Mechanical Responses and Permeability Evolution in Porous Sandstones Under Cyclic Loading Conditions: Implications for Subsurface Hydrogen Storage

In underground hydrogen storage operations, reservoir rocks often experience periodic pore pressure fluctuations due to annual or more frequent gas extraction and injection cycles. These fluctuations subject the reservoir rocks to cyclic effective stress changes, causing their mechanical and transpo...

Full description

Saved in:
Bibliographic Details
Published inRock mechanics and rock engineering Vol. 58; no. 9; pp. 10643 - 10673
Main Authors Wen, Ming, Harpers, Nick, Inskip, Nathaniel Forbes, Buckman, Jim, Singh, Kamaljit, Miller, Paul, Busch, Andreas
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.09.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In underground hydrogen storage operations, reservoir rocks often experience periodic pore pressure fluctuations due to annual or more frequent gas extraction and injection cycles. These fluctuations subject the reservoir rocks to cyclic effective stress changes, causing their mechanical and transport behaviors to differ from those under static conditions. However, understanding how porous rocks react to cyclic loading conditions is still limited. To bridge previous research gaps, cyclic loading tests were conducted on Castlegate and St Bees Sandstone, with applied stress amplitudes ranging from 70 to 90% of their monotonic peak strength. This experimental approach was designed to replicate the in situ stress conditions experienced by reservoir rocks during gas operations. Concurrently, we utilised the steady-state method to measure permeability changes under cyclic loading. By comparing the micro-CT features of the sandstones before and after cyclic loading tests, we quantitatively analysed the microscopic mechanisms driving these alterations in sandstone samples. Our results show that under cyclic loading conditions, the inelastic axial strain and Young’s Modulus initially increase for both sandstones, with the most significant changes occurring within the 1st cycle, followed by a trend towards stability. Permeability decreases with increasing stress and loading cycles. For the Castlegate Sandstone, elevated confining pressure intensified permeability loss, while in St Bees Sandstone, high confining pressure resulted in less permeability loss compared to low confining pressure, which was related to shear band development. Microstructural analysis showed grain movement, rotation, and rearrangement in Castlegate Sandstone under external forces, leading to pore/throat compression and reduced porosity/permeability. In contrast, St Bees Sandstone microstructure changes under low stress involved grain cracking from shear dilatancy, increasing porosity but blocking throats, complicating pore structure, then reducing permeability. Under high confining pressure, the strength of St Bees Sandstone rose without sufficient differential stress for shear dilatancy. Decreased permeability and pore volume were linked to compaction-dominated deformation. Highlights Castlegate and St Bees Sandstones exhibit prominent hysteresis loops under cyclic loading, with maximum inelastic strain and stiffness variations during the 1st loading cycle. Castlegate Sandstone experiences more pronounced permeability loss under elevated confining pressures due to pore/throat compaction driven by grain rearrangement. St Bees Sandstone shows complex permeability changes, with shear-induced grain cracking at lower confining pressures increasing porosity but reducing permeability by blocking pore throats. Variations in mechanical and permeability responses are closely linked to grain size distribution and morphology differences between the two sandstones.
AbstractList In underground hydrogen storage operations, reservoir rocks often experience periodic pore pressure fluctuations due to annual or more frequent gas extraction and injection cycles. These fluctuations subject the reservoir rocks to cyclic effective stress changes, causing their mechanical and transport behaviors to differ from those under static conditions. However, understanding how porous rocks react to cyclic loading conditions is still limited. To bridge previous research gaps, cyclic loading tests were conducted on Castlegate and St Bees Sandstone, with applied stress amplitudes ranging from 70 to 90% of their monotonic peak strength. This experimental approach was designed to replicate the in situ stress conditions experienced by reservoir rocks during gas operations. Concurrently, we utilised the steady-state method to measure permeability changes under cyclic loading. By comparing the micro-CT features of the sandstones before and after cyclic loading tests, we quantitatively analysed the microscopic mechanisms driving these alterations in sandstone samples. Our results show that under cyclic loading conditions, the inelastic axial strain and Young’s Modulus initially increase for both sandstones, with the most significant changes occurring within the 1st cycle, followed by a trend towards stability. Permeability decreases with increasing stress and loading cycles. For the Castlegate Sandstone, elevated confining pressure intensified permeability loss, while in St Bees Sandstone, high confining pressure resulted in less permeability loss compared to low confining pressure, which was related to shear band development. Microstructural analysis showed grain movement, rotation, and rearrangement in Castlegate Sandstone under external forces, leading to pore/throat compression and reduced porosity/permeability. In contrast, St Bees Sandstone microstructure changes under low stress involved grain cracking from shear dilatancy, increasing porosity but blocking throats, complicating pore structure, then reducing permeability. Under high confining pressure, the strength of St Bees Sandstone rose without sufficient differential stress for shear dilatancy. Decreased permeability and pore volume were linked to compaction-dominated deformation. Highlights Castlegate and St Bees Sandstones exhibit prominent hysteresis loops under cyclic loading, with maximum inelastic strain and stiffness variations during the 1st loading cycle. Castlegate Sandstone experiences more pronounced permeability loss under elevated confining pressures due to pore/throat compaction driven by grain rearrangement. St Bees Sandstone shows complex permeability changes, with shear-induced grain cracking at lower confining pressures increasing porosity but reducing permeability by blocking pore throats. Variations in mechanical and permeability responses are closely linked to grain size distribution and morphology differences between the two sandstones.
In underground hydrogen storage operations, reservoir rocks often experience periodic pore pressure fluctuations due to annual or more frequent gas extraction and injection cycles. These fluctuations subject the reservoir rocks to cyclic effective stress changes, causing their mechanical and transport behaviors to differ from those under static conditions. However, understanding how porous rocks react to cyclic loading conditions is still limited. To bridge previous research gaps, cyclic loading tests were conducted on Castlegate and St Bees Sandstone, with applied stress amplitudes ranging from 70 to 90% of their monotonic peak strength. This experimental approach was designed to replicate the in situ stress conditions experienced by reservoir rocks during gas operations. Concurrently, we utilised the steady-state method to measure permeability changes under cyclic loading. By comparing the micro-CT features of the sandstones before and after cyclic loading tests, we quantitatively analysed the microscopic mechanisms driving these alterations in sandstone samples. Our results show that under cyclic loading conditions, the inelastic axial strain and Young’s Modulus initially increase for both sandstones, with the most significant changes occurring within the 1st cycle, followed by a trend towards stability. Permeability decreases with increasing stress and loading cycles. For the Castlegate Sandstone, elevated confining pressure intensified permeability loss, while in St Bees Sandstone, high confining pressure resulted in less permeability loss compared to low confining pressure, which was related to shear band development. Microstructural analysis showed grain movement, rotation, and rearrangement in Castlegate Sandstone under external forces, leading to pore/throat compression and reduced porosity/permeability. In contrast, St Bees Sandstone microstructure changes under low stress involved grain cracking from shear dilatancy, increasing porosity but blocking throats, complicating pore structure, then reducing permeability. Under high confining pressure, the strength of St Bees Sandstone rose without sufficient differential stress for shear dilatancy. Decreased permeability and pore volume were linked to compaction-dominated deformation.
In underground hydrogen storage operations, reservoir rocks often experience periodic pore pressure fluctuations due to annual or more frequent gas extraction and injection cycles. These fluctuations subject the reservoir rocks to cyclic effective stress changes, causing their mechanical and transport behaviors to differ from those under static conditions. However, understanding how porous rocks react to cyclic loading conditions is still limited. To bridge previous research gaps, cyclic loading tests were conducted on Castlegate and St Bees Sandstone, with applied stress amplitudes ranging from 70 to 90% of their monotonic peak strength. This experimental approach was designed to replicate the in situ stress conditions experienced by reservoir rocks during gas operations. Concurrently, we utilised the steady-state method to measure permeability changes under cyclic loading. By comparing the micro-CT features of the sandstones before and after cyclic loading tests, we quantitatively analysed the microscopic mechanisms driving these alterations in sandstone samples. Our results show that under cyclic loading conditions, the inelastic axial strain and Young’s Modulus initially increase for both sandstones, with the most significant changes occurring within the 1st cycle, followed by a trend towards stability. Permeability decreases with increasing stress and loading cycles. For the Castlegate Sandstone, elevated confining pressure intensified permeability loss, while in St Bees Sandstone, high confining pressure resulted in less permeability loss compared to low confining pressure, which was related to shear band development. Microstructural analysis showed grain movement, rotation, and rearrangement in Castlegate Sandstone under external forces, leading to pore/throat compression and reduced porosity/permeability. In contrast, St Bees Sandstone microstructure changes under low stress involved grain cracking from shear dilatancy, increasing porosity but blocking throats, complicating pore structure, then reducing permeability. Under high confining pressure, the strength of St Bees Sandstone rose without sufficient differential stress for shear dilatancy. Decreased permeability and pore volume were linked to compaction-dominated deformation.HighlightsCastlegate and St Bees Sandstones exhibit prominent hysteresis loops under cyclic loading, with maximum inelastic strain and stiffness variations during the 1st loading cycle.Castlegate Sandstone experiences more pronounced permeability loss under elevated confining pressures due to pore/throat compaction driven by grain rearrangement.St Bees Sandstone shows complex permeability changes, with shear-induced grain cracking at lower confining pressures increasing porosity but reducing permeability by blocking pore throats.Variations in mechanical and permeability responses are closely linked to grain size distribution and morphology differences between the two sandstones.
Author Harpers, Nick
Miller, Paul
Singh, Kamaljit
Inskip, Nathaniel Forbes
Wen, Ming
Buckman, Jim
Busch, Andreas
Author_xml – sequence: 1
  givenname: Ming
  orcidid: 0009-0001-1626-1876
  surname: Wen
  fullname: Wen, Ming
  email: mw107@hw.ac.uk
  organization: The Lyell Centre, Heriot-Watt University
– sequence: 2
  givenname: Nick
  surname: Harpers
  fullname: Harpers, Nick
  organization: The Lyell Centre, Heriot-Watt University, Applied Structural Geology Teaching and Research Unit, RWTH Aachen University
– sequence: 3
  givenname: Nathaniel Forbes
  surname: Inskip
  fullname: Inskip, Nathaniel Forbes
  organization: The Lyell Centre, Heriot-Watt University
– sequence: 4
  givenname: Jim
  surname: Buckman
  fullname: Buckman, Jim
  organization: Institute of GeoEnergy Engineering, Heriot-Watt University
– sequence: 5
  givenname: Kamaljit
  surname: Singh
  fullname: Singh, Kamaljit
  organization: Institute of GeoEnergy Engineering, Heriot-Watt University
– sequence: 6
  givenname: Paul
  surname: Miller
  fullname: Miller, Paul
  organization: The Lyell Centre, Heriot-Watt University
– sequence: 7
  givenname: Andreas
  surname: Busch
  fullname: Busch, Andreas
  organization: The Lyell Centre, Heriot-Watt University
BookMark eNp9kM9OGzEQxi1EJQLlBThZ6nnbWdv7J9xQRAEpCNQUqTdrYs8Go40d7F2UvEafGIdU4tbTaDTf983M75Qd--CJsYsSvpcAzY8EUIMsQFQFqLoWxfaITUolVaEq-eeYTaARshC1FCfsNKUXgDxs2gn7e0_mGb0z2PNflDbBJ0ocveWPFNeES9e7Ycev30I_Di547jx_DDGMiS-yKg35jsSfvKXIZzvTO8PnAa3zKz4L3rq9J13yu_Umj_Cj412IfDEu0xg7NMRvdzaGFXm-GELEFX1lXzrsE53_q2fs6ef179ltMX-4uZtdzQsjy3ooZL2sKyRqp1UF2DbT2nQNTrv9k2Q7I-y0rVossa2UJIMCpQUhSSoB0Ckrz9i3Q-4mhteR0qBfwhh9XqmlUKqUqgSZVeKgMjGkFKnTm-jWGHe6BL1nrw_sdWavP9jrbTbJgyllsV9R_Iz-j-sdhYaMfQ
Cites_doi 10.1007/s10853-017-1953-1
10.1016/j.rser.2017.05.046
10.1016/j.enggeo.2017.01.017
10.1126/science.268.5208.276
10.1038/s41598-022-11365-8
10.1007/s00603-017-1215-1
10.1017/9781009157896.007
10.1155/2021/8871103
10.1029/2003JB002942
10.1007/s00603-020-02215-y
10.1016/S1365-1609(02)00068-0
10.1016/j.ijhydene.2020.08.138
10.1039/D0EE03536J
10.1007/s40948-015-0017-8
10.3390/pr6120234
10.1144/GSL.QJEG.1991.024.01.14
10.1029/JB093iB07p07729
10.1016/j.apenergy.2018.02.110
10.1016/0264-8172(94)90071-X
10.1002/ese3.527
10.1029/2000JB900381
10.1007/s00603-020-02156-6
10.1038/s41598-023-33721-y
10.1016/j.egypro.2015.07.872
10.1016/0360-3199(79)90083-1
10.1016/j.est.2023.108912
10.1016/j.ijrmms.2013.11.006
10.1016/j.petrol.2016.01.019
10.1017/9781107415096
10.1016/j.conbuildmat.2017.12.001
10.1016/j.enggeo.2015.02.004
10.1007/BF01059632
10.1016/j.ijmst.2021.08.003
10.1016/j.gete.2020.100179
10.1029/JB085iB04p01854
10.1029/2019JB017366
10.1007/s12665-015-4176-2
10.2516/ogst:1999061
10.1029/2012GL053739
10.1016/j.ijrmms.2010.06.019
10.1016/0148-9062(80)91089-X
10.1016/j.jngse.2016.09.061
10.1016/j.jngse.2022.104666
10.56952/ARMA-2023-0718
10.1063/5.0160906
10.1021/es3031209
10.1029/96JB03282
10.2118/65410-PA
10.1007/s40789-019-00278-z
10.1016/j.petrol.2019.01.050
10.3390/en13153774
10.1306/103000710537
10.1029/2000JB900208
10.1103/PhysRevE.80.036307
10.1016/j.ijhydene.2020.05.024
10.1155/2019/6120435
10.1029/96GL03078
10.1029/WR002i004p00665
10.1016/j.petrol.2018.08.047
10.2118/205364-PA
10.1016/j.ijhydene.2021.05.030
10.1029/2018JB015673
10.1016/j.jsg.2022.104740
10.1016/j.petrol.2022.110282
10.1144/petgeo.8.3.195
10.1029/2002JB001854
10.1016/j.petrol.2021.109498
10.1029/96JB03281
10.1016/j.enconman.2009.01.032
10.1016/j.jmps.2012.10.005
10.1007/s00603-021-02726-2
10.1007/BF00874337
10.1002/2017JB014060
10.1115/OMAE2017-61597
10.1016/j.jsg.2012.07.010
10.1093/gji/ggu052
10.2516/ogst/2015037
10.1007/s10040-017-1676-z
10.1007/s11440-014-0364-6
10.1061/(ASCE)1090-0241(2004)130:5(498)
10.2118/65756-PA
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7TN
7UA
8FD
C1K
F1W
FR3
H96
KR7
L.G
DOI 10.1007/s00603-025-04662-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1434-453X
EndPage 10673
ExternalDocumentID 10_1007_s00603_025_04662_x
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID -Y2
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29P
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
78A
88I
8FE
8FG
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKIV
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
L8X
LAS
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
MK~
MM-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PCBAR
PF0
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
PUEGO
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK6
WK8
Y6R
YLTOR
Z45
Z8Z
ZMTXR
ZY4
~02
~EX
AAYXX
CITATION
7TN
7UA
8FD
C1K
F1W
FR3
H96
KR7
L.G
ID FETCH-LOGICAL-c316t-36b65aee89550a8796cf7a9f2632edfc2d9858a1a8543eca2a3d023e34200f4d3
IEDL.DBID C6C
ISSN 0723-2632
IngestDate Fri Aug 29 04:52:13 EDT 2025
Thu Jul 03 08:38:51 EDT 2025
Thu Aug 28 04:25:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Cyclic loading
Micro-CT
Porous sandstones
Underground hydrogen storage
Permeability evolution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-36b65aee89550a8796cf7a9f2632edfc2d9858a1a8543eca2a3d023e34200f4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-1626-1876
OpenAccessLink https://doi.org/10.1007/s00603-025-04662-x
PQID 3244134103
PQPubID 60272
PageCount 31
ParticipantIDs proquest_journals_3244134103
crossref_primary_10_1007_s00603_025_04662_x
springer_journals_10_1007_s00603_025_04662_x
PublicationCentury 2000
PublicationDate 20250900
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 9
  year: 2025
  text: 20250900
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Rock mechanics and rock engineering
PublicationTitleAbbrev Rock Mech Rock Eng
PublicationYear 2025
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References R Baker (4662_CR3) 2004; 130
RH Lander (4662_CR40) 1999; 83
Z Zhou (4662_CR85) 2017; 220
R Alikarami (4662_CR2) 2015; 10
L Gong (4662_CR23) 2020; 13
4662_CR54
4662_CR53
J-J Dong (4662_CR14) 2010; 47
K Engeland (4662_CR17) 2017; 79
S Huang (4662_CR31) 2018; 6
Z Huang (4662_CR32) 2021; 31
RPJ Pijnenburg (4662_CR61) 2019; 124
V Reitenbach (4662_CR66) 2015; 73
4662_CR18
E Rice-Birchall (4662_CR67) 2022; 164
P Carden (4662_CR7) 1979; 4
G Medici (4662_CR50) 2018; 26
Y Zhao (4662_CR84) 2019; 6
A Hawkins (4662_CR26) 1991; 24
C Hu (4662_CR30) 2022; 104
L Lankof (4662_CR41) 2020; 45
J Fredrich (4662_CR22) 1995; 268
4662_CR81
S Iglauer (4662_CR33) 2022; 212
W Zhu (4662_CR86) 1996; 23
G Desbois (4662_CR12) 2016; 140
PM Doyen (4662_CR15) 1988; 93
FD Masch (4662_CR48) 1966; 2
WB Lindquist (4662_CR42) 2000; 105
T-F Wong (4662_CR77) 2012; 44
H Wang (4662_CR75) 2017; 50
C Liu (4662_CR43) 2020; 8
R Herlinger Jr (4662_CR28) 2022; 212
A Mortazavi (4662_CR52) 2018; 171
AJ Luhmann (4662_CR45) 2013; 47
AKMB Alam (4662_CR1) 2014; 65
4662_CR6
L Kong (4662_CR36) 2018; 53
L Kong (4662_CR37) 2019; 175
A Taheri (4662_CR71) 2016; 2
4662_CR8
4662_CR72
4662_CR9
J Fowles (4662_CR21) 1994; 11
MS Paterson (4662_CR55) 2005
E Shalev (4662_CR69) 2014; 197
4662_CR70
C Jia (4662_CR34) 2018; 162
W Zhu (4662_CR87) 1997; 102
RL Kranz (4662_CR38) 1980; 85
T-F Wong (4662_CR78) 1999; 113
J Peng (4662_CR57) 2015; 189
4662_CR73
T Wong (4662_CR76) 1999; 54
Y Yang (4662_CR80) 2016; 36
N Heinemann (4662_CR27) 2021; 14
A Lothe (4662_CR44) 2002; 8
WT Pfeiffer (4662_CR58) 2015; 76
Z-H Zhang (4662_CR82) 2020; 53
R Pijnenburg (4662_CR60) 2018; 123
C David (4662_CR11) 1994; 143
H Dong (4662_CR13) 2009; 80
M Lysyy (4662_CR47) 2021; 46
L Scholtès (4662_CR68) 2013; 61
Wong, T.f., David, C. and Zhu, W. (4662_CR79) 1997; 102
H Zhang (4662_CR83) 2023; 13
RL Payton (4662_CR56) 2022; 12
H Fossen (4662_CR20) 2016
T Popp (4662_CR62) 2001; 106
KR Kumar (4662_CR39) 2023; 73
MD Zoback (4662_CR89) 2010
AD Miall (4662_CR51) 2001; 71
WM Kibikas (4662_CR35) 2021; 2021
4662_CR64
M McPherson (4662_CR49) 2018; 216
4662_CR25
D Zivar (4662_CR88) 2021; 46
E Fjaer (4662_CR19) 2008
RPJ Pijnenburg (4662_CR59) 2020; 53
S Rafieepour (4662_CR63) 2021; 26
P Baud (4662_CR4) 2017; 122
Y Bernabé (4662_CR5) 2016; 71
P Van den Hoek (4662_CR74) 2000; 15
T Gowd (4662_CR24) 1980; 17
M Ramezanian (4662_CR65) 2020; 22
C David (4662_CR10) 1993; 11
A El Bied (4662_CR16) 2002; 39
M Hettema (4662_CR29) 2000; 3
H Lund (4662_CR46) 2009; 50
References_xml – volume: 53
  start-page: 5063
  issue: 7
  year: 2018
  ident: 4662_CR36
  publication-title: J Mater Sci
  doi: 10.1007/s10853-017-1953-1
– volume: 79
  start-page: 600
  year: 2017
  ident: 4662_CR17
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.05.046
– volume: 220
  start-page: 1
  year: 2017
  ident: 4662_CR85
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2017.01.017
– volume: 268
  start-page: 276
  issue: 5208
  year: 1995
  ident: 4662_CR22
  publication-title: Science
  doi: 10.1126/science.268.5208.276
– volume: 12
  start-page: 7531
  issue: 1
  year: 2022
  ident: 4662_CR56
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-11365-8
– volume: 50
  start-page: 2071
  year: 2017
  ident: 4662_CR75
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-017-1215-1
– ident: 4662_CR6
  doi: 10.1017/9781009157896.007
– volume: 113
  start-page: 83
  year: 1999
  ident: 4662_CR78
  publication-title: Geophys Monogr Ser
– ident: 4662_CR8
– volume: 2021
  start-page: 1
  year: 2021
  ident: 4662_CR35
  publication-title: Geofluids
  doi: 10.1155/2021/8871103
– ident: 4662_CR73
  doi: 10.1029/2003JB002942
– volume: 53
  start-page: 5301
  issue: 12
  year: 2020
  ident: 4662_CR59
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-020-02215-y
– volume: 39
  start-page: 917
  issue: 7
  year: 2002
  ident: 4662_CR16
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/S1365-1609(02)00068-0
– volume: 46
  start-page: 23436
  issue: 45
  year: 2021
  ident: 4662_CR88
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.08.138
– volume: 14
  start-page: 853
  issue: 2
  year: 2021
  ident: 4662_CR27
  publication-title: Energy Environ Sci
  doi: 10.1039/D0EE03536J
– volume: 2
  start-page: 1
  issue: 1
  year: 2016
  ident: 4662_CR71
  publication-title: Geomech Geophysr Geo-Energy Geo-Resources
  doi: 10.1007/s40948-015-0017-8
– volume: 6
  start-page: 234
  issue: 12
  year: 2018
  ident: 4662_CR31
  publication-title: Processes
  doi: 10.3390/pr6120234
– volume: 24
  start-page: 135
  issue: 1
  year: 1991
  ident: 4662_CR26
  publication-title: Q J Eng GeolHydrogeol
  doi: 10.1144/GSL.QJEG.1991.024.01.14
– volume: 93
  start-page: 7729
  issue: B7
  year: 1988
  ident: 4662_CR15
  publication-title: J Geophys Res
  doi: 10.1029/JB093iB07p07729
– volume: 216
  start-page: 649
  year: 2018
  ident: 4662_CR49
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.02.110
– volume: 11
  start-page: 608
  issue: 5
  year: 1994
  ident: 4662_CR21
  publication-title: Mar Pet Geol
  doi: 10.1016/0264-8172(94)90071-X
– volume: 8
  start-page: 452
  issue: 2
  year: 2020
  ident: 4662_CR43
  publication-title: Energy Sci Eng
  doi: 10.1002/ese3.527
– volume: 106
  start-page: 4061
  issue: B3
  year: 2001
  ident: 4662_CR62
  publication-title: J Geophys Res
  doi: 10.1029/2000JB900381
– volume: 53
  start-page: 4279
  issue: 9
  year: 2020
  ident: 4662_CR82
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-020-02156-6
– volume: 13
  start-page: 7370
  issue: 1
  year: 2023
  ident: 4662_CR83
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-33721-y
– volume: 76
  start-page: 565
  year: 2015
  ident: 4662_CR58
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.07.872
– volume: 4
  start-page: 559
  issue: 6
  year: 1979
  ident: 4662_CR7
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/0360-3199(79)90083-1
– volume: 73
  year: 2023
  ident: 4662_CR39
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.108912
– volume: 65
  start-page: 49
  year: 2014
  ident: 4662_CR1
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2013.11.006
– volume: 140
  start-page: 128
  year: 2016
  ident: 4662_CR12
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2016.01.019
– volume-title: Structural geology
  year: 2016
  ident: 4662_CR20
  doi: 10.1017/9781107415096
– volume: 162
  start-page: 113
  year: 2018
  ident: 4662_CR34
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2017.12.001
– volume: 189
  start-page: 48
  year: 2015
  ident: 4662_CR57
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2015.02.004
– volume: 11
  start-page: 161
  year: 1993
  ident: 4662_CR10
  publication-title: Transp Porous Media
  doi: 10.1007/BF01059632
– volume: 31
  start-page: 963
  issue: 5
  year: 2021
  ident: 4662_CR32
  publication-title: Int J Min Sci Technol
  doi: 10.1016/j.ijmst.2021.08.003
– volume: 22
  start-page: 100179
  year: 2020
  ident: 4662_CR65
  publication-title: Geomech Energy Environ
  doi: 10.1016/j.gete.2020.100179
– volume: 85
  start-page: 1854
  issue: B4
  year: 1980
  ident: 4662_CR38
  publication-title: J Geophys Res
  doi: 10.1029/JB085iB04p01854
– volume: 124
  start-page: 5254
  issue: 5
  year: 2019
  ident: 4662_CR61
  publication-title: J Geophys Res
  doi: 10.1029/2019JB017366
– volume: 73
  start-page: 6927
  year: 2015
  ident: 4662_CR66
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-015-4176-2
– volume: 54
  start-page: 715
  issue: 6
  year: 1999
  ident: 4662_CR76
  publication-title: Oil Gas Sci Technol
  doi: 10.2516/ogst:1999061
– ident: 4662_CR72
– ident: 4662_CR9
  doi: 10.1029/2012GL053739
– volume: 47
  start-page: 1141
  issue: 7
  year: 2010
  ident: 4662_CR14
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2010.06.019
– volume: 17
  start-page: 225
  year: 1980
  ident: 4662_CR24
  publication-title: Int J Rock Mech Mining Sci Geomech Abstracts
  doi: 10.1016/0148-9062(80)91089-X
– volume: 36
  start-page: 20
  year: 2016
  ident: 4662_CR80
  publication-title: Journal of Natural Gas Science and Engineering
  doi: 10.1016/j.jngse.2016.09.061
– volume: 104
  year: 2022
  ident: 4662_CR30
  publication-title: J Natural Gas Sci Eng
  doi: 10.1016/j.jngse.2022.104666
– ident: 4662_CR54
  doi: 10.56952/ARMA-2023-0718
– ident: 4662_CR25
  doi: 10.1063/5.0160906
– volume: 47
  start-page: 242
  issue: 1
  year: 2013
  ident: 4662_CR45
  publication-title: Environ Sci Technol
  doi: 10.1021/es3031209
– volume: 102
  start-page: 3027
  issue: B2
  year: 1997
  ident: 4662_CR87
  publication-title: J Geophys Res
  doi: 10.1029/96JB03282
– volume: 3
  start-page: 342
  issue: 04
  year: 2000
  ident: 4662_CR29
  publication-title: SPE Reservoir Eval Eng
  doi: 10.2118/65410-PA
– volume: 6
  start-page: 479
  issue: 4
  year: 2019
  ident: 4662_CR84
  publication-title: Int J Coal Sci Technol
  doi: 10.1007/s40789-019-00278-z
– volume: 175
  start-page: 1039
  year: 2019
  ident: 4662_CR37
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2019.01.050
– volume: 13
  start-page: 3774
  issue: 15
  year: 2020
  ident: 4662_CR23
  publication-title: Energies
  doi: 10.3390/en13153774
– volume: 71
  start-page: 537
  issue: 4
  year: 2001
  ident: 4662_CR51
  publication-title: J Sediment Res
  doi: 10.1306/103000710537
– volume: 105
  start-page: 21509
  issue: B9
  year: 2000
  ident: 4662_CR42
  publication-title: J Geophys Res
  doi: 10.1029/2000JB900208
– volume: 80
  issue: 3
  year: 2009
  ident: 4662_CR13
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.80.036307
– volume-title: Petroleum related rock mechanics
  year: 2008
  ident: 4662_CR19
– volume-title: Experimental rock deformation: the brittle field, 348
  year: 2005
  ident: 4662_CR55
– volume: 45
  start-page: 19479
  issue: 38
  year: 2020
  ident: 4662_CR41
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.05.024
– ident: 4662_CR81
  doi: 10.1155/2019/6120435
– volume: 23
  start-page: 3099
  issue: 22
  year: 1996
  ident: 4662_CR86
  publication-title: Geophys Res Lett
  doi: 10.1029/96GL03078
– volume: 2
  start-page: 665
  issue: 4
  year: 1966
  ident: 4662_CR48
  publication-title: Water Resour Res
  doi: 10.1029/WR002i004p00665
– volume: 171
  start-page: 1366
  year: 2018
  ident: 4662_CR52
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2018.08.047
– ident: 4662_CR18
– volume: 26
  start-page: 2793
  issue: 05
  year: 2021
  ident: 4662_CR63
  publication-title: SPE J
  doi: 10.2118/205364-PA
– volume: 46
  start-page: 25160
  issue: 49
  year: 2021
  ident: 4662_CR47
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.05.030
– volume: 123
  start-page: 5532
  issue: 7
  year: 2018
  ident: 4662_CR60
  publication-title: J Geophys Res
  doi: 10.1029/2018JB015673
– volume: 164
  year: 2022
  ident: 4662_CR67
  publication-title: J Struct Geol
  doi: 10.1016/j.jsg.2022.104740
– volume: 212
  year: 2022
  ident: 4662_CR28
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2022.110282
– volume: 8
  start-page: 195
  issue: 3
  year: 2002
  ident: 4662_CR44
  publication-title: Pet Geosci
  doi: 10.1144/petgeo.8.3.195
– ident: 4662_CR53
  doi: 10.1029/2002JB001854
– volume: 212
  year: 2022
  ident: 4662_CR33
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2021.109498
– volume: 102
  start-page: 3009
  issue: B2
  year: 1997
  ident: 4662_CR79
  publication-title: J Geophys Res
  doi: 10.1029/96JB03281
– volume: 50
  start-page: 1172
  issue: 5
  year: 2009
  ident: 4662_CR46
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2009.01.032
– volume: 61
  start-page: 352
  issue: 2
  year: 2013
  ident: 4662_CR68
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2012.10.005
– ident: 4662_CR70
  doi: 10.1007/s00603-021-02726-2
– volume-title: Reservoir geomechanics
  year: 2010
  ident: 4662_CR89
– volume: 143
  start-page: 425
  issue: 1–3
  year: 1994
  ident: 4662_CR11
  publication-title: Pure Appl Geophys
  doi: 10.1007/BF00874337
– volume: 122
  start-page: 7363
  issue: 9
  year: 2017
  ident: 4662_CR4
  publication-title: J Geophys Res
  doi: 10.1002/2017JB014060
– ident: 4662_CR64
  doi: 10.1115/OMAE2017-61597
– volume: 44
  start-page: 25
  year: 2012
  ident: 4662_CR77
  publication-title: J Struct Geol
  doi: 10.1016/j.jsg.2012.07.010
– volume: 197
  start-page: 920
  issue: 2
  year: 2014
  ident: 4662_CR69
  publication-title: Geophys J Int
  doi: 10.1093/gji/ggu052
– volume: 71
  start-page: 50
  issue: 4
  year: 2016
  ident: 4662_CR5
  publication-title: Oil Gas Sci Technol
  doi: 10.2516/ogst/2015037
– volume: 26
  start-page: 565
  issue: 2
  year: 2018
  ident: 4662_CR50
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-017-1676-z
– volume: 10
  start-page: 15
  year: 2015
  ident: 4662_CR2
  publication-title: Acta Geotech
  doi: 10.1007/s11440-014-0364-6
– volume: 130
  start-page: 498
  issue: 5
  year: 2004
  ident: 4662_CR3
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)1090-0241(2004)130:5(498)
– volume: 83
  start-page: 433
  issue: 3
  year: 1999
  ident: 4662_CR40
  publication-title: AAPG Bull
– volume: 15
  start-page: 261
  issue: 04
  year: 2000
  ident: 4662_CR74
  publication-title: SPE Drill Complet
  doi: 10.2118/65756-PA
SSID ssj0014378
Score 2.402999
Snippet In underground hydrogen storage operations, reservoir rocks often experience periodic pore pressure fluctuations due to annual or more frequent gas extraction...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 10643
SubjectTerms Alternative energy sources
Aquifers
Axial strain
Civil Engineering
Compaction
Compression
Computed tomography
Confining
Cracking (corrosion)
Cyclic loading
Cyclic loads
Deformation
Dilatancy
Earth and Environmental Science
Earth Sciences
Edge dislocations
Experiments
Fluctuations
Fossil fuels
Gases
Geophysics/Geodesy
Grain size
Grain size distribution
Hydrogen
Hydrogen storage
Hysteresis loops
Mechanical properties
Membrane permeability
Microstructural analysis
Microstructure
Natural gas
Oil and gas operations
Original Paper
Permeability
Pore pressure
Pore water pressure
Porosity
Pressure
Quartz
Renewable resources
Reservoir storage
Reservoirs
Rocks
Sandstone
Sedimentary rocks
Shear
Shear bands
Size distribution
Strain
Underground storage
Title Mechanical Responses and Permeability Evolution in Porous Sandstones Under Cyclic Loading Conditions: Implications for Subsurface Hydrogen Storage
URI https://link.springer.com/article/10.1007/s00603-025-04662-x
https://www.proquest.com/docview/3244134103
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF7EIuhBtCpWa5mDNw002c0m8daG1vqkqAU9hc1mAwVppA-xf8Nf7EySahU9eEkOCUvYmZ35JjPzDWPHRifaiQP64970LIEuwUI3klq2iV3dVGkce9SNfHMrewNx-eg-ljQ51AvzI39PZJ-SKn4cl4oQpWMhXqy4NvdoTEMow8-MgeCF1fUcbhEHedkg8_sa353QF7L8kQzNfUx3i22W4BBahTS32YoZVdnGEmVgla2d56N45zvs_cZQ1y5tMtwVla5mAmqUQB-trSn4t-fQeS2VC4Yj6GdjjPThnvp7iYV7AvncIwjn-nmo4TrLK-ohzCiRTQp5BhdLJeeACBfI1MzGqdIGevNknKEGwj1G7miYdtmg23kIe1Y5YcHS3JZTi8tYusoYP8BARfleIHXqqSClDTRJqp0k8F1f2cp3BTdaOYon6OQNF3i4UpHwPbY6wq_dZxCnRJwv7CD20OsbgbhG2VwFSgiDQZqssZPFlkcvBZFG9EmZnAsoQgFFuYCitxqrL6QSlYdqEiH2E8Q_1-Q1drqQ1Nfjv1c7-N_rh2zdyZWFKsnqbHU6npkjhB7TuMEqrW67fUv386erTiPXQbwOnNYHKnDVlA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kIupBfGK16hy8aaDJbl7epFSjtlKshd7CZrOBgrSSVrF_w1_szCapD_TgOWEJM7Mz32RmvmHsVKtUOUlIf9ybviUwJFgYRjLL1omrmjJLEp-mkbv3XjQQt0N3WA6FTatu96okaTz1YtiNqEOo5uhSO6LnWIgclxEMBGTLA-dyUTsQvPC_vsMtYiMvR2V-P-N7OPrEmD_KoibaXG2yjRImwmWh1y22pMfbbP0LeeA2W7k2S3nnO-y9q2l-l8QND0XPq56CHKfQQ7-rCybuObRfSzOD0Rh6kxxzfujTpC_xcU_BbECC1lw9jRR0Jqa3HloTKmmTaV7AzZfmc0CsC-R0XvJMKg3RPM0naIvQxxweXdQuG1y1H1uRVe5asBS3vZnFvcRzpdZBiCmLDPzQU5kvw4wEqNNMOWkYuIG0ZeAKrpV0JE8x3Gsu8JplIuV7rDbGr91nkGREoS_sMPEx_muBCEfaXIZSCI3pmldnZ5XI4-eCUiNekCcbBcWooNgoKH6rs0allbi8XtMYUaAgJromr7PzSlOfj_8-7eB_r5-w1eix24k7N_d3h2zNMYZD_WUNVpvlL_oIAcksOTb29wG2n9iy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5EUfQgPrFadQ7eNNhkNy9vElvrk-IDvIXNZhcKkkpbxf4Nf7Ezm7RW0YPnhCXszM58k5nvW8YOtMqVl8X0x70ROgJTgoNpxDiuznzVkCbLQmIj39wG7Udx-eQ_TbH47bT7uCVZchpIpakYHr_k5nhCfCMZEeo_-jSaGHgOosg5rFRcKr-SIJn0EQQvY3HocYeUySvazO9rfE9NX3jzR4vUZp7WCluuICOcljZeZTO6WGNLU0KCa2z-3F7QO1pnHzeauLy09XBXzr_qAcgihw7GYF2qco-g-Va5HHQL6PT6WP_DPbF-SZt7APY2JEhG6rmr4Lpn5-wh6VF7m9z0BC6mBtEBcS9QAHrtG6k0tEd5v4d-CfdYz2O42mCPreZD0naqexccxd1g6PAgC3ypdRRj-SKjMA6UCWVsaAN1bpSXx5EfSVdGvuBaSU_yHFO_5gKPnBE532SzBX7tFoPMkJy-cOMsRCygBaId6XIZSyE0lm5BjR2Otzx9KeU10omQsjVQigZKrYHS9xqrj62SVkdtkCIiFKRK1-A1djS21Nfjv1fb_t_r-2yhc9ZKry9ur3bYomf9hkbN6mx22H_Vu4hNhtmedb9PIVPc2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+Responses+and+Permeability+Evolution+in+Porous+Sandstones+Under+Cyclic+Loading+Conditions%3A+Implications+for+Subsurface+Hydrogen+Storage&rft.jtitle=Rock+mechanics+and+rock+engineering&rft.au=Wen%2C+Ming&rft.au=Harpers%2C+Nick&rft.au=Inskip%2C+Nathaniel+Forbes&rft.au=Buckman%2C+Jim&rft.date=2025-09-01&rft.pub=Springer+Vienna&rft.issn=0723-2632&rft.eissn=1434-453X&rft.volume=58&rft.issue=9&rft.spage=10643&rft.epage=10673&rft_id=info:doi/10.1007%2Fs00603-025-04662-x&rft.externalDocID=10_1007_s00603_025_04662_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0723-2632&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0723-2632&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0723-2632&client=summon