae4VzjyauBMMX3XXZ0lXcZfjKhL_lcMXYKbvYxNmIRo4EA2o2HyuQAG8hwkk9Nnu4jNiEb0zG2akoKTyzHVaNN1Ou0707PSVFHgSTc8SeEKxEGirm-ZqkLmDFBIx7JVAvYIYkvgLEJIaQXycCVTgSDuII1ktSRNOXa4VtoMcsztY2wgAV1gjRk4Nm6AmyZAx4RF1wlVHMtRB3RckHjpBAZN7UuBnElj2wwiGH-2GAQz-ro4GPIy1xh46_OjRKluNhs4xh83NAICbKwjg5L5KrmXyfb-VfvXePS0yJMrIEWASy1B4RkIpuoFvQDeIadsyZaap09XLbhfdK-vrlt2p_zHYHF3ro
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1RECocqkKp2BZaH9oLlUViJ9ndSlWFgGUpLAc-BLfUdmyoBAmQXaHtj-pv7IyzIS0S3Dg7thTPi-dNPPMG4JOOkQS7dsRdrDMeIaHlOogDLkxokM5qJ33TvsFB0j-JfpzFZ1Pwp66FobTK-kz0B3VWGPpHvo6BTIfU4kTn-_UNp65RdLtat9CoYLFnx3cYspXfdrfQvp-F6G0fb_b5pKsANzJMhlxa1WlbESVOZBG-gVAY1Hd15hTixSQK-YtSSsdd3Y502MVJ0iKn0kGog0y6UOK6L2AmkujJqTK9t1Of_IkIfbeuqmwNHWd9i-pL9QTGfzzw9cpdycf_-8GG3D64j_VurvcaXk34KduoALUAUzZfhPl_VAsXYdZnjZryDfw-VFcqZ6XxIp04yH41sh1FzgrHhneEo4ydHon1QXEk2AXl3xSVbO0IY_2vjBQrbi8Vcn92ZakQmXDDTDGiYuFzRnkjo5J5SSfLhp5o29slOHmWbX8L03mR22VgCrc2bGcdgeF1pNChhhiWSSWtCZx0SrUgqLc2NROlc2q4cZk2Gs1kjRTXT8ka6bgFa_dTriuZj6ceXqntlU6--DJt8NmCL7UNm-FHF3v39GIf4WX_eLCf7u8e7L2HOUEZNT5ZeAWm0VJ2FSnRUH_wOGTw87mB_xcChx03
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrUD0gEoBsfQDH-ACsjax87FbCaFCu2opXVUtFb0F27EBqU3aZlfV8tP4dcw4CQEkeus5iaX1vM28F8-8AXihYyTBLo24i3XOIyS0XAdxwIUJDdJZ7aQf2ncwSXZPog-n8ekC_Gx7Yaissn0n-hd1Xhr6Rj5AITMktzgxHLimLOJwe_z24pLTBCk6aW3HadQQ2bfza5Rv1Zu9bYz1SyHGO5_e7_JmwgA3MkymXFo1TK2IEifyCH-NUCjwRzp3CrFjEoVcRiml45FOIx2O8CFpkV_pINRBLl0ocd07sJiSKurB4rudyeFRmwcSEfrZXXUTG6bR9kzVN-4JVIM88N3LI8nnf2fFjur-czrrk954GR40bJVt1fB6CAu2WIGlPzwMV-CuryE11SP4caTOVcEq4y078SL73pl4lAUrHZteE6py9vlYDA7KY8G-UTVOWZvYzlD5bzLyr7g6U6gE2LmltmRCETPljFqHvzKqIplVzBs8WTb1tNtePYaTW9n4J9ArysI-BaZwa8M0HwoU25HC9BqiSJNKWhM46ZTqQ9BubWYa33Mav3GWdY7NFI0M188oGtm8D69-P3JRm37cdPNaG6-s-f9XWYfWPrxuY9hd_u9iz25e7DncQ9BnH_cm-6twX1B5ja8cXoMeBsquIz-a6o0GiAy-3Db2fwH6IiLJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Raman+scattering+investigation+of+twisted+WS2%2FMoS2+heterostructures%3A+interlayer+mechanical+coupling+versus+charge+transfer&rft.jtitle=Nano+research&rft.au=Wu%2C+Lishu&rft.au=Cong%2C+Chunxiao&rft.au=Shang%2C+Jingzhi&rft.au=Yang%2C+Weihuang&rft.date=2021-07-01&rft.pub=Tsinghua+University+Press&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=14&rft.issue=7&rft.spage=2215&rft.epage=2223&rft_id=info:doi/10.1007%2Fs12274-020-3193-y&rft.externalDocID=10_1007_s12274_020_3193_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1998-0124&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1998-0124&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1998-0124&client=summon