A generative adversarial network for image denoising
Recent studies have shown that the performance of image denoising methods can be improved significantly by using deep convolutional neural networks(CNN). The traditional CNN ways mainly focus on minimizing the Mean Squared Error (MSE), resulting in a feeling that the images lack of high-frequency de...
Saved in:
Published in | Multimedia tools and applications Vol. 79; no. 23-24; pp. 16517 - 16529 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1380-7501 1573-7721 |
DOI | 10.1007/s11042-019-7556-x |
Cover
Loading…
Abstract | Recent studies have shown that the performance of image denoising methods can be improved significantly by using deep convolutional neural networks(CNN). The traditional CNN ways mainly focus on minimizing the Mean Squared Error (MSE), resulting in a feeling that the images lack of high-frequency details. So we apply a generative adversarial network (GAN) in image denoising. A very deep convolutional densenet framework is acting as our generator, which benefits in easing the vanishing-gradient problem of very deep networks. Moreover, we use Wasserstein-GAN as our loss function to stabilize the training process. Also, the Wasserstein distance between real and generated images from discriminator can be regarded as an indicator that has been proved highly relevant to the quality of the generated sample. A photo-realistic image with higher quality can be produced through our work than in traditional ways. |
---|---|
AbstractList | Recent studies have shown that the performance of image denoising methods can be improved significantly by using deep convolutional neural networks(CNN). The traditional CNN ways mainly focus on minimizing the Mean Squared Error (MSE), resulting in a feeling that the images lack of high-frequency details. So we apply a generative adversarial network (GAN) in image denoising. A very deep convolutional densenet framework is acting as our generator, which benefits in easing the vanishing-gradient problem of very deep networks. Moreover, we use Wasserstein-GAN as our loss function to stabilize the training process. Also, the Wasserstein distance between real and generated images from discriminator can be regarded as an indicator that has been proved highly relevant to the quality of the generated sample. A photo-realistic image with higher quality can be produced through our work than in traditional ways. |
Author | Liu, Lizhuang Zhao, Dan Li, Hongyang Zhong, Yue |
Author_xml | – sequence: 1 givenname: Yue surname: Zhong fullname: Zhong, Yue organization: Shanghai University, Shanghai Advanced Research Institute, Chinese Academy of Sciences – sequence: 2 givenname: Lizhuang orcidid: 0000-0001-8032-4598 surname: Liu fullname: Liu, Lizhuang email: liulz@sari.ac.cn organization: Shanghai Advanced Research Institute, Chinese Academy of Sciences – sequence: 3 givenname: Dan surname: Zhao fullname: Zhao, Dan organization: Shanghai Advanced Research Institute, Chinese Academy of Sciences – sequence: 4 givenname: Hongyang surname: Li fullname: Li, Hongyang organization: Shanghai Advanced Research Institute, Chinese Academy of Sciences |
BookMark | eNp9kE1LAzEQhoNUsK3-AG8Lnldnks1-HEvxCwpe9Byym9lla01qsq3135uygiDoISQw75N5eWZsYp0lxi4RrhGguAmIkPEUsEoLKfP0cMKmKAuRFgXHSXyLEuIE8IzNQlgDYC55NmXZIunIktdDv6dEmz35oH2vN4ml4cP516R1PunfdEeJIev60NvunJ22ehPo4vues5e72-flQ7p6un9cLlZpIzAfUmHqMpaSUNeVoZygzSAeDZLXLUjQtWkqoStTQQ0NBxETghAameUGciPm7Gr8d-vd-47CoNZu521cqTjHsqwqiTymcEw13oXgqVVbHwv7T4WgjnLUKEdFOeooRx0iU_ximn6IDpwdvO43_5J8JEPcYjvyP53-hr4A78Z6vw |
CitedBy_id | crossref_primary_10_1016_j_iswa_2023_200211 crossref_primary_10_1088_1361_6579_ac2c5b crossref_primary_10_1007_s11063_023_11359_1 crossref_primary_10_1145_3625290 crossref_primary_10_1007_s10723_022_09601_6 crossref_primary_10_1007_s12065_023_00850_2 crossref_primary_10_3390_app14051742 crossref_primary_10_1016_j_bspc_2024_106119 crossref_primary_10_3389_fenrg_2024_1452270 crossref_primary_10_1155_2021_9974017 crossref_primary_10_1016_j_pmatsci_2023_101165 crossref_primary_10_1109_ACCESS_2022_3162608 crossref_primary_10_1007_s13042_023_01871_0 crossref_primary_10_3390_app122110767 crossref_primary_10_1007_s11042_022_13096_4 crossref_primary_10_1109_ACCESS_2021_3092425 crossref_primary_10_1080_1206212X_2024_2420870 crossref_primary_10_3390_sym15061181 |
Cites_doi | 10.5201/ipol.2012.l-bm3d 10.5201/ipol.2012.llm-ksvd 10.1109/TPAMI.2015.2439281 10.1109/TIP.2017.2662206 10.1109/CVPRW.2017.145 10.1109/CVPR.2017.243 10.1109/CVPR.2012.6247952 10.1109/CVPR.2018.00338 10.1109/CVPR.2016.308 10.1109/ICCV.2017.514 10.1007/978-3-319-46493-0_38 10.5201/ipol.2011.bcm_nlm 10.1109/CVPRW.2017.149 10.1109/CVPR.2017.19 10.5244/C.26.135 10.1109/CVPR.2016.90 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Springer Science+Business Media, LLC, part of Springer Nature 2019. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-019-7556-x |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library (Proquest) Research Library (Corporate) AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 16529 |
ExternalDocumentID | 10_1007_s11042_019_7556_x |
GrantInformation_xml | – fundername: External Cooperation Program of BIC,Chinese Academy of Sciences grantid: 184131KYS820150003 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c316t-3db804250bb9de6e0f400f4a052bf050abdc93a9d90b0c203e0f3e10c546d06d3 |
IEDL.DBID | U2A |
ISSN | 1380-7501 |
IngestDate | Fri Jul 25 23:35:20 EDT 2025 Tue Jul 01 02:06:59 EDT 2025 Thu Apr 24 22:54:54 EDT 2025 Fri Feb 21 02:37:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23-24 |
Keywords | Densenet Generative adversarial network Wasserstein-GAN Image denoising |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-3db804250bb9de6e0f400f4a052bf050abdc93a9d90b0c203e0f3e10c546d06d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8032-4598 |
PQID | 2218899512 |
PQPubID | 54626 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2218899512 crossref_primary_10_1007_s11042_019_7556_x crossref_citationtrail_10_1007_s11042_019_7556_x springer_journals_10_1007_s11042_019_7556_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200600 2020-6-00 20200601 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 6 year: 2020 text: 20200600 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | CR19 CR18 Buades, Coll, Morel (CR5) 2011; 1 CR17 CR14 CR13 CR12 Abadi, Barham, Chen (CR1) 2016; 16 CR11 CR10 Lebrun (CR15) 2012; 2 CR30 Zhang, Zuo, Chen (CR29) 2017; 26 CR2 CR4 CR3 CR6 CR7 CR28 CR9 Lebrun, Leclaire (CR16) 2012; 2 CR27 CR26 CR25 CR24 CR23 CR22 Dong, Loy, He (CR8) 2016; 38 CR21 CR20 7556_CR2 7556_CR3 7556_CR4 7556_CR6 7556_CR7 7556_CR27 7556_CR28 7556_CR9 7556_CR23 7556_CR24 7556_CR25 7556_CR26 7556_CR20 7556_CR21 M Lebrun (7556_CR15) 2012; 2 7556_CR22 K Zhang (7556_CR29) 2017; 26 7556_CR17 7556_CR18 C Dong (7556_CR8) 2016; 38 7556_CR19 7556_CR12 7556_CR13 7556_CR14 7556_CR30 7556_CR10 M Abadi (7556_CR1) 2016; 16 A Buades (7556_CR5) 2011; 1 7556_CR11 M Lebrun (7556_CR16) 2012; 2 |
References_xml | – ident: CR22 – ident: CR18 – volume: 2 start-page: 175 year: 2012 end-page: 213 ident: CR15 article-title: An analysis and implementation of the BM3D image denoising method publication-title: Image Processing On Line doi: 10.5201/ipol.2012.l-bm3d – ident: CR4 – ident: CR14 – ident: CR2 – ident: CR12 – ident: CR30 – ident: CR10 – ident: CR6 – ident: CR25 – ident: CR27 – ident: CR23 – volume: 2 start-page: 96 year: 2012 end-page: 133 ident: CR16 article-title: An implementation and detailed analysis of the K-SVD image denoising algorithm publication-title: Image Processing On Line doi: 10.5201/ipol.2012.llm-ksvd – ident: CR21 – volume: 1 start-page: 208 year: 2011 end-page: 212 ident: CR5 article-title: Non-local means denoising publication-title: Image Processing On Line – ident: CR19 – volume: 16 start-page: 265 year: 2016 end-page: 283 ident: CR1 article-title: TensorFlow: a system for large-scale machine learning publication-title: OSDI – ident: CR3 – ident: CR17 – ident: CR13 – volume: 38 start-page: 295 issue: 2 year: 2016 end-page: 307 ident: CR8 article-title: Image super-resolution using deep convolutional networks publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2015.2439281 – ident: CR11 – ident: CR9 – volume: 26 start-page: 3142 issue: 7 year: 2017 end-page: 3155 ident: CR29 article-title: Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2017.2662206 – ident: CR7 – ident: CR28 – ident: CR26 – ident: CR24 – ident: CR20 – ident: 7556_CR2 – volume: 38 start-page: 295 issue: 2 year: 2016 ident: 7556_CR8 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2015.2439281 – ident: 7556_CR7 doi: 10.1109/CVPRW.2017.145 – volume: 2 start-page: 175 year: 2012 ident: 7556_CR15 publication-title: Image Processing On Line doi: 10.5201/ipol.2012.l-bm3d – ident: 7556_CR27 – ident: 7556_CR13 doi: 10.1109/CVPR.2017.243 – ident: 7556_CR21 – ident: 7556_CR23 – volume: 16 start-page: 265 year: 2016 ident: 7556_CR1 publication-title: OSDI – ident: 7556_CR19 – volume: 26 start-page: 3142 issue: 7 year: 2017 ident: 7556_CR29 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2017.2662206 – ident: 7556_CR10 – ident: 7556_CR14 – ident: 7556_CR6 doi: 10.1109/CVPR.2012.6247952 – ident: 7556_CR18 doi: 10.1109/CVPR.2018.00338 – ident: 7556_CR24 doi: 10.1109/CVPR.2016.308 – ident: 7556_CR26 doi: 10.1109/ICCV.2017.514 – ident: 7556_CR3 – ident: 7556_CR22 – ident: 7556_CR12 doi: 10.1007/978-3-319-46493-0_38 – ident: 7556_CR28 – ident: 7556_CR20 – volume: 1 start-page: 208 year: 2011 ident: 7556_CR5 publication-title: Image Processing On Line doi: 10.5201/ipol.2011.bcm_nlm – ident: 7556_CR9 – ident: 7556_CR25 doi: 10.1109/CVPRW.2017.149 – ident: 7556_CR30 doi: 10.1109/TIP.2017.2662206 – ident: 7556_CR17 doi: 10.1109/CVPR.2017.19 – ident: 7556_CR4 doi: 10.5244/C.26.135 – volume: 2 start-page: 96 year: 2012 ident: 7556_CR16 publication-title: Image Processing On Line doi: 10.5201/ipol.2012.llm-ksvd – ident: 7556_CR11 doi: 10.1109/CVPR.2016.90 |
SSID | ssj0016524 |
Score | 2.3668215 |
Snippet | Recent studies have shown that the performance of image denoising methods can be improved significantly by using deep convolutional neural networks(CNN). The... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 16517 |
SubjectTerms | Artificial neural networks Computer Communication Networks Computer Science Data Structures and Information Theory Generative adversarial networks Image quality Multimedia Multimedia Information Systems Neural networks Noise Noise reduction Special Purpose and Application-Based Systems |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JSwMxFA7aXvTgUhWrVXLwpATTydLJSaq0FMEiYqG3IZlkRNBptRX6832ZZjoq2HOWw5e8PXkfQhex0YrZSBMDtphwF0tiMqVIlhnLjHNtWrzNeRjKwYjfj8U4JNxm4VllqRMLRW0nqc-RX0dgiyA2APt0M_0gnjXKV1cDhcYmqoMKjiH4qt_2ho9PqzqCFIHWNqYEbGO7rGsWn-fa_msKuDgwIiRZ_LZMlbv5p0JaGJ7-HtoJHiPuLo94H224vIF2SzYGHISzgbZ_tBY8QLyLX4qO0l6dYe1pl2faXzacLx9-Y_BW8es7qBMMqmfy6nMGh2jU7z3fDUhgSCApa8s5YdbEXuqoMco66WgGIplxTUVkMiqoNjZVTCurqKFpRBnMYIB_Kri0VFp2hGr5JHfHCHOjnBGyw6yWvMPTWDoZWcDMWculEU1ES3SSNLQP9ywWb0nV-NgDmgCgiQc0WTTR5WrJdNk7Y93kVgl5EsRollSH3kRX5TFUw_9udrJ-s1O0FfmwuUimtFBt_vnlzsC3mJvzcIG-AXSmyso priority: 102 providerName: ProQuest |
Title | A generative adversarial network for image denoising |
URI | https://link.springer.com/article/10.1007/s11042-019-7556-x https://www.proquest.com/docview/2218899512 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu8CBxwAxGFMOnECR0uax9ljQHgIxIcSkcaqaJkWTYENsSPx8nK5dAQESpx7q5PAltj_HiQ1wGugk5MZPqEZfTIUNFNVZGNIs04Zraz2W3825GarBSFyN5bh4xz0vb7uXKcncUleP3Tz3lAQpCe1IqSgSx7p0oTtu4pEfrVIHShadbAOGgswrU5k_TfHVGVUM81tSNPc1vR3YKkgiiZarugtrdtqA7bIBAyn0sQGbn6oJ7oGIyGNeRNpZMJK4TsvzxO0vMl3e9SZIUMnkGS0IQWszm7hjgn0Y9br3lwNaNEWgKffUgnKjA6doTOvQWGVZhlqYiYRJX2dMskSbNORJaEKmWeozjhIcIU-lUIYpww-gNp1N7SEQoUOrpepwkyjREWmgrPINYmaNEUrLJrASnTgtKoa7xhVPcVXr2AEaI6CxAzR-b8LZasjLslzGX8KtEvK40Jx57CPnwBgQeUgTzstlqH7_OtnRv6SPYcN3gXN-nNKC2uL1zZ4gu1joNqwHvX4b6lH_4bqL34vu8Paune-xD6zuyn8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09T8MwED2VMgADHwVE-fQAC8jCjR0TDwghoBQKnVqpW4hjB1WCFmgR5U_xGzmnCQUkujHbsaLn57uzz74HsBvoSHHjRVSjL6bCBpLqRCmaJNpwbW2FpXdzbhuy1hLXbb9dgI_8LYy7VpnbxNRQm17szsgPPfRFuDdA_3Ty9EydapTLruYSGiNa1O37G27Z-sdX5zi_e55XvWie1WimKkBjXpEDyo0OHFOZ1spYaVmCNE5ExHxPJ8xnkTax4pEyimkWe4xjD47_HPtCGiYNx3GnYFpwrtyKCqqXX1kL6WciugGj6IkreRY1fapXcQ9hMKDCFl_S4U8_OA5uf-VjUzdXXYT5LD4lpyNCLUHBdkuwkGs_kMwUlGDuWyHDZRCn5D6tX-2MJ4mcyHM_ctQm3dE1c4KxMek8ovEiaOh6HXdCsQKtf0FuFYrdXteuARFaWe3LI24iKY5EHEgrPYOYWWOE1H4ZWI5OGGfFyp1mxkM4LrPsAA0R0NABGg7LsP_1ydOoUsekzps55GG2aPvhmGJlOMinYdz852DrkwfbgZla8_YmvLlq1Ddg1nMb9vQYZxOKg5dXu4VRzUBvp1QicPff3P0Em7AGcw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTwIxEJ4oJkYPPlAjitqDXjSNZdstuwdjUCQgSojRxNu63XYNiYIKRv1r_jqnyy6oidw8t9tsvn6dR2c6A7DrqdDn2gmpQl1MhfEkVbHv0zhWmitjSizJzblsyfqNOL91b6fgM3sLY9MqM5mYCGrdi-wd-aGDugh9A9RPh3GaFtGu1o6fnqntIGUjrVk7jSFFmubjDd23_lGjinu95zi1s-vTOk07DNCIl-SAcq08y1qmlK-NNCxGSsciZK6jYuayUOnI56GvfaZY5DCOMzj-f-QKqZnUHNedhpkyekUsBzMnZ6321SiGId20pa7HKOrlUhZTTR7uleyzGDSvcMSV9P2nVhybur-is4nSqy3BQmqtksqQXsswZbp5WMw6QZBUMORh_ltZwxUQFXKfVLO2opSEtuVzP7REJ91h0jlBS5l0HlGUERR7vY69r1iFm3_Bbg1y3V7XrAMRyjfKlWWuQynKIvKkkY5GzIzWQiq3ACxDJ4jS0uW2g8ZDMC66bAENENDAAhq8F2B_9MnTsG7HpMnFDPIgPcL9YEy4Ahxk2zAe_nOxjcmL7cAs8ja4aLSamzDnWO89udMpQm7w8mq20MQZqO2USwTu_pu-X0uXDAU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generative+adversarial+network+for+image+denoising&rft.jtitle=Multimedia+tools+and+applications&rft.au=Zhong%2C+Yue&rft.au=Liu%2C+Lizhuang&rft.au=Zhao%2C+Dan&rft.au=Li%2C+Hongyang&rft.date=2020-06-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=79&rft.issue=23-24&rft.spage=16517&rft.epage=16529&rft_id=info:doi/10.1007%2Fs11042-019-7556-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_019_7556_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |