Developing hierarchical CdS/NiO hollow heterogeneous architectures for boosting photocatalytic hydrogen generation

The hierarchical binary CdS/NiO hollow heterogeneous architectures (HHAs) with p-n heterojunction are constructed by a facile microwave-assisted wet chemical process for high-efficient photocatalytic hydrogen evolution reaction (HER) from water. The asdesigned CdS/NiO HHAs are composed of hexagonal...

Full description

Saved in:
Bibliographic Details
Published inNano research Vol. 15; no. 3; pp. 2003 - 2012
Main Authors Deng, Chonghai, Ye, Fan, Wang, Tao, Ling, Xiaohui, Peng, Lulu, Yu, Hong, Ding, Kangzhe, Hu, Hanmei, Dong, Qiang, Le, Huirong, Han, Yongsheng
Format Journal Article
LanguageEnglish
Published Beijing Tsinghua University Press 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The hierarchical binary CdS/NiO hollow heterogeneous architectures (HHAs) with p-n heterojunction are constructed by a facile microwave-assisted wet chemical process for high-efficient photocatalytic hydrogen evolution reaction (HER) from water. The asdesigned CdS/NiO HHAs are composed of hexagonal n-type CdS nanoparticles with a size in the range of 20–40 nm attaching to cubic p-type NiO hollow microspheres (HMSs) which are aggregates of porous nanoplates with a thickness of about 20 nm. The photocatalytic water splitting over CdS/NiO HHAs is significantly increased under simulated solar irradiation, among which the most active sample of CdS/NiO-3 (the mass ratio of CdS to NiO is 1:3) exhibits the fastest photocatalytic HER rate of 1.77 mmol·g −1 ·h −1 , being 16.2 times than that of pure CdS. The boosted photocatalytic HER could be attributed to the synergistic effect on the proportional p-n heterojunction with special hierarchical hollow and porous morphology, an enhancement of visible light absorption, and an improvement of photoinduced charge separation as well as the photo-stability given by the composite heterojunction. This work shows a viable strategy to design the heterojunction with special morphology for the efficient hydrogen generation by water splitting utilizing solar energy.
AbstractList The hierarchical binary CdS/NiO hollow heterogeneous architectures (HHAs) with p-n heterojunction are constructed by a facile microwave-assisted wet chemical process for high-efficient photocatalytic hydrogen evolution reaction (HER) from water. The asdesigned CdS/NiO HHAs are composed of hexagonal n-type CdS nanoparticles with a size in the range of 20–40 nm attaching to cubic p-type NiO hollow microspheres (HMSs) which are aggregates of porous nanoplates with a thickness of about 20 nm. The photocatalytic water splitting over CdS/NiO HHAs is significantly increased under simulated solar irradiation, among which the most active sample of CdS/NiO-3 (the mass ratio of CdS to NiO is 1:3) exhibits the fastest photocatalytic HER rate of 1.77 mmol·g−1·h−1, being 16.2 times than that of pure CdS. The boosted photocatalytic HER could be attributed to the synergistic effect on the proportional p-n heterojunction with special hierarchical hollow and porous morphology, an enhancement of visible light absorption, and an improvement of photoinduced charge separation as well as the photo-stability given by the composite heterojunction. This work shows a viable strategy to design the heterojunction with special morphology for the efficient hydrogen generation by water splitting utilizing solar energy.
The hierarchical binary CdS/NiO hollow heterogeneous architectures (HHAs) with p-n heterojunction are constructed by a facile microwave-assisted wet chemical process for high-efficient photocatalytic hydrogen evolution reaction (HER) from water. The asdesigned CdS/NiO HHAs are composed of hexagonal n-type CdS nanoparticles with a size in the range of 20–40 nm attaching to cubic p-type NiO hollow microspheres (HMSs) which are aggregates of porous nanoplates with a thickness of about 20 nm. The photocatalytic water splitting over CdS/NiO HHAs is significantly increased under simulated solar irradiation, among which the most active sample of CdS/NiO-3 (the mass ratio of CdS to NiO is 1:3) exhibits the fastest photocatalytic HER rate of 1.77 mmol·g −1 ·h −1 , being 16.2 times than that of pure CdS. The boosted photocatalytic HER could be attributed to the synergistic effect on the proportional p-n heterojunction with special hierarchical hollow and porous morphology, an enhancement of visible light absorption, and an improvement of photoinduced charge separation as well as the photo-stability given by the composite heterojunction. This work shows a viable strategy to design the heterojunction with special morphology for the efficient hydrogen generation by water splitting utilizing solar energy.
Author Peng, Lulu
Dong, Qiang
Le, Huirong
Ding, Kangzhe
Han, Yongsheng
Deng, Chonghai
Wang, Tao
Ling, Xiaohui
Ye, Fan
Yu, Hong
Hu, Hanmei
Author_xml – sequence: 1
  givenname: Chonghai
  surname: Deng
  fullname: Deng, Chonghai
  email: chdeng@hfuu.edu.cn
  organization: School of Energy Materials and Chemical Engineering, Hefei University
– sequence: 2
  givenname: Fan
  surname: Ye
  fullname: Ye, Fan
  organization: School of Energy Materials and Chemical Engineering, Hefei University
– sequence: 3
  givenname: Tao
  surname: Wang
  fullname: Wang, Tao
  organization: School of Energy Materials and Chemical Engineering, Hefei University
– sequence: 4
  givenname: Xiaohui
  surname: Ling
  fullname: Ling, Xiaohui
  organization: School of Energy Materials and Chemical Engineering, Hefei University
– sequence: 5
  givenname: Lulu
  surname: Peng
  fullname: Peng, Lulu
  organization: School of Energy Materials and Chemical Engineering, Hefei University
– sequence: 6
  givenname: Hong
  surname: Yu
  fullname: Yu, Hong
  organization: Anhui Province Key Laboratory of Advanced Building Materials, Anhui Jianzhu University
– sequence: 7
  givenname: Kangzhe
  surname: Ding
  fullname: Ding, Kangzhe
  organization: Anhui Province Key Laboratory of Advanced Building Materials, Anhui Jianzhu University
– sequence: 8
  givenname: Hanmei
  surname: Hu
  fullname: Hu, Hanmei
  organization: Anhui Province Key Laboratory of Advanced Building Materials, Anhui Jianzhu University
– sequence: 9
  givenname: Qiang
  surname: Dong
  fullname: Dong, Qiang
  email: qdong@hfuu.edu.cn
  organization: School of Energy Materials and Chemical Engineering, Hefei University
– sequence: 10
  givenname: Huirong
  surname: Le
  fullname: Le, Huirong
  organization: The Future Lab, Tsinghua University
– sequence: 11
  givenname: Yongsheng
  surname: Han
  fullname: Han, Yongsheng
  email: yshan@ipe.ac.cn
  organization: State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences
BookMark eNp9kM1OwzAQhC1UJNrCA3CzxDnUdlzHPqLyK1X0UO6WYzuNqxAH2wH17UlbEBIS7GX3MN_saCZg1PrWAnCJ0TVGqJhFTEhBM0RwlguGMnoCxlgInqFhRt83JvQMTGLcIsQIpnwMwq19t43vXLuBtbNBBV07rRq4MOvZs1vB2jeN_4C1TTb4jW2t7yM8qJLVqQ82wsoHWHof096kq33yWiXV7JLTsN6ZAwb3aFDJ-fYcnFaqifbia0_B-v7uZfGYLVcPT4ubZaZzzFKWc0E4MpXmHJUFzjURWAlKKLOmzI3mpaFYmDnHyKhKEMNYIUpBmVIaVfkUXB1du-DfehuT3Po-tMNDSRjhFDE0F4OqOKp08DEGW0nt0iFlCso1EiO5r1ce65VDvXJfr6QDiX-RXXCvKuz-ZciRiYO23djwk-lv6BNsO5Fb
CitedBy_id crossref_primary_10_1021_acscatal_2c04795
crossref_primary_10_1021_acsomega_2c06176
crossref_primary_10_1021_acsanm_2c04575
crossref_primary_10_1016_j_jssc_2024_125159
crossref_primary_10_1021_acs_langmuir_4c04874
crossref_primary_10_1016_j_materresbull_2024_113230
crossref_primary_10_1111_jace_19210
crossref_primary_10_1016_j_clay_2023_106855
crossref_primary_10_1016_j_microc_2024_112049
crossref_primary_10_1039_D3SE00739A
crossref_primary_10_1021_acscatal_2c01877
crossref_primary_10_1016_j_ijhydene_2022_12_239
crossref_primary_10_1016_j_jallcom_2024_173882
crossref_primary_10_1016_j_materresbull_2023_112180
crossref_primary_10_1007_s12274_024_7107_2
crossref_primary_10_1016_j_apsusc_2023_158622
crossref_primary_10_1016_j_solidstatesciences_2023_107299
crossref_primary_10_1016_j_seppur_2023_123708
crossref_primary_10_1016_j_cej_2023_147719
crossref_primary_10_1016_j_mseb_2024_117431
crossref_primary_10_1016_j_cej_2023_145813
crossref_primary_10_1016_j_envres_2023_116181
crossref_primary_10_1016_j_ccr_2023_215276
crossref_primary_10_1016_j_cej_2024_150582
crossref_primary_10_1016_j_mssp_2024_108288
crossref_primary_10_1002_cssc_202301755
crossref_primary_10_1016_j_seppur_2024_126510
crossref_primary_10_1016_j_jelechem_2023_117289
crossref_primary_10_1016_j_renene_2024_122227
crossref_primary_10_1016_j_apcatb_2024_123825
crossref_primary_10_1016_j_materresbull_2023_112232
crossref_primary_10_26599_NRE_2022_9120006
crossref_primary_10_1016_j_cej_2022_141032
crossref_primary_10_1016_j_apcatb_2023_123641
crossref_primary_10_1039_D3NJ00856H
crossref_primary_10_1016_j_ccr_2022_214953
crossref_primary_10_1016_j_apsusc_2023_157065
crossref_primary_10_1007_s12274_022_4825_1
crossref_primary_10_1007_s12274_023_5991_5
crossref_primary_10_1007_s10854_024_12268_2
crossref_primary_10_3390_molecules28237878
crossref_primary_10_1016_j_apsusc_2022_154940
crossref_primary_10_1007_s10971_024_06460_3
crossref_primary_10_1007_s13391_024_00503_1
crossref_primary_10_1016_j_fuel_2024_133760
crossref_primary_10_1016_j_jwpe_2024_105276
crossref_primary_10_1016_j_surfin_2024_105376
crossref_primary_10_1016_j_colsurfa_2023_131368
crossref_primary_10_1016_j_jcis_2024_08_125
crossref_primary_10_1016_j_fuel_2022_125594
crossref_primary_10_1016_j_jcis_2023_12_183
crossref_primary_10_1016_j_apcatb_2023_122653
crossref_primary_10_1016_j_apcatb_2023_122857
crossref_primary_10_1021_acsami_4c03567
Cites_doi 10.1016/j.materresbull.2013.07.019
10.1016/j.apcatb.2019.118029
10.1016/j.clay.2018.08.017
10.1039/B800489G
10.1016/j.jes.2021.05.019
10.1016/j.cej.2020.125068
10.1016/j.apsusc.2021.149372
10.1016/j.nanoen.2017.11.015
10.1016/j.jcis.2020.10.049
10.1016/j.jphotochem.2021.113160
10.1016/j.matchemphys.2020.124140
10.1016/j.matlet.2018.04.083
10.1016/j.apsusc.2015.12.021
10.1016/j.apcatb.2018.06.042
10.1016/j.apsusc.2018.08.125
10.1016/j.ijhydene.2020.08.133
10.1016/j.apsusc.2020.148618
10.1007/s12274-020-3105-1
10.1007/S12274-021-3585-7
10.1039/C3CS60378D
10.1016/j.surfin.2021.101262
10.1016/j.gee.2020.10.017
10.1016/j.jcis.2021.07.041
10.1016/j.apsusc.2020.148234
10.1016/j.trechm.2019.06.009
10.1016/j.matlet.2018.10.005
10.1007/s12274-020-3045-9
10.1016/j.matlet.2019.126560
10.1016/j.jcis.2018.02.011
10.1016/j.matlet.2018.04.061
10.1016/j.apcatb.2017.09.024
10.1002/anie.201101274
10.1016/j.cej.2017.10.049
10.1016/j.materresbull.2018.01.043
10.1007/s12274-017-1473-y
10.1351/pac198557040603
10.1016/j.apcatb.2017.10.051
10.1016/j.jcis.2021.03.150
10.1016/j.apcatb.2018.05.009
10.1016/j.cej.2021.128690
10.1016/j.apsusc.2021.149622
10.1016/j.apsusc.2018.08.130
10.1016/j.apsusc.2018.03.068
10.1007/s10934-019-00758-2
10.1016/j.jpcs.2017.09.022
10.1016/j.jcis.2017.11.030
10.1016/j.jcis.2015.12.035
10.1016/j.jallcom.2011.03.171
10.1039/c2jm31148h
10.1016/j.matlet.2020.129274
10.1016/j.matlet.2017.10.021
10.1021/la103191y
10.1016/j.nanoen.2017.08.032
10.1016/j.apcatb.2019.118223
10.1016/j.apsusc.2020.148415
10.1038/414625a
10.1021/jp901505j
10.1016/j.jallcom.2021.160832
10.1016/j.ijhydene.2019.01.054
10.1016/j.cjche.2021.03.055
10.1016/S1872-2067(20)63595-1
10.1007/s10853-020-05427-3
10.1016/j.apsusc.2020.146442
10.1016/j.ijhydene.2018.06.101
10.1007/s12274-017-1497-3
10.1016/j.apt.2020.06.003
10.1016/j.jece.2018.01.041
10.1016/j.apcatb.2018.05.005
10.1016/j.apsusc.2018.07.045
10.1002/adma.201601694
10.1016/j.ijhydene.2018.02.191
10.1063/1.3033945
ContentType Journal Article
Copyright Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7QF
7QO
7QQ
7SE
7SR
7U5
7X7
7XB
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H8G
HCIFZ
JG9
K9.
KB.
L7M
LK8
M0S
M7P
P64
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s12274-021-3960-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Corrosion Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Copper Technical Reference Library
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
METADEX
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1998-0000
EndPage 2012
ExternalDocumentID 10_1007_s12274_021_3960_4
GroupedDBID -58
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
123
1N0
29M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
6NX
7X7
8AO
8FE
8FG
8FH
8FI
8FJ
95-
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACCUX
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADFRT
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRJ
FRP
FRRFC
FSGXE
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HH5
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
J-C
JBSCW
JZLTJ
KB.
KOV
LK8
LLZTM
M4Y
M7P
N2Q
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P2P
P9N
PDBOC
PQQKQ
PROAC
PT4
Q2X
QOR
R89
R9I
RNS
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
TGP
7QF
7QO
7QQ
7SE
7SR
7U5
7XB
8BQ
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H8G
JG9
K9.
L7M
P64
PKEHL
PQEST
PQGLB
PQUKI
ID FETCH-LOGICAL-c316t-389280dfc880b713c291a94246edb3dc8bd419d5810daf92d6679b946aac0f3
IEDL.DBID U2A
ISSN 1998-0124
IngestDate Sat Aug 23 14:55:46 EDT 2025
Thu Apr 24 22:54:24 EDT 2025
Tue Jul 01 01:47:01 EDT 2025
Fri Feb 21 02:47:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords CdS nanoparticls
NiO hollow microspheres
photocatalytic hydrogen evolution
p-n heterojunction
hierarchical structure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-389280dfc880b713c291a94246edb3dc8bd419d5810daf92d6679b946aac0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2628406059
PQPubID 326270
PageCount 10
ParticipantIDs proquest_journals_2628406059
crossref_citationtrail_10_1007_s12274_021_3960_4
crossref_primary_10_1007_s12274_021_3960_4
springer_journals_10_1007_s12274_021_3960_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220300
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 3
  year: 2022
  text: 20220300
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Nano research
PublicationTitleAbbrev Nano Res
PublicationYear 2022
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References Zhu, Li, Qu, Zhou, Wang, Wang, Zhao, Wang, Li, Yao (CR49) 2021; 14
Li, Hu, Peng, Lu, Li (CR4) 2009; 113
Hu, Deng, Sun, Zhang, Wang, Xu, Le (CR52) 2019; 26
Li, Peng (CR37) 2018; 165
Yang, Qiu, Chen, Qi, Yan, Liu, Liu (CR33) 2021; 541
Zubair, Vanhaecke, Svenum (CR54) 2020; 5
She, Li, Sun, Wang, Huang, Zhu, Wang (CR66) 2018; 457
Zhang, Zhang, Jiang, Xiao, Zhang, Xu, Yang, Liu, Zhang (CR32) 2021; 542
Tang, Guo, Zhou, Huang, Pan (CR63) 2018; 237
Sing, Everett, Haul, Moscou, Pierotti, Rouquerol, Siemieniewska (CR68) 1985; 57
Wang, Chai, Ma, Chen, Zheng, Huang (CR40) 2017; 10
Ma, Liu, Bian, Zhu, Yang, Pan (CR6) 2018; 518
Deng, Tian (CR46) 2013; 48
(CR27) 2020; 522
Billakanti, Krishnamurthi (CR48) 2018; 6
Wu, Huang, Cheng, Pang (CR16) 2021; 292
Lin, Li, Li, Wang (CR39) 2017; 10
Tian, Min, Wang (CR28) 2019; 259
Reddy, Rao, Kumari, Ravi, Sathish, Shankar (CR69) 2018; 101
Zhuge, Chen, Yang, Wang, Shi, Li (CR14) 2021; 539
Wang, Wang, Wang, Ao (CR36) 2018; 43
Lei, Zhu, Zhu, Yu, Ho (CR62) 2016; 466
You, Pan, Jiang, Zhou, Su (CR23) 2016; 363
Kurenkova, Markovskaya, Gerasimov, Prosvirin, Cherepanova, Kozlova (CR12) 2020; 45
Wang, Li, Sheng, Chen (CR10) 2019; 463
Moniruzzaman, Kim (CR35) 2021; 552
Hu, Wang, Deng, Chen, Wang, Le (CR51) 2018; 224
CR44
Cheng, Zhao, Kang, Li, Gao (CR24) 2018; 214
Kumar, Kumar, Sharma, Al-Muhtaseb, Naushad, Ghfar, Stadler (CR71) 2018; 334
Kudo, Miseki (CR42) 2009; 38
Hu, Liu, Qian, Li, Chen (CR56) 2010; 26
Yu, Ni, Zhai (CR58) 2018; 112
Zhang, Wu, Yan, Mao, Liu, Hu, Du, Ling, Qiao (CR59) 2018; 43
Deng, Hu, Yu, Wang, Ci, Wang, Zhu, Wu, Le (CR50) 2020; 31
Khan, Khannam, Vinothkumar, De, Qureshi (CR72) 2012; 22
Deng, Hu, Yu, Xu, Ci, Wu, Wang, Zhu (CR57) 2021; 56
Feng, Chen, Jing, Sun, Han, Fang, Li (CR26) 2021; 409
Liu, Bie, He, Zhu, Zhang, Cheng (CR21) 2021; 554
Low, Yu, Jaroniec, Wageh, Al-Ghamdi (CR41) 2017; 29
Wang, Chen, Jiang, Ni, Zhang, Yang, Lu, Liu (CR18) 2021; 412
Wang, Wang, Qu, Xu, Zheng, Jia, Chen, Zhu (CR29) 2018; 43
Sun, Xiao, Shi, Mao, He, Ma, Cheng (CR19) 2021; 596
Nasir, Islam, Rehman, Butler, Munir, Nishina (CR20) 2021; 259
Chen, Wang, Liu, Gao, Mao, Fan, Shangguan (CR9) 2018; 444
Zhu, Li, Zhao, Shen, Wang, Lv, Liu, Wen, Lu, Liu (CR15) 2021; 25
Gopannagari, Kumar, Park, Kim, Bhavani, Reddy, Kim (CR65) 2018; 236
Abdullah, Gultom, Kuo (CR61) 2020; 261
Wang, He, Feng, Zhang, Huang, Wang, Zhang, Liu (CR31) 2018; 236
Wang, Zhu, Liao, Fu, Chang, Zhang, Kan, Gao, Huang (CR17) 2021; 883
Zhao, Li, Liu, Palma, Hu, Renneckar, Larter, Li, Kibria, Hu (CR64) 2021; 585
Ba, Jia, Huang, Li, Chen, Mao (CR53) 2019; 44
Qiao, Feng, Guo, Chen, Akram, Zhang, Wang, Yue, Wang (CR45) 2020; 395
Cao, Piao, Chen (CR43) 2020; 2
Dai, Lv, Zhang, Li, Geng, Liang (CR5) 2019; 235
Li, Qian, Peng, Lin (CR67) 2018; 224
Zhao, Niu, Yang, Lv, Lv, Cai (CR13) 2022; 112
Li, Han, Wu, Xiang, Qiao, Feng, Chen, Deng (CR30) 2019; 255
Zou, Ye, Sayama, Arakawa (CR1) 2001; 414
Li, Liu, Li, Guo, Zhou, Zhao, Wang, Wang, Wang, Chen (CR22) 2021; 604
Tauc, Scott (CR70) 1967; 20
CR25
Liu, Ma, Liu, Shang, Zhu, Tan, Xiong, Pan (CR7) 2018; 513
Chen, Liu, Han, Liang, Deng, Lin (CR60) 2021; 14
Oliveira, Milão, Ara, Jo, Moreira, Longo, Bernardi (CR47) 2011; 509
Baghbanzadeh, Carbone, Cozzoli, Kappe (CR55) 2011; 50
Bie, Fu, Cheng, Zhang (CR8) 2018; 462
Hisatomi, Kubota, Domen (CR2) 2014; 43
Kumar, Park, Kim, Hong, Gopannagari, Reddy, Kim (CR38) 2018; 224
Zhen, Ning, Yang, Wu, Li, Lu (CR11) 2018; 221
Peng, Shen, Yu, Tang, Zulfiqar, Liu (CR34) 2021; 42
Huang, Song, Wang, Pan, Li, Zhang, Wang, Zou (CR3) 2017; 40
Z Z Zhu (3960_CR49) 2021; 14
T Hisatomi (3960_CR2) 2014; 43
Y Liu (3960_CR7) 2018; 513
M Baghbanzadeh (3960_CR55) 2011; 50
X Y Liu (3960_CR21) 2021; 554
D T You (3960_CR23) 2016; 363
J F A Oliveira (3960_CR47) 2011; 509
L Tian (3960_CR28) 2019; 259
C H Deng (3960_CR46) 2013; 48
G7 (3960_CR27) 2020; 522
W Y Chen (3960_CR60) 2021; 14
J Tauc (3960_CR70) 1967; 20
P Wang (3960_CR10) 2019; 463
J F Wang (3960_CR36) 2018; 43
Y X Li (3960_CR4) 2009; 113
C H Deng (3960_CR50) 2020; 31
J A Nasir (3960_CR20) 2021; 259
M Gopannagari (3960_CR65) 2018; 236
Z Khan (3960_CR72) 2012; 22
A Y Kurenkova (3960_CR12) 2020; 45
3960_CR25
K Dai (3960_CR5) 2019; 235
H M Hu (3960_CR52) 2019; 26
J J Peng (3960_CR34) 2021; 42
H F Lin (3960_CR39) 2017; 10
Y C Zhu (3960_CR15) 2021; 25
X Y Li (3960_CR37) 2018; 165
J Li (3960_CR67) 2018; 224
B Wang (3960_CR31) 2018; 236
S S Qiao (3960_CR45) 2020; 395
H Abdullah (3960_CR61) 2020; 261
C B Bie (3960_CR8) 2018; 462
C H Deng (3960_CR57) 2021; 56
Z Q Cheng (3960_CR24) 2018; 214
Z F Huang (3960_CR3) 2017; 40
H Zhao (3960_CR64) 2021; 585
W J Zhao (3960_CR13) 2022; 112
B Wang (3960_CR18) 2021; 412
J Y Tang (3960_CR63) 2018; 237
J Yu (3960_CR58) 2018; 112
Y J Ma (3960_CR6) 2018; 518
S Zhang (3960_CR32) 2021; 542
W L Zhen (3960_CR11) 2018; 221
K X Zhuge (3960_CR14) 2021; 539
J Low (3960_CR41) 2017; 29
W B Li (3960_CR30) 2019; 255
A Kumar (3960_CR71) 2018; 334
M Moniruzzaman (3960_CR35) 2021; 552
A Kudo (3960_CR42) 2009; 38
T Zhang (3960_CR59) 2018; 43
Y R Yang (3960_CR33) 2021; 541
S Cao (3960_CR43) 2020; 2
J H Wang (3960_CR17) 2021; 883
P Li (3960_CR22) 2021; 604
C Feng (3960_CR26) 2021; 409
Y Hu (3960_CR56) 2010; 26
S Billakanti (3960_CR48) 2018; 6
N L Reddy (3960_CR69) 2018; 101
H M Hu (3960_CR51) 2018; 224
T F Wu (3960_CR16) 2021; 292
D P Kumar (3960_CR38) 2018; 224
W Chen (3960_CR9) 2018; 444
Q Q Ba (3960_CR53) 2019; 44
C S Lei (3960_CR62) 2016; 466
T Wang (3960_CR40) 2017; 10
3960_CR44
H D She (3960_CR66) 2018; 457
G T Sun (3960_CR19) 2021; 596
K S W Sing (3960_CR68) 1985; 57
Z G Zou (3960_CR1) 2001; 414
J M Wang (3960_CR29) 2018; 43
M Zubair (3960_CR54) 2020; 5
References_xml – volume: 224
  start-page: 75
  year: 2018
  end-page: 77
  ident: CR51
  article-title: Satellite-like CdS nanoparticles anchoring onto porous NiO nanoplates for enhanced visible-light photocatalytic properties
  publication-title: Mater. Lett.
– volume: 5
  start-page: 461
  year: 2020
  end-page: 472
  ident: CR54
  article-title: R. Rtoward hydrogen produ-shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H generation
  publication-title: Green Energy Environ.
– volume: 541
  start-page: 148415
  year: 2021
  ident: CR33
  article-title: Charge-transfer-mediated photocatalysis of W O @CdS nanotubes to boost photocatalytic hydrogen production
  publication-title: Appl. Surf. Sci.
– volume: 518
  start-page: 140
  year: 2018
  end-page: 148
  ident: CR6
  article-title: Controlling shape anisotropy of hexagonal CdS for highly stable and efficient photocatalytic H evolution and photoelectrochemical water splitting
  publication-title: J. Colloid Interface Sci.
– volume: 334
  start-page: 462
  year: 2018
  end-page: 478
  ident: CR71
  article-title: Quaternary magnetic BiOCl/g-C N /Cu O/Fe O nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment
  publication-title: Chem. Eng. J.
– volume: 412
  start-page: 128690
  year: 2021
  ident: CR18
  article-title: Rational designing 0D/1D Z-scheme heterojunction on CdS nanorods for efficient visible-light-driven photocatalytic H evolution
  publication-title: Chem. Eng. J.
– volume: 38
  start-page: 253
  year: 2009
  end-page: 278
  ident: CR42
  article-title: Heterogeneous photocatalyst materials for water splitting
  publication-title: Chem. Soc. Rev.
– volume: 414
  start-page: 625
  year: 2001
  end-page: 627
  ident: CR1
  article-title: Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst
  publication-title: Nature
– volume: 237
  start-page: 802
  year: 2018
  end-page: 810
  ident: CR63
  article-title: Ball-flower like NiO/g-C N heterojunction for efficient visible light photocatalytic CO reduction
  publication-title: Appl. Catal. B Environ.
– volume: 539
  start-page: 148234
  year: 2021
  ident: CR14
  article-title: photodeposition of MoS onto CdS quantum dots for efficient photocatalytic H evolution
  publication-title: Appl. Surf. Sci.
– volume: 165
  start-page: 188
  year: 2018
  end-page: 196
  ident: CR37
  article-title: Synthesis of 3D mesoporous alumina from natural clays for confining CdS nanoparticles and enhanced photocatalytic performances
  publication-title: Appl. Clay Sci.
– volume: 2
  start-page: 57
  year: 2020
  end-page: 70
  ident: CR43
  article-title: Emerging photocatalysts for hydrogen evolution
  publication-title: Trends Chem.
– volume: 57
  start-page: 603
  year: 1985
  end-page: 619
  ident: CR68
  article-title: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)
  publication-title: Pure Appl. Chem.
– volume: 101
  start-page: 223
  year: 2018
  end-page: 231
  ident: CR69
  article-title: Effective shuttling of photoexcitons on CdS/NiO core/shell photocatalysts for enhanced photocatalytic hydrogen production
  publication-title: Mater. Res. Bull.
– volume: 14
  start-page: 81
  year: 2021
  end-page: 90
  ident: CR49
  article-title: A hierarchical heterostructure of CdS QDs confined on 3D ZnIn S with boosted charge transfer for photocatalytic CO reduction
  publication-title: Nano Res.
– ident: CR25
– volume: 56
  start-page: 2994
  year: 2021
  end-page: 3010
  ident: CR57
  article-title: Facile microwave-assisted fabrication of CdS/BiOCl nanostructures with enhanced visible-light-driven photocatalytic activity
  publication-title: J. Mater. Sci.
– volume: 113
  start-page: 9352
  year: 2009
  end-page: 9358
  ident: CR4
  article-title: Synthesis of CdS nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution
  publication-title: J. Phys. Chem. C
– volume: 20
  start-page: 105
  year: 1967
  end-page: 107
  ident: CR70
  article-title: The optical properties of solids
  publication-title: Phys. Today
– volume: 292
  start-page: 129274
  year: 2021
  ident: CR16
  article-title: Enhanced photocatalytic hydrogen evolution based on ternary noble-metal-free Co O /CdS/g-C N composite
  publication-title: Mater. Lett.
– volume: 596
  start-page: 215
  year: 2021
  end-page: 224
  ident: CR19
  article-title: Hydrogen spillover effect induced by ascorbic acid in CdS/NiO core-shell p-n heterojunction for significantly enhanced photocatalytic H evolution
  publication-title: J. Colloid Interface Sci.
– volume: 363
  start-page: 154
  year: 2016
  end-page: 160
  ident: CR23
  article-title: CdS nanoparticles/CeO nanorods composite with high-efficiency visible-light-driven photocatalytic activity
  publication-title: Appl. Surf. Sci.
– volume: 43
  start-page: 103
  year: 2018
  end-page: 109
  ident: CR59
  article-title: Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution
  publication-title: Nano Energy
– volume: 883
  start-page: 160832
  year: 2021
  ident: CR17
  article-title: Efficient enhancement of photocatalytic hydrogen evolution of CdS nanorods by nano-CuO
  publication-title: J. Alloys Compd.
– volume: 112
  start-page: 244
  year: 2022
  end-page: 257
  ident: CR13
  article-title: One-pot molten salt method for constructing CdS/C N nanojunctions with highly enhanced photocatalytic performance for hydrogen evolution reaction
  publication-title: J. Environ. Sci.
– volume: 214
  start-page: 80
  year: 2018
  end-page: 83
  ident: CR24
  article-title: A novel preparation of hollow TiO nanotubes and pine-cone shaped CdS nanoparticles coated for enhanced ultraviolet and visible light photocatalytic activity
  publication-title: Mater. Lett.
– volume: 31
  start-page: 3158
  year: 2020
  end-page: 3167
  ident: CR50
  article-title: 1D hierarchical CdS NPs/NiO NFs heterostructures with enhanced photocatalytic activity under visible light irradiation
  publication-title: Adv. Powder Technol.
– volume: 112
  start-page: 119
  year: 2018
  end-page: 126
  ident: CR58
  article-title: Simple solution-combustion synthesis of Ni-NiO@C nanocomposites with highly electrocatalytic activity for methanol oxidation
  publication-title: J. Phys. Chem. Solids.
– volume: 444
  start-page: 485
  year: 2018
  end-page: 490
  ident: CR9
  article-title: photodeposition of cobalt on CdS nanorod for promoting photocatalytic hydrogen production under visible light irradiation
  publication-title: Appl. Surf. Sci.
– volume: 40
  start-page: 308
  year: 2017
  end-page: 316
  ident: CR3
  article-title: Switching charge transfer of C N /W O from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution
  publication-title: Nano Energy
– volume: 509
  start-page: 6880
  year: 2011
  end-page: 6883
  ident: CR47
  article-title: Influence of different solvents on the structural, optical and morphological properties of CdS nanoparticles
  publication-title: J. Alloys Compd.
– volume: 26
  start-page: 1743
  year: 2019
  end-page: 1753
  ident: CR52
  article-title: Facile template-free synthesis of hierarchically porous NiO hollow architectures with high-efficiency adsorptive removal of Congo red
  publication-title: J. Porous Mater.
– volume: 552
  start-page: 149372
  year: 2021
  ident: CR35
  article-title: Shape-engineered carbon quantum dots embedded on CdS-nanorods for enhanced visible light harvesting towards photocatalytic application
  publication-title: Appl. Surf. Sci.
– volume: 463
  start-page: 27
  year: 2019
  end-page: 33
  ident: CR10
  article-title: Inhibited photocorrosion and improved photocatalytic H -evolution activity of CdS photocatalyst by molybdate ions
  publication-title: Appl. Surf. Sci.
– volume: 235
  start-page: 11
  year: 2019
  end-page: 14
  ident: CR5
  article-title: Controlled synthesis of novel 3D CdS hierarchical microtremella for photocatalytic H production
  publication-title: Mater. Lett.
– volume: 554
  start-page: 149622
  year: 2021
  ident: CR21
  article-title: 0D/2D NiS/CdS nanocomposite heterojunction photocatalyst with enhanced photocatalytic H evolution activity
  publication-title: Appl. Surf. Sci.
– volume: 25
  start-page: 101262
  year: 2021
  ident: CR15
  article-title: Carbon nitride derived carbon and nitrogen Co-doped CdS for stable photocatalytic hydrogen evolution
  publication-title: Surf. Interfaces
– volume: 14
  start-page: 730
  year: 2021
  end-page: 737
  ident: CR60
  article-title: Boosted photoreduction of diluted CO through oxygen vacancy engineering in NiO nanoplatelets
  publication-title: Nano Res.
– volume: 6
  start-page: 1250
  year: 2018
  end-page: 1256
  ident: CR48
  article-title: Facile preparation of surfactant or support material free CdS nanoparticles with enhanced photocatalytic activity
  publication-title: J. Environ. Chem. Eng.
– volume: 42
  start-page: 87
  year: 2021
  end-page: 96
  ident: CR34
  article-title: Construction of LSPR-enhanced 0D/2D CdS/MoO S-scheme heterojunctions for visible-light-driven photocatalytic H evolution
  publication-title: Chin. J. Catal.
– volume: 462
  start-page: 606
  year: 2018
  end-page: 614
  ident: CR8
  article-title: Ultrathin CdS nanosheets with tunable thickness and efficient photocatalytic hydrogen generation
  publication-title: Appl. Surf. Sci.
– volume: 224
  start-page: 230
  year: 2018
  end-page: 238
  ident: CR38
  article-title: Noble metal-free metal-organic framework-derived onion slice-type hollow cobalt sulfide nanostructures: Enhanced activity of CdS for improving photocatalytic hydrogen production
  publication-title: Appl. Catal. B Environ.
– volume: 44
  start-page: 5872
  year: 2019
  end-page: 5880
  ident: CR53
  article-title: Alloyed Pd-Ni hollow nanoparticles as cocatalyst of CdS for improved photocatalytic activity toward hydrogen production
  publication-title: Int. J. Hydrogen Energy
– volume: 221
  start-page: 243
  year: 2018
  end-page: 257
  ident: CR11
  article-title: The enhancement of CdS photocatalytic activity for water splitting via anti-photocorrosion by coating Ni P shell and removing nascent formed oxygen with artificial gill
  publication-title: Appl. Catal. B Environ.
– volume: 236
  start-page: 233
  year: 2018
  end-page: 239
  ident: CR31
  article-title: Rational design and facile coupling non-noble metal Cd nanoparticles and CdS nanorods for efficient visible-light-driven photocatalytic H evolution
  publication-title: Appl. Catal. B Environ.
– volume: 236
  start-page: 294
  year: 2018
  end-page: 303
  ident: CR65
  article-title: Influence of surface-functionalized multi-walled carbon nanotubes on CdS nanohybrids for effective photocatalytic hydrogen production
  publication-title: Appl. Catal. B Environ.
– volume: 45
  start-page: 30165
  year: 2020
  end-page: 30177
  ident: CR12
  article-title: New insights into the mechanism of photocatalytic hydrogen evolution from aqueous solutions of saccharides over CdS-based photocatalysts under visible light
  publication-title: Int. J. Hydrogen Energy
– volume: 522
  start-page: 146442
  year: 2020
  ident: CR27
  article-title: N. Directional transfer of photocarriers on CdS/g-C N heterojunction modified with Pd as a cocatalyst for synergistically enhanced photocatalytic hydrogen production
  publication-title: Appl. Surf. Sci.
– volume: 26
  start-page: 18570
  year: 2010
  end-page: 18575
  ident: CR56
  article-title: Coating colloidal carbon spheres with CdS nanoparticles: Microwave-assisted synthesis and enhanced photocatalytic activity
  publication-title: Langmuir
– volume: 604
  start-page: 500
  year: 2021
  end-page: 507
  ident: CR22
  article-title: Atomic heterojunction-induced accelerated charge transfer for boosted photocatalytic hydrogen evolution over 1D CdS nanorod/2D ZnIn S nanosheet composites
  publication-title: J. Colloid Interface Sci.
– volume: 409
  start-page: 113160
  year: 2021
  ident: CR26
  article-title: Synergistic effect of hierarchical structure and Z-scheme heterojunction constructed by CdS nanoparticles and nanoflower-structured Co S with significantly enhanced photocatalytic hydrogen production performance
  publication-title: J. Photochem. Photobiol. A Chem.
– volume: 43
  start-page: 7388
  year: 2018
  end-page: 7396
  ident: CR29
  article-title: A 2D/1D TiO nanosheet/CdS nanorods heterostructure with enhanced photocatalytic water splitting performance for H evolution
  publication-title: Int. J. Hydrogen Energy
– volume: 395
  start-page: 125068
  year: 2020
  ident: CR45
  article-title: CdS nanoparticles modified Ni@NiO spheres as photocatalyst for oxygen production in water oxidation system and hydrogen production in water reduction system
  publication-title: Chem. Eng. J.
– volume: 29
  start-page: 1601694
  year: 2017
  ident: CR41
  article-title: Heterojunction photocatalysts
  publication-title: Adv Mater.
– volume: 10
  start-page: 2699
  year: 2017
  end-page: 2711
  ident: CR40
  article-title: Multidimensional CdS nanowire/CdIn S nanosheet heterostructure for photocatalytic and photoelectrochemical applications
  publication-title: Nano Res.
– volume: 50
  start-page: 11312
  year: 2011
  end-page: 11359
  ident: CR55
  article-title: Microwave-assisted synthesis of colloidal inorganic nanocrystals
  publication-title: Angew. Chem., Int, Ed.
– volume: 259
  start-page: 124140
  year: 2021
  ident: CR20
  article-title: Co and Ni assisted CdS@g-C N nanohybrid: A photocatalytic system for efficient hydrogen evolution reaction
  publication-title: Mater. Chem. Phys.
– volume: 48
  start-page: 4344
  year: 2013
  end-page: 4350
  ident: CR46
  article-title: Facile microwave-assisted aqueous synthesis of CdS nanocrystals with their photocatalytic activities under visible lighting
  publication-title: Mater. Res. Bull.
– ident: CR44
– volume: 542
  start-page: 148618
  year: 2021
  ident: CR32
  article-title: constructing of one-dimensional SnIn S -CdS core-shell heterostructure as a direct Z-scheme photocatalyst with enhanced photocatalytic oxidation and reduction capabilities
  publication-title: Appl. Surf. Sci.
– volume: 457
  start-page: 1167
  year: 2018
  end-page: 1173
  ident: CR66
  article-title: Facile preparation of mixed-phase CdS and its enhanced photocatalytic selective oxidation of benzyl alcohol under visible light irradiation
  publication-title: Appl. Surf. Sci.
– volume: 224
  start-page: 82
  year: 2018
  end-page: 85
  ident: CR67
  article-title: Hierarchical structure NiO/CdS for highly performance H evolution
  publication-title: Mater. Lett.
– volume: 255
  start-page: 126560
  year: 2019
  ident: CR30
  article-title: synthesis of CdS quantum dots on CdCO cubic structure for enhanced photocatalytic hydrogen production performance
  publication-title: Mater. Lett.
– volume: 466
  start-page: 238
  year: 2016
  end-page: 246
  ident: CR62
  article-title: Hierarchical NiO-SiO composite hollow microspheres with enhanced adsorption affinity towards Congo red in water
  publication-title: J. Colloid Interface Sci.
– volume: 259
  start-page: 118029
  year: 2019
  ident: CR28
  article-title: Integrating noble-metal-free metallic vanadium carbide cocatalyst with CdS for efficient visible-light-driven photocatalytic H evolution
  publication-title: Appl. Catal. B Environ.
– volume: 43
  start-page: 14934
  year: 2018
  end-page: 14943
  ident: CR36
  article-title: synthesis of well dispersed CoP nanoparticles modified CdS nanorods composite with boosted performance for photocatalytic hydrogen evolution
  publication-title: Int. J. Hydrogen Energy
– volume: 261
  start-page: 118223
  year: 2020
  ident: CR61
  article-title: Depletion-zone size control of p-type NiO/n-type Zn(O, S) nanodiodes on high-surface-area SiO nanoparticles as a strategy to significantly enhance hydrogen evolution rate
  publication-title: Appl. Catal. B Environ.
– volume: 22
  start-page: 12090
  year: 2012
  end-page: 12095
  ident: CR72
  article-title: Hierarchical 3D NiO-CdS heteroarchitecture for efficient visible light photocatalytic hydrogen generation
  publication-title: J. Mater. Chem.
– volume: 43
  start-page: 7520
  year: 2014
  end-page: 7535
  ident: CR2
  article-title: Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting
  publication-title: Chem. Soc. Rev.
– volume: 513
  start-page: 222
  year: 2018
  end-page: 230
  ident: CR7
  article-title: Facet and morphology dependent photocatalytic hydrogen evolution with CdS nanoflowers using a novel mixed solvothermal strategy
  publication-title: J. Colloid Interface Sci.
– volume: 10
  start-page: 1377
  year: 2017
  end-page: 1392
  ident: CR39
  article-title: Multi-node CdS heteronanowires grown with defect-rich oxygen-doped MoS ultrathin nanosheets for efficient visible-light photocatalytic H evolution
  publication-title: Nano Res.
– volume: 585
  start-page: 694
  year: 2021
  end-page: 704
  ident: CR64
  article-title: n-p Heterojunction of TiO -NiO core-shell structure for efficient hydrogen generation and lignin photoreforming
  publication-title: J. Colloid Interface Sci.
– volume: 48
  start-page: 4344
  year: 2013
  ident: 3960_CR46
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2013.07.019
– volume: 259
  start-page: 118029
  year: 2019
  ident: 3960_CR28
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.118029
– volume: 165
  start-page: 188
  year: 2018
  ident: 3960_CR37
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2018.08.017
– volume: 38
  start-page: 253
  year: 2009
  ident: 3960_CR42
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B800489G
– volume: 112
  start-page: 244
  year: 2022
  ident: 3960_CR13
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2021.05.019
– volume: 395
  start-page: 125068
  year: 2020
  ident: 3960_CR45
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125068
– volume: 552
  start-page: 149372
  year: 2021
  ident: 3960_CR35
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.149372
– volume: 43
  start-page: 103
  year: 2018
  ident: 3960_CR59
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.11.015
– volume: 585
  start-page: 694
  year: 2021
  ident: 3960_CR64
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.10.049
– volume: 409
  start-page: 113160
  year: 2021
  ident: 3960_CR26
  publication-title: J. Photochem. Photobiol. A Chem.
  doi: 10.1016/j.jphotochem.2021.113160
– volume: 259
  start-page: 124140
  year: 2021
  ident: 3960_CR20
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2020.124140
– volume: 224
  start-page: 82
  year: 2018
  ident: 3960_CR67
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.04.083
– volume: 363
  start-page: 154
  year: 2016
  ident: 3960_CR23
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.12.021
– volume: 237
  start-page: 802
  year: 2018
  ident: 3960_CR63
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.06.042
– volume: 463
  start-page: 27
  year: 2019
  ident: 3960_CR10
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.08.125
– volume: 45
  start-page: 30165
  year: 2020
  ident: 3960_CR12
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.08.133
– volume: 542
  start-page: 148618
  year: 2021
  ident: 3960_CR32
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.148618
– volume: 14
  start-page: 730
  year: 2021
  ident: 3960_CR60
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-3105-1
– ident: 3960_CR44
  doi: 10.1007/S12274-021-3585-7
– volume: 43
  start-page: 7520
  year: 2014
  ident: 3960_CR2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60378D
– volume: 25
  start-page: 101262
  year: 2021
  ident: 3960_CR15
  publication-title: Surf. Interfaces
  doi: 10.1016/j.surfin.2021.101262
– volume: 5
  start-page: 461
  year: 2020
  ident: 3960_CR54
  publication-title: Green Energy Environ.
  doi: 10.1016/j.gee.2020.10.017
– volume: 604
  start-page: 500
  year: 2021
  ident: 3960_CR22
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.07.041
– volume: 539
  start-page: 148234
  year: 2021
  ident: 3960_CR14
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.148234
– volume: 2
  start-page: 57
  year: 2020
  ident: 3960_CR43
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2019.06.009
– volume: 235
  start-page: 11
  year: 2019
  ident: 3960_CR5
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.10.005
– volume: 14
  start-page: 81
  year: 2021
  ident: 3960_CR49
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-3045-9
– volume: 255
  start-page: 126560
  year: 2019
  ident: 3960_CR30
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2019.126560
– volume: 518
  start-page: 140
  year: 2018
  ident: 3960_CR6
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.02.011
– volume: 224
  start-page: 75
  year: 2018
  ident: 3960_CR51
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.04.061
– volume: 221
  start-page: 243
  year: 2018
  ident: 3960_CR11
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.09.024
– volume: 50
  start-page: 11312
  year: 2011
  ident: 3960_CR55
  publication-title: Angew. Chem., Int, Ed.
  doi: 10.1002/anie.201101274
– volume: 334
  start-page: 462
  year: 2018
  ident: 3960_CR71
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.10.049
– volume: 101
  start-page: 223
  year: 2018
  ident: 3960_CR69
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2018.01.043
– volume: 10
  start-page: 2699
  year: 2017
  ident: 3960_CR40
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1473-y
– volume: 57
  start-page: 603
  year: 1985
  ident: 3960_CR68
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac198557040603
– volume: 224
  start-page: 230
  year: 2018
  ident: 3960_CR38
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.10.051
– volume: 596
  start-page: 215
  year: 2021
  ident: 3960_CR19
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.03.150
– volume: 236
  start-page: 294
  year: 2018
  ident: 3960_CR65
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.05.009
– volume: 412
  start-page: 128690
  year: 2021
  ident: 3960_CR18
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128690
– volume: 554
  start-page: 149622
  year: 2021
  ident: 3960_CR21
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.149622
– volume: 462
  start-page: 606
  year: 2018
  ident: 3960_CR8
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.08.130
– volume: 444
  start-page: 485
  year: 2018
  ident: 3960_CR9
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.03.068
– volume: 26
  start-page: 1743
  year: 2019
  ident: 3960_CR52
  publication-title: J. Porous Mater.
  doi: 10.1007/s10934-019-00758-2
– volume: 112
  start-page: 119
  year: 2018
  ident: 3960_CR58
  publication-title: J. Phys. Chem. Solids.
  doi: 10.1016/j.jpcs.2017.09.022
– volume: 513
  start-page: 222
  year: 2018
  ident: 3960_CR7
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.11.030
– volume: 466
  start-page: 238
  year: 2016
  ident: 3960_CR62
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2015.12.035
– volume: 509
  start-page: 6880
  year: 2011
  ident: 3960_CR47
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2011.03.171
– volume: 22
  start-page: 12090
  year: 2012
  ident: 3960_CR72
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm31148h
– volume: 292
  start-page: 129274
  year: 2021
  ident: 3960_CR16
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2020.129274
– volume: 214
  start-page: 80
  year: 2018
  ident: 3960_CR24
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.10.021
– volume: 26
  start-page: 18570
  year: 2010
  ident: 3960_CR56
  publication-title: Langmuir
  doi: 10.1021/la103191y
– volume: 40
  start-page: 308
  year: 2017
  ident: 3960_CR3
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.08.032
– volume: 261
  start-page: 118223
  year: 2020
  ident: 3960_CR61
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.118223
– volume: 541
  start-page: 148415
  year: 2021
  ident: 3960_CR33
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.148415
– volume: 414
  start-page: 625
  year: 2001
  ident: 3960_CR1
  publication-title: Nature
  doi: 10.1038/414625a
– volume: 113
  start-page: 9352
  year: 2009
  ident: 3960_CR4
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp901505j
– volume: 883
  start-page: 160832
  year: 2021
  ident: 3960_CR17
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.160832
– volume: 44
  start-page: 5872
  year: 2019
  ident: 3960_CR53
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.01.054
– ident: 3960_CR25
  doi: 10.1016/j.cjche.2021.03.055
– volume: 42
  start-page: 87
  year: 2021
  ident: 3960_CR34
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(20)63595-1
– volume: 56
  start-page: 2994
  year: 2021
  ident: 3960_CR57
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-020-05427-3
– volume: 522
  start-page: 146442
  year: 2020
  ident: 3960_CR27
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.146442
– volume: 43
  start-page: 14934
  year: 2018
  ident: 3960_CR36
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.06.101
– volume: 10
  start-page: 1377
  year: 2017
  ident: 3960_CR39
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1497-3
– volume: 31
  start-page: 3158
  year: 2020
  ident: 3960_CR50
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2020.06.003
– volume: 6
  start-page: 1250
  year: 2018
  ident: 3960_CR48
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2018.01.041
– volume: 236
  start-page: 233
  year: 2018
  ident: 3960_CR31
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.05.005
– volume: 457
  start-page: 1167
  year: 2018
  ident: 3960_CR66
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.07.045
– volume: 29
  start-page: 1601694
  year: 2017
  ident: 3960_CR41
  publication-title: Adv Mater.
  doi: 10.1002/adma.201601694
– volume: 43
  start-page: 7388
  year: 2018
  ident: 3960_CR29
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.02.191
– volume: 20
  start-page: 105
  year: 1967
  ident: 3960_CR70
  publication-title: Phys. Today
  doi: 10.1063/1.3033945
SSID ssj0062148
Score 2.5416846
Snippet The hierarchical binary CdS/NiO hollow heterogeneous architectures (HHAs) with p-n heterojunction are constructed by a facile microwave-assisted wet chemical...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2003
SubjectTerms Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Chemistry and Materials Science
Condensed Matter Physics
Electromagnetic absorption
Heterojunctions
Hydrogen
Hydrogen evolution reactions
Hydrogen production
Irradiation
Materials Science
Microspheres
Morphology
Nanoparticles
Nanotechnology
Nickel oxides
P-n junctions
Photocatalysis
Research Article
Solar energy
Synergistic effect
Thickness
Water splitting
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA86L3oQP3E6JQdPSlibpmlzEpmOITgPU9itpPlwwljnNpH9975k7TYFd26bwnvJe7-X3_tA6JqKwFBuNQHXLglLYk5SYyHmSa0UxsZJZB2j-9zlnTf21I_75YXbtEyrrGyiN9S6UO6OvEk5GNIAwLe4G38SNzXKsavlCI1ttONal7mUrqS_DLg4Df30rEUZGTiyitX0pXMU4jHiEhQiAPGE_fZLK7D5hx_1bqd9gPZLvIjvFwo-RFtmdIT21roIHqPJw7LwCbvJ1p4bANHjlu41ux8vGAzcsPjGA5f5UsCGMRDt43UGYYoBumLA21OXBI3Hg2JW-HudOfwVD-baf4bffYtqp8kT1Gs_vrY6pBylQFQU8hkBWELTQFsFxzWHuFRREUrBKONG55FWaa5ZKHSchoGWVlDNeSJywbiUKrDRKaqNipE5Q9hoTwVKE6uU5WGQyziykQ0TlaeSxmkdBZUYM1V2GXfDLobZqj-yk3wGks-c5DNWRzfLT8aLFhubXm5UusnK0zbNVnujjm4rfa0e_7vY-ebFLtAudcUOPuOsgWqzyZe5BAgyy6_8PvsBSpHZHg
  priority: 102
  providerName: ProQuest
Title Developing hierarchical CdS/NiO hollow heterogeneous architectures for boosting photocatalytic hydrogen generation
URI https://link.springer.com/article/10.1007/s12274-021-3960-4
https://www.proquest.com/docview/2628406059
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XPQgPnF9LDl4UoptmqbJcdVdRXEVH7CeStokriBbcVfEf-8k27oqKnhpD01amEky3_SbB8AOlaGh3OoATbsKWJrwQBiLPo-wShqbpLF1jO55l5_cstNe0qvyuId1tHtNSfqTepLsRtGDClxIQYywO2DTMJs41x0X8S1t1ccvp5FvmTXOHUPrVVOZP73iqzGaIMxvpKi3NZ1FWKhAImmNtboEU2awDPOfSgeuwPPRR7YTce2sPSGA8iaH-nq_-3BB8FR7LF9J34W7lLhKDLr45DNtMCSIVwmC7KGLfCZP_XJU-p85b_hV0n_Tfhq593WpnfpW4brTvjk8Car-CUERR3wUIBahItS2wD2aozNaUBkpySjjRuexLkSuWSR1IqJQKyup5jyVuWRcqSK08RrMDMqBWQditOf_lEkKwfIozFUS29hGaZELRRPRgLAWY1ZUpcVdh4vHbFIU2Uk-Q8lnTvIZa8Dux5SncV2NvwZv1brJqi02zChHyxqiNyYbsFfra_L415dt_Gv0JsxRl_Dgo862YGb0_GK2EYaM8iZMp70Ur6Jz3ITZ1vHdWRvvB-3u5VXTL8l3bXTalg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5Remg5IPoS4VUfyoXKYtfrdexDhRCQhgLpASpx6srrB0FC2cAGofwnfmTHTpYAUrlx3rUtzXyeh-cF8I2pxDHhLUXVrilv54JK59HnkV4r5_N25kNE96Qnun_4r_P8fA7um1qYkFbZyMQoqG1lwhv5NhMoSBM0vtXO8JqGqVEhutqM0JjA4siN79Blq38c7iN_NxnrHJztdel0qgA1WSpGFDU0k4n1BpFbootmmEq14owLZ8vMGllaniqbyzSx2itmhWirUnGhtUl8hru-gbc8y1S4T7Lzs5H7gqVxVtekaA3VZhNDjYV6DL0_GtIhcF1C-VMtODNtn0Vjo5LrLMHi1DoluxM4fYA5N_gIC496Fn6Cm_2HMisS5mjHSAQymuzZ0-3e5W-C4vSquiP9kGdTITxddVuTx_GKmqChTNC6r0PKNRn2q1EVX5HGeCrpj21cRi5iQ-yAm89w-gok_gLzg2rgloE4GwOP2uVG8jJNSp1nPvNp25RSs1y2IGnIWJhpT_MwWuOqmHVjDpQvkPJFoHzBW7D1sGQ4aejx0s9rDW-K6d2uixkSW_C94dfs8383W3l5s6_wrnt2clwcH_aOVuE9C2UWMddtDeZHN7duHY2fUbkRMUfg7-tC_B-IDhS3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8aQ0LsgICBVtjAB3YZspo4jhMfJjStqzYGHdJA6onI8cc6qWrK0mnqf7Y_j2c3aTckdts5sS299_P78PsC-MRkZJlwhqJqV5RnqaC5dejz5E5J69IscT6i-30gjn_xr8N0uAa3bS2MT6tsZWIQ1KbS_o28ywQK0giNb9l1TVrEj17_y_QP9ROkfKS1HaexgMipnd-g-1bvn_SQ17uM9Y9-Hh7TZsIA1UksZhS1Ncsj4zSiuER3TTMZK8kZF9aUidF5aXgsTZrHkVFOMiNEJkvJhVI6cgnu-gSeZkka-xuWDZeunmBxmNu1KGBDFdrGU0PRHkNPkPrUiATdB8rva8SVmftPZDYovP5LeNFYquRgAa1XsGYnr2HjTv_CTbjqLUuuiJ-pHaISyHRyaM67g8szgqJ1XN2Qkc-5qRCqtrquyd3YRU3QaCZo6dc-_ZpMR9WsCi9KczyVjOYmLCMXoTm2x9AbOH8EEr-F9Uk1sVtArAlBSGVTnfMyjkqVJi5xcabLXLE070DUkrHQTX9zP2ZjXKw6M3vKF0j5wlO-4B3YWy6ZLpp7PPTzdsubornndbFCZQc-t_xaff7vZu8e3uwjPENwF99OBqfv4TnzFRch7W0b1mdX13YH7aBZ-SFAjsDvx0X4Xy3eGOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+hierarchical+CdS%2FNiO+hollow+heterogeneous+architectures+for+boosting+photocatalytic+hydrogen+generation&rft.jtitle=Nano+research&rft.au=Deng%2C+Chonghai&rft.au=Ye%2C+Fan&rft.au=Wang%2C+Tao&rft.au=Ling%2C+Xiaohui&rft.date=2022-03-01&rft.pub=Tsinghua+University+Press&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=15&rft.issue=3&rft.spage=2003&rft.epage=2012&rft_id=info:doi/10.1007%2Fs12274-021-3960-4&rft.externalDocID=10_1007_s12274_021_3960_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1998-0124&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1998-0124&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1998-0124&client=summon