GLSC: LSC superpixels at over 130 FPS
Superpixel has been successfully applied in various computer vision tasks, and many algorithms have been proposed to generate superpixel map. Recently, a superpixel algorithm called “superpixel segmentation using linear spectral clustering” (LSC) has been proposed, and it performs equally well or be...
Saved in:
Published in | Journal of real-time image processing Vol. 14; no. 3; pp. 605 - 616 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Superpixel has been successfully applied in various computer vision tasks, and many algorithms have been proposed to generate superpixel map. Recently, a superpixel algorithm called “superpixel segmentation using linear spectral clustering” (LSC) has been proposed, and it performs equally well or better than state-of-the art superpixel segmentation algorithms in terms of several commonly used evaluation metrics in superpixel segmentation. Although LSC is of linear complexity, its original implementation runs in few hundreds of milliseconds for images with resolution of 481 × 321 stated by the authors, which is a limitation for some real-time applications such as visual tracking which may needs, for instance, 30 FPS for standard image resolution (e.g., 480 × 320, 640 × 480, 1280 × 720 and 1920 × 1080). Instead of inventing new algorithms with lower complexity than LSC, we will explore LSC to modify its structure and make it suitable to be implemented by parallel technique. The modified LSC algorithm is implemented in CUDA and tested on several NVIDIA graphics processing unit. Our implementation of the proposed modified LSC algorithm achieves speedups of up to 80× from the original sequential implementation, and the quality, measured by two commonly used evaluation metrics, of our implementation keeps being similar to the original one. The source code will be made publicly available. |
---|---|
AbstractList | Superpixel has been successfully applied in various computer vision tasks, and many algorithms have been proposed to generate superpixel map. Recently, a superpixel algorithm called “superpixel segmentation using linear spectral clustering” (LSC) has been proposed, and it performs equally well or better than state-of-the art superpixel segmentation algorithms in terms of several commonly used evaluation metrics in superpixel segmentation. Although LSC is of linear complexity, its original implementation runs in few hundreds of milliseconds for images with resolution of 481 × 321 stated by the authors, which is a limitation for some real-time applications such as visual tracking which may needs, for instance, 30 FPS for standard image resolution (e.g., 480 × 320, 640 × 480, 1280 × 720 and 1920 × 1080). Instead of inventing new algorithms with lower complexity than LSC, we will explore LSC to modify its structure and make it suitable to be implemented by parallel technique. The modified LSC algorithm is implemented in CUDA and tested on several NVIDIA graphics processing unit. Our implementation of the proposed modified LSC algorithm achieves speedups of up to 80× from the original sequential implementation, and the quality, measured by two commonly used evaluation metrics, of our implementation keeps being similar to the original one. The source code will be made publicly available. Superpixel has been successfully applied in various computer vision tasks, and many algorithms have been proposed to generate superpixel map. Recently, a superpixel algorithm called “superpixel segmentation using linear spectral clustering” (LSC) has been proposed, and it performs equally well or better than state-of-the art superpixel segmentation algorithms in terms of several commonly used evaluation metrics in superpixel segmentation. Although LSC is of linear complexity, its original implementation runs in few hundreds of milliseconds for images with resolution of 481 × 321 stated by the authors, which is a limitation for some real-time applications such as visual tracking which may needs, for instance, 30 FPS for standard image resolution (e.g., 480 × 320, 640 × 480, 1280 × 720 and 1920 × 1080). Instead of inventing new algorithms with lower complexity than LSC, we will explore LSC to modify its structure and make it suitable to be implemented by parallel technique. The modified LSC algorithm is implemented in CUDA and tested on several NVIDIA graphics processing unit. Our implementation of the proposed modified LSC algorithm achieves speedups of up to 80× from the original sequential implementation, and the quality, measured by two commonly used evaluation metrics, of our implementation keeps being similar to the original one. The source code will be made publicly available. |
Author | Fouriaux, Jeremy Liu, Jianguo Ban, Zhihua |
Author_xml | – sequence: 1 givenname: Zhihua orcidid: 0000-0002-3209-4916 surname: Ban fullname: Ban, Zhihua organization: National Key laboratory of Science and Technology on Multi-spectral Information Processing, School of Automation, Huazhong University of Science and Technology – sequence: 2 givenname: Jianguo surname: Liu fullname: Liu, Jianguo email: liujg11@126.com organization: National Key laboratory of Science and Technology on Multi-spectral Information Processing, School of Automation, Huazhong University of Science and Technology – sequence: 3 givenname: Jeremy surname: Fouriaux fullname: Fouriaux, Jeremy organization: National Key laboratory of Science and Technology on Multi-spectral Information Processing, School of Automation, Huazhong University of Science and Technology |
BookMark | eNp9kMFKxDAQhoOs4O7qA3grCN6iM02Tpt5kcVehoLB6Dtk0lS61rUkr-jY-i09mloqCoJeZgZlv_pl_RiZN21hCjhHOECA994icJxRQUBA8pnyPTFEKpDLGbPJdAxyQmfdbAJEKxqfkdJWvFxdRCJEfOuu66tXWPtJ91L5YFyGDj_fl3fqQ7Je69vboK8_Jw_LqfnFN89vVzeIyp4ah6CkrWKa1ltqwIpMpL7ISLBQMN1JLKUxSbjLGmJHalsaENqJlQpg04UUsecHm5GTc27n2ebC-V9t2cE2QVHEWfkgTYDJM4ThlXOu9s6XqXPWk3ZtCUDs71GiHCnaonR2KByb9xZiq133VNr3TVf0vGY-kDyrNo3U_N_0NfQL2lXNh |
CitedBy_id | crossref_primary_10_1109_TGRS_2023_3299617 crossref_primary_10_1109_TIP_2017_2708504 crossref_primary_10_1109_TIP_2018_2836306 crossref_primary_10_3233_JIFS_212967 crossref_primary_10_3390_app9122421 crossref_primary_10_1016_j_patcog_2023_109673 crossref_primary_10_1007_s00521_022_07315_0 crossref_primary_10_1007_s11554_018_0762_3 crossref_primary_10_1007_s11554_018_0763_2 crossref_primary_10_1007_s10694_022_01214_5 crossref_primary_10_3390_s18010128 |
Cites_doi | 10.1109/TPAMI.2012.120 10.1109/TCSVT.2014.2382982 10.1023/B:VISI.0000022288.19776.77 10.1007/s11554-013-0337-2 10.1109/TPAMI.2009.96 10.1109/TPAMI.2010.161 10.3390/s151026654 10.1007/s11263-014-0744-2 10.1109/TIP.2013.2297027 10.1109/ICCV.2003.1238308 10.1007/s11554-016-0607-x 10.1109/ICCV.2011.6126385 10.1109/ICIAFS.2014.7069599 10.1109/CVPR.2015.7298741 10.1109/CVPR.2015.7298868 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2016 Springer-Verlag Berlin Heidelberg 2016. |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2016 – notice: Springer-Verlag Berlin Heidelberg 2016. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s11554-016-0652-5 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1861-8219 |
EndPage | 616 |
ExternalDocumentID | 10_1007_s11554_016_0652_5 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LLZTM M4Y MA- N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P9O PF0 PT4 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c316t-3d39aaa8ac3d9875d9f0e0d31b8a886c4fb9333c8aefcc5d911e366c745d285d3 |
IEDL.DBID | U2A |
ISSN | 1861-8200 |
IngestDate | Fri Jul 25 20:11:25 EDT 2025 Thu Jul 03 08:36:05 EDT 2025 Thu Apr 24 23:07:06 EDT 2025 Fri Feb 21 02:39:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | CUDA Superpixel Image segmentation Real time GPGPU |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-3d39aaa8ac3d9875d9f0e0d31b8a886c4fb9333c8aefcc5d911e366c745d285d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3209-4916 |
PQID | 2918674038 |
PQPubID | 2044148 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2918674038 crossref_primary_10_1007_s11554_016_0652_5 crossref_citationtrail_10_1007_s11554_016_0652_5 springer_journals_10_1007_s11554_016_0652_5 |
PublicationCentury | 2000 |
PublicationDate | 20180300 2018-3-00 20180301 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 3 year: 2018 text: 20180300 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Journal of real-time image processing |
PublicationTitleAbbrev | J Real-Time Image Proc |
PublicationYear | 2018 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Achanta, Shaji, Smith, Lucchi, Fua, Süsstrunk (CR1) 2012; 34 Levinshtein, Stere, Kutulakos, Fleet, Dickinson, Siddiqi (CR10) 2009; 31 Guler, Deniz (CR7) 2016; 11 Felzenszwalb, Huttenlocher (CR4) 2004; 59 CR6 CR8 CR18 CR9 CR16 Liu, Xu, Ma, Jin, Zhang (CR12) 2014; 23 CR15 CR14 CR11 Garcia-Garcia, Orts-Escolano, Garcia-Rodriguez, Cazorla (CR5) 2016 Nguyen, Lu, Sepulveda, Yan (CR13) 2015; 25 Sun, Shang, Ming, Tian, Ma (CR17) 2015; 15 Van den Bergh, Boix, Roig, Van Gool (CR3) 2015; 111 Arbelaez, Maire, Fowlkes, Malik (CR2) 2011; 33 X Sun (652_CR17) 2015; 15 X Liu (652_CR12) 2014; 23 652_CR14 652_CR15 A Garcia-Garcia (652_CR5) 2016 652_CR11 M Bergh Van den (652_CR3) 2015; 111 A Levinshtein (652_CR10) 2009; 31 652_CR9 P Felzenszwalb (652_CR4) 2004; 59 652_CR8 TV Nguyen (652_CR13) 2015; 25 652_CR18 652_CR6 652_CR16 P Arbelaez (652_CR2) 2011; 33 P Guler (652_CR7) 2016; 11 R Achanta (652_CR1) 2012; 34 |
References_xml | – year: 2016 ident: CR5 article-title: Interactive 3D object recognition pipeline on mobile GPGPU computing platforms using low-cost RGB-D sensors publication-title: J. Real Time Image Process. – volume: 34 start-page: 2274 issue: 11 year: 2012 end-page: 2282 ident: CR1 article-title: Slic superpixels compared to state-of-the-art superpixel methods publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.120 – volume: 25 start-page: 1565 issue: 10 year: 2015 end-page: 1575 ident: CR13 article-title: Adaptive nonparametric image parsing publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2014.2382982 – ident: CR18 – volume: 59 start-page: 167 issue: 2 year: 2004 end-page: 181 ident: CR4 article-title: Efficient graph-based image segmentation publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000022288.19776.77 – volume: 11 start-page: 457 issue: 3 year: 2016 end-page: 472 ident: CR7 article-title: Real-time multi-camera video analytics system on GPU publication-title: J. Real Time Image Process. doi: 10.1007/s11554-013-0337-2 – ident: CR14 – ident: CR15 – volume: 31 start-page: 2290 issue: 12 year: 2009 end-page: 2297 ident: CR10 article-title: Turbopixels: fast superpixels using geometric flows publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.96 – ident: CR16 – ident: CR11 – ident: CR9 – volume: 33 start-page: 898 issue: 5 year: 2011 end-page: 916 ident: CR2 article-title: Contour detection and hierarchical image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.161 – ident: CR6 – ident: CR8 – volume: 15 start-page: 26654 issue: 10 year: 2015 end-page: 26674 ident: CR17 article-title: A biologically-inspired framework for contour detection using superpixel-based candidates and hierarchical visual cues publication-title: Sensors doi: 10.3390/s151026654 – volume: 111 start-page: 298 issue: 3 year: 2015 end-page: 314 ident: CR3 article-title: Seeds: superpixels extracted via energy-driven sampling publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-014-0744-2 – volume: 23 start-page: 2159 issue: 5 year: 2014 end-page: 2167 ident: CR12 article-title: MsLRR: a unified multiscale low-rank representation for image segmentation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2297027 – volume: 31 start-page: 2290 issue: 12 year: 2009 ident: 652_CR10 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.96 – ident: 652_CR16 doi: 10.1109/ICCV.2003.1238308 – year: 2016 ident: 652_CR5 publication-title: J. Real Time Image Process. doi: 10.1007/s11554-016-0607-x – volume: 25 start-page: 1565 issue: 10 year: 2015 ident: 652_CR13 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2014.2382982 – ident: 652_CR18 doi: 10.1109/ICCV.2011.6126385 – ident: 652_CR14 – volume: 34 start-page: 2274 issue: 11 year: 2012 ident: 652_CR1 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.120 – ident: 652_CR15 – ident: 652_CR9 doi: 10.1109/ICIAFS.2014.7069599 – volume: 15 start-page: 26654 issue: 10 year: 2015 ident: 652_CR17 publication-title: Sensors doi: 10.3390/s151026654 – volume: 33 start-page: 898 issue: 5 year: 2011 ident: 652_CR2 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.161 – ident: 652_CR8 – volume: 23 start-page: 2159 issue: 5 year: 2014 ident: 652_CR12 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2297027 – volume: 111 start-page: 298 issue: 3 year: 2015 ident: 652_CR3 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-014-0744-2 – ident: 652_CR11 doi: 10.1109/CVPR.2015.7298741 – volume: 59 start-page: 167 issue: 2 year: 2004 ident: 652_CR4 publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000022288.19776.77 – ident: 652_CR6 doi: 10.1109/CVPR.2015.7298868 – volume: 11 start-page: 457 issue: 3 year: 2016 ident: 652_CR7 publication-title: J. Real Time Image Process. doi: 10.1007/s11554-013-0337-2 |
SSID | ssj0067635 |
Score | 2.1493468 |
Snippet | Superpixel has been successfully applied in various computer vision tasks, and many algorithms have been proposed to generate superpixel map. Recently, a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 605 |
SubjectTerms | Algorithms Clustering Complexity Computer Graphics Computer Science Computer vision Graphics processing units Image Processing and Computer Vision Image resolution Image retrieval Multimedia Information Systems Optical tracking Pattern Recognition Signal,Image and Speech Processing Source code Special Issue Paper Trends |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA66Xbz4W5xOyUEvSrBdmizxIiqbQ3QM52C3kiYpCLLVrQP_fF-6dEXBXXpJm8JL8r7vJS_fQ-hCShtIozhJgA-QSLY0AdYaETehrGRGmkLU57XPe6PoeczGfsNt7tMqS59YOGoz1W6P_KYlnfRaFFBxl30RVzXKna76EhqbqA4uWIgaqj90-oO30hdzJ7fmQi7BQwJYtzrXLC7POSiFUBoias4gIvuNTBXd_HNCWgBPdxdte8aI75dDvIc27GQf7ZTVGLBfnAfo8ull-HiL4YHni8zOso9vwD2scuyyNDGgCO4Ohodo1O28P_aIL4JANA15TqihUikllKZGQnBhZBrYwNAwEUoIrqM0kZRSLZRNtYbmMLSUc92OmGkJZugRqk2mE3uMsOUmtVq1E-AsEQuUSp0anGQpg19YYRsoKA0Qa68Q7gpVfMaVtrGzWeyywpzNYtZAV6tPsqU8xrqXm6VVY79S5nE1rg10XVq6av63s5P1nZ2iLaA2Ypkt1kS1fLawZ0Af8uTcz5EfwFm8xA priority: 102 providerName: ProQuest |
Title | GLSC: LSC superpixels at over 130 FPS |
URI | https://link.springer.com/article/10.1007/s11554-016-0652-5 https://www.proquest.com/docview/2918674038 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5se_HiW6zWkoN4UAJJN7vd9VZL0-KjFGuhnsJmdwOC1NKm4M_xt_jLnE2TFkUFL8lhNxuYfXzfMLPfAJwJYTyhJXNj5ANuIBrKRdYauHZBGUG10Jmoz32f9UbBzZiO83vc8yLbvQhJZif1-rKbhT50fdEDZhQ9qBJUKLruNo9r1GgVxy-zCmvWy-LMdxHeVqHMn4b4CkZrhvktKJphTbgDWzlJdFrLWd2FDTPZg-2iAIOT78d9OO_eDdtXDj6c-WJqZtPnN4Q6R6aOTcx0EDg-3sPB8ABGYeex3XPzwgeuIj5LXaKJkFJyqYgW6FBokXjG08SPueScqSCJBSFEcWkSpbDZ9w1hTDUDqhucanII5cnrxByBY5hOjJLNGHlKQD0pE6sAJ2hC8ReGmyp4hQUilauC2-IUL9Faz9gaLbKZYNZoEa3CxeqT6VIS46_OtcKsUb475lFDWBm9wCO8CpeFqdfNvw52_K_eJ7CJ7IYvE8ZqUE5nC3OKDCKN61DiYbcOlVb36baD7-tOf_BQz9bRJ5aQvSo |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58HPTiW1yfOehFCbZNk00EEVF3V11FUMFbTZMUBNldd1fUP-VvdNJtXRT0tpde0qZlOp3vm2byDcC2Ui5QVguaIh-gsYoMRdYaU-9QTnGrbC7qc3UtGvfxxQN_GIPPci-ML6ssY2IeqG3b-H_k-5Hy0mtxwORR54X6rlF-dbVsoTFwi0v38YYpW-_w_BTf704U1c7uThq06CpADQtFnzLLlNZaasMsJtz4OFngAsvCVGophYmzFJN8ZqR2mTE4HIaOCWGqMbeR5JbhvOMwGTNEcr8zvVYvI7_w4m4-wZMipIis36uo-VY9D9yYuGP-Ljjmfz9xcEhuf63H5jBXm4OZgp-S44FDzcOYay3AbNn7gRShYBF26s3bkwOCB9J77bhu5-kdUZboPvE1oQQxi9RubpfgfiTGWYaJVrvlVoA4YTNndDVFhhTzQOvMa88pnnG8hZOuAkFpgMQUeuS-LcZzMlRS9jZLfA2at1nCK7D7fUlnIMbx38nrpVWT4rvsJUMvqsBeaenh8J-Trf4_2RZMNe6umknz_PpyDaaRVMlBndo6TPS7r24DiUs_3cy9hcDjqN3zCzWi-Uo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NSgMxEB5qBfHiv1itmoN6UBZ3N5s0ETyIWn-qImjB25pNsiBILe0W9W18A9_BJ3PS7loUFTx42Uuy2TA7yXwfmfkCsCal9aVR3EsQD3iRDLWHqDXynENZyYw0fVGf8wt-3IxOb9hNCV6LWph-tntxJDmoaXAqTa1su23S7WHhmwuDSIORDXOGbCrPqmzY50fkbN3dkwP8wethWD-83j_28msFPE0DnnnUUKmUEkpTg4wb55P61jc0SIQSgusoTZDlUy2UTbXG5iCwlHNdi5gJBTMUxx2B0cgVH-MCaoZ7xdbPnbqbY3iCBx6G1o9j1O-m_DkQDtHtlwPZfpyrT8FEDlDJ3sCjpqFkWzMwWVz-QPK9YBY2js6u9ncIPki317ad9t0ThlmiMuKSQgkGrbeX-uXVHDT_xTrzUG49tOwCEMtNarWqJYiRIuYrlTr1OclShp-wwlbALywQ61yR3F2McR8PtZSd0WKXheaMFrMKbH680h7IcfzWuVqYNc5XZjcOpZPwi3wqKrBVmHrY_ONgi3_qvQpjlwf1-OzkorEE4wiyxCBvrQrlrNOzywhksmSl7zwEbv_bW98BJ_T7VA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GLSC%3A+LSC+superpixels+at+over+130%C2%A0FPS&rft.jtitle=Journal+of+real-time+image+processing&rft.au=Ban%2C+Zhihua&rft.au=Liu%2C+Jianguo&rft.au=Fouriaux%2C+Jeremy&rft.date=2018-03-01&rft.issn=1861-8200&rft.eissn=1861-8219&rft.volume=14&rft.issue=3&rft.spage=605&rft.epage=616&rft_id=info:doi/10.1007%2Fs11554-016-0652-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11554_016_0652_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-8200&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-8200&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-8200&client=summon |