A generative adversarial network for image denoising

Recent studies have shown that the performance of image denoising methods can be improved significantly by using deep convolutional neural networks(CNN). The traditional CNN ways mainly focus on minimizing the Mean Squared Error (MSE), resulting in a feeling that the images lack of high-frequency de...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 79; no. 23-24; pp. 16517 - 16529
Main Authors Zhong, Yue, Liu, Lizhuang, Zhao, Dan, Li, Hongyang
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
DOI10.1007/s11042-019-7556-x

Cover

Loading…
Abstract Recent studies have shown that the performance of image denoising methods can be improved significantly by using deep convolutional neural networks(CNN). The traditional CNN ways mainly focus on minimizing the Mean Squared Error (MSE), resulting in a feeling that the images lack of high-frequency details. So we apply a generative adversarial network (GAN) in image denoising. A very deep convolutional densenet framework is acting as our generator, which benefits in easing the vanishing-gradient problem of very deep networks. Moreover, we use Wasserstein-GAN as our loss function to stabilize the training process. Also, the Wasserstein distance between real and generated images from discriminator can be regarded as an indicator that has been proved highly relevant to the quality of the generated sample. A photo-realistic image with higher quality can be produced through our work than in traditional ways.
AbstractList Recent studies have shown that the performance of image denoising methods can be improved significantly by using deep convolutional neural networks(CNN). The traditional CNN ways mainly focus on minimizing the Mean Squared Error (MSE), resulting in a feeling that the images lack of high-frequency details. So we apply a generative adversarial network (GAN) in image denoising. A very deep convolutional densenet framework is acting as our generator, which benefits in easing the vanishing-gradient problem of very deep networks. Moreover, we use Wasserstein-GAN as our loss function to stabilize the training process. Also, the Wasserstein distance between real and generated images from discriminator can be regarded as an indicator that has been proved highly relevant to the quality of the generated sample. A photo-realistic image with higher quality can be produced through our work than in traditional ways.
Author Liu, Lizhuang
Zhao, Dan
Li, Hongyang
Zhong, Yue
Author_xml – sequence: 1
  givenname: Yue
  surname: Zhong
  fullname: Zhong, Yue
  organization: Shanghai University, Shanghai Advanced Research Institute, Chinese Academy of Sciences
– sequence: 2
  givenname: Lizhuang
  orcidid: 0000-0001-8032-4598
  surname: Liu
  fullname: Liu, Lizhuang
  email: liulz@sari.ac.cn
  organization: Shanghai Advanced Research Institute, Chinese Academy of Sciences
– sequence: 3
  givenname: Dan
  surname: Zhao
  fullname: Zhao, Dan
  organization: Shanghai Advanced Research Institute, Chinese Academy of Sciences
– sequence: 4
  givenname: Hongyang
  surname: Li
  fullname: Li, Hongyang
  organization: Shanghai Advanced Research Institute, Chinese Academy of Sciences
BookMark eNp9kE1LAzEQhoNUsK3-AG8Lnldnks1-HEvxCwpe9Byym9lla01qsq3135uygiDoISQw75N5eWZsYp0lxi4RrhGguAmIkPEUsEoLKfP0cMKmKAuRFgXHSXyLEuIE8IzNQlgDYC55NmXZIunIktdDv6dEmz35oH2vN4ml4cP516R1PunfdEeJIev60NvunJ22ehPo4vues5e72-flQ7p6un9cLlZpIzAfUmHqMpaSUNeVoZygzSAeDZLXLUjQtWkqoStTQQ0NBxETghAameUGciPm7Gr8d-vd-47CoNZu521cqTjHsqwqiTymcEw13oXgqVVbHwv7T4WgjnLUKEdFOeooRx0iU_ximn6IDpwdvO43_5J8JEPcYjvyP53-hr4A78Z6vw
CitedBy_id crossref_primary_10_1016_j_iswa_2023_200211
crossref_primary_10_1088_1361_6579_ac2c5b
crossref_primary_10_1007_s11063_023_11359_1
crossref_primary_10_1145_3625290
crossref_primary_10_1007_s10723_022_09601_6
crossref_primary_10_1007_s12065_023_00850_2
crossref_primary_10_3390_app14051742
crossref_primary_10_1016_j_bspc_2024_106119
crossref_primary_10_3389_fenrg_2024_1452270
crossref_primary_10_1155_2021_9974017
crossref_primary_10_1016_j_pmatsci_2023_101165
crossref_primary_10_1109_ACCESS_2022_3162608
crossref_primary_10_1007_s13042_023_01871_0
crossref_primary_10_3390_app122110767
crossref_primary_10_1007_s11042_022_13096_4
crossref_primary_10_1109_ACCESS_2021_3092425
crossref_primary_10_1080_1206212X_2024_2420870
crossref_primary_10_3390_sym15061181
Cites_doi 10.5201/ipol.2012.l-bm3d
10.5201/ipol.2012.llm-ksvd
10.1109/TPAMI.2015.2439281
10.1109/TIP.2017.2662206
10.1109/CVPRW.2017.145
10.1109/CVPR.2017.243
10.1109/CVPR.2012.6247952
10.1109/CVPR.2018.00338
10.1109/CVPR.2016.308
10.1109/ICCV.2017.514
10.1007/978-3-319-46493-0_38
10.5201/ipol.2011.bcm_nlm
10.1109/CVPRW.2017.149
10.1109/CVPR.2017.19
10.5244/C.26.135
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Springer Science+Business Media, LLC, part of Springer Nature 2019.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2019.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-019-7556-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library (Proquest)
Research Library (Corporate)
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 16529
ExternalDocumentID 10_1007_s11042_019_7556_x
GrantInformation_xml – fundername: External Cooperation Program of BIC,Chinese Academy of Sciences
  grantid: 184131KYS820150003
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c316t-3db804250bb9de6e0f400f4a052bf050abdc93a9d90b0c203e0f3e10c546d06d3
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Fri Jul 25 23:35:20 EDT 2025
Tue Jul 01 02:06:59 EDT 2025
Thu Apr 24 22:54:54 EDT 2025
Fri Feb 21 02:37:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23-24
Keywords Densenet
Generative adversarial network
Wasserstein-GAN
Image denoising
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-3db804250bb9de6e0f400f4a052bf050abdc93a9d90b0c203e0f3e10c546d06d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8032-4598
PQID 2218899512
PQPubID 54626
PageCount 13
ParticipantIDs proquest_journals_2218899512
crossref_primary_10_1007_s11042_019_7556_x
crossref_citationtrail_10_1007_s11042_019_7556_x
springer_journals_10_1007_s11042_019_7556_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200600
2020-6-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 6
  year: 2020
  text: 20200600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CR19
CR18
Buades, Coll, Morel (CR5) 2011; 1
CR17
CR14
CR13
CR12
Abadi, Barham, Chen (CR1) 2016; 16
CR11
CR10
Lebrun (CR15) 2012; 2
CR30
Zhang, Zuo, Chen (CR29) 2017; 26
CR2
CR4
CR3
CR6
CR7
CR28
CR9
Lebrun, Leclaire (CR16) 2012; 2
CR27
CR26
CR25
CR24
CR23
CR22
Dong, Loy, He (CR8) 2016; 38
CR21
CR20
7556_CR2
7556_CR3
7556_CR4
7556_CR6
7556_CR7
7556_CR27
7556_CR28
7556_CR9
7556_CR23
7556_CR24
7556_CR25
7556_CR26
7556_CR20
7556_CR21
M Lebrun (7556_CR15) 2012; 2
7556_CR22
K Zhang (7556_CR29) 2017; 26
7556_CR17
7556_CR18
C Dong (7556_CR8) 2016; 38
7556_CR19
7556_CR12
7556_CR13
7556_CR14
7556_CR30
7556_CR10
M Abadi (7556_CR1) 2016; 16
A Buades (7556_CR5) 2011; 1
7556_CR11
M Lebrun (7556_CR16) 2012; 2
References_xml – ident: CR22
– ident: CR18
– volume: 2
  start-page: 175
  year: 2012
  end-page: 213
  ident: CR15
  article-title: An analysis and implementation of the BM3D image denoising method
  publication-title: Image Processing On Line
  doi: 10.5201/ipol.2012.l-bm3d
– ident: CR4
– ident: CR14
– ident: CR2
– ident: CR12
– ident: CR30
– ident: CR10
– ident: CR6
– ident: CR25
– ident: CR27
– ident: CR23
– volume: 2
  start-page: 96
  year: 2012
  end-page: 133
  ident: CR16
  article-title: An implementation and detailed analysis of the K-SVD image denoising algorithm
  publication-title: Image Processing On Line
  doi: 10.5201/ipol.2012.llm-ksvd
– ident: CR21
– volume: 1
  start-page: 208
  year: 2011
  end-page: 212
  ident: CR5
  article-title: Non-local means denoising
  publication-title: Image Processing On Line
– ident: CR19
– volume: 16
  start-page: 265
  year: 2016
  end-page: 283
  ident: CR1
  article-title: TensorFlow: a system for large-scale machine learning
  publication-title: OSDI
– ident: CR3
– ident: CR17
– ident: CR13
– volume: 38
  start-page: 295
  issue: 2
  year: 2016
  end-page: 307
  ident: CR8
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2439281
– ident: CR11
– ident: CR9
– volume: 26
  start-page: 3142
  issue: 7
  year: 2017
  end-page: 3155
  ident: CR29
  article-title: Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2662206
– ident: CR7
– ident: CR28
– ident: CR26
– ident: CR24
– ident: CR20
– ident: 7556_CR2
– volume: 38
  start-page: 295
  issue: 2
  year: 2016
  ident: 7556_CR8
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2439281
– ident: 7556_CR7
  doi: 10.1109/CVPRW.2017.145
– volume: 2
  start-page: 175
  year: 2012
  ident: 7556_CR15
  publication-title: Image Processing On Line
  doi: 10.5201/ipol.2012.l-bm3d
– ident: 7556_CR27
– ident: 7556_CR13
  doi: 10.1109/CVPR.2017.243
– ident: 7556_CR21
– ident: 7556_CR23
– volume: 16
  start-page: 265
  year: 2016
  ident: 7556_CR1
  publication-title: OSDI
– ident: 7556_CR19
– volume: 26
  start-page: 3142
  issue: 7
  year: 2017
  ident: 7556_CR29
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2662206
– ident: 7556_CR10
– ident: 7556_CR14
– ident: 7556_CR6
  doi: 10.1109/CVPR.2012.6247952
– ident: 7556_CR18
  doi: 10.1109/CVPR.2018.00338
– ident: 7556_CR24
  doi: 10.1109/CVPR.2016.308
– ident: 7556_CR26
  doi: 10.1109/ICCV.2017.514
– ident: 7556_CR3
– ident: 7556_CR22
– ident: 7556_CR12
  doi: 10.1007/978-3-319-46493-0_38
– ident: 7556_CR28
– ident: 7556_CR20
– volume: 1
  start-page: 208
  year: 2011
  ident: 7556_CR5
  publication-title: Image Processing On Line
  doi: 10.5201/ipol.2011.bcm_nlm
– ident: 7556_CR9
– ident: 7556_CR25
  doi: 10.1109/CVPRW.2017.149
– ident: 7556_CR30
  doi: 10.1109/TIP.2017.2662206
– ident: 7556_CR17
  doi: 10.1109/CVPR.2017.19
– ident: 7556_CR4
  doi: 10.5244/C.26.135
– volume: 2
  start-page: 96
  year: 2012
  ident: 7556_CR16
  publication-title: Image Processing On Line
  doi: 10.5201/ipol.2012.llm-ksvd
– ident: 7556_CR11
  doi: 10.1109/CVPR.2016.90
SSID ssj0016524
Score 2.3668215
Snippet Recent studies have shown that the performance of image denoising methods can be improved significantly by using deep convolutional neural networks(CNN). The...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16517
SubjectTerms Artificial neural networks
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Generative adversarial networks
Image quality
Multimedia
Multimedia Information Systems
Neural networks
Noise
Noise reduction
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JSwMxFA7aXvTgUhWrVXLwpATTydLJSaq0FMEiYqG3IZlkRNBptRX6832ZZjoq2HOWw5e8PXkfQhex0YrZSBMDtphwF0tiMqVIlhnLjHNtWrzNeRjKwYjfj8U4JNxm4VllqRMLRW0nqc-RX0dgiyA2APt0M_0gnjXKV1cDhcYmqoMKjiH4qt_2ho9PqzqCFIHWNqYEbGO7rGsWn-fa_msKuDgwIiRZ_LZMlbv5p0JaGJ7-HtoJHiPuLo94H224vIF2SzYGHISzgbZ_tBY8QLyLX4qO0l6dYe1pl2faXzacLx9-Y_BW8es7qBMMqmfy6nMGh2jU7z3fDUhgSCApa8s5YdbEXuqoMco66WgGIplxTUVkMiqoNjZVTCurqKFpRBnMYIB_Kri0VFp2hGr5JHfHCHOjnBGyw6yWvMPTWDoZWcDMWculEU1ES3SSNLQP9ywWb0nV-NgDmgCgiQc0WTTR5WrJdNk7Y93kVgl5EsRollSH3kRX5TFUw_9udrJ-s1O0FfmwuUimtFBt_vnlzsC3mJvzcIG-AXSmyso
  priority: 102
  providerName: ProQuest
Title A generative adversarial network for image denoising
URI https://link.springer.com/article/10.1007/s11042-019-7556-x
https://www.proquest.com/docview/2218899512
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu8CBxwAxGFMOnECR0uax9ljQHgIxIcSkcaqaJkWTYENsSPx8nK5dAQESpx7q5PAltj_HiQ1wGugk5MZPqEZfTIUNFNVZGNIs04Zraz2W3825GarBSFyN5bh4xz0vb7uXKcncUleP3Tz3lAQpCe1IqSgSx7p0oTtu4pEfrVIHShadbAOGgswrU5k_TfHVGVUM81tSNPc1vR3YKkgiiZarugtrdtqA7bIBAyn0sQGbn6oJ7oGIyGNeRNpZMJK4TsvzxO0vMl3e9SZIUMnkGS0IQWszm7hjgn0Y9br3lwNaNEWgKffUgnKjA6doTOvQWGVZhlqYiYRJX2dMskSbNORJaEKmWeozjhIcIU-lUIYpww-gNp1N7SEQoUOrpepwkyjREWmgrPINYmaNEUrLJrASnTgtKoa7xhVPcVXr2AEaI6CxAzR-b8LZasjLslzGX8KtEvK40Jx57CPnwBgQeUgTzstlqH7_OtnRv6SPYcN3gXN-nNKC2uL1zZ4gu1joNqwHvX4b6lH_4bqL34vu8Paune-xD6zuyn8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09T8MwED2VMgADHwVE-fQAC8jCjR0TDwghoBQKnVqpW4hjB1WCFmgR5U_xGzmnCQUkujHbsaLn57uzz74HsBvoSHHjRVSjL6bCBpLqRCmaJNpwbW2FpXdzbhuy1hLXbb9dgI_8LYy7VpnbxNRQm17szsgPPfRFuDdA_3Ty9EydapTLruYSGiNa1O37G27Z-sdX5zi_e55XvWie1WimKkBjXpEDyo0OHFOZ1spYaVmCNE5ExHxPJ8xnkTax4pEyimkWe4xjD47_HPtCGiYNx3GnYFpwrtyKCqqXX1kL6WciugGj6IkreRY1fapXcQ9hMKDCFl_S4U8_OA5uf-VjUzdXXYT5LD4lpyNCLUHBdkuwkGs_kMwUlGDuWyHDZRCn5D6tX-2MJ4mcyHM_ctQm3dE1c4KxMek8ovEiaOh6HXdCsQKtf0FuFYrdXteuARFaWe3LI24iKY5EHEgrPYOYWWOE1H4ZWI5OGGfFyp1mxkM4LrPsAA0R0NABGg7LsP_1ydOoUsekzps55GG2aPvhmGJlOMinYdz852DrkwfbgZla8_YmvLlq1Ddg1nMb9vQYZxOKg5dXu4VRzUBvp1QicPff3P0Em7AGcw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTwIxEJ4oJkYPPlAjitqDXjSNZdstuwdjUCQgSojRxNu63XYNiYIKRv1r_jqnyy6oidw8t9tsvn6dR2c6A7DrqdDn2gmpQl1MhfEkVbHv0zhWmitjSizJzblsyfqNOL91b6fgM3sLY9MqM5mYCGrdi-wd-aGDugh9A9RPh3GaFtGu1o6fnqntIGUjrVk7jSFFmubjDd23_lGjinu95zi1s-vTOk07DNCIl-SAcq08y1qmlK-NNCxGSsciZK6jYuayUOnI56GvfaZY5DCOMzj-f-QKqZnUHNedhpkyekUsBzMnZ6321SiGId20pa7HKOrlUhZTTR7uleyzGDSvcMSV9P2nVhybur-is4nSqy3BQmqtksqQXsswZbp5WMw6QZBUMORh_ltZwxUQFXKfVLO2opSEtuVzP7REJ91h0jlBS5l0HlGUERR7vY69r1iFm3_Bbg1y3V7XrAMRyjfKlWWuQynKIvKkkY5GzIzWQiq3ACxDJ4jS0uW2g8ZDMC66bAENENDAAhq8F2B_9MnTsG7HpMnFDPIgPcL9YEy4Ahxk2zAe_nOxjcmL7cAs8ja4aLSamzDnWO89udMpQm7w8mq20MQZqO2USwTu_pu-X0uXDAU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generative+adversarial+network+for+image+denoising&rft.jtitle=Multimedia+tools+and+applications&rft.au=Zhong%2C+Yue&rft.au=Liu%2C+Lizhuang&rft.au=Zhao%2C+Dan&rft.au=Li%2C+Hongyang&rft.date=2020-06-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=79&rft.issue=23-24&rft.spage=16517&rft.epage=16529&rft_id=info:doi/10.1007%2Fs11042-019-7556-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_019_7556_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon