Early-age Hydration Characteristics of Composite Binder Containing Graphite Powder
The early-age hydration characteristics of composite binder containing graphite powder (GP) with two different finenesses were investigated by determining the hydration heat, thermo gravimetric, morphology of hardened paste as well as the compressive strength of mortar. The experimental results show...
Saved in:
Published in | Journal of Wuhan University of Technology. Materials science edition Vol. 37; no. 6; pp. 1252 - 1261 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Wuhan
Wuhan University of Technology
01.12.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The early-age hydration characteristics of composite binder containing graphite powder (GP) with two different finenesses were investigated by determining the hydration heat, thermo gravimetric, morphology of hardened paste as well as the compressive strength of mortar. The experimental results show that: replacing 2%–6% of cement with graphite powder significantly improves the piezoresistive effect of early age mortar, can be used to monitor accidental loads caused by dropped objects, collisions, or other accident events, and thus avoids initial damage. Some GP provides additional nucleation sites that lead to a fast formation of hydration products (nucleation-site effect). However, due to the almost hydrophobic water contact angle, most of the GP causes a large number of micro-cracks in the hydrated paste (gap effect). Because of the lamellar shape and high surface energy, GP is easily balled and can not be uniformly distributed in the composite, resulting in clumping together and wrapping some of the cement particles (barrier effect). Due to nucleation-site effect, when the dosages of coarse and fine GP reached 2% and 4%, 1 d strength were increased by 9.1% and 9.6%, respectively. At 3 days, as the interior damage caused by the gap effect gradually increased, and the retarding effect on cement hydration caused by barrier effect was enhanced. GP has an obvious negative effect on compressive strength. However, micro-cracks caused by fine GP are less, so its negative effect on 3 d compressive strength is lower. |
---|---|
AbstractList | The early-age hydration characteristics of composite binder containing graphite powder (GP) with two different finenesses were investigated by determining the hydration heat, thermo gravimetric, morphology of hardened paste as well as the compressive strength of mortar. The experimental results show that: replacing 2%–6% of cement with graphite powder significantly improves the piezoresistive effect of early age mortar, can be used to monitor accidental loads caused by dropped objects, collisions, or other accident events, and thus avoids initial damage. Some GP provides additional nucleation sites that lead to a fast formation of hydration products (nucleation-site effect). However, due to the almost hydrophobic water contact angle, most of the GP causes a large number of micro-cracks in the hydrated paste (gap effect). Because of the lamellar shape and high surface energy, GP is easily balled and can not be uniformly distributed in the composite, resulting in clumping together and wrapping some of the cement particles (barrier effect). Due to nucleation-site effect, when the dosages of coarse and fine GP reached 2% and 4%, 1 d strength were increased by 9.1% and 9.6%, respectively. At 3 days, as the interior damage caused by the gap effect gradually increased, and the retarding effect on cement hydration caused by barrier effect was enhanced. GP has an obvious negative effect on compressive strength. However, micro-cracks caused by fine GP are less, so its negative effect on 3 d compressive strength is lower. |
Author | Zhang, Pengchong Song, Shaomin Meng, Xia Sun, Xu He, Wei |
Author_xml | – sequence: 1 givenname: Wei surname: He fullname: He, Wei organization: School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture – sequence: 2 givenname: Shaomin surname: Song fullname: Song, Shaomin email: songshaomin@bucea.edu.cn organization: School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture – sequence: 3 givenname: Xia surname: Meng fullname: Meng, Xia organization: Architectural Design and Research Institute of Tsinghua University Co., Ltd – sequence: 4 givenname: Pengchong surname: Zhang fullname: Zhang, Pengchong organization: School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture – sequence: 5 givenname: Xu surname: Sun fullname: Sun, Xu organization: School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture |
BookMark | eNp9kFFLwzAUhYNMcJv-AN8KPkdvkjZZH7XMTRAU0eeQtumWsSU1yZD9ezMrCII-hBtyzndv7pmgkXVWI3RJ4JoAiJtASFEWGCjFlBczDCdoTMqSYciZGKU7AGCaE3aGJiFsAHJgnI_Ry1z57QGrlc6Wh9araJzNqrXyqonamxBNEzLXZZXb9S6YqLM7Y1vt04ONylhjV9nCq359lJ7dR5LO0WmntkFffNcperufv1ZL_Pi0eKhuH3HDCI-YccbbjmpOS9XlXdm2jQalaiVoUdZcJCEdxVoya0RdzmrV1azLG0Jr4EA5m6KroW_v3ftehyg3bu9tGimpEDllwAlNLjG4Gu9C8LqTjYlfa0avzFYSkMcA5RCgTAHKY4ASEkl-kb03O-UP_zJ0YELy2pX2P3_6G_oEpK-FMA |
CitedBy_id | crossref_primary_10_1617_s11527_025_02590_4 crossref_primary_10_1016_j_conbuildmat_2025_140414 |
Cites_doi | 10.4028/www.scientific.net/AMR.177.566 10.1016/0008-8846(92)90104-4 10.1617/s11527-017-1040-8 10.1016/j.conbuildmat.2017.03.048 10.1007/978-981-10-4349-9 10.1088/0964-1726/20/8/085031 10.1016/S0008-8846(98)00204-X 10.1016/j.cemconcomp.2010.03.009 10.1016/0021-9797(74)90351-8 10.1016/j.carbon.2006.10.024 10.1016/j.cemconres.2003.08.003 10.1016/j.conbuildmat.2011.07.021 10.1680/iicep.1981.2142 10.1016/j.conbuildmat.2017.06.172 10.1007/s11595-015-1249-8 10.1016/j.cemconcomp.2017.07.021 10.1070/PU2003v046n12ABEH001699 10.1016/j.conbuildmat.2018.03.001 10.1016/j.fuproc.2005.01.024 10.1016/S0927-796X(97)00021-1 10.1021/la901402f 10.1016/j.conbuildmat.2014.11.004 10.1021/la100231u 10.1016/S0040-6031(99)00369-X 10.1016/S0008-8846(98)00057-X 10.1016/j.measurement.2014.09.048 10.1061/(ASCE)0887-381X(2008)22:1(1) 10.1016/j.cemconcomp.2004.09.001 10.1016/S0958-9465(02)00138-5 10.1016/j.apsusc.2016.11.015 10.1021/nl304647t 10.1007/BF00352673 10.1021/ja01869a029 10.1016/S0006-3495(02)75243-0 10.1016/j.conbuildmat.2015.08.134 10.1007/978-1-349-03994-4 10.1016/j.conbuildmat.2017.03.223 10.1007/s11595-021-2382-1 10.1007/BF02841300 |
ContentType | Journal Article |
Copyright | Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature 2022 Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature 2022. |
Copyright_xml | – notice: Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature 2022 – notice: Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature 2022. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1007/s11595-022-2658-0 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1993-0437 |
EndPage | 1261 |
ExternalDocumentID | 10_1007_s11595_022_2658_0 |
GroupedDBID | -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 188 1N0 29L 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 40D 40E 5VR 5VS 6NX 8AO 8FE 8FG 8RM 8TC 8UJ 92H 92I 92R 93N 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFGCZ AFKRA AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA CAG CCEZO CCPQU CDRFL CHBEP COF CSCUP CW9 CZ9 D1I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FA0 FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KB. KC. KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J P9N PDBOC PF0 PT4 QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCL SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TCJ TGT TSG TUC U2A UG4 UGNYK UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z5O Z7R Z7V Z7W Z7X Z7Y Z7Z Z85 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SR 8BQ 8FD ABRTQ JG9 |
ID | FETCH-LOGICAL-c316t-3636df2e629af4f9ddce0aaba7259b67e627e6a3d18c7b98bafb3f4c12b060263 |
IEDL.DBID | U2A |
ISSN | 1000-2413 |
IngestDate | Fri Jul 25 10:56:06 EDT 2025 Thu Apr 24 23:04:10 EDT 2025 Tue Jul 01 00:26:36 EDT 2025 Fri Feb 21 02:45:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | piezoresistive effect graphite powder comprehensive strength early-age hydration Portland cement |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-3636df2e629af4f9ddce0aaba7259b67e627e6a3d18c7b98bafb3f4c12b060263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2774230612 |
PQPubID | 1476361 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2774230612 crossref_citationtrail_10_1007_s11595_022_2658_0 crossref_primary_10_1007_s11595_022_2658_0 springer_journals_10_1007_s11595_022_2658_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Wuhan |
PublicationPlace_xml | – name: Wuhan |
PublicationSubtitle | Materials Science Edition |
PublicationTitle | Journal of Wuhan University of Technology. Materials science edition |
PublicationTitleAbbrev | J. Wuhan Univ. Technol.-Mat. Sci. Edit |
PublicationYear | 2022 |
Publisher | Wuhan University of Technology Springer Nature B.V |
Publisher_xml | – name: Wuhan University of Technology – name: Springer Nature B.V |
References | WangQYangJChenHHLong-term Properties of Concrete Containing Limestone Powder[J]Materials & Structures2017503168 Song H, Jeong Y, Bae S, et al. A Study of Thermal Decomposition of Phases in Cementitious Systems Using HT-XRD and TG[J]. Construction & Building Materials, 2018(169): 648–661 DaiYWSunMQLiuCGElectromagnetic Wave Absorbing Characteristics of Carbon Black Cement-based Composites[J]Cement & Concrete Composites20103275085131:CAS:528:DC%2BC3cXmslGnsrk%3D GanWMHuangXChenPFPiezoresistivity of Cement Based Material with Small Amount of Graphite[J]Journal of Beijing University of Aeronautics and Astronautics2011375556559+578 MuthusamySChungDDLCarbon-fiber Cement-based Materials for Electromagnetic Shielding[J]ACI Materials Journal201010766026101:CAS:528:DC%2BC3MXis1CjtA%3D%3D FowkesFMHarkinsWDThe State of Monolayers Adsorbed at the Interface Solid-Aqueous Solution[J]Journal of the American Chemical Society194062123 3773 3861:CAS:528:DyaH3MXlvFGj SavvatimskiiAIAleksandrIMelting Point of Graphite and Liquid Carbon[J]Physics-Uspekhi200346121 2951 3031:CAS:528:DC%2BD2cXltFKgs7g%3D YehiaSTuanCYFerdonDConductive Concrete Overlay for Bridge Deck Deicing: Mixture Proportioning, Optimization, and Properties[J]ACI Materials Journal20009721721811:CAS:528:DC%2BD3cXjtVyrsro%3D WhitingDANagiMAElectrical Resistivity of Concrete — A Literature Review[R]2003IllinoisPortland Cement Association MonforeGEThe Electrical Resistivity of Concrete[J]Journal of the PCA Research & Development Laboratories196810235481:CAS:528:DyaF1cXks1WgtrY%3D XiePGuPBeaudoinJJElectrical Percolation Phenomena in Cement Composites Containing Conductive Fibers[J]Journal of Materials Science19963115409340971:CAS:528:DyaK28XkvFCqsrY%3D Cao HY, Yao W, Qin JJ. Seebeck Effect in Graphite-carbon Fiber Cement Based Composite[J]. Advanced Materials Research, 2011(177): 566–569 Chen M, Gao P, Geng F, et al. Mechanical and Smart Properties of Carbon Fiber and Graphite Conductive Concrete for Internal Damage Monitoring of Structure[J]. Construction & Building Materials, 2017(142): 320–327 WangJRDingYMThe Application of Conductive Concrete in the Grounding Network Reconstruction of Bai-Sha Hydropower Station[J]Electrical Equipment2008946769 ChenBWuKYaoWConductivity of Carbon Fiber Reinforced Cement-based Composites[J]Cement & Concrete Composites2004264291297 HanBGOuJPZhangLQSmart and Multifunctional Concrete toward Sustainable Infrastructures[M]2017SingaporeSpringer Nature Singapore PTE Ltd.247 ShiZQChungDDLCarbon Fiber-reinforced Concrete for Traffic Monitoring and Weighing in Motion[J]Cement & Concrete Research19992934354391:CAS:528:DyaK1MXjtlahtr4%3D CuiSPLiuYXLanMZPreparation and Properties of Graphite-cement Based Composites[J]Journal of the Chinese Ceramic Society200735191951:CAS:528:DC%2BD2sXht1Gjt7g%3D KoganMJDalcolIGorostizaPSupramolecular Properties of the Proline-rich γ-Zein N-Terminal domain[J]Biophysical Journal20028321 1941 2041:CAS:528:DC%2BD38Xls1Onsb4%3D ShinYJWangYHuangHSurface Energy Engineering of Grapheme[J]Langmuir the ACS Journal of Surfaces and Colloids201026637988021:CAS:528:DC%2BC3cXitFehurk%3D McCarterWJFordeMCWhittingtonHWResistivity Characteristics of Concrete[J]Proceedings of the Institution of Civil Engineers1981711107117 DweckJBuchlerPMAcvCHydration of a Portland Cement Blended with Calcium Carbonate[J]Thermochimica Acta200034611051131:CAS:528:DC%2BD3cXhslSkurg%3D ZhangXYLüYChenJField Sensing Characteristic Research of Carbon Fiber Smart Material[J]Journal of Wuhan University of Technology-Mater. Sci. Ed.20153059149171:CAS:528:DC%2BC2MXhslSltrzL Shi MX, Wang Q, Zhang ZK. Comparison of the Properties between High-volume Fly Ash Concrete and High-volume Steel Slag Concrete under Temperature Matching Curing Condition[J]. Construction & Building Materials, 2015(98): 649–655 HanBGChenWOuJPPiezo Resistivity of Cement-based Materials with Acetylene Carbon Black[J]Acta Materiae Compositae Sinica200825339441:CAS:528:DC%2BD1cXovVCitb8%3D Rahhal V, Bonavetti V, Trusilewicz L, et al. Role of the Filler on Portland Cement Hydration at Early Ages[J]. Construction & Building Materials, 2012(27): 82–90 Han BG, Ding SQ, Yu X. Intrinsic Self-sensing Concrete and Structures: A Review[J]. Measurement, 2015(59): 110–128 Wu JM, Liu JG, Yang F. Three-phase Composite Conductive Concrete for Pavement Deicing[J]. Construction & Building Materials, 2015(75): 129–135 BanthiaNDjeridanceSPigeonMElectrical Resistivity of Carbon and Steel Micro-fiber Reinforced Cements[J]Cement & Concrete Research19922258048141:CAS:528:DyaK38XmtFyltro%3D HowserRNDhondeHBMoYLSelf-sensing of Carbon Nano-fiber Concrete Columns Subjected to Reversed Cyclic Loading[J]Smart Materials & Structures2011208085031 ZhangQQWeiYQuantitative Analysis on Reaction Degree of Slag-cement Composite System Based on Back-scattered-electron Image[J]Journal of the Chinese Ceramic Society20154355635691:CAS:528:DC%2BC2MXpt1KntLw%3D WangKShahSPMishulovichAEffects of Curing Temperature and NaOH Addition on Hydration and Strength Development of Clinker-free CKD-fly Ash Binders[J]Cement & Concrete Research20043222993091:CAS:528:DC%2BD2cXjt1eitbY%3D TadrosMEHuPAdamsonAWAdsorption and Contact Angle Studies: I. Water on Smooth Carbon, Linear Polyethylene, and Stearic Acid-coated Copper[J]Journal of Colloid & Interface Science19744921841951:CAS:528:DyaE2MXnvVKn YangYSDongFQOn Electro Thermal Concrete of Doping Graphite Electricity-conductive Elementary Materials[J]Journal of Functional Materials20083933853871:CAS:528:DC%2BD1cXmtV2qsr4%3D Sassani A, Ceylan H, Kim S, et al. Influence of Mix Design Variables on Engineering Properties of Carbon Fiber-modified Electrically Conductive Concrete[J]. Construction & Building Materials, 2017(152): 168–181 SorokaJPortland Cement Paste and Concrete[M]1979LondonMacmillan Press Ltd35 Chen B, Wu K, Yao W. Conductivity of Carbon Fiber Reinforced Cement-based Composites[J]. Cement & Concrete Composites, 2004(26): 291–297 ShuiZHLiCLiaoWDResistance Responses of Carbon Fiber Cement to Cycled Compressive Stresses[J]Journal of Wuhan University of Technology-Mater. Sci. Ed.20052041161191:CAS:528:DC%2BD28XovVyntQ%3D%3D TuanCYRoca Spur Bridge: The Implementation of an Innovative Deicing Technology[J]Journal of Cold Regions Engineering2008221115 Zhang J, Xu L, Zhao Q. Investigation of Carbon Fillers Modified Electrically Conductive Concrete as Grounding Electrodes for Transmission Towers: Computational Model and Case Study[J]. Construction & Building Materials, 2017(145): 347–353 FuXLChungDDLRadio-wave-reflecting Concrete for Lateral Guidance in Automatic Highways[J]Cement & Concrete Research19982867958011:CAS:528:DyaK1cXktl2nsrg%3D YehiaSHostJConductive Concrete for Cathodic Protection of Bridge Decks[J]ACI Materials Journal201010765775851:CAS:528:DC%2BC3MXis1CjsQ%3D%3D WangSRZhangYAbidiNCabralesLWettability and Surface Free Energy of Graphene Films[J]Langmuir2009251811 07811 0811:CAS:528:DC%2BD1MXotlahs7w%3D Wang Q, Wang DQ, Chen HH. The Role of Fly Ash Microsphere in the Microstructure and Macroscopic Properties of High-strength Concrete[J]. Cement & Concrete Composite, 2017(83): 125–137 RajRMarooSCWangENWettability of Graphene[J]Nano Letters20131341 5091 5151:CAS:528:DC%2BC3sXjtlOru7g%3D WenSChungDDLPartial Replacement of Carbon Fiber by Carbon Black in Multifunctional Cement-matrix Composites[J]Carbon20074535055131:CAS:528:DC%2BD2sXhtVaktb8%3D ChiarelloMZinnoRElectrical Conductivity of Self-monitoring CFRC[J]Cement & Concrete Composite20052744634691:CAS:528:DC%2BD2MXitVWqtL4%3D Jia XW, Zhang X, Ma D, et al. Conductive Properties and Influencing Factors of Electrically Conductive Concrete: A Review[J]. Materials Review, 2017(21): 93–100 ZhengYZaouiAWetting and Nanodroplet Contact Angle of the Clay 2:1 Surface: The Case of Na-montmorillonite (001)[J]Applied Surface Science2016396717722 ChungDDLSelf-monitoring Structural Materials[J]Materials Science & Engineering R: Reports19982225778 WangYSLüLNHeYJEffect of Calcium Silicate Hydrate Seeds on Hydration and Mechanical Properties of Cement[J]Journal of Wuhan University of Technology-Mater. Sci. Ed.20213611031101:CAS:528:DC%2BB3MXhtFKlt7jE VassilevaCGVassilevSVBehaviour of Inorganic Matter During Heating of Bulgarian Coals: 1. Lignites[J]Fuel Processing Technology20058612–131 2971 2331:CAS:528:DC%2BD2MXkvFWntb4%3D WangXYSunMQHouZFStudy on Electrical and Electro Thermal Properties of Nano Carbon Black Cement Mortar[J]Journal of Functional Materials2006371118411843+18471:CAS:528:DC%2BD2sXmt1SlsLw%3D CY Tuan (2658_CR7) 2008; 22 WM Gan (2658_CR28) 2011; 37 Y Zheng (2658_CR44) 2016; 396 CG Vassileva (2658_CR50) 2005; 86 B Chen (2658_CR18) 2004; 26 YS Yang (2658_CR26) 2008; 39 DA Whiting (2658_CR3) 2003 2658_CR33 2658_CR35 2658_CR34 2658_CR37 2658_CR36 YS Wang (2658_CR30) 2021; 36 ZH Shui (2658_CR23) 2005; 20 ZQ Shi (2658_CR12) 1999; 29 RN Howser (2658_CR14) 2011; 20 DDL Chung (2658_CR21) 1998; 22 YW Dai (2658_CR8) 2010; 32 ME Tadros (2658_CR40) 1974; 49 N Banthia (2658_CR19) 1992; 22 AI Savvatimskii (2658_CR48) 2003; 46 XY Wang (2658_CR25) 2006; 37 MJ Kogan (2658_CR42) 2002; 83 Q Wang (2658_CR31) 2017; 50 XL Fu (2658_CR15) 1998; 28 K Wang (2658_CR49) 2004; 32 BG Han (2658_CR5) 2017 JR Wang (2658_CR10) 2008; 9 P Xie (2658_CR17) 1996; 31 2658_CR29 M Chiarello (2658_CR22) 2005; 27 FM Fowkes (2658_CR39) 1940; 62 XY Zhang (2658_CR13) 2015; 30 J Soroka (2658_CR53) 1979 S Wen (2658_CR27) 2007; 45 2658_CR51 QQ Zhang (2658_CR38) 2015; 43 2658_CR52 2658_CR11 YJ Shin (2658_CR41) 2010; 26 BG Han (2658_CR24) 2008; 25 S Yehia (2658_CR20) 2000; 97 S Yehia (2658_CR16) 2010; 107 R Raj (2658_CR43) 2013; 13 S Muthusamy (2658_CR9) 2010; 107 J Dweck (2658_CR47) 2000; 346 GE Monfore (2658_CR4) 1968; 10 SR Wang (2658_CR45) 2009; 25 WJ McCarter (2658_CR2) 1981; 71 2658_CR6 2658_CR1 2658_CR46 SP Cui (2658_CR32) 2007; 35 |
References_xml | – reference: ZhangQQWeiYQuantitative Analysis on Reaction Degree of Slag-cement Composite System Based on Back-scattered-electron Image[J]Journal of the Chinese Ceramic Society20154355635691:CAS:528:DC%2BC2MXpt1KntLw%3D – reference: Wu JM, Liu JG, Yang F. Three-phase Composite Conductive Concrete for Pavement Deicing[J]. Construction & Building Materials, 2015(75): 129–135 – reference: KoganMJDalcolIGorostizaPSupramolecular Properties of the Proline-rich γ-Zein N-Terminal domain[J]Biophysical Journal20028321 1941 2041:CAS:528:DC%2BD38Xls1Onsb4%3D – reference: Wang Q, Wang DQ, Chen HH. The Role of Fly Ash Microsphere in the Microstructure and Macroscopic Properties of High-strength Concrete[J]. Cement & Concrete Composite, 2017(83): 125–137 – reference: ChungDDLSelf-monitoring Structural Materials[J]Materials Science & Engineering R: Reports19982225778 – reference: DweckJBuchlerPMAcvCHydration of a Portland Cement Blended with Calcium Carbonate[J]Thermochimica Acta200034611051131:CAS:528:DC%2BD3cXhslSkurg%3D – reference: HanBGOuJPZhangLQSmart and Multifunctional Concrete toward Sustainable Infrastructures[M]2017SingaporeSpringer Nature Singapore PTE Ltd.247 – reference: CuiSPLiuYXLanMZPreparation and Properties of Graphite-cement Based Composites[J]Journal of the Chinese Ceramic Society200735191951:CAS:528:DC%2BD2sXht1Gjt7g%3D – reference: SavvatimskiiAIAleksandrIMelting Point of Graphite and Liquid Carbon[J]Physics-Uspekhi200346121 2951 3031:CAS:528:DC%2BD2cXltFKgs7g%3D – reference: RajRMarooSCWangENWettability of Graphene[J]Nano Letters20131341 5091 5151:CAS:528:DC%2BC3sXjtlOru7g%3D – reference: WangKShahSPMishulovichAEffects of Curing Temperature and NaOH Addition on Hydration and Strength Development of Clinker-free CKD-fly Ash Binders[J]Cement & Concrete Research20043222993091:CAS:528:DC%2BD2cXjt1eitbY%3D – reference: WangJRDingYMThe Application of Conductive Concrete in the Grounding Network Reconstruction of Bai-Sha Hydropower Station[J]Electrical Equipment2008946769 – reference: FowkesFMHarkinsWDThe State of Monolayers Adsorbed at the Interface Solid-Aqueous Solution[J]Journal of the American Chemical Society194062123 3773 3861:CAS:528:DyaH3MXlvFGj – reference: Chen B, Wu K, Yao W. Conductivity of Carbon Fiber Reinforced Cement-based Composites[J]. Cement & Concrete Composites, 2004(26): 291–297 – reference: ShiZQChungDDLCarbon Fiber-reinforced Concrete for Traffic Monitoring and Weighing in Motion[J]Cement & Concrete Research19992934354391:CAS:528:DyaK1MXjtlahtr4%3D – reference: YangYSDongFQOn Electro Thermal Concrete of Doping Graphite Electricity-conductive Elementary Materials[J]Journal of Functional Materials20083933853871:CAS:528:DC%2BD1cXmtV2qsr4%3D – reference: HanBGChenWOuJPPiezo Resistivity of Cement-based Materials with Acetylene Carbon Black[J]Acta Materiae Compositae Sinica200825339441:CAS:528:DC%2BD1cXovVCitb8%3D – reference: ShinYJWangYHuangHSurface Energy Engineering of Grapheme[J]Langmuir the ACS Journal of Surfaces and Colloids201026637988021:CAS:528:DC%2BC3cXitFehurk%3D – reference: WangSRZhangYAbidiNCabralesLWettability and Surface Free Energy of Graphene Films[J]Langmuir2009251811 07811 0811:CAS:528:DC%2BD1MXotlahs7w%3D – reference: MuthusamySChungDDLCarbon-fiber Cement-based Materials for Electromagnetic Shielding[J]ACI Materials Journal201010766026101:CAS:528:DC%2BC3MXis1CjtA%3D%3D – reference: HowserRNDhondeHBMoYLSelf-sensing of Carbon Nano-fiber Concrete Columns Subjected to Reversed Cyclic Loading[J]Smart Materials & Structures2011208085031 – reference: Han BG, Ding SQ, Yu X. Intrinsic Self-sensing Concrete and Structures: A Review[J]. Measurement, 2015(59): 110–128 – reference: YehiaSHostJConductive Concrete for Cathodic Protection of Bridge Decks[J]ACI Materials Journal201010765775851:CAS:528:DC%2BC3MXis1CjsQ%3D%3D – reference: ChenBWuKYaoWConductivity of Carbon Fiber Reinforced Cement-based Composites[J]Cement & Concrete Composites2004264291297 – reference: ZhangXYLüYChenJField Sensing Characteristic Research of Carbon Fiber Smart Material[J]Journal of Wuhan University of Technology-Mater. Sci. Ed.20153059149171:CAS:528:DC%2BC2MXhslSltrzL – reference: ChiarelloMZinnoRElectrical Conductivity of Self-monitoring CFRC[J]Cement & Concrete Composite20052744634691:CAS:528:DC%2BD2MXitVWqtL4%3D – reference: ShuiZHLiCLiaoWDResistance Responses of Carbon Fiber Cement to Cycled Compressive Stresses[J]Journal of Wuhan University of Technology-Mater. Sci. Ed.20052041161191:CAS:528:DC%2BD28XovVyntQ%3D%3D – reference: WangXYSunMQHouZFStudy on Electrical and Electro Thermal Properties of Nano Carbon Black Cement Mortar[J]Journal of Functional Materials2006371118411843+18471:CAS:528:DC%2BD2sXmt1SlsLw%3D – reference: WangQYangJChenHHLong-term Properties of Concrete Containing Limestone Powder[J]Materials & Structures2017503168 – reference: Zhang J, Xu L, Zhao Q. Investigation of Carbon Fillers Modified Electrically Conductive Concrete as Grounding Electrodes for Transmission Towers: Computational Model and Case Study[J]. Construction & Building Materials, 2017(145): 347–353 – reference: YehiaSTuanCYFerdonDConductive Concrete Overlay for Bridge Deck Deicing: Mixture Proportioning, Optimization, and Properties[J]ACI Materials Journal20009721721811:CAS:528:DC%2BD3cXjtVyrsro%3D – reference: VassilevaCGVassilevSVBehaviour of Inorganic Matter During Heating of Bulgarian Coals: 1. Lignites[J]Fuel Processing Technology20058612–131 2971 2331:CAS:528:DC%2BD2MXkvFWntb4%3D – reference: WenSChungDDLPartial Replacement of Carbon Fiber by Carbon Black in Multifunctional Cement-matrix Composites[J]Carbon20074535055131:CAS:528:DC%2BD2sXhtVaktb8%3D – reference: FuXLChungDDLRadio-wave-reflecting Concrete for Lateral Guidance in Automatic Highways[J]Cement & Concrete Research19982867958011:CAS:528:DyaK1cXktl2nsrg%3D – reference: Song H, Jeong Y, Bae S, et al. A Study of Thermal Decomposition of Phases in Cementitious Systems Using HT-XRD and TG[J]. Construction & Building Materials, 2018(169): 648–661 – reference: McCarterWJFordeMCWhittingtonHWResistivity Characteristics of Concrete[J]Proceedings of the Institution of Civil Engineers1981711107117 – reference: Shi MX, Wang Q, Zhang ZK. Comparison of the Properties between High-volume Fly Ash Concrete and High-volume Steel Slag Concrete under Temperature Matching Curing Condition[J]. Construction & Building Materials, 2015(98): 649–655 – reference: XiePGuPBeaudoinJJElectrical Percolation Phenomena in Cement Composites Containing Conductive Fibers[J]Journal of Materials Science19963115409340971:CAS:528:DyaK28XkvFCqsrY%3D – reference: GanWMHuangXChenPFPiezoresistivity of Cement Based Material with Small Amount of Graphite[J]Journal of Beijing University of Aeronautics and Astronautics2011375556559+578 – reference: TuanCYRoca Spur Bridge: The Implementation of an Innovative Deicing Technology[J]Journal of Cold Regions Engineering2008221115 – reference: ZhengYZaouiAWetting and Nanodroplet Contact Angle of the Clay 2:1 Surface: The Case of Na-montmorillonite (001)[J]Applied Surface Science2016396717722 – reference: MonforeGEThe Electrical Resistivity of Concrete[J]Journal of the PCA Research & Development Laboratories196810235481:CAS:528:DyaF1cXks1WgtrY%3D – reference: Rahhal V, Bonavetti V, Trusilewicz L, et al. Role of the Filler on Portland Cement Hydration at Early Ages[J]. Construction & Building Materials, 2012(27): 82–90 – reference: WangYSLüLNHeYJEffect of Calcium Silicate Hydrate Seeds on Hydration and Mechanical Properties of Cement[J]Journal of Wuhan University of Technology-Mater. Sci. Ed.20213611031101:CAS:528:DC%2BB3MXhtFKlt7jE – reference: Jia XW, Zhang X, Ma D, et al. Conductive Properties and Influencing Factors of Electrically Conductive Concrete: A Review[J]. Materials Review, 2017(21): 93–100 – reference: Sassani A, Ceylan H, Kim S, et al. Influence of Mix Design Variables on Engineering Properties of Carbon Fiber-modified Electrically Conductive Concrete[J]. Construction & Building Materials, 2017(152): 168–181 – reference: Chen M, Gao P, Geng F, et al. Mechanical and Smart Properties of Carbon Fiber and Graphite Conductive Concrete for Internal Damage Monitoring of Structure[J]. Construction & Building Materials, 2017(142): 320–327 – reference: TadrosMEHuPAdamsonAWAdsorption and Contact Angle Studies: I. Water on Smooth Carbon, Linear Polyethylene, and Stearic Acid-coated Copper[J]Journal of Colloid & Interface Science19744921841951:CAS:528:DyaE2MXnvVKn – reference: Cao HY, Yao W, Qin JJ. Seebeck Effect in Graphite-carbon Fiber Cement Based Composite[J]. Advanced Materials Research, 2011(177): 566–569 – reference: BanthiaNDjeridanceSPigeonMElectrical Resistivity of Carbon and Steel Micro-fiber Reinforced Cements[J]Cement & Concrete Research19922258048141:CAS:528:DyaK38XmtFyltro%3D – reference: DaiYWSunMQLiuCGElectromagnetic Wave Absorbing Characteristics of Carbon Black Cement-based Composites[J]Cement & Concrete Composites20103275085131:CAS:528:DC%2BC3cXmslGnsrk%3D – reference: SorokaJPortland Cement Paste and Concrete[M]1979LondonMacmillan Press Ltd35 – reference: WhitingDANagiMAElectrical Resistivity of Concrete — A Literature Review[R]2003IllinoisPortland Cement Association – ident: 2658_CR34 doi: 10.4028/www.scientific.net/AMR.177.566 – volume: 22 start-page: 804 issue: 5 year: 1992 ident: 2658_CR19 publication-title: Cement & Concrete Research doi: 10.1016/0008-8846(92)90104-4 – volume: 50 start-page: 168 issue: 3 year: 2017 ident: 2658_CR31 publication-title: Materials & Structures doi: 10.1617/s11527-017-1040-8 – ident: 2658_CR33 doi: 10.1016/j.conbuildmat.2017.03.048 – start-page: 247 volume-title: Smart and Multifunctional Concrete toward Sustainable Infrastructures[M] year: 2017 ident: 2658_CR5 doi: 10.1007/978-981-10-4349-9 – volume: 10 start-page: 35 issue: 2 year: 1968 ident: 2658_CR4 publication-title: Journal of the PCA Research & Development Laboratories – volume: 39 start-page: 385 issue: 3 year: 2008 ident: 2658_CR26 publication-title: Journal of Functional Materials – volume: 20 start-page: 085031 issue: 8 year: 2011 ident: 2658_CR14 publication-title: Smart Materials & Structures doi: 10.1088/0964-1726/20/8/085031 – volume: 35 start-page: 91 issue: 1 year: 2007 ident: 2658_CR32 publication-title: Journal of the Chinese Ceramic Society – volume: 97 start-page: 172 issue: 2 year: 2000 ident: 2658_CR20 publication-title: ACI Materials Journal – volume: 29 start-page: 435 issue: 3 year: 1999 ident: 2658_CR12 publication-title: Cement & Concrete Research doi: 10.1016/S0008-8846(98)00204-X – volume: 32 start-page: 508 issue: 7 year: 2010 ident: 2658_CR8 publication-title: Cement & Concrete Composites doi: 10.1016/j.cemconcomp.2010.03.009 – volume: 49 start-page: 184 issue: 2 year: 1974 ident: 2658_CR40 publication-title: Journal of Colloid & Interface Science doi: 10.1016/0021-9797(74)90351-8 – ident: 2658_CR46 – volume: 45 start-page: 505 issue: 3 year: 2007 ident: 2658_CR27 publication-title: Carbon doi: 10.1016/j.carbon.2006.10.024 – volume: 32 start-page: 299 issue: 2 year: 2004 ident: 2658_CR49 publication-title: Cement & Concrete Research doi: 10.1016/j.cemconres.2003.08.003 – ident: 2658_CR29 doi: 10.1016/j.conbuildmat.2011.07.021 – volume: 37 start-page: 556 issue: 5 year: 2011 ident: 2658_CR28 publication-title: Journal of Beijing University of Aeronautics and Astronautics – volume: 71 start-page: 107 issue: 1 year: 1981 ident: 2658_CR2 publication-title: Proceedings of the Institution of Civil Engineers doi: 10.1680/iicep.1981.2142 – ident: 2658_CR35 doi: 10.1016/j.conbuildmat.2017.06.172 – volume: 30 start-page: 914 issue: 5 year: 2015 ident: 2658_CR13 publication-title: Journal of Wuhan University of Technology-Mater. Sci. Ed. doi: 10.1007/s11595-015-1249-8 – ident: 2658_CR52 doi: 10.1016/j.cemconcomp.2017.07.021 – volume: 46 start-page: 1 295 issue: 12 year: 2003 ident: 2658_CR48 publication-title: Physics-Uspekhi doi: 10.1070/PU2003v046n12ABEH001699 – ident: 2658_CR51 doi: 10.1016/j.conbuildmat.2018.03.001 – volume: 86 start-page: 1 297 issue: 12–13 year: 2005 ident: 2658_CR50 publication-title: Fuel Processing Technology doi: 10.1016/j.fuproc.2005.01.024 – volume: 22 start-page: 57 issue: 2 year: 1998 ident: 2658_CR21 publication-title: Materials Science & Engineering R: Reports doi: 10.1016/S0927-796X(97)00021-1 – volume: 25 start-page: 11 078 issue: 18 year: 2009 ident: 2658_CR45 publication-title: Langmuir doi: 10.1021/la901402f – ident: 2658_CR6 doi: 10.1016/j.conbuildmat.2014.11.004 – volume: 26 start-page: 3798 issue: 6 year: 2010 ident: 2658_CR41 publication-title: Langmuir the ACS Journal of Surfaces and Colloids doi: 10.1021/la100231u – volume: 346 start-page: 105 issue: 1 year: 2000 ident: 2658_CR47 publication-title: Thermochimica Acta doi: 10.1016/S0040-6031(99)00369-X – volume: 28 start-page: 795 issue: 6 year: 1998 ident: 2658_CR15 publication-title: Cement & Concrete Research doi: 10.1016/S0008-8846(98)00057-X – ident: 2658_CR37 doi: 10.1016/j.measurement.2014.09.048 – volume: 22 start-page: 1 issue: 1 year: 2008 ident: 2658_CR7 publication-title: Journal of Cold Regions Engineering doi: 10.1061/(ASCE)0887-381X(2008)22:1(1) – volume: 27 start-page: 463 issue: 4 year: 2005 ident: 2658_CR22 publication-title: Cement & Concrete Composite doi: 10.1016/j.cemconcomp.2004.09.001 – volume: 43 start-page: 563 issue: 5 year: 2015 ident: 2658_CR38 publication-title: Journal of the Chinese Ceramic Society – ident: 2658_CR36 doi: 10.1016/S0958-9465(02)00138-5 – volume: 396 start-page: 717 year: 2016 ident: 2658_CR44 publication-title: Applied Surface Science doi: 10.1016/j.apsusc.2016.11.015 – volume: 107 start-page: 602 issue: 6 year: 2010 ident: 2658_CR9 publication-title: ACI Materials Journal – volume: 25 start-page: 39 issue: 3 year: 2008 ident: 2658_CR24 publication-title: Acta Materiae Compositae Sinica – volume: 13 start-page: 1 509 issue: 4 year: 2013 ident: 2658_CR43 publication-title: Nano Letters doi: 10.1021/nl304647t – volume-title: Electrical Resistivity of Concrete — A Literature Review[R] year: 2003 ident: 2658_CR3 – volume: 31 start-page: 4093 issue: 15 year: 1996 ident: 2658_CR17 publication-title: Journal of Materials Science doi: 10.1007/BF00352673 – volume: 62 start-page: 3 377 issue: 12 year: 1940 ident: 2658_CR39 publication-title: Journal of the American Chemical Society doi: 10.1021/ja01869a029 – volume: 26 start-page: 291 issue: 4 year: 2004 ident: 2658_CR18 publication-title: Cement & Concrete Composites doi: 10.1016/S0958-9465(02)00138-5 – volume: 83 start-page: 1 194 issue: 2 year: 2002 ident: 2658_CR42 publication-title: Biophysical Journal doi: 10.1016/S0006-3495(02)75243-0 – ident: 2658_CR1 doi: 10.1016/j.conbuildmat.2015.08.134 – start-page: 35 volume-title: Portland Cement Paste and Concrete[M] year: 1979 ident: 2658_CR53 doi: 10.1007/978-1-349-03994-4 – volume: 107 start-page: 577 issue: 6 year: 2010 ident: 2658_CR16 publication-title: ACI Materials Journal – volume: 9 start-page: 67 issue: 4 year: 2008 ident: 2658_CR10 publication-title: Electrical Equipment – ident: 2658_CR11 doi: 10.1016/j.conbuildmat.2017.03.223 – volume: 36 start-page: 103 issue: 1 year: 2021 ident: 2658_CR30 publication-title: Journal of Wuhan University of Technology-Mater. Sci. Ed. doi: 10.1007/s11595-021-2382-1 – volume: 37 start-page: 1841 issue: 11 year: 2006 ident: 2658_CR25 publication-title: Journal of Functional Materials – volume: 20 start-page: 116 issue: 4 year: 2005 ident: 2658_CR23 publication-title: Journal of Wuhan University of Technology-Mater. Sci. Ed. doi: 10.1007/BF02841300 |
SSID | ssj0040366 |
Score | 2.2648687 |
Snippet | The early-age hydration characteristics of composite binder containing graphite powder (GP) with two different finenesses were investigated by determining the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1252 |
SubjectTerms | Age Cement hydration Cementitious Materials Chemistry and Materials Science Compressive strength Contact angle Damage Graphite Hydration Materials Science Microcracks Mortars (material) Nucleation Surface energy |
Title | Early-age Hydration Characteristics of Composite Binder Containing Graphite Powder |
URI | https://link.springer.com/article/10.1007/s11595-022-2658-0 https://www.proquest.com/docview/2774230612 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6kvehBfGK1lhw8KYFtss12j7X0gaKIWKinJdkkJ2mlD8R_78w-XCsqeNjTZHOYmcyDmfkG4KJjBbpV0-UylpqHzmlOxSAeGuud9rGLMzCdu3s1noQ30860mONelt3uZUkys9TVsBt6XpomFlyg2-SYp9c7lLqjEk9ErzS_IZrkbKSIRqapaFSWMn-6YtMZVRHmt6Jo5muGe7BbBImsl0t1H7bc7AB2vkAHHsJjhkzM0Rqw8bvNxcj6m-jLbO4ZvXfqy3LsmoARF4zgqPKtEGxEYNVEepi_IekIJsPBU3_Mi_0IPJVtteJSSWW9cErE2oc-tjZ1gdZGR5jTGBUhAT8tbbubRibuGu2N9GHaFiagzVPyGGqz-cydAAsMpoHGWIvZSGgohxAm8org3UUUKNOAoGRUkhbg4bTD4iWpYI-JtwnyNiHeJkEDLj9_ec2RM_463Cy5nxSPaJmIiMrIFIM14KqUSEX-9bLTf50-g21BGpG1qDShtlqs3TkGGivTgnpv9Hw7aGUK9gFDW8qd |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SD-pBfGK1ag6elMA22WZ3j7VYV22LSAu9hWSTnKSVtiL-e2f2Ya2o4GFPk81hksyDb-YbQi5aloNbNTETidAsdE4zBINYaKx32icuycl0-gOZjsL7cWtc9nHPq2r3CpLMLfWy2Q08L3YTc8bBbTLI09chFoixjmvE25X5DcEk5y1F2DKNoFEFZf60xaozWkaY30DR3Nd0d8h2GSTSdnGqu2TNTfbI1hfqwH3ylDMTM7AGNH23xTHSzir7Mp16iu8d67IcvUZixBlFOqpiKgS9RbJqFD1O30B0QEbdm2EnZeV8BJaJplwwIYW0njvJE-1Dn1ibuUBroyPIaYyMQACfFrYZZ5FJYqO9ET7MmtwEOHlKHJLaZDpxR4QGBtJAY6yFbCQ0mENwE3mJ9O48CqSpk6BSlMpK8nCcYfGslrTHqFsFulWoWxXUyeXnLy8Fc8ZfixuV9lX5iOaKRwgjYwxWJ1fViSzFv252_K_V52QjHfZ7qnc3eDghmxxvR16u0iC1xezVnULQsTBn-SX7AJgFy_w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QkBAcEE9RGJADJ1C0NunS9TgGY7ymCTFptyhpkhPqpq0I8e-J-6AMARKHnpzmYDt-yPZnhM7amjq3qjqExUyS0BhJoBhEQqWtkTY2cQ6m8zjkg3F4N2lPyj2ni6rbvSpJFjMNgNKUZq2Ztq168M15YZgspoQ6F0pczr7qrHEAaj2m3coUh8485-NFMD4NBaSqrPnTFcuOqY42vxVIc7_T30KbZcCIu4WEt9GKSXfQxhcYwV30lKMUE2cZ8OBdFyLFvWUkZjy1GN4-9GgZfAkgiXMM0FTFhgh8A8DVQBpN3xxpD43718-9ASl3JZCEBTwjjDOuLTWcxtKGNtY6Mb6USkYuv1E8cgT3SaaDThKpuKOkVcyGSUCVD1uo2D5qpNPUHCDsK5cSKqW1y0xCBfkEVZHlAPVOI58rD_kVo0RSAonDPosXUUMgA2-F460A3grfQ-efv8wKFI2_Djcr7ovyQS0EjaCkDPGYhy4qidTkXy87_NfpU7Q2uuqLh9vh_RFap6AceedKEzWy-as5dvFHpk5yHfsAp2_QOA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early-age+Hydration+Characteristics+of+Composite+Binder+Containing+Graphite+Powder&rft.jtitle=Journal+of+Wuhan+University+of+Technology.+Materials+science+edition&rft.au=He%2C+Wei&rft.au=Song+Shaomin&rft.au=Xia%2C+Meng&rft.au=Zhang+Pengchong&rft.date=2022-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1000-2413&rft.eissn=1993-0437&rft.volume=37&rft.issue=6&rft.spage=1252&rft.epage=1261&rft_id=info:doi/10.1007%2Fs11595-022-2658-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1000-2413&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1000-2413&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1000-2413&client=summon |