Early-age Hydration Characteristics of Composite Binder Containing Graphite Powder

The early-age hydration characteristics of composite binder containing graphite powder (GP) with two different finenesses were investigated by determining the hydration heat, thermo gravimetric, morphology of hardened paste as well as the compressive strength of mortar. The experimental results show...

Full description

Saved in:
Bibliographic Details
Published inJournal of Wuhan University of Technology. Materials science edition Vol. 37; no. 6; pp. 1252 - 1261
Main Authors He, Wei, Song, Shaomin, Meng, Xia, Zhang, Pengchong, Sun, Xu
Format Journal Article
LanguageEnglish
Published Wuhan Wuhan University of Technology 01.12.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The early-age hydration characteristics of composite binder containing graphite powder (GP) with two different finenesses were investigated by determining the hydration heat, thermo gravimetric, morphology of hardened paste as well as the compressive strength of mortar. The experimental results show that: replacing 2%–6% of cement with graphite powder significantly improves the piezoresistive effect of early age mortar, can be used to monitor accidental loads caused by dropped objects, collisions, or other accident events, and thus avoids initial damage. Some GP provides additional nucleation sites that lead to a fast formation of hydration products (nucleation-site effect). However, due to the almost hydrophobic water contact angle, most of the GP causes a large number of micro-cracks in the hydrated paste (gap effect). Because of the lamellar shape and high surface energy, GP is easily balled and can not be uniformly distributed in the composite, resulting in clumping together and wrapping some of the cement particles (barrier effect). Due to nucleation-site effect, when the dosages of coarse and fine GP reached 2% and 4%, 1 d strength were increased by 9.1% and 9.6%, respectively. At 3 days, as the interior damage caused by the gap effect gradually increased, and the retarding effect on cement hydration caused by barrier effect was enhanced. GP has an obvious negative effect on compressive strength. However, micro-cracks caused by fine GP are less, so its negative effect on 3 d compressive strength is lower.
AbstractList The early-age hydration characteristics of composite binder containing graphite powder (GP) with two different finenesses were investigated by determining the hydration heat, thermo gravimetric, morphology of hardened paste as well as the compressive strength of mortar. The experimental results show that: replacing 2%–6% of cement with graphite powder significantly improves the piezoresistive effect of early age mortar, can be used to monitor accidental loads caused by dropped objects, collisions, or other accident events, and thus avoids initial damage. Some GP provides additional nucleation sites that lead to a fast formation of hydration products (nucleation-site effect). However, due to the almost hydrophobic water contact angle, most of the GP causes a large number of micro-cracks in the hydrated paste (gap effect). Because of the lamellar shape and high surface energy, GP is easily balled and can not be uniformly distributed in the composite, resulting in clumping together and wrapping some of the cement particles (barrier effect). Due to nucleation-site effect, when the dosages of coarse and fine GP reached 2% and 4%, 1 d strength were increased by 9.1% and 9.6%, respectively. At 3 days, as the interior damage caused by the gap effect gradually increased, and the retarding effect on cement hydration caused by barrier effect was enhanced. GP has an obvious negative effect on compressive strength. However, micro-cracks caused by fine GP are less, so its negative effect on 3 d compressive strength is lower.
Author Zhang, Pengchong
Song, Shaomin
Meng, Xia
Sun, Xu
He, Wei
Author_xml – sequence: 1
  givenname: Wei
  surname: He
  fullname: He, Wei
  organization: School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture
– sequence: 2
  givenname: Shaomin
  surname: Song
  fullname: Song, Shaomin
  email: songshaomin@bucea.edu.cn
  organization: School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture
– sequence: 3
  givenname: Xia
  surname: Meng
  fullname: Meng, Xia
  organization: Architectural Design and Research Institute of Tsinghua University Co., Ltd
– sequence: 4
  givenname: Pengchong
  surname: Zhang
  fullname: Zhang, Pengchong
  organization: School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture
– sequence: 5
  givenname: Xu
  surname: Sun
  fullname: Sun, Xu
  organization: School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture
BookMark eNp9kFFLwzAUhYNMcJv-AN8KPkdvkjZZH7XMTRAU0eeQtumWsSU1yZD9ezMrCII-hBtyzndv7pmgkXVWI3RJ4JoAiJtASFEWGCjFlBczDCdoTMqSYciZGKU7AGCaE3aGJiFsAHJgnI_Ry1z57QGrlc6Wh9araJzNqrXyqonamxBNEzLXZZXb9S6YqLM7Y1vt04ONylhjV9nCq359lJ7dR5LO0WmntkFffNcperufv1ZL_Pi0eKhuH3HDCI-YccbbjmpOS9XlXdm2jQalaiVoUdZcJCEdxVoya0RdzmrV1azLG0Jr4EA5m6KroW_v3ftehyg3bu9tGimpEDllwAlNLjG4Gu9C8LqTjYlfa0avzFYSkMcA5RCgTAHKY4ASEkl-kb03O-UP_zJ0YELy2pX2P3_6G_oEpK-FMA
CitedBy_id crossref_primary_10_1617_s11527_025_02590_4
crossref_primary_10_1016_j_conbuildmat_2025_140414
Cites_doi 10.4028/www.scientific.net/AMR.177.566
10.1016/0008-8846(92)90104-4
10.1617/s11527-017-1040-8
10.1016/j.conbuildmat.2017.03.048
10.1007/978-981-10-4349-9
10.1088/0964-1726/20/8/085031
10.1016/S0008-8846(98)00204-X
10.1016/j.cemconcomp.2010.03.009
10.1016/0021-9797(74)90351-8
10.1016/j.carbon.2006.10.024
10.1016/j.cemconres.2003.08.003
10.1016/j.conbuildmat.2011.07.021
10.1680/iicep.1981.2142
10.1016/j.conbuildmat.2017.06.172
10.1007/s11595-015-1249-8
10.1016/j.cemconcomp.2017.07.021
10.1070/PU2003v046n12ABEH001699
10.1016/j.conbuildmat.2018.03.001
10.1016/j.fuproc.2005.01.024
10.1016/S0927-796X(97)00021-1
10.1021/la901402f
10.1016/j.conbuildmat.2014.11.004
10.1021/la100231u
10.1016/S0040-6031(99)00369-X
10.1016/S0008-8846(98)00057-X
10.1016/j.measurement.2014.09.048
10.1061/(ASCE)0887-381X(2008)22:1(1)
10.1016/j.cemconcomp.2004.09.001
10.1016/S0958-9465(02)00138-5
10.1016/j.apsusc.2016.11.015
10.1021/nl304647t
10.1007/BF00352673
10.1021/ja01869a029
10.1016/S0006-3495(02)75243-0
10.1016/j.conbuildmat.2015.08.134
10.1007/978-1-349-03994-4
10.1016/j.conbuildmat.2017.03.223
10.1007/s11595-021-2382-1
10.1007/BF02841300
ContentType Journal Article
Copyright Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature 2022
Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature 2022.
Copyright_xml – notice: Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature 2022
– notice: Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature 2022.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1007/s11595-022-2658-0
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1993-0437
EndPage 1261
ExternalDocumentID 10_1007_s11595_022_2658_0
GroupedDBID -58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
188
1N0
29L
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
40D
40E
5VR
5VS
6NX
8AO
8FE
8FG
8RM
8TC
8UJ
92H
92I
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFGCZ
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCEZO
CCPQU
CDRFL
CHBEP
COF
CSCUP
CW9
CZ9
D1I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KB.
KC.
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P9N
PDBOC
PF0
PT4
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCL
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TCJ
TGT
TSG
TUC
U2A
UG4
UGNYK
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z5O
Z7R
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z85
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SR
8BQ
8FD
ABRTQ
JG9
ID FETCH-LOGICAL-c316t-3636df2e629af4f9ddce0aaba7259b67e627e6a3d18c7b98bafb3f4c12b060263
IEDL.DBID U2A
ISSN 1000-2413
IngestDate Fri Jul 25 10:56:06 EDT 2025
Thu Apr 24 23:04:10 EDT 2025
Tue Jul 01 00:26:36 EDT 2025
Fri Feb 21 02:45:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords piezoresistive effect
graphite powder
comprehensive strength
early-age hydration
Portland cement
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-3636df2e629af4f9ddce0aaba7259b67e627e6a3d18c7b98bafb3f4c12b060263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2774230612
PQPubID 1476361
PageCount 10
ParticipantIDs proquest_journals_2774230612
crossref_citationtrail_10_1007_s11595_022_2658_0
crossref_primary_10_1007_s11595_022_2658_0
springer_journals_10_1007_s11595_022_2658_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Wuhan
PublicationPlace_xml – name: Wuhan
PublicationSubtitle Materials Science Edition
PublicationTitle Journal of Wuhan University of Technology. Materials science edition
PublicationTitleAbbrev J. Wuhan Univ. Technol.-Mat. Sci. Edit
PublicationYear 2022
Publisher Wuhan University of Technology
Springer Nature B.V
Publisher_xml – name: Wuhan University of Technology
– name: Springer Nature B.V
References WangQYangJChenHHLong-term Properties of Concrete Containing Limestone Powder[J]Materials & Structures2017503168
Song H, Jeong Y, Bae S, et al. A Study of Thermal Decomposition of Phases in Cementitious Systems Using HT-XRD and TG[J]. Construction & Building Materials, 2018(169): 648–661
DaiYWSunMQLiuCGElectromagnetic Wave Absorbing Characteristics of Carbon Black Cement-based Composites[J]Cement & Concrete Composites20103275085131:CAS:528:DC%2BC3cXmslGnsrk%3D
GanWMHuangXChenPFPiezoresistivity of Cement Based Material with Small Amount of Graphite[J]Journal of Beijing University of Aeronautics and Astronautics2011375556559+578
MuthusamySChungDDLCarbon-fiber Cement-based Materials for Electromagnetic Shielding[J]ACI Materials Journal201010766026101:CAS:528:DC%2BC3MXis1CjtA%3D%3D
FowkesFMHarkinsWDThe State of Monolayers Adsorbed at the Interface Solid-Aqueous Solution[J]Journal of the American Chemical Society194062123 3773 3861:CAS:528:DyaH3MXlvFGj
SavvatimskiiAIAleksandrIMelting Point of Graphite and Liquid Carbon[J]Physics-Uspekhi200346121 2951 3031:CAS:528:DC%2BD2cXltFKgs7g%3D
YehiaSTuanCYFerdonDConductive Concrete Overlay for Bridge Deck Deicing: Mixture Proportioning, Optimization, and Properties[J]ACI Materials Journal20009721721811:CAS:528:DC%2BD3cXjtVyrsro%3D
WhitingDANagiMAElectrical Resistivity of Concrete — A Literature Review[R]2003IllinoisPortland Cement Association
MonforeGEThe Electrical Resistivity of Concrete[J]Journal of the PCA Research & Development Laboratories196810235481:CAS:528:DyaF1cXks1WgtrY%3D
XiePGuPBeaudoinJJElectrical Percolation Phenomena in Cement Composites Containing Conductive Fibers[J]Journal of Materials Science19963115409340971:CAS:528:DyaK28XkvFCqsrY%3D
Cao HY, Yao W, Qin JJ. Seebeck Effect in Graphite-carbon Fiber Cement Based Composite[J]. Advanced Materials Research, 2011(177): 566–569
Chen M, Gao P, Geng F, et al. Mechanical and Smart Properties of Carbon Fiber and Graphite Conductive Concrete for Internal Damage Monitoring of Structure[J]. Construction & Building Materials, 2017(142): 320–327
WangJRDingYMThe Application of Conductive Concrete in the Grounding Network Reconstruction of Bai-Sha Hydropower Station[J]Electrical Equipment2008946769
ChenBWuKYaoWConductivity of Carbon Fiber Reinforced Cement-based Composites[J]Cement & Concrete Composites2004264291297
HanBGOuJPZhangLQSmart and Multifunctional Concrete toward Sustainable Infrastructures[M]2017SingaporeSpringer Nature Singapore PTE Ltd.247
ShiZQChungDDLCarbon Fiber-reinforced Concrete for Traffic Monitoring and Weighing in Motion[J]Cement & Concrete Research19992934354391:CAS:528:DyaK1MXjtlahtr4%3D
CuiSPLiuYXLanMZPreparation and Properties of Graphite-cement Based Composites[J]Journal of the Chinese Ceramic Society200735191951:CAS:528:DC%2BD2sXht1Gjt7g%3D
KoganMJDalcolIGorostizaPSupramolecular Properties of the Proline-rich γ-Zein N-Terminal domain[J]Biophysical Journal20028321 1941 2041:CAS:528:DC%2BD38Xls1Onsb4%3D
ShinYJWangYHuangHSurface Energy Engineering of Grapheme[J]Langmuir the ACS Journal of Surfaces and Colloids201026637988021:CAS:528:DC%2BC3cXitFehurk%3D
McCarterWJFordeMCWhittingtonHWResistivity Characteristics of Concrete[J]Proceedings of the Institution of Civil Engineers1981711107117
DweckJBuchlerPMAcvCHydration of a Portland Cement Blended with Calcium Carbonate[J]Thermochimica Acta200034611051131:CAS:528:DC%2BD3cXhslSkurg%3D
ZhangXYLüYChenJField Sensing Characteristic Research of Carbon Fiber Smart Material[J]Journal of Wuhan University of Technology-Mater. Sci. Ed.20153059149171:CAS:528:DC%2BC2MXhslSltrzL
Shi MX, Wang Q, Zhang ZK. Comparison of the Properties between High-volume Fly Ash Concrete and High-volume Steel Slag Concrete under Temperature Matching Curing Condition[J]. Construction & Building Materials, 2015(98): 649–655
HanBGChenWOuJPPiezo Resistivity of Cement-based Materials with Acetylene Carbon Black[J]Acta Materiae Compositae Sinica200825339441:CAS:528:DC%2BD1cXovVCitb8%3D
Rahhal V, Bonavetti V, Trusilewicz L, et al. Role of the Filler on Portland Cement Hydration at Early Ages[J]. Construction & Building Materials, 2012(27): 82–90
Han BG, Ding SQ, Yu X. Intrinsic Self-sensing Concrete and Structures: A Review[J]. Measurement, 2015(59): 110–128
Wu JM, Liu JG, Yang F. Three-phase Composite Conductive Concrete for Pavement Deicing[J]. Construction & Building Materials, 2015(75): 129–135
BanthiaNDjeridanceSPigeonMElectrical Resistivity of Carbon and Steel Micro-fiber Reinforced Cements[J]Cement & Concrete Research19922258048141:CAS:528:DyaK38XmtFyltro%3D
HowserRNDhondeHBMoYLSelf-sensing of Carbon Nano-fiber Concrete Columns Subjected to Reversed Cyclic Loading[J]Smart Materials & Structures2011208085031
ZhangQQWeiYQuantitative Analysis on Reaction Degree of Slag-cement Composite System Based on Back-scattered-electron Image[J]Journal of the Chinese Ceramic Society20154355635691:CAS:528:DC%2BC2MXpt1KntLw%3D
WangKShahSPMishulovichAEffects of Curing Temperature and NaOH Addition on Hydration and Strength Development of Clinker-free CKD-fly Ash Binders[J]Cement & Concrete Research20043222993091:CAS:528:DC%2BD2cXjt1eitbY%3D
TadrosMEHuPAdamsonAWAdsorption and Contact Angle Studies: I. Water on Smooth Carbon, Linear Polyethylene, and Stearic Acid-coated Copper[J]Journal of Colloid & Interface Science19744921841951:CAS:528:DyaE2MXnvVKn
YangYSDongFQOn Electro Thermal Concrete of Doping Graphite Electricity-conductive Elementary Materials[J]Journal of Functional Materials20083933853871:CAS:528:DC%2BD1cXmtV2qsr4%3D
Sassani A, Ceylan H, Kim S, et al. Influence of Mix Design Variables on Engineering Properties of Carbon Fiber-modified Electrically Conductive Concrete[J]. Construction & Building Materials, 2017(152): 168–181
SorokaJPortland Cement Paste and Concrete[M]1979LondonMacmillan Press Ltd35
Chen B, Wu K, Yao W. Conductivity of Carbon Fiber Reinforced Cement-based Composites[J]. Cement & Concrete Composites, 2004(26): 291–297
ShuiZHLiCLiaoWDResistance Responses of Carbon Fiber Cement to Cycled Compressive Stresses[J]Journal of Wuhan University of Technology-Mater. Sci. Ed.20052041161191:CAS:528:DC%2BD28XovVyntQ%3D%3D
TuanCYRoca Spur Bridge: The Implementation of an Innovative Deicing Technology[J]Journal of Cold Regions Engineering2008221115
Zhang J, Xu L, Zhao Q. Investigation of Carbon Fillers Modified Electrically Conductive Concrete as Grounding Electrodes for Transmission Towers: Computational Model and Case Study[J]. Construction & Building Materials, 2017(145): 347–353
FuXLChungDDLRadio-wave-reflecting Concrete for Lateral Guidance in Automatic Highways[J]Cement & Concrete Research19982867958011:CAS:528:DyaK1cXktl2nsrg%3D
YehiaSHostJConductive Concrete for Cathodic Protection of Bridge Decks[J]ACI Materials Journal201010765775851:CAS:528:DC%2BC3MXis1CjsQ%3D%3D
WangSRZhangYAbidiNCabralesLWettability and Surface Free Energy of Graphene Films[J]Langmuir2009251811 07811 0811:CAS:528:DC%2BD1MXotlahs7w%3D
Wang Q, Wang DQ, Chen HH. The Role of Fly Ash Microsphere in the Microstructure and Macroscopic Properties of High-strength Concrete[J]. Cement & Concrete Composite, 2017(83): 125–137
RajRMarooSCWangENWettability of Graphene[J]Nano Letters20131341 5091 5151:CAS:528:DC%2BC3sXjtlOru7g%3D
WenSChungDDLPartial Replacement of Carbon Fiber by Carbon Black in Multifunctional Cement-matrix Composites[J]Carbon20074535055131:CAS:528:DC%2BD2sXhtVaktb8%3D
ChiarelloMZinnoRElectrical Conductivity of Self-monitoring CFRC[J]Cement & Concrete Composite20052744634691:CAS:528:DC%2BD2MXitVWqtL4%3D
Jia XW, Zhang X, Ma D, et al. Conductive Properties and Influencing Factors of Electrically Conductive Concrete: A Review[J]. Materials Review, 2017(21): 93–100
ZhengYZaouiAWetting and Nanodroplet Contact Angle of the Clay 2:1 Surface: The Case of Na-montmorillonite (001)[J]Applied Surface Science2016396717722
ChungDDLSelf-monitoring Structural Materials[J]Materials Science & Engineering R: Reports19982225778
WangYSLüLNHeYJEffect of Calcium Silicate Hydrate Seeds on Hydration and Mechanical Properties of Cement[J]Journal of Wuhan University of Technology-Mater. Sci. Ed.20213611031101:CAS:528:DC%2BB3MXhtFKlt7jE
VassilevaCGVassilevSVBehaviour of Inorganic Matter During Heating of Bulgarian Coals: 1. Lignites[J]Fuel Processing Technology20058612–131 2971 2331:CAS:528:DC%2BD2MXkvFWntb4%3D
WangXYSunMQHouZFStudy on Electrical and Electro Thermal Properties of Nano Carbon Black Cement Mortar[J]Journal of Functional Materials2006371118411843+18471:CAS:528:DC%2BD2sXmt1SlsLw%3D
CY Tuan (2658_CR7) 2008; 22
WM Gan (2658_CR28) 2011; 37
Y Zheng (2658_CR44) 2016; 396
CG Vassileva (2658_CR50) 2005; 86
B Chen (2658_CR18) 2004; 26
YS Yang (2658_CR26) 2008; 39
DA Whiting (2658_CR3) 2003
2658_CR33
2658_CR35
2658_CR34
2658_CR37
2658_CR36
YS Wang (2658_CR30) 2021; 36
ZH Shui (2658_CR23) 2005; 20
ZQ Shi (2658_CR12) 1999; 29
RN Howser (2658_CR14) 2011; 20
DDL Chung (2658_CR21) 1998; 22
YW Dai (2658_CR8) 2010; 32
ME Tadros (2658_CR40) 1974; 49
N Banthia (2658_CR19) 1992; 22
AI Savvatimskii (2658_CR48) 2003; 46
XY Wang (2658_CR25) 2006; 37
MJ Kogan (2658_CR42) 2002; 83
Q Wang (2658_CR31) 2017; 50
XL Fu (2658_CR15) 1998; 28
K Wang (2658_CR49) 2004; 32
BG Han (2658_CR5) 2017
JR Wang (2658_CR10) 2008; 9
P Xie (2658_CR17) 1996; 31
2658_CR29
M Chiarello (2658_CR22) 2005; 27
FM Fowkes (2658_CR39) 1940; 62
XY Zhang (2658_CR13) 2015; 30
J Soroka (2658_CR53) 1979
S Wen (2658_CR27) 2007; 45
2658_CR51
QQ Zhang (2658_CR38) 2015; 43
2658_CR52
2658_CR11
YJ Shin (2658_CR41) 2010; 26
BG Han (2658_CR24) 2008; 25
S Yehia (2658_CR20) 2000; 97
S Yehia (2658_CR16) 2010; 107
R Raj (2658_CR43) 2013; 13
S Muthusamy (2658_CR9) 2010; 107
J Dweck (2658_CR47) 2000; 346
GE Monfore (2658_CR4) 1968; 10
SR Wang (2658_CR45) 2009; 25
WJ McCarter (2658_CR2) 1981; 71
2658_CR6
2658_CR1
2658_CR46
SP Cui (2658_CR32) 2007; 35
References_xml – reference: ZhangQQWeiYQuantitative Analysis on Reaction Degree of Slag-cement Composite System Based on Back-scattered-electron Image[J]Journal of the Chinese Ceramic Society20154355635691:CAS:528:DC%2BC2MXpt1KntLw%3D
– reference: Wu JM, Liu JG, Yang F. Three-phase Composite Conductive Concrete for Pavement Deicing[J]. Construction & Building Materials, 2015(75): 129–135
– reference: KoganMJDalcolIGorostizaPSupramolecular Properties of the Proline-rich γ-Zein N-Terminal domain[J]Biophysical Journal20028321 1941 2041:CAS:528:DC%2BD38Xls1Onsb4%3D
– reference: Wang Q, Wang DQ, Chen HH. The Role of Fly Ash Microsphere in the Microstructure and Macroscopic Properties of High-strength Concrete[J]. Cement & Concrete Composite, 2017(83): 125–137
– reference: ChungDDLSelf-monitoring Structural Materials[J]Materials Science & Engineering R: Reports19982225778
– reference: DweckJBuchlerPMAcvCHydration of a Portland Cement Blended with Calcium Carbonate[J]Thermochimica Acta200034611051131:CAS:528:DC%2BD3cXhslSkurg%3D
– reference: HanBGOuJPZhangLQSmart and Multifunctional Concrete toward Sustainable Infrastructures[M]2017SingaporeSpringer Nature Singapore PTE Ltd.247
– reference: CuiSPLiuYXLanMZPreparation and Properties of Graphite-cement Based Composites[J]Journal of the Chinese Ceramic Society200735191951:CAS:528:DC%2BD2sXht1Gjt7g%3D
– reference: SavvatimskiiAIAleksandrIMelting Point of Graphite and Liquid Carbon[J]Physics-Uspekhi200346121 2951 3031:CAS:528:DC%2BD2cXltFKgs7g%3D
– reference: RajRMarooSCWangENWettability of Graphene[J]Nano Letters20131341 5091 5151:CAS:528:DC%2BC3sXjtlOru7g%3D
– reference: WangKShahSPMishulovichAEffects of Curing Temperature and NaOH Addition on Hydration and Strength Development of Clinker-free CKD-fly Ash Binders[J]Cement & Concrete Research20043222993091:CAS:528:DC%2BD2cXjt1eitbY%3D
– reference: WangJRDingYMThe Application of Conductive Concrete in the Grounding Network Reconstruction of Bai-Sha Hydropower Station[J]Electrical Equipment2008946769
– reference: FowkesFMHarkinsWDThe State of Monolayers Adsorbed at the Interface Solid-Aqueous Solution[J]Journal of the American Chemical Society194062123 3773 3861:CAS:528:DyaH3MXlvFGj
– reference: Chen B, Wu K, Yao W. Conductivity of Carbon Fiber Reinforced Cement-based Composites[J]. Cement & Concrete Composites, 2004(26): 291–297
– reference: ShiZQChungDDLCarbon Fiber-reinforced Concrete for Traffic Monitoring and Weighing in Motion[J]Cement & Concrete Research19992934354391:CAS:528:DyaK1MXjtlahtr4%3D
– reference: YangYSDongFQOn Electro Thermal Concrete of Doping Graphite Electricity-conductive Elementary Materials[J]Journal of Functional Materials20083933853871:CAS:528:DC%2BD1cXmtV2qsr4%3D
– reference: HanBGChenWOuJPPiezo Resistivity of Cement-based Materials with Acetylene Carbon Black[J]Acta Materiae Compositae Sinica200825339441:CAS:528:DC%2BD1cXovVCitb8%3D
– reference: ShinYJWangYHuangHSurface Energy Engineering of Grapheme[J]Langmuir the ACS Journal of Surfaces and Colloids201026637988021:CAS:528:DC%2BC3cXitFehurk%3D
– reference: WangSRZhangYAbidiNCabralesLWettability and Surface Free Energy of Graphene Films[J]Langmuir2009251811 07811 0811:CAS:528:DC%2BD1MXotlahs7w%3D
– reference: MuthusamySChungDDLCarbon-fiber Cement-based Materials for Electromagnetic Shielding[J]ACI Materials Journal201010766026101:CAS:528:DC%2BC3MXis1CjtA%3D%3D
– reference: HowserRNDhondeHBMoYLSelf-sensing of Carbon Nano-fiber Concrete Columns Subjected to Reversed Cyclic Loading[J]Smart Materials & Structures2011208085031
– reference: Han BG, Ding SQ, Yu X. Intrinsic Self-sensing Concrete and Structures: A Review[J]. Measurement, 2015(59): 110–128
– reference: YehiaSHostJConductive Concrete for Cathodic Protection of Bridge Decks[J]ACI Materials Journal201010765775851:CAS:528:DC%2BC3MXis1CjsQ%3D%3D
– reference: ChenBWuKYaoWConductivity of Carbon Fiber Reinforced Cement-based Composites[J]Cement & Concrete Composites2004264291297
– reference: ZhangXYLüYChenJField Sensing Characteristic Research of Carbon Fiber Smart Material[J]Journal of Wuhan University of Technology-Mater. Sci. Ed.20153059149171:CAS:528:DC%2BC2MXhslSltrzL
– reference: ChiarelloMZinnoRElectrical Conductivity of Self-monitoring CFRC[J]Cement & Concrete Composite20052744634691:CAS:528:DC%2BD2MXitVWqtL4%3D
– reference: ShuiZHLiCLiaoWDResistance Responses of Carbon Fiber Cement to Cycled Compressive Stresses[J]Journal of Wuhan University of Technology-Mater. Sci. Ed.20052041161191:CAS:528:DC%2BD28XovVyntQ%3D%3D
– reference: WangXYSunMQHouZFStudy on Electrical and Electro Thermal Properties of Nano Carbon Black Cement Mortar[J]Journal of Functional Materials2006371118411843+18471:CAS:528:DC%2BD2sXmt1SlsLw%3D
– reference: WangQYangJChenHHLong-term Properties of Concrete Containing Limestone Powder[J]Materials & Structures2017503168
– reference: Zhang J, Xu L, Zhao Q. Investigation of Carbon Fillers Modified Electrically Conductive Concrete as Grounding Electrodes for Transmission Towers: Computational Model and Case Study[J]. Construction & Building Materials, 2017(145): 347–353
– reference: YehiaSTuanCYFerdonDConductive Concrete Overlay for Bridge Deck Deicing: Mixture Proportioning, Optimization, and Properties[J]ACI Materials Journal20009721721811:CAS:528:DC%2BD3cXjtVyrsro%3D
– reference: VassilevaCGVassilevSVBehaviour of Inorganic Matter During Heating of Bulgarian Coals: 1. Lignites[J]Fuel Processing Technology20058612–131 2971 2331:CAS:528:DC%2BD2MXkvFWntb4%3D
– reference: WenSChungDDLPartial Replacement of Carbon Fiber by Carbon Black in Multifunctional Cement-matrix Composites[J]Carbon20074535055131:CAS:528:DC%2BD2sXhtVaktb8%3D
– reference: FuXLChungDDLRadio-wave-reflecting Concrete for Lateral Guidance in Automatic Highways[J]Cement & Concrete Research19982867958011:CAS:528:DyaK1cXktl2nsrg%3D
– reference: Song H, Jeong Y, Bae S, et al. A Study of Thermal Decomposition of Phases in Cementitious Systems Using HT-XRD and TG[J]. Construction & Building Materials, 2018(169): 648–661
– reference: McCarterWJFordeMCWhittingtonHWResistivity Characteristics of Concrete[J]Proceedings of the Institution of Civil Engineers1981711107117
– reference: Shi MX, Wang Q, Zhang ZK. Comparison of the Properties between High-volume Fly Ash Concrete and High-volume Steel Slag Concrete under Temperature Matching Curing Condition[J]. Construction & Building Materials, 2015(98): 649–655
– reference: XiePGuPBeaudoinJJElectrical Percolation Phenomena in Cement Composites Containing Conductive Fibers[J]Journal of Materials Science19963115409340971:CAS:528:DyaK28XkvFCqsrY%3D
– reference: GanWMHuangXChenPFPiezoresistivity of Cement Based Material with Small Amount of Graphite[J]Journal of Beijing University of Aeronautics and Astronautics2011375556559+578
– reference: TuanCYRoca Spur Bridge: The Implementation of an Innovative Deicing Technology[J]Journal of Cold Regions Engineering2008221115
– reference: ZhengYZaouiAWetting and Nanodroplet Contact Angle of the Clay 2:1 Surface: The Case of Na-montmorillonite (001)[J]Applied Surface Science2016396717722
– reference: MonforeGEThe Electrical Resistivity of Concrete[J]Journal of the PCA Research & Development Laboratories196810235481:CAS:528:DyaF1cXks1WgtrY%3D
– reference: Rahhal V, Bonavetti V, Trusilewicz L, et al. Role of the Filler on Portland Cement Hydration at Early Ages[J]. Construction & Building Materials, 2012(27): 82–90
– reference: WangYSLüLNHeYJEffect of Calcium Silicate Hydrate Seeds on Hydration and Mechanical Properties of Cement[J]Journal of Wuhan University of Technology-Mater. Sci. Ed.20213611031101:CAS:528:DC%2BB3MXhtFKlt7jE
– reference: Jia XW, Zhang X, Ma D, et al. Conductive Properties and Influencing Factors of Electrically Conductive Concrete: A Review[J]. Materials Review, 2017(21): 93–100
– reference: Sassani A, Ceylan H, Kim S, et al. Influence of Mix Design Variables on Engineering Properties of Carbon Fiber-modified Electrically Conductive Concrete[J]. Construction & Building Materials, 2017(152): 168–181
– reference: Chen M, Gao P, Geng F, et al. Mechanical and Smart Properties of Carbon Fiber and Graphite Conductive Concrete for Internal Damage Monitoring of Structure[J]. Construction & Building Materials, 2017(142): 320–327
– reference: TadrosMEHuPAdamsonAWAdsorption and Contact Angle Studies: I. Water on Smooth Carbon, Linear Polyethylene, and Stearic Acid-coated Copper[J]Journal of Colloid & Interface Science19744921841951:CAS:528:DyaE2MXnvVKn
– reference: Cao HY, Yao W, Qin JJ. Seebeck Effect in Graphite-carbon Fiber Cement Based Composite[J]. Advanced Materials Research, 2011(177): 566–569
– reference: BanthiaNDjeridanceSPigeonMElectrical Resistivity of Carbon and Steel Micro-fiber Reinforced Cements[J]Cement & Concrete Research19922258048141:CAS:528:DyaK38XmtFyltro%3D
– reference: DaiYWSunMQLiuCGElectromagnetic Wave Absorbing Characteristics of Carbon Black Cement-based Composites[J]Cement & Concrete Composites20103275085131:CAS:528:DC%2BC3cXmslGnsrk%3D
– reference: SorokaJPortland Cement Paste and Concrete[M]1979LondonMacmillan Press Ltd35
– reference: WhitingDANagiMAElectrical Resistivity of Concrete — A Literature Review[R]2003IllinoisPortland Cement Association
– ident: 2658_CR34
  doi: 10.4028/www.scientific.net/AMR.177.566
– volume: 22
  start-page: 804
  issue: 5
  year: 1992
  ident: 2658_CR19
  publication-title: Cement & Concrete Research
  doi: 10.1016/0008-8846(92)90104-4
– volume: 50
  start-page: 168
  issue: 3
  year: 2017
  ident: 2658_CR31
  publication-title: Materials & Structures
  doi: 10.1617/s11527-017-1040-8
– ident: 2658_CR33
  doi: 10.1016/j.conbuildmat.2017.03.048
– start-page: 247
  volume-title: Smart and Multifunctional Concrete toward Sustainable Infrastructures[M]
  year: 2017
  ident: 2658_CR5
  doi: 10.1007/978-981-10-4349-9
– volume: 10
  start-page: 35
  issue: 2
  year: 1968
  ident: 2658_CR4
  publication-title: Journal of the PCA Research & Development Laboratories
– volume: 39
  start-page: 385
  issue: 3
  year: 2008
  ident: 2658_CR26
  publication-title: Journal of Functional Materials
– volume: 20
  start-page: 085031
  issue: 8
  year: 2011
  ident: 2658_CR14
  publication-title: Smart Materials & Structures
  doi: 10.1088/0964-1726/20/8/085031
– volume: 35
  start-page: 91
  issue: 1
  year: 2007
  ident: 2658_CR32
  publication-title: Journal of the Chinese Ceramic Society
– volume: 97
  start-page: 172
  issue: 2
  year: 2000
  ident: 2658_CR20
  publication-title: ACI Materials Journal
– volume: 29
  start-page: 435
  issue: 3
  year: 1999
  ident: 2658_CR12
  publication-title: Cement & Concrete Research
  doi: 10.1016/S0008-8846(98)00204-X
– volume: 32
  start-page: 508
  issue: 7
  year: 2010
  ident: 2658_CR8
  publication-title: Cement & Concrete Composites
  doi: 10.1016/j.cemconcomp.2010.03.009
– volume: 49
  start-page: 184
  issue: 2
  year: 1974
  ident: 2658_CR40
  publication-title: Journal of Colloid & Interface Science
  doi: 10.1016/0021-9797(74)90351-8
– ident: 2658_CR46
– volume: 45
  start-page: 505
  issue: 3
  year: 2007
  ident: 2658_CR27
  publication-title: Carbon
  doi: 10.1016/j.carbon.2006.10.024
– volume: 32
  start-page: 299
  issue: 2
  year: 2004
  ident: 2658_CR49
  publication-title: Cement & Concrete Research
  doi: 10.1016/j.cemconres.2003.08.003
– ident: 2658_CR29
  doi: 10.1016/j.conbuildmat.2011.07.021
– volume: 37
  start-page: 556
  issue: 5
  year: 2011
  ident: 2658_CR28
  publication-title: Journal of Beijing University of Aeronautics and Astronautics
– volume: 71
  start-page: 107
  issue: 1
  year: 1981
  ident: 2658_CR2
  publication-title: Proceedings of the Institution of Civil Engineers
  doi: 10.1680/iicep.1981.2142
– ident: 2658_CR35
  doi: 10.1016/j.conbuildmat.2017.06.172
– volume: 30
  start-page: 914
  issue: 5
  year: 2015
  ident: 2658_CR13
  publication-title: Journal of Wuhan University of Technology-Mater. Sci. Ed.
  doi: 10.1007/s11595-015-1249-8
– ident: 2658_CR52
  doi: 10.1016/j.cemconcomp.2017.07.021
– volume: 46
  start-page: 1 295
  issue: 12
  year: 2003
  ident: 2658_CR48
  publication-title: Physics-Uspekhi
  doi: 10.1070/PU2003v046n12ABEH001699
– ident: 2658_CR51
  doi: 10.1016/j.conbuildmat.2018.03.001
– volume: 86
  start-page: 1 297
  issue: 12–13
  year: 2005
  ident: 2658_CR50
  publication-title: Fuel Processing Technology
  doi: 10.1016/j.fuproc.2005.01.024
– volume: 22
  start-page: 57
  issue: 2
  year: 1998
  ident: 2658_CR21
  publication-title: Materials Science & Engineering R: Reports
  doi: 10.1016/S0927-796X(97)00021-1
– volume: 25
  start-page: 11 078
  issue: 18
  year: 2009
  ident: 2658_CR45
  publication-title: Langmuir
  doi: 10.1021/la901402f
– ident: 2658_CR6
  doi: 10.1016/j.conbuildmat.2014.11.004
– volume: 26
  start-page: 3798
  issue: 6
  year: 2010
  ident: 2658_CR41
  publication-title: Langmuir the ACS Journal of Surfaces and Colloids
  doi: 10.1021/la100231u
– volume: 346
  start-page: 105
  issue: 1
  year: 2000
  ident: 2658_CR47
  publication-title: Thermochimica Acta
  doi: 10.1016/S0040-6031(99)00369-X
– volume: 28
  start-page: 795
  issue: 6
  year: 1998
  ident: 2658_CR15
  publication-title: Cement & Concrete Research
  doi: 10.1016/S0008-8846(98)00057-X
– ident: 2658_CR37
  doi: 10.1016/j.measurement.2014.09.048
– volume: 22
  start-page: 1
  issue: 1
  year: 2008
  ident: 2658_CR7
  publication-title: Journal of Cold Regions Engineering
  doi: 10.1061/(ASCE)0887-381X(2008)22:1(1)
– volume: 27
  start-page: 463
  issue: 4
  year: 2005
  ident: 2658_CR22
  publication-title: Cement & Concrete Composite
  doi: 10.1016/j.cemconcomp.2004.09.001
– volume: 43
  start-page: 563
  issue: 5
  year: 2015
  ident: 2658_CR38
  publication-title: Journal of the Chinese Ceramic Society
– ident: 2658_CR36
  doi: 10.1016/S0958-9465(02)00138-5
– volume: 396
  start-page: 717
  year: 2016
  ident: 2658_CR44
  publication-title: Applied Surface Science
  doi: 10.1016/j.apsusc.2016.11.015
– volume: 107
  start-page: 602
  issue: 6
  year: 2010
  ident: 2658_CR9
  publication-title: ACI Materials Journal
– volume: 25
  start-page: 39
  issue: 3
  year: 2008
  ident: 2658_CR24
  publication-title: Acta Materiae Compositae Sinica
– volume: 13
  start-page: 1 509
  issue: 4
  year: 2013
  ident: 2658_CR43
  publication-title: Nano Letters
  doi: 10.1021/nl304647t
– volume-title: Electrical Resistivity of Concrete — A Literature Review[R]
  year: 2003
  ident: 2658_CR3
– volume: 31
  start-page: 4093
  issue: 15
  year: 1996
  ident: 2658_CR17
  publication-title: Journal of Materials Science
  doi: 10.1007/BF00352673
– volume: 62
  start-page: 3 377
  issue: 12
  year: 1940
  ident: 2658_CR39
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja01869a029
– volume: 26
  start-page: 291
  issue: 4
  year: 2004
  ident: 2658_CR18
  publication-title: Cement & Concrete Composites
  doi: 10.1016/S0958-9465(02)00138-5
– volume: 83
  start-page: 1 194
  issue: 2
  year: 2002
  ident: 2658_CR42
  publication-title: Biophysical Journal
  doi: 10.1016/S0006-3495(02)75243-0
– ident: 2658_CR1
  doi: 10.1016/j.conbuildmat.2015.08.134
– start-page: 35
  volume-title: Portland Cement Paste and Concrete[M]
  year: 1979
  ident: 2658_CR53
  doi: 10.1007/978-1-349-03994-4
– volume: 107
  start-page: 577
  issue: 6
  year: 2010
  ident: 2658_CR16
  publication-title: ACI Materials Journal
– volume: 9
  start-page: 67
  issue: 4
  year: 2008
  ident: 2658_CR10
  publication-title: Electrical Equipment
– ident: 2658_CR11
  doi: 10.1016/j.conbuildmat.2017.03.223
– volume: 36
  start-page: 103
  issue: 1
  year: 2021
  ident: 2658_CR30
  publication-title: Journal of Wuhan University of Technology-Mater. Sci. Ed.
  doi: 10.1007/s11595-021-2382-1
– volume: 37
  start-page: 1841
  issue: 11
  year: 2006
  ident: 2658_CR25
  publication-title: Journal of Functional Materials
– volume: 20
  start-page: 116
  issue: 4
  year: 2005
  ident: 2658_CR23
  publication-title: Journal of Wuhan University of Technology-Mater. Sci. Ed.
  doi: 10.1007/BF02841300
SSID ssj0040366
Score 2.2648687
Snippet The early-age hydration characteristics of composite binder containing graphite powder (GP) with two different finenesses were investigated by determining the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1252
SubjectTerms Age
Cement hydration
Cementitious Materials
Chemistry and Materials Science
Compressive strength
Contact angle
Damage
Graphite
Hydration
Materials Science
Microcracks
Mortars (material)
Nucleation
Surface energy
Title Early-age Hydration Characteristics of Composite Binder Containing Graphite Powder
URI https://link.springer.com/article/10.1007/s11595-022-2658-0
https://www.proquest.com/docview/2774230612
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6kvehBfGK1lhw8KYFtss12j7X0gaKIWKinJdkkJ2mlD8R_78w-XCsqeNjTZHOYmcyDmfkG4KJjBbpV0-UylpqHzmlOxSAeGuud9rGLMzCdu3s1noQ30860mONelt3uZUkys9TVsBt6XpomFlyg2-SYp9c7lLqjEk9ErzS_IZrkbKSIRqapaFSWMn-6YtMZVRHmt6Jo5muGe7BbBImsl0t1H7bc7AB2vkAHHsJjhkzM0Rqw8bvNxcj6m-jLbO4ZvXfqy3LsmoARF4zgqPKtEGxEYNVEepi_IekIJsPBU3_Mi_0IPJVtteJSSWW9cErE2oc-tjZ1gdZGR5jTGBUhAT8tbbubRibuGu2N9GHaFiagzVPyGGqz-cydAAsMpoHGWIvZSGgohxAm8org3UUUKNOAoGRUkhbg4bTD4iWpYI-JtwnyNiHeJkEDLj9_ec2RM_463Cy5nxSPaJmIiMrIFIM14KqUSEX-9bLTf50-g21BGpG1qDShtlqs3TkGGivTgnpv9Hw7aGUK9gFDW8qd
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SD-pBfGK1ag6elMA22WZ3j7VYV22LSAu9hWSTnKSVtiL-e2f2Ya2o4GFPk81hksyDb-YbQi5aloNbNTETidAsdE4zBINYaKx32icuycl0-gOZjsL7cWtc9nHPq2r3CpLMLfWy2Q08L3YTc8bBbTLI09chFoixjmvE25X5DcEk5y1F2DKNoFEFZf60xaozWkaY30DR3Nd0d8h2GSTSdnGqu2TNTfbI1hfqwH3ylDMTM7AGNH23xTHSzir7Mp16iu8d67IcvUZixBlFOqpiKgS9RbJqFD1O30B0QEbdm2EnZeV8BJaJplwwIYW0njvJE-1Dn1ibuUBroyPIaYyMQACfFrYZZ5FJYqO9ET7MmtwEOHlKHJLaZDpxR4QGBtJAY6yFbCQ0mENwE3mJ9O48CqSpk6BSlMpK8nCcYfGslrTHqFsFulWoWxXUyeXnLy8Fc8ZfixuV9lX5iOaKRwgjYwxWJ1fViSzFv252_K_V52QjHfZ7qnc3eDghmxxvR16u0iC1xezVnULQsTBn-SX7AJgFy_w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QkBAcEE9RGJADJ1C0NunS9TgGY7ymCTFptyhpkhPqpq0I8e-J-6AMARKHnpzmYDt-yPZnhM7amjq3qjqExUyS0BhJoBhEQqWtkTY2cQ6m8zjkg3F4N2lPyj2ni6rbvSpJFjMNgNKUZq2Ztq168M15YZgspoQ6F0pczr7qrHEAaj2m3coUh8485-NFMD4NBaSqrPnTFcuOqY42vxVIc7_T30KbZcCIu4WEt9GKSXfQxhcYwV30lKMUE2cZ8OBdFyLFvWUkZjy1GN4-9GgZfAkgiXMM0FTFhgh8A8DVQBpN3xxpD43718-9ASl3JZCEBTwjjDOuLTWcxtKGNtY6Mb6USkYuv1E8cgT3SaaDThKpuKOkVcyGSUCVD1uo2D5qpNPUHCDsK5cSKqW1y0xCBfkEVZHlAPVOI58rD_kVo0RSAonDPosXUUMgA2-F460A3grfQ-efv8wKFI2_Djcr7ovyQS0EjaCkDPGYhy4qidTkXy87_NfpU7Q2uuqLh9vh_RFap6AceedKEzWy-as5dvFHpk5yHfsAp2_QOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early-age+Hydration+Characteristics+of+Composite+Binder+Containing+Graphite+Powder&rft.jtitle=Journal+of+Wuhan+University+of+Technology.+Materials+science+edition&rft.au=He%2C+Wei&rft.au=Song+Shaomin&rft.au=Xia%2C+Meng&rft.au=Zhang+Pengchong&rft.date=2022-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1000-2413&rft.eissn=1993-0437&rft.volume=37&rft.issue=6&rft.spage=1252&rft.epage=1261&rft_id=info:doi/10.1007%2Fs11595-022-2658-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1000-2413&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1000-2413&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1000-2413&client=summon