Dimensionality-Driven Evolution of Electronic Structure and Transport Properties in Pressure-Induced Phases of Ca2N Electride
We investigate how a change in dimensionality of interstitial electronic states in the Ca 2 N electride influences its electronic structure and transport properties. Employing the Maximally Localized Wannier Functions (MLWF) approach, we successfully describe the interstitial quasi-atomic states (IS...
Saved in:
Published in | JETP letters Vol. 118; no. 9; pp. 651 - 657 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
01.11.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We investigate how a change in dimensionality of interstitial electronic states in the Ca
2
N electride influences its electronic structure and transport properties. Employing the Maximally Localized Wannier Functions (MLWF) approach, we successfully describe the interstitial quasi-atomic states (ISQ) located in non-nuclear Wyckoff positions between Ca atoms. This allowed us to conclude that the electride subsystem is responsible for the formation of a band structure in the vicinity of the Fermi level in all Ca
2
N phases observed under pressure. Using the obtained MLWF basis, we calculate the electronic and thermal conductivity, along with the Seebeck coefficient, by solving the semi-classical Boltzmann transport equations. The results achieved permit the conclusion that the counterintuitive increase in resistance under pressure observed experimentally is attributed to enhanced localization of interstitial electronic states through electride subspace dimensionality transformations. We also established a substantial anisotropy in the transport properties within the 2D phase and found that the conductivity inside the plane of the electride layers is provided by electrons, while along the direction normal to the layers, holes become the majority carriers. |
---|---|
AbstractList | We investigate how a change in dimensionality of interstitial electronic states in the Ca2N electride influences its electronic structure and transport properties. Employing the Maximally Localized Wannier Functions (MLWF) approach, we successfully describe the interstitial quasi-atomic states (ISQ) located in non-nuclear Wyckoff positions between Ca atoms. This allowed us to conclude that the electride subsystem is responsible for the formation of a band structure in the vicinity of the Fermi level in all Ca2N phases observed under pressure. Using the obtained MLWF basis, we calculate the electronic and thermal conductivity, along with the Seebeck coefficient, by solving the semi-classical Boltzmann transport equations. The results achieved permit the conclusion that the counterintuitive increase in resistance under pressure observed experimentally is attributed to enhanced localization of interstitial electronic states through electride subspace dimensionality transformations. We also established a substantial anisotropy in the transport properties within the 2D phase and found that the conductivity inside the plane of the electride layers is provided by electrons, while along the direction normal to the layers, holes become the majority carriers. We investigate how a change in dimensionality of interstitial electronic states in the Ca 2 N electride influences its electronic structure and transport properties. Employing the Maximally Localized Wannier Functions (MLWF) approach, we successfully describe the interstitial quasi-atomic states (ISQ) located in non-nuclear Wyckoff positions between Ca atoms. This allowed us to conclude that the electride subsystem is responsible for the formation of a band structure in the vicinity of the Fermi level in all Ca 2 N phases observed under pressure. Using the obtained MLWF basis, we calculate the electronic and thermal conductivity, along with the Seebeck coefficient, by solving the semi-classical Boltzmann transport equations. The results achieved permit the conclusion that the counterintuitive increase in resistance under pressure observed experimentally is attributed to enhanced localization of interstitial electronic states through electride subspace dimensionality transformations. We also established a substantial anisotropy in the transport properties within the 2D phase and found that the conductivity inside the plane of the electride layers is provided by electrons, while along the direction normal to the layers, holes become the majority carriers. |
Author | Anisimov, V. I. Novoselov, D. Y. Oganov, A. R. Mazannikova, M. A. Korotin, Dm. M. |
Author_xml | – sequence: 1 givenname: M. A. surname: Mazannikova fullname: Mazannikova, M. A. email: mazannikova@imp.uran.ru organization: Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Skolkovo Institute of Science and Technology, Department of Theoretical Physics and Applied Mathematics, Ural Federal University – sequence: 2 givenname: Dm. M. surname: Korotin fullname: Korotin, Dm. M. organization: Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Skolkovo Institute of Science and Technology – sequence: 3 givenname: V. I. surname: Anisimov fullname: Anisimov, V. I. organization: Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Skolkovo Institute of Science and Technology, Department of Theoretical Physics and Applied Mathematics, Ural Federal University – sequence: 4 givenname: A. R. surname: Oganov fullname: Oganov, A. R. organization: Skolkovo Institute of Science and Technology – sequence: 5 givenname: D. Y. surname: Novoselov fullname: Novoselov, D. Y. organization: Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Skolkovo Institute of Science and Technology, Department of Theoretical Physics and Applied Mathematics, Ural Federal University |
BookMark | eNp1kE9LAzEQxYNUsK1-AG8Bz6v5s5vtHqWtWihaaD0vaTKrKdukJtlCD353U1rwIJ6Gmfd7D-YNUM86CwjdUnJPKc8floQwykVOGBeElYJdoD4lFclEPip7qH-Us6N-hQYhbAihdMTLPvqemC3YYJyVrYmHbOLNHiye7l3bxXTFrsHTFlT0zhqFl9F3KnYesLQar7y0Yed8xAvvduCjgYCNTRuEkKBsZnWnQOPFpwxJSlljyV7PgUbDNbpsZBvg5jyH6P1puhq_ZPO359n4cZ4pTkXMeFFwLdc5F6pqBCmYKARImXNQVNOGECiBr0GWklVU0rVmksOICQI652VV8iG6O-XuvPvqIMR64zqfXg41q0jBc0FKmih6opR3IXho6p03W-kPNSX1seX6T8vJw06ekFj7Af43-X_TD_qFgYM |
CitedBy_id | crossref_primary_10_1039_D4CP01508H |
Cites_doi | 10.1021/acs.nanolett.8b04968 10.1039/D3CP04472F 10.1126/science.1207837 10.1038/nature07827 10.1021/acs.jpcc.2c08517 10.1038/nature07786 10.1143/JPSJ.74.2391 10.1021/acs.jpcc.1c04485 10.1038/s41563-022-01382-3 10.1021/acs.chemrev.0c01071 10.1021/acs.jpclett.2c02002 10.1002/anie.199718081 10.1021/acs.jpcc.0c00921 10.1103/PhysRevB.103.235126 10.1016/j.cpc.2013.10.026 10.1038/nature11812 10.1021/cr00005a013 10.1016/j.cpc.2013.09.015 10.1016/j.cpc.2014.05.003 10.1134/S0021364019060043 10.1103/PhysRevLett.77.3865 10.1016/j.elecom.2014.04.012 10.1038/458158a 10.1088/0953-8984/21/39/395502 10.1103/PhysRevB.106.L060506 10.1021/acs.jpclett.0c00671 10.1088/1361-648X/ab99ed 10.1021/acs.jpclett.8b01468 10.1016/j.matt.2019.06.017 10.1103/PhysRevB.65.035109 10.1103/PhysRevB.105.L041406 |
ContentType | Journal Article |
Copyright | Pleiades Publishing, Ltd. 2023. ISSN 0021-3640, JETP Letters, 2023, Vol. 118, No. 9, pp. 651–657. © Pleiades Publishing, Ltd., 2023. ISSN 0021-3640, JETP Letters, 2023. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2023, Vol. 118, No. 9, pp. 664–670. |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2023. ISSN 0021-3640, JETP Letters, 2023, Vol. 118, No. 9, pp. 651–657. © Pleiades Publishing, Ltd., 2023. ISSN 0021-3640, JETP Letters, 2023. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2023, Vol. 118, No. 9, pp. 664–670. |
DBID | AAYXX CITATION |
DOI | 10.1134/S0021364023602762 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1090-6487 |
EndPage | 657 |
ExternalDocumentID | 10_1134_S0021364023602762 |
GroupedDBID | -5F -5G -BR -DZ -EM -Y2 -~C -~X 06D 0R~ 0VY 199 1N0 2.D 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 408 40D 40E 5GY 5VS 6NX 6TJ 78A 8TC 8UJ 8WZ 95- 95. 95~ 96X A6W AAAVM AABHQ AAFGU AAGAY AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDBF ABDZT ABECU ABEFU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESTI AETLH AEVLU AEVTX AEXYK AFFNX AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRP FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HMJXF HRMNR HVGLF HZ~ H~9 I-F IJ- IKXTQ ITM IWAJR I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- MQGED N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J P2P P9T PF0 PT4 QOK QOS R89 R9I RNS ROL RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSV TUC TUS UG4 UNUBA UOJIU UPT UTJUX UZXMN VC2 VFIZW VH1 VOH W23 W48 WK8 XOL XU3 YLTOR YQT Z7R Z7X Z7Y Z83 Z88 Z92 ZMTXR ZY4 ~8M AACDK AAJBT AASML AAYXX ABAKF ACDTI ACZOJ AEFQL AEMSY AFBBN AGRTI AIGIU CITATION H13 |
ID | FETCH-LOGICAL-c316t-3553dab436c9f6052656eaa43ec1d1f00e7e3bea7a291a1bd2a3e8260ed437973 |
IEDL.DBID | AGYKE |
ISSN | 0021-3640 |
IngestDate | Thu Oct 10 15:51:17 EDT 2024 Thu Sep 12 18:27:10 EDT 2024 Sun Dec 24 01:19:57 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-3553dab436c9f6052656eaa43ec1d1f00e7e3bea7a291a1bd2a3e8260ed437973 |
PQID | 2905346071 |
PQPubID | 2043678 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2905346071 crossref_primary_10_1134_S0021364023602762 springer_journals_10_1134_S0021364023602762 |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: New York |
PublicationTitle | JETP letters |
PublicationTitleAbbrev | Jetp Lett |
PublicationYear | 2023 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | Z. Wan, W. Xu, T. Yang, and R. Zhang, Phys. Rev. B 106, L060506 (2022). NovoselovD. Y.KorotinD. M.ShorikovA. O.AnisimovV. I.OganovA. R.J. Phys. Chem. C20211251572410.1021/acs.jpcc.1c04485 KocabasT.OzdenA.DemirogluI.ÇakırD.SevikC.J. Phys. Chem. Lett.20189426710.1021/acs.jpclett.8b01468 NovoselovD. Y.KorotinD. M.ShorikovA. O.OganovA. R.AnisimovV. I.JETP Lett.20191093872019JETPL.109..387N10.1134/S0021364019060043 YabuuchiT.NakamotoY.ShimizuK.KikegawaT.J. Phys. Soc. Jpn.20057423912005JPSJ...74.2391Y10.1143/JPSJ.74.2391 SavinA.NesperR.WengertS.FässlerT. F.Angew Chem. Int. Ed. Engl.199736180810.1002/anie.199718081 PizziG.VoljaD.KozinskyB.FornariM.MarzariN.Comput. Phys. Commun.20141854222014CoPhC.185..422P10.1016/j.cpc.2013.09.015 KasapS.Thermoelectric Effects in Metals: Thermocouples2001CanadaDep. Electr. Eng. Univ. of Saskatchewan LeeK.KimS. W.TodaY.MatsuishiS.HosonoH.Nature (London, U.K.)20134943362013Natur.494..336L10.1038/nature11812 D. Y. Novoselov, D. M. Korotin, A. O. Shorikov, A. R. Oganov, and V. I. Anisimov, J. Phys.: Condens. Matter 32, 445501 (2020). PerdewJ. P.BurkeK.ErnzerhofM.Phys. Rev. Lett. B19967738651996PhRvL..77.3865P10.1103/PhysRevLett.77.3865 MatsuokaT.ShimizuK.Nature (London, U.K.)20094581862009Natur.458..186M10.1038/nature07827 ZhangX.YangG.Phys. Chem. Lett.202011384110.1021/acs.jpclett.0c00671 LiuD.TomanekD.Nano Lett.20191913592019NanoL..19.1359L10.1021/acs.nanolett.8b04968 RoweD. M.CRC Handbook of Thermoelectrics: Macro to Nano2006Boca Raton, FLCRC SaB.XiongR.WenC.LiY. L.LinP.LinQ.SunZ.J. Phys. Chem. C2020124768310.1021/acs.jpcc.0c00921 FujimoriA.Nat. Mater.20222112172022NatMa..21.1217F10.1038/s41563-022-01382-3 BaderR. F.Chem. Rev.19919189310.1021/cr00005a013 ZhuQ.FrolovT.ChoudharyK.Matter20191129310.1016/j.matt.2019.06.017 Otero-de-la-RozaA.JohnsonE. R.LuañaV.Comp. Phys. Commun.201418510072014CoPhC.185.1007O10.1016/j.cpc.2013.10.026 D. Y. Novoselov, V. I. Anisimov, and A. R. Oganov, Phys. Rev. B 103, 235126 (2021). AshcroftN. W.Nature (London, U.K.)20094581582009Natur.458..158A10.1038/458158a S. Liu, C. Wang, H. Jeon, Y. Jia, and J. H. Cho, Phys. Rev. B 105, L220401 (2022). MostofiA. A.YatesJ. R.PizziG.LeeY.-S.SouzaI.VanderbiltD.MarzariN.Comput. Phys. Commun.201418523092014CoPhC.185.2309M10.1016/j.cpc.2014.05.003 MazannikovaM. A.KorotinD. M.ShorikovA. O.AnisimovV. I.NovoselovD. Y.J. Phys. Chem. C2023127871410.1021/acs.jpcc.2c08517 P. Giannozzi, S. Baroni, N. Bonini, et al., Phys. Condens. Matter 21, 395502 (2009). LiJ.InagiS.FuchigamiT.HosonoH.ItoS.Electrochem. Commun.2014444510.1016/j.elecom.2014.04.012 MaY.EremetsM.OganovA. R.XieY.TrojanI.MedvedevS.PrakapenkaV.Nature (London, U.K.)20094581822009Natur.458..182M10.1038/nature07786 NovoselovD. Y.MazannikovaM. A.KorotinD. M.ShorikovA. O.KorotinM. A.AnisimovV. I.OganovA. R.J. Phys. Chem. Lett.202213715510.1021/acs.jpclett.2c02002 EdwardsP. P.Science (Washington, DC, U. S.)2011333492011Sci...333...49E10.1126/science.1207837 I. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65, 035109 (2001). H. Tang, B. Wan, B. Gao, et al., Adv. Sci. 5, 1800666 (2018). HosonoH.KitanoM.Chem. Rev.2021121312110.1021/acs.chemrev.0c01071 Z. Liu, Q. Zhuang, F. Tian, D. Duan, H. Song, Z. Zhang, and T. Cui, Phys. Rev. Lett. 127, 157002 (2021). D.Y. Novoselov, M.A. Mazannikova, D.M. Korotin, A.O. Shorikov, V.I. Anisimov, and A.R. Oganov, Phys. Chem. Chem. Phys. 25, 30960 (2023). J. Li (3742_CR15) 2014; 44 B. Sa (3742_CR17) 2020; 124 A. A. Mostofi (3742_CR25) 2014; 185 D. Y. Novoselov (3742_CR3) 2019; 109 A. Otero-de-la-Roza (3742_CR27) 2014; 185 Q. Zhu (3742_CR2) 2019; 1 H. Hosono (3742_CR7) 2021; 121 A. Fujimori (3742_CR11) 2022; 21 3742_CR21 T. Matsuoka (3742_CR30) 2009; 458 M. A. Mazannikova (3742_CR12) 2023; 127 3742_CR24 G. Pizzi (3742_CR22) 2014; 185 T. Yabuuchi (3742_CR31) 2005; 74 J. P. Perdew (3742_CR23) 1996; 77 P. P. Edwards (3742_CR1) 2011; 333 A. Savin (3742_CR28) 1997; 36 Y. Ma (3742_CR29) 2009; 458 D. M. Rowe (3742_CR34) 2006 3742_CR19 T. Kocabas (3742_CR16) 2018; 9 S. Kasap (3742_CR33) 2001 3742_CR6 3742_CR4 N. W. Ashcroft (3742_CR32) 2009; 458 D. Liu (3742_CR18) 2019; 19 3742_CR9 3742_CR8 3742_CR10 R. F. Bader (3742_CR26) 1991; 91 K. Lee (3742_CR13) 2013; 494 X. Zhang (3742_CR14) 2020; 11 D. Y. Novoselov (3742_CR20) 2022; 13 3742_CR35 D. Y. Novoselov (3742_CR5) 2021; 125 |
References_xml | – volume: 19 start-page: 1359 year: 2019 ident: 3742_CR18 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04968 contributor: fullname: D. Liu – ident: 3742_CR35 doi: 10.1039/D3CP04472F – volume: 333 start-page: 49 year: 2011 ident: 3742_CR1 publication-title: Science (Washington, DC, U. S.) doi: 10.1126/science.1207837 contributor: fullname: P. P. Edwards – volume: 458 start-page: 186 year: 2009 ident: 3742_CR30 publication-title: Nature (London, U.K.) doi: 10.1038/nature07827 contributor: fullname: T. Matsuoka – volume: 127 start-page: 8714 year: 2023 ident: 3742_CR12 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.2c08517 contributor: fullname: M. A. Mazannikova – volume: 458 start-page: 182 year: 2009 ident: 3742_CR29 publication-title: Nature (London, U.K.) doi: 10.1038/nature07786 contributor: fullname: Y. Ma – volume: 74 start-page: 2391 year: 2005 ident: 3742_CR31 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.74.2391 contributor: fullname: T. Yabuuchi – volume: 125 start-page: 15724 year: 2021 ident: 3742_CR5 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c04485 contributor: fullname: D. Y. Novoselov – volume: 21 start-page: 1217 year: 2022 ident: 3742_CR11 publication-title: Nat. Mater. doi: 10.1038/s41563-022-01382-3 contributor: fullname: A. Fujimori – volume: 121 start-page: 3121 year: 2021 ident: 3742_CR7 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c01071 contributor: fullname: H. Hosono – ident: 3742_CR10 – volume: 13 start-page: 7155 year: 2022 ident: 3742_CR20 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c02002 contributor: fullname: D. Y. Novoselov – volume: 36 start-page: 1808 year: 1997 ident: 3742_CR28 publication-title: Angew Chem. Int. Ed. Engl. doi: 10.1002/anie.199718081 contributor: fullname: A. Savin – volume: 124 start-page: 7683 year: 2020 ident: 3742_CR17 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c00921 contributor: fullname: B. Sa – ident: 3742_CR6 doi: 10.1103/PhysRevB.103.235126 – volume: 185 start-page: 1007 year: 2014 ident: 3742_CR27 publication-title: Comp. Phys. Commun. doi: 10.1016/j.cpc.2013.10.026 contributor: fullname: A. Otero-de-la-Roza – volume: 494 start-page: 336 year: 2013 ident: 3742_CR13 publication-title: Nature (London, U.K.) doi: 10.1038/nature11812 contributor: fullname: K. Lee – volume: 91 start-page: 893 year: 1991 ident: 3742_CR26 publication-title: Chem. Rev. doi: 10.1021/cr00005a013 contributor: fullname: R. F. Bader – volume: 185 start-page: 422 year: 2014 ident: 3742_CR22 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2013.09.015 contributor: fullname: G. Pizzi – volume: 185 start-page: 2309 year: 2014 ident: 3742_CR25 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2014.05.003 contributor: fullname: A. A. Mostofi – volume-title: Thermoelectric Effects in Metals: Thermocouples year: 2001 ident: 3742_CR33 contributor: fullname: S. Kasap – volume: 109 start-page: 387 year: 2019 ident: 3742_CR3 publication-title: JETP Lett. doi: 10.1134/S0021364019060043 contributor: fullname: D. Y. Novoselov – volume: 77 start-page: 3865 year: 1996 ident: 3742_CR23 publication-title: Phys. Rev. Lett. B doi: 10.1103/PhysRevLett.77.3865 contributor: fullname: J. P. Perdew – volume: 44 start-page: 45 year: 2014 ident: 3742_CR15 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2014.04.012 contributor: fullname: J. Li – volume: 458 start-page: 158 year: 2009 ident: 3742_CR32 publication-title: Nature (London, U.K.) doi: 10.1038/458158a contributor: fullname: N. W. Ashcroft – volume-title: CRC Handbook of Thermoelectrics: Macro to Nano year: 2006 ident: 3742_CR34 contributor: fullname: D. M. Rowe – ident: 3742_CR24 doi: 10.1088/0953-8984/21/39/395502 – ident: 3742_CR8 doi: 10.1103/PhysRevB.106.L060506 – volume: 11 start-page: 3841 year: 2020 ident: 3742_CR14 publication-title: Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c00671 contributor: fullname: X. Zhang – ident: 3742_CR4 doi: 10.1088/1361-648X/ab99ed – volume: 9 start-page: 4267 year: 2018 ident: 3742_CR16 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b01468 contributor: fullname: T. Kocabas – volume: 1 start-page: 1293 year: 2019 ident: 3742_CR2 publication-title: Matter doi: 10.1016/j.matt.2019.06.017 contributor: fullname: Q. Zhu – ident: 3742_CR21 doi: 10.1103/PhysRevB.65.035109 – ident: 3742_CR9 doi: 10.1103/PhysRevB.105.L041406 – ident: 3742_CR19 |
SSID | ssj0011837 |
Score | 2.4074974 |
Snippet | We investigate how a change in dimensionality of interstitial electronic states in the Ca
2
N electride influences its electronic structure and transport... We investigate how a change in dimensionality of interstitial electronic states in the Ca2N electride influences its electronic structure and transport... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 651 |
SubjectTerms | Anisotropy Atomic Atomic states Biological and Medical Physics Biophysics Boltzmann transport equation Condensed Matter Electron states Electronic structure Electrons Majority carriers Mathematical analysis Molecular Optical and Plasma Physics Particle and Nuclear Physics Physics Physics and Astronomy Quantum Information Technology Seebeck effect Solid State Physics Spintronics Subsystems Thermal conductivity Transport properties |
Title | Dimensionality-Driven Evolution of Electronic Structure and Transport Properties in Pressure-Induced Phases of Ca2N Electride |
URI | https://link.springer.com/article/10.1134/S0021364023602762 https://www.proquest.com/docview/2905346071 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LSwMxEIBDaRG8-BarteTgSUnZbNLUPfZpUSwFLdTTkscUS2Er3daD4H832UdFq4eeszuwO7OTmZ3MNwhd3U6U1FopIhUEhGuoE-mbgACAtuE4015C4HsciP6I34_r4wLy178uolktr0gmjjodO8JdS69PmeCOeG5TKed2S67vlBdRqXn38tBd1w6skWaDWilxN2S1zD-F_NyNvkPMX1XRZLPp7acNgHHCKHRnTGa11VLV9McmwXGL5zhAe1nsiZupsRyiAkRHaCc5A6rjY_TZcaT_lNJhY3PSWThPiLvvmXXi-QR311Nz8FNCnl0tAMvI4DUkHQ_d7_2F47TiaYTT9sMFEDcjRIPBw1e7b8ZOVlv6g0zg1MAJGvW6z-0-yaYzEM2oWBIbqDAjFWdCBxPhsDF1AVJyBpoaOvE8aABTIBvSD6ikyviSgU1mPDCOgdhgp6gYzSM4Q7ghPZBC2yWbH0klZN1KpL6mQnkBC0wZXedaCt9SCEeYJC-Mhxvvs4wquR7D7HuMQz-wzoY7ll4Z3eR6-V7-V9j5VldfoF03jT5tVaygotUDXNqYZamq1kh7rdagmhnrF35T46c |
link.rule.ids | 315,783,787,27937,27938,41094,42163,52124 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbQEIILb8R45sAJFNQ0WUaPiA0GGxMSQ4JTlYcnJqSCtsEBif9O0qabeB04p7Xa2nE-1_ZngIOTvlbGaE2VxoQKgzWqYptQRDQOjnMT5Qx8113ZuhNX97X70Mc9Kqvdy5Rk7qmLuSPC9_TGjEvhKc9dLOX97qyIHZyowOzpxUO7OUkeOCsNk1oZ9TeEZOavQr4eR1OM-S0tmp8250vQK5-zKDJ5On4d62Pz_o3C8Z8vsgyLAX2S08JcVmAGs1WYy6tAzWgNPhqe67_g6XDonDaG3heS5luwT_LcJ83J3Bxym3PPvg6RqMySCU06ufE_-IeeqZUMMlI0IA6R-ikhBi25eXQn58jLOlNxNwgcWFyHu_Nm76xFw3wGajiTY-qgCrdKCy5N0peeOKYmUSnB0TDL-lGEdeQaVV3FCVNM21hxdOFMhNazINb5BlSy5ww3gdRVhEoat-QiJKWlqjmJLDZM6ijhia3CYamm9KWg4Ujz8IWL9Mf3rMJOqcg07MhRGifO3QjPpleFo1Iv0-U_hW396-p9mG_1rjtp57Lb3oYFP5u-aFzcgYrTCe46BDPWe8FiPwHJ1eX_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6hRCAuhVIQ4dHugRPVBq93s6mPiCQNrygSREpPZh9jEVUyKA8Olfrfu2uvg0rhUHFee2R7ZmdnPDPfB3D0LdPKGK2p0phQYbBFVWwTiojGhePcRAUC3_VA9kfiYtwaB57TWdXtXpUky5kGj9KUz08ebRY4SISf740Zl8LDn7u8yvvgumAuU6lB_fT7j8vuspDgLDawtjLqbwiFzVeF_H00PcebL0qkxcnT24C76pnLhpOfzcVcN82vF3CO73ipTfgQolJyWprRR1jBfAtWi-5QM_sEvzueA6DE73BRO-1MvY8k3adgt-QhI90lnw65KTBpF1MkKrdkCZ9Ohv7H_9QjuJJJTsrBxClSzx5i0JLhvTtRZ17WmYoHQeDE4jaMet3bsz4NvA3UcCbn1IUw3CotuDRJJj2gTEuiUoKjYZZlUYRt5BpVW8UJU0zbWHF0aU6E1qMjtvkO1PKHHHeBtFWEShq35DInpaVqOYksNkzqKOGJbcBxpbL0sYTnSIu0hov0n-_ZgINKqWnYqbM0TpwbEh5lrwFfKx09L78pbO-_rv4Ca8NOL706H1zuw7qnrC_nGQ-g5lSChy6wmevPwXj_ALYC7uM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dimensionality-Driven+Evolution+of+Electronic+Structure+and+Transport+Properties+in+Pressure-Induced+Phases+of+Ca2N+Electride&rft.jtitle=JETP+letters&rft.au=Mazannikova%2C+M.+A.&rft.au=Korotin%2C+Dm.+M.&rft.au=Anisimov%2C+V.+I.&rft.au=Oganov%2C+A.+R.&rft.date=2023-11-01&rft.issn=0021-3640&rft.eissn=1090-6487&rft.volume=118&rft.issue=9&rft.spage=651&rft.epage=657&rft_id=info:doi/10.1134%2FS0021364023602762&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S0021364023602762 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-3640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-3640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-3640&client=summon |