Mechanical Responses and Permeability Evolution in Porous Sandstones Under Cyclic Loading Conditions: Implications for Subsurface Hydrogen Storage
In underground hydrogen storage operations, reservoir rocks often experience periodic pore pressure fluctuations due to annual or more frequent gas extraction and injection cycles. These fluctuations subject the reservoir rocks to cyclic effective stress changes, causing their mechanical and transpo...
Saved in:
Published in | Rock mechanics and rock engineering Vol. 58; no. 9; pp. 10643 - 10673 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Vienna
Springer Vienna
01.09.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In underground hydrogen storage operations, reservoir rocks often experience periodic pore pressure fluctuations due to annual or more frequent gas extraction and injection cycles. These fluctuations subject the reservoir rocks to cyclic effective stress changes, causing their mechanical and transport behaviors to differ from those under static conditions. However, understanding how porous rocks react to cyclic loading conditions is still limited. To bridge previous research gaps, cyclic loading tests were conducted on Castlegate and St Bees Sandstone, with applied stress amplitudes ranging from 70 to 90% of their monotonic peak strength. This experimental approach was designed to replicate the in situ stress conditions experienced by reservoir rocks during gas operations. Concurrently, we utilised the steady-state method to measure permeability changes under cyclic loading. By comparing the micro-CT features of the sandstones before and after cyclic loading tests, we quantitatively analysed the microscopic mechanisms driving these alterations in sandstone samples. Our results show that under cyclic loading conditions, the inelastic axial strain and Young’s Modulus initially increase for both sandstones, with the most significant changes occurring within the 1st cycle, followed by a trend towards stability. Permeability decreases with increasing stress and loading cycles. For the Castlegate Sandstone, elevated confining pressure intensified permeability loss, while in St Bees Sandstone, high confining pressure resulted in less permeability loss compared to low confining pressure, which was related to shear band development. Microstructural analysis showed grain movement, rotation, and rearrangement in Castlegate Sandstone under external forces, leading to pore/throat compression and reduced porosity/permeability. In contrast, St Bees Sandstone microstructure changes under low stress involved grain cracking from shear dilatancy, increasing porosity but blocking throats, complicating pore structure, then reducing permeability. Under high confining pressure, the strength of St Bees Sandstone rose without sufficient differential stress for shear dilatancy. Decreased permeability and pore volume were linked to compaction-dominated deformation.
Highlights
Castlegate and St Bees Sandstones exhibit prominent hysteresis loops under cyclic loading, with maximum inelastic strain and stiffness variations during the 1st loading cycle.
Castlegate Sandstone experiences more pronounced permeability loss under elevated confining pressures due to pore/throat compaction driven by grain rearrangement.
St Bees Sandstone shows complex permeability changes, with shear-induced grain cracking at lower confining pressures increasing porosity but reducing permeability by blocking pore throats.
Variations in mechanical and permeability responses are closely linked to grain size distribution and morphology differences between the two sandstones. |
---|---|
AbstractList | In underground hydrogen storage operations, reservoir rocks often experience periodic pore pressure fluctuations due to annual or more frequent gas extraction and injection cycles. These fluctuations subject the reservoir rocks to cyclic effective stress changes, causing their mechanical and transport behaviors to differ from those under static conditions. However, understanding how porous rocks react to cyclic loading conditions is still limited. To bridge previous research gaps, cyclic loading tests were conducted on Castlegate and St Bees Sandstone, with applied stress amplitudes ranging from 70 to 90% of their monotonic peak strength. This experimental approach was designed to replicate the in situ stress conditions experienced by reservoir rocks during gas operations. Concurrently, we utilised the steady-state method to measure permeability changes under cyclic loading. By comparing the micro-CT features of the sandstones before and after cyclic loading tests, we quantitatively analysed the microscopic mechanisms driving these alterations in sandstone samples. Our results show that under cyclic loading conditions, the inelastic axial strain and Young’s Modulus initially increase for both sandstones, with the most significant changes occurring within the 1st cycle, followed by a trend towards stability. Permeability decreases with increasing stress and loading cycles. For the Castlegate Sandstone, elevated confining pressure intensified permeability loss, while in St Bees Sandstone, high confining pressure resulted in less permeability loss compared to low confining pressure, which was related to shear band development. Microstructural analysis showed grain movement, rotation, and rearrangement in Castlegate Sandstone under external forces, leading to pore/throat compression and reduced porosity/permeability. In contrast, St Bees Sandstone microstructure changes under low stress involved grain cracking from shear dilatancy, increasing porosity but blocking throats, complicating pore structure, then reducing permeability. Under high confining pressure, the strength of St Bees Sandstone rose without sufficient differential stress for shear dilatancy. Decreased permeability and pore volume were linked to compaction-dominated deformation.
Highlights
Castlegate and St Bees Sandstones exhibit prominent hysteresis loops under cyclic loading, with maximum inelastic strain and stiffness variations during the 1st loading cycle.
Castlegate Sandstone experiences more pronounced permeability loss under elevated confining pressures due to pore/throat compaction driven by grain rearrangement.
St Bees Sandstone shows complex permeability changes, with shear-induced grain cracking at lower confining pressures increasing porosity but reducing permeability by blocking pore throats.
Variations in mechanical and permeability responses are closely linked to grain size distribution and morphology differences between the two sandstones. In underground hydrogen storage operations, reservoir rocks often experience periodic pore pressure fluctuations due to annual or more frequent gas extraction and injection cycles. These fluctuations subject the reservoir rocks to cyclic effective stress changes, causing their mechanical and transport behaviors to differ from those under static conditions. However, understanding how porous rocks react to cyclic loading conditions is still limited. To bridge previous research gaps, cyclic loading tests were conducted on Castlegate and St Bees Sandstone, with applied stress amplitudes ranging from 70 to 90% of their monotonic peak strength. This experimental approach was designed to replicate the in situ stress conditions experienced by reservoir rocks during gas operations. Concurrently, we utilised the steady-state method to measure permeability changes under cyclic loading. By comparing the micro-CT features of the sandstones before and after cyclic loading tests, we quantitatively analysed the microscopic mechanisms driving these alterations in sandstone samples. Our results show that under cyclic loading conditions, the inelastic axial strain and Young’s Modulus initially increase for both sandstones, with the most significant changes occurring within the 1st cycle, followed by a trend towards stability. Permeability decreases with increasing stress and loading cycles. For the Castlegate Sandstone, elevated confining pressure intensified permeability loss, while in St Bees Sandstone, high confining pressure resulted in less permeability loss compared to low confining pressure, which was related to shear band development. Microstructural analysis showed grain movement, rotation, and rearrangement in Castlegate Sandstone under external forces, leading to pore/throat compression and reduced porosity/permeability. In contrast, St Bees Sandstone microstructure changes under low stress involved grain cracking from shear dilatancy, increasing porosity but blocking throats, complicating pore structure, then reducing permeability. Under high confining pressure, the strength of St Bees Sandstone rose without sufficient differential stress for shear dilatancy. Decreased permeability and pore volume were linked to compaction-dominated deformation. In underground hydrogen storage operations, reservoir rocks often experience periodic pore pressure fluctuations due to annual or more frequent gas extraction and injection cycles. These fluctuations subject the reservoir rocks to cyclic effective stress changes, causing their mechanical and transport behaviors to differ from those under static conditions. However, understanding how porous rocks react to cyclic loading conditions is still limited. To bridge previous research gaps, cyclic loading tests were conducted on Castlegate and St Bees Sandstone, with applied stress amplitudes ranging from 70 to 90% of their monotonic peak strength. This experimental approach was designed to replicate the in situ stress conditions experienced by reservoir rocks during gas operations. Concurrently, we utilised the steady-state method to measure permeability changes under cyclic loading. By comparing the micro-CT features of the sandstones before and after cyclic loading tests, we quantitatively analysed the microscopic mechanisms driving these alterations in sandstone samples. Our results show that under cyclic loading conditions, the inelastic axial strain and Young’s Modulus initially increase for both sandstones, with the most significant changes occurring within the 1st cycle, followed by a trend towards stability. Permeability decreases with increasing stress and loading cycles. For the Castlegate Sandstone, elevated confining pressure intensified permeability loss, while in St Bees Sandstone, high confining pressure resulted in less permeability loss compared to low confining pressure, which was related to shear band development. Microstructural analysis showed grain movement, rotation, and rearrangement in Castlegate Sandstone under external forces, leading to pore/throat compression and reduced porosity/permeability. In contrast, St Bees Sandstone microstructure changes under low stress involved grain cracking from shear dilatancy, increasing porosity but blocking throats, complicating pore structure, then reducing permeability. Under high confining pressure, the strength of St Bees Sandstone rose without sufficient differential stress for shear dilatancy. Decreased permeability and pore volume were linked to compaction-dominated deformation.HighlightsCastlegate and St Bees Sandstones exhibit prominent hysteresis loops under cyclic loading, with maximum inelastic strain and stiffness variations during the 1st loading cycle.Castlegate Sandstone experiences more pronounced permeability loss under elevated confining pressures due to pore/throat compaction driven by grain rearrangement.St Bees Sandstone shows complex permeability changes, with shear-induced grain cracking at lower confining pressures increasing porosity but reducing permeability by blocking pore throats.Variations in mechanical and permeability responses are closely linked to grain size distribution and morphology differences between the two sandstones. |
Author | Harpers, Nick Miller, Paul Singh, Kamaljit Inskip, Nathaniel Forbes Wen, Ming Buckman, Jim Busch, Andreas |
Author_xml | – sequence: 1 givenname: Ming orcidid: 0009-0001-1626-1876 surname: Wen fullname: Wen, Ming email: mw107@hw.ac.uk organization: The Lyell Centre, Heriot-Watt University – sequence: 2 givenname: Nick surname: Harpers fullname: Harpers, Nick organization: The Lyell Centre, Heriot-Watt University, Applied Structural Geology Teaching and Research Unit, RWTH Aachen University – sequence: 3 givenname: Nathaniel Forbes surname: Inskip fullname: Inskip, Nathaniel Forbes organization: The Lyell Centre, Heriot-Watt University – sequence: 4 givenname: Jim surname: Buckman fullname: Buckman, Jim organization: Institute of GeoEnergy Engineering, Heriot-Watt University – sequence: 5 givenname: Kamaljit surname: Singh fullname: Singh, Kamaljit organization: Institute of GeoEnergy Engineering, Heriot-Watt University – sequence: 6 givenname: Paul surname: Miller fullname: Miller, Paul organization: The Lyell Centre, Heriot-Watt University – sequence: 7 givenname: Andreas surname: Busch fullname: Busch, Andreas organization: The Lyell Centre, Heriot-Watt University |
BookMark | eNp9kM9OGzEQxi1EJQLlBThZ6nnbWdv7J9xQRAEpCNQUqTdrYs8Go40d7F2UvEafGIdU4tbTaDTf983M75Qd--CJsYsSvpcAzY8EUIMsQFQFqLoWxfaITUolVaEq-eeYTaARshC1FCfsNKUXgDxs2gn7e0_mGb0z2PNflDbBJ0ocveWPFNeES9e7Ycev30I_Di547jx_DDGMiS-yKg35jsSfvKXIZzvTO8PnAa3zKz4L3rq9J13yu_Umj_Cj412IfDEu0xg7NMRvdzaGFXm-GELEFX1lXzrsE53_q2fs6ef179ltMX-4uZtdzQsjy3ooZL2sKyRqp1UF2DbT2nQNTrv9k2Q7I-y0rVossa2UJIMCpQUhSSoB0Ckrz9i3Q-4mhteR0qBfwhh9XqmlUKqUqgSZVeKgMjGkFKnTm-jWGHe6BL1nrw_sdWavP9jrbTbJgyllsV9R_Iz-j-sdhYaMfQ |
Cites_doi | 10.1007/s10853-017-1953-1 10.1016/j.rser.2017.05.046 10.1016/j.enggeo.2017.01.017 10.1126/science.268.5208.276 10.1038/s41598-022-11365-8 10.1007/s00603-017-1215-1 10.1017/9781009157896.007 10.1155/2021/8871103 10.1029/2003JB002942 10.1007/s00603-020-02215-y 10.1016/S1365-1609(02)00068-0 10.1016/j.ijhydene.2020.08.138 10.1039/D0EE03536J 10.1007/s40948-015-0017-8 10.3390/pr6120234 10.1144/GSL.QJEG.1991.024.01.14 10.1029/JB093iB07p07729 10.1016/j.apenergy.2018.02.110 10.1016/0264-8172(94)90071-X 10.1002/ese3.527 10.1029/2000JB900381 10.1007/s00603-020-02156-6 10.1038/s41598-023-33721-y 10.1016/j.egypro.2015.07.872 10.1016/0360-3199(79)90083-1 10.1016/j.est.2023.108912 10.1016/j.ijrmms.2013.11.006 10.1016/j.petrol.2016.01.019 10.1017/9781107415096 10.1016/j.conbuildmat.2017.12.001 10.1016/j.enggeo.2015.02.004 10.1007/BF01059632 10.1016/j.ijmst.2021.08.003 10.1016/j.gete.2020.100179 10.1029/JB085iB04p01854 10.1029/2019JB017366 10.1007/s12665-015-4176-2 10.2516/ogst:1999061 10.1029/2012GL053739 10.1016/j.ijrmms.2010.06.019 10.1016/0148-9062(80)91089-X 10.1016/j.jngse.2016.09.061 10.1016/j.jngse.2022.104666 10.56952/ARMA-2023-0718 10.1063/5.0160906 10.1021/es3031209 10.1029/96JB03282 10.2118/65410-PA 10.1007/s40789-019-00278-z 10.1016/j.petrol.2019.01.050 10.3390/en13153774 10.1306/103000710537 10.1029/2000JB900208 10.1103/PhysRevE.80.036307 10.1016/j.ijhydene.2020.05.024 10.1155/2019/6120435 10.1029/96GL03078 10.1029/WR002i004p00665 10.1016/j.petrol.2018.08.047 10.2118/205364-PA 10.1016/j.ijhydene.2021.05.030 10.1029/2018JB015673 10.1016/j.jsg.2022.104740 10.1016/j.petrol.2022.110282 10.1144/petgeo.8.3.195 10.1029/2002JB001854 10.1016/j.petrol.2021.109498 10.1029/96JB03281 10.1016/j.enconman.2009.01.032 10.1016/j.jmps.2012.10.005 10.1007/s00603-021-02726-2 10.1007/BF00874337 10.1002/2017JB014060 10.1115/OMAE2017-61597 10.1016/j.jsg.2012.07.010 10.1093/gji/ggu052 10.2516/ogst/2015037 10.1007/s10040-017-1676-z 10.1007/s11440-014-0364-6 10.1061/(ASCE)1090-0241(2004)130:5(498) 10.2118/65756-PA |
ContentType | Journal Article |
Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7TN 7UA 8FD C1K F1W FR3 H96 KR7 L.G |
DOI | 10.1007/s00603-025-04662-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Oceanic Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Engineering |
EISSN | 1434-453X |
EndPage | 10673 |
ExternalDocumentID | 10_1007_s00603_025_04662_x |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | -Y2 .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29P 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 78A 88I 8FE 8FG 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFNX AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V L8X LAS LK5 LLZTM M2P M4Y M7R M7S MA- MK~ MM- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PCBAR PF0 PHGZM PHGZT PQGLB PQQKQ PROAC PT4 PT5 PTHSS PUEGO Q2X QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK6 WK8 Y6R YLTOR Z45 Z8Z ZMTXR ZY4 ~02 ~EX AAYXX CITATION 7TN 7UA 8FD C1K F1W FR3 H96 KR7 L.G |
ID | FETCH-LOGICAL-c316t-36b65aee89550a8796cf7a9f2632edfc2d9858a1a8543eca2a3d023e34200f4d3 |
IEDL.DBID | C6C |
ISSN | 0723-2632 |
IngestDate | Fri Aug 29 04:52:13 EDT 2025 Thu Jul 03 08:38:51 EDT 2025 Thu Aug 28 04:25:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Cyclic loading Micro-CT Porous sandstones Underground hydrogen storage Permeability evolution |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-36b65aee89550a8796cf7a9f2632edfc2d9858a1a8543eca2a3d023e34200f4d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0001-1626-1876 |
OpenAccessLink | https://doi.org/10.1007/s00603-025-04662-x |
PQID | 3244134103 |
PQPubID | 60272 |
PageCount | 31 |
ParticipantIDs | proquest_journals_3244134103 crossref_primary_10_1007_s00603_025_04662_x springer_journals_10_1007_s00603_025_04662_x |
PublicationCentury | 2000 |
PublicationDate | 20250900 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 9 year: 2025 text: 20250900 |
PublicationDecade | 2020 |
PublicationPlace | Vienna |
PublicationPlace_xml | – name: Vienna – name: Wien |
PublicationTitle | Rock mechanics and rock engineering |
PublicationTitleAbbrev | Rock Mech Rock Eng |
PublicationYear | 2025 |
Publisher | Springer Vienna Springer Nature B.V |
Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
References | R Baker (4662_CR3) 2004; 130 RH Lander (4662_CR40) 1999; 83 Z Zhou (4662_CR85) 2017; 220 R Alikarami (4662_CR2) 2015; 10 L Gong (4662_CR23) 2020; 13 4662_CR54 4662_CR53 J-J Dong (4662_CR14) 2010; 47 K Engeland (4662_CR17) 2017; 79 S Huang (4662_CR31) 2018; 6 Z Huang (4662_CR32) 2021; 31 RPJ Pijnenburg (4662_CR61) 2019; 124 V Reitenbach (4662_CR66) 2015; 73 4662_CR18 E Rice-Birchall (4662_CR67) 2022; 164 P Carden (4662_CR7) 1979; 4 G Medici (4662_CR50) 2018; 26 Y Zhao (4662_CR84) 2019; 6 A Hawkins (4662_CR26) 1991; 24 C Hu (4662_CR30) 2022; 104 L Lankof (4662_CR41) 2020; 45 J Fredrich (4662_CR22) 1995; 268 4662_CR81 S Iglauer (4662_CR33) 2022; 212 W Zhu (4662_CR86) 1996; 23 G Desbois (4662_CR12) 2016; 140 PM Doyen (4662_CR15) 1988; 93 FD Masch (4662_CR48) 1966; 2 WB Lindquist (4662_CR42) 2000; 105 T-F Wong (4662_CR77) 2012; 44 H Wang (4662_CR75) 2017; 50 C Liu (4662_CR43) 2020; 8 R Herlinger Jr (4662_CR28) 2022; 212 A Mortazavi (4662_CR52) 2018; 171 AJ Luhmann (4662_CR45) 2013; 47 AKMB Alam (4662_CR1) 2014; 65 4662_CR6 L Kong (4662_CR36) 2018; 53 L Kong (4662_CR37) 2019; 175 A Taheri (4662_CR71) 2016; 2 4662_CR8 4662_CR72 4662_CR9 J Fowles (4662_CR21) 1994; 11 MS Paterson (4662_CR55) 2005 E Shalev (4662_CR69) 2014; 197 4662_CR70 C Jia (4662_CR34) 2018; 162 W Zhu (4662_CR87) 1997; 102 RL Kranz (4662_CR38) 1980; 85 T-F Wong (4662_CR78) 1999; 113 J Peng (4662_CR57) 2015; 189 4662_CR73 T Wong (4662_CR76) 1999; 54 Y Yang (4662_CR80) 2016; 36 N Heinemann (4662_CR27) 2021; 14 A Lothe (4662_CR44) 2002; 8 WT Pfeiffer (4662_CR58) 2015; 76 Z-H Zhang (4662_CR82) 2020; 53 R Pijnenburg (4662_CR60) 2018; 123 C David (4662_CR11) 1994; 143 H Dong (4662_CR13) 2009; 80 M Lysyy (4662_CR47) 2021; 46 L Scholtès (4662_CR68) 2013; 61 Wong, T.f., David, C. and Zhu, W. (4662_CR79) 1997; 102 H Zhang (4662_CR83) 2023; 13 RL Payton (4662_CR56) 2022; 12 H Fossen (4662_CR20) 2016 T Popp (4662_CR62) 2001; 106 KR Kumar (4662_CR39) 2023; 73 MD Zoback (4662_CR89) 2010 AD Miall (4662_CR51) 2001; 71 WM Kibikas (4662_CR35) 2021; 2021 4662_CR64 M McPherson (4662_CR49) 2018; 216 4662_CR25 D Zivar (4662_CR88) 2021; 46 E Fjaer (4662_CR19) 2008 RPJ Pijnenburg (4662_CR59) 2020; 53 S Rafieepour (4662_CR63) 2021; 26 P Baud (4662_CR4) 2017; 122 Y Bernabé (4662_CR5) 2016; 71 P Van den Hoek (4662_CR74) 2000; 15 T Gowd (4662_CR24) 1980; 17 M Ramezanian (4662_CR65) 2020; 22 C David (4662_CR10) 1993; 11 A El Bied (4662_CR16) 2002; 39 M Hettema (4662_CR29) 2000; 3 H Lund (4662_CR46) 2009; 50 |
References_xml | – volume: 53 start-page: 5063 issue: 7 year: 2018 ident: 4662_CR36 publication-title: J Mater Sci doi: 10.1007/s10853-017-1953-1 – volume: 79 start-page: 600 year: 2017 ident: 4662_CR17 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.05.046 – volume: 220 start-page: 1 year: 2017 ident: 4662_CR85 publication-title: Eng Geol doi: 10.1016/j.enggeo.2017.01.017 – volume: 268 start-page: 276 issue: 5208 year: 1995 ident: 4662_CR22 publication-title: Science doi: 10.1126/science.268.5208.276 – volume: 12 start-page: 7531 issue: 1 year: 2022 ident: 4662_CR56 publication-title: Sci Rep doi: 10.1038/s41598-022-11365-8 – volume: 50 start-page: 2071 year: 2017 ident: 4662_CR75 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-017-1215-1 – ident: 4662_CR6 doi: 10.1017/9781009157896.007 – volume: 113 start-page: 83 year: 1999 ident: 4662_CR78 publication-title: Geophys Monogr Ser – ident: 4662_CR8 – volume: 2021 start-page: 1 year: 2021 ident: 4662_CR35 publication-title: Geofluids doi: 10.1155/2021/8871103 – ident: 4662_CR73 doi: 10.1029/2003JB002942 – volume: 53 start-page: 5301 issue: 12 year: 2020 ident: 4662_CR59 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-020-02215-y – volume: 39 start-page: 917 issue: 7 year: 2002 ident: 4662_CR16 publication-title: Int J Rock Mech Min Sci doi: 10.1016/S1365-1609(02)00068-0 – volume: 46 start-page: 23436 issue: 45 year: 2021 ident: 4662_CR88 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.08.138 – volume: 14 start-page: 853 issue: 2 year: 2021 ident: 4662_CR27 publication-title: Energy Environ Sci doi: 10.1039/D0EE03536J – volume: 2 start-page: 1 issue: 1 year: 2016 ident: 4662_CR71 publication-title: Geomech Geophysr Geo-Energy Geo-Resources doi: 10.1007/s40948-015-0017-8 – volume: 6 start-page: 234 issue: 12 year: 2018 ident: 4662_CR31 publication-title: Processes doi: 10.3390/pr6120234 – volume: 24 start-page: 135 issue: 1 year: 1991 ident: 4662_CR26 publication-title: Q J Eng GeolHydrogeol doi: 10.1144/GSL.QJEG.1991.024.01.14 – volume: 93 start-page: 7729 issue: B7 year: 1988 ident: 4662_CR15 publication-title: J Geophys Res doi: 10.1029/JB093iB07p07729 – volume: 216 start-page: 649 year: 2018 ident: 4662_CR49 publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.02.110 – volume: 11 start-page: 608 issue: 5 year: 1994 ident: 4662_CR21 publication-title: Mar Pet Geol doi: 10.1016/0264-8172(94)90071-X – volume: 8 start-page: 452 issue: 2 year: 2020 ident: 4662_CR43 publication-title: Energy Sci Eng doi: 10.1002/ese3.527 – volume: 106 start-page: 4061 issue: B3 year: 2001 ident: 4662_CR62 publication-title: J Geophys Res doi: 10.1029/2000JB900381 – volume: 53 start-page: 4279 issue: 9 year: 2020 ident: 4662_CR82 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-020-02156-6 – volume: 13 start-page: 7370 issue: 1 year: 2023 ident: 4662_CR83 publication-title: Sci Rep doi: 10.1038/s41598-023-33721-y – volume: 76 start-page: 565 year: 2015 ident: 4662_CR58 publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.07.872 – volume: 4 start-page: 559 issue: 6 year: 1979 ident: 4662_CR7 publication-title: Int J Hydrogen Energy doi: 10.1016/0360-3199(79)90083-1 – volume: 73 year: 2023 ident: 4662_CR39 publication-title: J Energy Storage doi: 10.1016/j.est.2023.108912 – volume: 65 start-page: 49 year: 2014 ident: 4662_CR1 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2013.11.006 – volume: 140 start-page: 128 year: 2016 ident: 4662_CR12 publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2016.01.019 – volume-title: Structural geology year: 2016 ident: 4662_CR20 doi: 10.1017/9781107415096 – volume: 162 start-page: 113 year: 2018 ident: 4662_CR34 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2017.12.001 – volume: 189 start-page: 48 year: 2015 ident: 4662_CR57 publication-title: Eng Geol doi: 10.1016/j.enggeo.2015.02.004 – volume: 11 start-page: 161 year: 1993 ident: 4662_CR10 publication-title: Transp Porous Media doi: 10.1007/BF01059632 – volume: 31 start-page: 963 issue: 5 year: 2021 ident: 4662_CR32 publication-title: Int J Min Sci Technol doi: 10.1016/j.ijmst.2021.08.003 – volume: 22 start-page: 100179 year: 2020 ident: 4662_CR65 publication-title: Geomech Energy Environ doi: 10.1016/j.gete.2020.100179 – volume: 85 start-page: 1854 issue: B4 year: 1980 ident: 4662_CR38 publication-title: J Geophys Res doi: 10.1029/JB085iB04p01854 – volume: 124 start-page: 5254 issue: 5 year: 2019 ident: 4662_CR61 publication-title: J Geophys Res doi: 10.1029/2019JB017366 – volume: 73 start-page: 6927 year: 2015 ident: 4662_CR66 publication-title: Environ Earth Sci doi: 10.1007/s12665-015-4176-2 – volume: 54 start-page: 715 issue: 6 year: 1999 ident: 4662_CR76 publication-title: Oil Gas Sci Technol doi: 10.2516/ogst:1999061 – ident: 4662_CR72 – ident: 4662_CR9 doi: 10.1029/2012GL053739 – volume: 47 start-page: 1141 issue: 7 year: 2010 ident: 4662_CR14 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2010.06.019 – volume: 17 start-page: 225 year: 1980 ident: 4662_CR24 publication-title: Int J Rock Mech Mining Sci Geomech Abstracts doi: 10.1016/0148-9062(80)91089-X – volume: 36 start-page: 20 year: 2016 ident: 4662_CR80 publication-title: Journal of Natural Gas Science and Engineering doi: 10.1016/j.jngse.2016.09.061 – volume: 104 year: 2022 ident: 4662_CR30 publication-title: J Natural Gas Sci Eng doi: 10.1016/j.jngse.2022.104666 – ident: 4662_CR54 doi: 10.56952/ARMA-2023-0718 – ident: 4662_CR25 doi: 10.1063/5.0160906 – volume: 47 start-page: 242 issue: 1 year: 2013 ident: 4662_CR45 publication-title: Environ Sci Technol doi: 10.1021/es3031209 – volume: 102 start-page: 3027 issue: B2 year: 1997 ident: 4662_CR87 publication-title: J Geophys Res doi: 10.1029/96JB03282 – volume: 3 start-page: 342 issue: 04 year: 2000 ident: 4662_CR29 publication-title: SPE Reservoir Eval Eng doi: 10.2118/65410-PA – volume: 6 start-page: 479 issue: 4 year: 2019 ident: 4662_CR84 publication-title: Int J Coal Sci Technol doi: 10.1007/s40789-019-00278-z – volume: 175 start-page: 1039 year: 2019 ident: 4662_CR37 publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2019.01.050 – volume: 13 start-page: 3774 issue: 15 year: 2020 ident: 4662_CR23 publication-title: Energies doi: 10.3390/en13153774 – volume: 71 start-page: 537 issue: 4 year: 2001 ident: 4662_CR51 publication-title: J Sediment Res doi: 10.1306/103000710537 – volume: 105 start-page: 21509 issue: B9 year: 2000 ident: 4662_CR42 publication-title: J Geophys Res doi: 10.1029/2000JB900208 – volume: 80 issue: 3 year: 2009 ident: 4662_CR13 publication-title: Phys Rev E doi: 10.1103/PhysRevE.80.036307 – volume-title: Petroleum related rock mechanics year: 2008 ident: 4662_CR19 – volume-title: Experimental rock deformation: the brittle field, 348 year: 2005 ident: 4662_CR55 – volume: 45 start-page: 19479 issue: 38 year: 2020 ident: 4662_CR41 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.05.024 – ident: 4662_CR81 doi: 10.1155/2019/6120435 – volume: 23 start-page: 3099 issue: 22 year: 1996 ident: 4662_CR86 publication-title: Geophys Res Lett doi: 10.1029/96GL03078 – volume: 2 start-page: 665 issue: 4 year: 1966 ident: 4662_CR48 publication-title: Water Resour Res doi: 10.1029/WR002i004p00665 – volume: 171 start-page: 1366 year: 2018 ident: 4662_CR52 publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2018.08.047 – ident: 4662_CR18 – volume: 26 start-page: 2793 issue: 05 year: 2021 ident: 4662_CR63 publication-title: SPE J doi: 10.2118/205364-PA – volume: 46 start-page: 25160 issue: 49 year: 2021 ident: 4662_CR47 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.05.030 – volume: 123 start-page: 5532 issue: 7 year: 2018 ident: 4662_CR60 publication-title: J Geophys Res doi: 10.1029/2018JB015673 – volume: 164 year: 2022 ident: 4662_CR67 publication-title: J Struct Geol doi: 10.1016/j.jsg.2022.104740 – volume: 212 year: 2022 ident: 4662_CR28 publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2022.110282 – volume: 8 start-page: 195 issue: 3 year: 2002 ident: 4662_CR44 publication-title: Pet Geosci doi: 10.1144/petgeo.8.3.195 – ident: 4662_CR53 doi: 10.1029/2002JB001854 – volume: 212 year: 2022 ident: 4662_CR33 publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2021.109498 – volume: 102 start-page: 3009 issue: B2 year: 1997 ident: 4662_CR79 publication-title: J Geophys Res doi: 10.1029/96JB03281 – volume: 50 start-page: 1172 issue: 5 year: 2009 ident: 4662_CR46 publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2009.01.032 – volume: 61 start-page: 352 issue: 2 year: 2013 ident: 4662_CR68 publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2012.10.005 – ident: 4662_CR70 doi: 10.1007/s00603-021-02726-2 – volume-title: Reservoir geomechanics year: 2010 ident: 4662_CR89 – volume: 143 start-page: 425 issue: 1–3 year: 1994 ident: 4662_CR11 publication-title: Pure Appl Geophys doi: 10.1007/BF00874337 – volume: 122 start-page: 7363 issue: 9 year: 2017 ident: 4662_CR4 publication-title: J Geophys Res doi: 10.1002/2017JB014060 – ident: 4662_CR64 doi: 10.1115/OMAE2017-61597 – volume: 44 start-page: 25 year: 2012 ident: 4662_CR77 publication-title: J Struct Geol doi: 10.1016/j.jsg.2012.07.010 – volume: 197 start-page: 920 issue: 2 year: 2014 ident: 4662_CR69 publication-title: Geophys J Int doi: 10.1093/gji/ggu052 – volume: 71 start-page: 50 issue: 4 year: 2016 ident: 4662_CR5 publication-title: Oil Gas Sci Technol doi: 10.2516/ogst/2015037 – volume: 26 start-page: 565 issue: 2 year: 2018 ident: 4662_CR50 publication-title: Hydrogeol J doi: 10.1007/s10040-017-1676-z – volume: 10 start-page: 15 year: 2015 ident: 4662_CR2 publication-title: Acta Geotech doi: 10.1007/s11440-014-0364-6 – volume: 130 start-page: 498 issue: 5 year: 2004 ident: 4662_CR3 publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)1090-0241(2004)130:5(498) – volume: 83 start-page: 433 issue: 3 year: 1999 ident: 4662_CR40 publication-title: AAPG Bull – volume: 15 start-page: 261 issue: 04 year: 2000 ident: 4662_CR74 publication-title: SPE Drill Complet doi: 10.2118/65756-PA |
SSID | ssj0014378 |
Score | 2.402999 |
Snippet | In underground hydrogen storage operations, reservoir rocks often experience periodic pore pressure fluctuations due to annual or more frequent gas extraction... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 10643 |
SubjectTerms | Alternative energy sources Aquifers Axial strain Civil Engineering Compaction Compression Computed tomography Confining Cracking (corrosion) Cyclic loading Cyclic loads Deformation Dilatancy Earth and Environmental Science Earth Sciences Edge dislocations Experiments Fluctuations Fossil fuels Gases Geophysics/Geodesy Grain size Grain size distribution Hydrogen Hydrogen storage Hysteresis loops Mechanical properties Membrane permeability Microstructural analysis Microstructure Natural gas Oil and gas operations Original Paper Permeability Pore pressure Pore water pressure Porosity Pressure Quartz Renewable resources Reservoir storage Reservoirs Rocks Sandstone Sedimentary rocks Shear Shear bands Size distribution Strain Underground storage |
Title | Mechanical Responses and Permeability Evolution in Porous Sandstones Under Cyclic Loading Conditions: Implications for Subsurface Hydrogen Storage |
URI | https://link.springer.com/article/10.1007/s00603-025-04662-x https://www.proquest.com/docview/3244134103 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF7EIuhBtCpWa5mDNw002c0m8daG1vqkqAU9hc1mAwVppA-xf8Nf7EySahU9eEkOCUvYmZ35JjPzDWPHRifaiQP64970LIEuwUI3klq2iV3dVGkce9SNfHMrewNx-eg-ljQ51AvzI39PZJ-SKn4cl4oQpWMhXqy4NvdoTEMow8-MgeCF1fUcbhEHedkg8_sa353QF7L8kQzNfUx3i22W4BBahTS32YoZVdnGEmVgla2d56N45zvs_cZQ1y5tMtwVla5mAmqUQB-trSn4t-fQeS2VC4Yj6GdjjPThnvp7iYV7AvncIwjn-nmo4TrLK-ohzCiRTQp5BhdLJeeACBfI1MzGqdIGevNknKEGwj1G7miYdtmg23kIe1Y5YcHS3JZTi8tYusoYP8BARfleIHXqqSClDTRJqp0k8F1f2cp3BTdaOYon6OQNF3i4UpHwPbY6wq_dZxCnRJwv7CD20OsbgbhG2VwFSgiDQZqssZPFlkcvBZFG9EmZnAsoQgFFuYCitxqrL6QSlYdqEiH2E8Q_1-Q1drqQ1Nfjv1c7-N_rh2zdyZWFKsnqbHU6npkjhB7TuMEqrW67fUv386erTiPXQbwOnNYHKnDVlA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kIupBfGK16hy8aaDJbl7epFSjtlKshd7CZrOBgrSSVrF_w1_szCapD_TgOWEJM7Mz32RmvmHsVKtUOUlIf9ybviUwJFgYRjLL1omrmjJLEp-mkbv3XjQQt0N3WA6FTatu96okaTz1YtiNqEOo5uhSO6LnWIgclxEMBGTLA-dyUTsQvPC_vsMtYiMvR2V-P-N7OPrEmD_KoibaXG2yjRImwmWh1y22pMfbbP0LeeA2W7k2S3nnO-y9q2l-l8QND0XPq56CHKfQQ7-rCybuObRfSzOD0Rh6kxxzfujTpC_xcU_BbECC1lw9jRR0Jqa3HloTKmmTaV7AzZfmc0CsC-R0XvJMKg3RPM0naIvQxxweXdQuG1y1H1uRVe5asBS3vZnFvcRzpdZBiCmLDPzQU5kvw4wEqNNMOWkYuIG0ZeAKrpV0JE8x3Gsu8JplIuV7rDbGr91nkGREoS_sMPEx_muBCEfaXIZSCI3pmldnZ5XI4-eCUiNekCcbBcWooNgoKH6rs0allbi8XtMYUaAgJromr7PzSlOfj_8-7eB_r5-w1eix24k7N_d3h2zNMYZD_WUNVpvlL_oIAcksOTb29wG2n9iy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5EUfQgPrFadQ7eNNhkNy9vElvrk-IDvIXNZhcKkkpbxf4Nf7Ezm7RW0YPnhCXszM58k5nvW8YOtMqVl8X0x70ROgJTgoNpxDiuznzVkCbLQmIj39wG7Udx-eQ_TbH47bT7uCVZchpIpakYHr_k5nhCfCMZEeo_-jSaGHgOosg5rFRcKr-SIJn0EQQvY3HocYeUySvazO9rfE9NX3jzR4vUZp7WCluuICOcljZeZTO6WGNLU0KCa2z-3F7QO1pnHzeauLy09XBXzr_qAcgihw7GYF2qco-g-Va5HHQL6PT6WP_DPbF-SZt7APY2JEhG6rmr4Lpn5-wh6VF7m9z0BC6mBtEBcS9QAHrtG6k0tEd5v4d-CfdYz2O42mCPreZD0naqexccxd1g6PAgC3ypdRRj-SKjMA6UCWVsaAN1bpSXx5EfSVdGvuBaSU_yHFO_5gKPnBE532SzBX7tFoPMkJy-cOMsRCygBaId6XIZSyE0lm5BjR2Otzx9KeU10omQsjVQigZKrYHS9xqrj62SVkdtkCIiFKRK1-A1djS21Nfjv1fb_t_r-2yhc9ZKry9ur3bYomf9hkbN6mx22H_Vu4hNhtmedb9PIVPc2A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+Responses+and+Permeability+Evolution+in+Porous+Sandstones+Under+Cyclic+Loading+Conditions%3A+Implications+for+Subsurface+Hydrogen+Storage&rft.jtitle=Rock+mechanics+and+rock+engineering&rft.au=Wen%2C+Ming&rft.au=Harpers%2C+Nick&rft.au=Inskip%2C+Nathaniel+Forbes&rft.au=Buckman%2C+Jim&rft.date=2025-09-01&rft.pub=Springer+Vienna&rft.issn=0723-2632&rft.eissn=1434-453X&rft.volume=58&rft.issue=9&rft.spage=10643&rft.epage=10673&rft_id=info:doi/10.1007%2Fs00603-025-04662-x&rft.externalDocID=10_1007_s00603_025_04662_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0723-2632&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0723-2632&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0723-2632&client=summon |