Dimensionality-Driven Evolution of Electronic Structure and Transport Properties in Pressure-Induced Phases of Ca2N Electride

We investigate how a change in dimensionality of interstitial electronic states in the Ca 2 N electride influences its electronic structure and transport properties. Employing the Maximally Localized Wannier Functions (MLWF) approach, we successfully describe the interstitial quasi-atomic states (IS...

Full description

Saved in:
Bibliographic Details
Published inJETP letters Vol. 118; no. 9; pp. 651 - 657
Main Authors Mazannikova, M. A., Korotin, Dm. M., Anisimov, V. I., Oganov, A. R., Novoselov, D. Y.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.11.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We investigate how a change in dimensionality of interstitial electronic states in the Ca 2 N electride influences its electronic structure and transport properties. Employing the Maximally Localized Wannier Functions (MLWF) approach, we successfully describe the interstitial quasi-atomic states (ISQ) located in non-nuclear Wyckoff positions between Ca atoms. This allowed us to conclude that the electride subsystem is responsible for the formation of a band structure in the vicinity of the Fermi level in all Ca 2 N phases observed under pressure. Using the obtained MLWF basis, we calculate the electronic and thermal conductivity, along with the Seebeck coefficient, by solving the semi-classical Boltzmann transport equations. The results achieved permit the conclusion that the counterintuitive increase in resistance under pressure observed experimentally is attributed to enhanced localization of interstitial electronic states through electride subspace dimensionality transformations. We also established a substantial anisotropy in the transport properties within the 2D phase and found that the conductivity inside the plane of the electride layers is provided by electrons, while along the direction normal to the layers, holes become the majority carriers.
AbstractList We investigate how a change in dimensionality of interstitial electronic states in the Ca2N electride influences its electronic structure and transport properties. Employing the Maximally Localized Wannier Functions (MLWF) approach, we successfully describe the interstitial quasi-atomic states (ISQ) located in non-nuclear Wyckoff positions between Ca atoms. This allowed us to conclude that the electride subsystem is responsible for the formation of a band structure in the vicinity of the Fermi level in all Ca2N phases observed under pressure. Using the obtained MLWF basis, we calculate the electronic and thermal conductivity, along with the Seebeck coefficient, by solving the semi-classical Boltzmann transport equations. The results achieved permit the conclusion that the counterintuitive increase in resistance under pressure observed experimentally is attributed to enhanced localization of interstitial electronic states through electride subspace dimensionality transformations. We also established a substantial anisotropy in the transport properties within the 2D phase and found that the conductivity inside the plane of the electride layers is provided by electrons, while along the direction normal to the layers, holes become the majority carriers.
We investigate how a change in dimensionality of interstitial electronic states in the Ca 2 N electride influences its electronic structure and transport properties. Employing the Maximally Localized Wannier Functions (MLWF) approach, we successfully describe the interstitial quasi-atomic states (ISQ) located in non-nuclear Wyckoff positions between Ca atoms. This allowed us to conclude that the electride subsystem is responsible for the formation of a band structure in the vicinity of the Fermi level in all Ca 2 N phases observed under pressure. Using the obtained MLWF basis, we calculate the electronic and thermal conductivity, along with the Seebeck coefficient, by solving the semi-classical Boltzmann transport equations. The results achieved permit the conclusion that the counterintuitive increase in resistance under pressure observed experimentally is attributed to enhanced localization of interstitial electronic states through electride subspace dimensionality transformations. We also established a substantial anisotropy in the transport properties within the 2D phase and found that the conductivity inside the plane of the electride layers is provided by electrons, while along the direction normal to the layers, holes become the majority carriers.
Author Anisimov, V. I.
Novoselov, D. Y.
Oganov, A. R.
Mazannikova, M. A.
Korotin, Dm. M.
Author_xml – sequence: 1
  givenname: M. A.
  surname: Mazannikova
  fullname: Mazannikova, M. A.
  email: mazannikova@imp.uran.ru
  organization: Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Skolkovo Institute of Science and Technology, Department of Theoretical Physics and Applied Mathematics, Ural Federal University
– sequence: 2
  givenname: Dm. M.
  surname: Korotin
  fullname: Korotin, Dm. M.
  organization: Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Skolkovo Institute of Science and Technology
– sequence: 3
  givenname: V. I.
  surname: Anisimov
  fullname: Anisimov, V. I.
  organization: Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Skolkovo Institute of Science and Technology, Department of Theoretical Physics and Applied Mathematics, Ural Federal University
– sequence: 4
  givenname: A. R.
  surname: Oganov
  fullname: Oganov, A. R.
  organization: Skolkovo Institute of Science and Technology
– sequence: 5
  givenname: D. Y.
  surname: Novoselov
  fullname: Novoselov, D. Y.
  organization: Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Skolkovo Institute of Science and Technology, Department of Theoretical Physics and Applied Mathematics, Ural Federal University
BookMark eNp1kE9LAzEQxYNUsK1-AG8Bz6v5s5vtHqWtWihaaD0vaTKrKdukJtlCD353U1rwIJ6Gmfd7D-YNUM86CwjdUnJPKc8floQwykVOGBeElYJdoD4lFclEPip7qH-Us6N-hQYhbAihdMTLPvqemC3YYJyVrYmHbOLNHiye7l3bxXTFrsHTFlT0zhqFl9F3KnYesLQar7y0Yed8xAvvduCjgYCNTRuEkKBsZnWnQOPFpwxJSlljyV7PgUbDNbpsZBvg5jyH6P1puhq_ZPO359n4cZ4pTkXMeFFwLdc5F6pqBCmYKARImXNQVNOGECiBr0GWklVU0rVmksOICQI652VV8iG6O-XuvPvqIMR64zqfXg41q0jBc0FKmih6opR3IXho6p03W-kPNSX1seX6T8vJw06ekFj7Af43-X_TD_qFgYM
CitedBy_id crossref_primary_10_1039_D4CP01508H
Cites_doi 10.1021/acs.nanolett.8b04968
10.1039/D3CP04472F
10.1126/science.1207837
10.1038/nature07827
10.1021/acs.jpcc.2c08517
10.1038/nature07786
10.1143/JPSJ.74.2391
10.1021/acs.jpcc.1c04485
10.1038/s41563-022-01382-3
10.1021/acs.chemrev.0c01071
10.1021/acs.jpclett.2c02002
10.1002/anie.199718081
10.1021/acs.jpcc.0c00921
10.1103/PhysRevB.103.235126
10.1016/j.cpc.2013.10.026
10.1038/nature11812
10.1021/cr00005a013
10.1016/j.cpc.2013.09.015
10.1016/j.cpc.2014.05.003
10.1134/S0021364019060043
10.1103/PhysRevLett.77.3865
10.1016/j.elecom.2014.04.012
10.1038/458158a
10.1088/0953-8984/21/39/395502
10.1103/PhysRevB.106.L060506
10.1021/acs.jpclett.0c00671
10.1088/1361-648X/ab99ed
10.1021/acs.jpclett.8b01468
10.1016/j.matt.2019.06.017
10.1103/PhysRevB.65.035109
10.1103/PhysRevB.105.L041406
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2023. ISSN 0021-3640, JETP Letters, 2023, Vol. 118, No. 9, pp. 651–657. © Pleiades Publishing, Ltd., 2023. ISSN 0021-3640, JETP Letters, 2023. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2023, Vol. 118, No. 9, pp. 664–670.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2023. ISSN 0021-3640, JETP Letters, 2023, Vol. 118, No. 9, pp. 651–657. © Pleiades Publishing, Ltd., 2023. ISSN 0021-3640, JETP Letters, 2023. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2023, Vol. 118, No. 9, pp. 664–670.
DBID AAYXX
CITATION
DOI 10.1134/S0021364023602762
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1090-6487
EndPage 657
ExternalDocumentID 10_1134_S0021364023602762
GroupedDBID -5F
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
06D
0R~
0VY
199
1N0
2.D
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5GY
5VS
6NX
6TJ
78A
8TC
8UJ
8WZ
95-
95.
95~
96X
A6W
AAAVM
AABHQ
AAFGU
AAGAY
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDBF
ABDZT
ABECU
ABEFU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFFNX
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRP
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
H~9
I-F
IJ-
IKXTQ
ITM
IWAJR
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
MQGED
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9T
PF0
PT4
QOK
QOS
R89
R9I
RNS
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSV
TUC
TUS
UG4
UNUBA
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
WK8
XOL
XU3
YLTOR
YQT
Z7R
Z7X
Z7Y
Z83
Z88
Z92
ZMTXR
ZY4
~8M
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGRTI
AIGIU
CITATION
H13
ID FETCH-LOGICAL-c316t-3553dab436c9f6052656eaa43ec1d1f00e7e3bea7a291a1bd2a3e8260ed437973
IEDL.DBID AGYKE
ISSN 0021-3640
IngestDate Thu Oct 10 15:51:17 EDT 2024
Thu Sep 12 18:27:10 EDT 2024
Sun Dec 24 01:19:57 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-3553dab436c9f6052656eaa43ec1d1f00e7e3bea7a291a1bd2a3e8260ed437973
PQID 2905346071
PQPubID 2043678
PageCount 7
ParticipantIDs proquest_journals_2905346071
crossref_primary_10_1134_S0021364023602762
springer_journals_10_1134_S0021364023602762
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle JETP letters
PublicationTitleAbbrev Jetp Lett
PublicationYear 2023
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References Z. Wan, W. Xu, T. Yang, and R. Zhang, Phys. Rev. B 106, L060506 (2022).
NovoselovD. Y.KorotinD. M.ShorikovA. O.AnisimovV. I.OganovA. R.J. Phys. Chem. C20211251572410.1021/acs.jpcc.1c04485
KocabasT.OzdenA.DemirogluI.ÇakırD.SevikC.J. Phys. Chem. Lett.20189426710.1021/acs.jpclett.8b01468
NovoselovD. Y.KorotinD. M.ShorikovA. O.OganovA. R.AnisimovV. I.JETP Lett.20191093872019JETPL.109..387N10.1134/S0021364019060043
YabuuchiT.NakamotoY.ShimizuK.KikegawaT.J. Phys. Soc. Jpn.20057423912005JPSJ...74.2391Y10.1143/JPSJ.74.2391
SavinA.NesperR.WengertS.FässlerT. F.Angew Chem. Int. Ed. Engl.199736180810.1002/anie.199718081
PizziG.VoljaD.KozinskyB.FornariM.MarzariN.Comput. Phys. Commun.20141854222014CoPhC.185..422P10.1016/j.cpc.2013.09.015
KasapS.Thermoelectric Effects in Metals: Thermocouples2001CanadaDep. Electr. Eng. Univ. of Saskatchewan
LeeK.KimS. W.TodaY.MatsuishiS.HosonoH.Nature (London, U.K.)20134943362013Natur.494..336L10.1038/nature11812
D. Y. Novoselov, D. M. Korotin, A. O. Shorikov, A. R. Oganov, and V. I. Anisimov, J. Phys.: Condens. Matter 32, 445501 (2020).
PerdewJ. P.BurkeK.ErnzerhofM.Phys. Rev. Lett. B19967738651996PhRvL..77.3865P10.1103/PhysRevLett.77.3865
MatsuokaT.ShimizuK.Nature (London, U.K.)20094581862009Natur.458..186M10.1038/nature07827
ZhangX.YangG.Phys. Chem. Lett.202011384110.1021/acs.jpclett.0c00671
LiuD.TomanekD.Nano Lett.20191913592019NanoL..19.1359L10.1021/acs.nanolett.8b04968
RoweD. M.CRC Handbook of Thermoelectrics: Macro to Nano2006Boca Raton, FLCRC
SaB.XiongR.WenC.LiY. L.LinP.LinQ.SunZ.J. Phys. Chem. C2020124768310.1021/acs.jpcc.0c00921
FujimoriA.Nat. Mater.20222112172022NatMa..21.1217F10.1038/s41563-022-01382-3
BaderR. F.Chem. Rev.19919189310.1021/cr00005a013
ZhuQ.FrolovT.ChoudharyK.Matter20191129310.1016/j.matt.2019.06.017
Otero-de-la-RozaA.JohnsonE. R.LuañaV.Comp. Phys. Commun.201418510072014CoPhC.185.1007O10.1016/j.cpc.2013.10.026
D. Y. Novoselov, V. I. Anisimov, and A. R. Oganov, Phys. Rev. B 103, 235126 (2021).
AshcroftN. W.Nature (London, U.K.)20094581582009Natur.458..158A10.1038/458158a
S. Liu, C. Wang, H. Jeon, Y. Jia, and J. H. Cho, Phys. Rev. B 105, L220401 (2022).
MostofiA. A.YatesJ. R.PizziG.LeeY.-S.SouzaI.VanderbiltD.MarzariN.Comput. Phys. Commun.201418523092014CoPhC.185.2309M10.1016/j.cpc.2014.05.003
MazannikovaM. A.KorotinD. M.ShorikovA. O.AnisimovV. I.NovoselovD. Y.J. Phys. Chem. C2023127871410.1021/acs.jpcc.2c08517
P. Giannozzi, S. Baroni, N. Bonini, et al., Phys. Condens. Matter 21, 395502 (2009).
LiJ.InagiS.FuchigamiT.HosonoH.ItoS.Electrochem. Commun.2014444510.1016/j.elecom.2014.04.012
MaY.EremetsM.OganovA. R.XieY.TrojanI.MedvedevS.PrakapenkaV.Nature (London, U.K.)20094581822009Natur.458..182M10.1038/nature07786
NovoselovD. Y.MazannikovaM. A.KorotinD. M.ShorikovA. O.KorotinM. A.AnisimovV. I.OganovA. R.J. Phys. Chem. Lett.202213715510.1021/acs.jpclett.2c02002
EdwardsP. P.Science (Washington, DC, U. S.)2011333492011Sci...333...49E10.1126/science.1207837
I. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65, 035109 (2001).
H. Tang, B. Wan, B. Gao, et al., Adv. Sci. 5, 1800666 (2018).
HosonoH.KitanoM.Chem. Rev.2021121312110.1021/acs.chemrev.0c01071
Z. Liu, Q. Zhuang, F. Tian, D. Duan, H. Song, Z. Zhang, and T. Cui, Phys. Rev. Lett. 127, 157002 (2021).
D.Y. Novoselov, M.A. Mazannikova, D.M. Korotin, A.O. Shorikov, V.I. Anisimov, and A.R. Oganov, Phys. Chem. Chem. Phys. 25, 30960 (2023).
J. Li (3742_CR15) 2014; 44
B. Sa (3742_CR17) 2020; 124
A. A. Mostofi (3742_CR25) 2014; 185
D. Y. Novoselov (3742_CR3) 2019; 109
A. Otero-de-la-Roza (3742_CR27) 2014; 185
Q. Zhu (3742_CR2) 2019; 1
H. Hosono (3742_CR7) 2021; 121
A. Fujimori (3742_CR11) 2022; 21
3742_CR21
T. Matsuoka (3742_CR30) 2009; 458
M. A. Mazannikova (3742_CR12) 2023; 127
3742_CR24
G. Pizzi (3742_CR22) 2014; 185
T. Yabuuchi (3742_CR31) 2005; 74
J. P. Perdew (3742_CR23) 1996; 77
P. P. Edwards (3742_CR1) 2011; 333
A. Savin (3742_CR28) 1997; 36
Y. Ma (3742_CR29) 2009; 458
D. M. Rowe (3742_CR34) 2006
3742_CR19
T. Kocabas (3742_CR16) 2018; 9
S. Kasap (3742_CR33) 2001
3742_CR6
3742_CR4
N. W. Ashcroft (3742_CR32) 2009; 458
D. Liu (3742_CR18) 2019; 19
3742_CR9
3742_CR8
3742_CR10
R. F. Bader (3742_CR26) 1991; 91
K. Lee (3742_CR13) 2013; 494
X. Zhang (3742_CR14) 2020; 11
D. Y. Novoselov (3742_CR20) 2022; 13
3742_CR35
D. Y. Novoselov (3742_CR5) 2021; 125
References_xml – volume: 19
  start-page: 1359
  year: 2019
  ident: 3742_CR18
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04968
  contributor:
    fullname: D. Liu
– ident: 3742_CR35
  doi: 10.1039/D3CP04472F
– volume: 333
  start-page: 49
  year: 2011
  ident: 3742_CR1
  publication-title: Science (Washington, DC, U. S.)
  doi: 10.1126/science.1207837
  contributor:
    fullname: P. P. Edwards
– volume: 458
  start-page: 186
  year: 2009
  ident: 3742_CR30
  publication-title: Nature (London, U.K.)
  doi: 10.1038/nature07827
  contributor:
    fullname: T. Matsuoka
– volume: 127
  start-page: 8714
  year: 2023
  ident: 3742_CR12
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.2c08517
  contributor:
    fullname: M. A. Mazannikova
– volume: 458
  start-page: 182
  year: 2009
  ident: 3742_CR29
  publication-title: Nature (London, U.K.)
  doi: 10.1038/nature07786
  contributor:
    fullname: Y. Ma
– volume: 74
  start-page: 2391
  year: 2005
  ident: 3742_CR31
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.74.2391
  contributor:
    fullname: T. Yabuuchi
– volume: 125
  start-page: 15724
  year: 2021
  ident: 3742_CR5
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c04485
  contributor:
    fullname: D. Y. Novoselov
– volume: 21
  start-page: 1217
  year: 2022
  ident: 3742_CR11
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-022-01382-3
  contributor:
    fullname: A. Fujimori
– volume: 121
  start-page: 3121
  year: 2021
  ident: 3742_CR7
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c01071
  contributor:
    fullname: H. Hosono
– ident: 3742_CR10
– volume: 13
  start-page: 7155
  year: 2022
  ident: 3742_CR20
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.2c02002
  contributor:
    fullname: D. Y. Novoselov
– volume: 36
  start-page: 1808
  year: 1997
  ident: 3742_CR28
  publication-title: Angew Chem. Int. Ed. Engl.
  doi: 10.1002/anie.199718081
  contributor:
    fullname: A. Savin
– volume: 124
  start-page: 7683
  year: 2020
  ident: 3742_CR17
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c00921
  contributor:
    fullname: B. Sa
– ident: 3742_CR6
  doi: 10.1103/PhysRevB.103.235126
– volume: 185
  start-page: 1007
  year: 2014
  ident: 3742_CR27
  publication-title: Comp. Phys. Commun.
  doi: 10.1016/j.cpc.2013.10.026
  contributor:
    fullname: A. Otero-de-la-Roza
– volume: 494
  start-page: 336
  year: 2013
  ident: 3742_CR13
  publication-title: Nature (London, U.K.)
  doi: 10.1038/nature11812
  contributor:
    fullname: K. Lee
– volume: 91
  start-page: 893
  year: 1991
  ident: 3742_CR26
  publication-title: Chem. Rev.
  doi: 10.1021/cr00005a013
  contributor:
    fullname: R. F. Bader
– volume: 185
  start-page: 422
  year: 2014
  ident: 3742_CR22
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2013.09.015
  contributor:
    fullname: G. Pizzi
– volume: 185
  start-page: 2309
  year: 2014
  ident: 3742_CR25
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2014.05.003
  contributor:
    fullname: A. A. Mostofi
– volume-title: Thermoelectric Effects in Metals: Thermocouples
  year: 2001
  ident: 3742_CR33
  contributor:
    fullname: S. Kasap
– volume: 109
  start-page: 387
  year: 2019
  ident: 3742_CR3
  publication-title: JETP Lett.
  doi: 10.1134/S0021364019060043
  contributor:
    fullname: D. Y. Novoselov
– volume: 77
  start-page: 3865
  year: 1996
  ident: 3742_CR23
  publication-title: Phys. Rev. Lett. B
  doi: 10.1103/PhysRevLett.77.3865
  contributor:
    fullname: J. P. Perdew
– volume: 44
  start-page: 45
  year: 2014
  ident: 3742_CR15
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2014.04.012
  contributor:
    fullname: J. Li
– volume: 458
  start-page: 158
  year: 2009
  ident: 3742_CR32
  publication-title: Nature (London, U.K.)
  doi: 10.1038/458158a
  contributor:
    fullname: N. W. Ashcroft
– volume-title: CRC Handbook of Thermoelectrics: Macro to Nano
  year: 2006
  ident: 3742_CR34
  contributor:
    fullname: D. M. Rowe
– ident: 3742_CR24
  doi: 10.1088/0953-8984/21/39/395502
– ident: 3742_CR8
  doi: 10.1103/PhysRevB.106.L060506
– volume: 11
  start-page: 3841
  year: 2020
  ident: 3742_CR14
  publication-title: Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c00671
  contributor:
    fullname: X. Zhang
– ident: 3742_CR4
  doi: 10.1088/1361-648X/ab99ed
– volume: 9
  start-page: 4267
  year: 2018
  ident: 3742_CR16
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b01468
  contributor:
    fullname: T. Kocabas
– volume: 1
  start-page: 1293
  year: 2019
  ident: 3742_CR2
  publication-title: Matter
  doi: 10.1016/j.matt.2019.06.017
  contributor:
    fullname: Q. Zhu
– ident: 3742_CR21
  doi: 10.1103/PhysRevB.65.035109
– ident: 3742_CR9
  doi: 10.1103/PhysRevB.105.L041406
– ident: 3742_CR19
SSID ssj0011837
Score 2.4074974
Snippet We investigate how a change in dimensionality of interstitial electronic states in the Ca 2 N electride influences its electronic structure and transport...
We investigate how a change in dimensionality of interstitial electronic states in the Ca2N electride influences its electronic structure and transport...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 651
SubjectTerms Anisotropy
Atomic
Atomic states
Biological and Medical Physics
Biophysics
Boltzmann transport equation
Condensed Matter
Electron states
Electronic structure
Electrons
Majority carriers
Mathematical analysis
Molecular
Optical and Plasma Physics
Particle and Nuclear Physics
Physics
Physics and Astronomy
Quantum Information Technology
Seebeck effect
Solid State Physics
Spintronics
Subsystems
Thermal conductivity
Transport properties
Title Dimensionality-Driven Evolution of Electronic Structure and Transport Properties in Pressure-Induced Phases of Ca2N Electride
URI https://link.springer.com/article/10.1134/S0021364023602762
https://www.proquest.com/docview/2905346071
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LSwMxEIBDaRG8-BarteTgSUnZbNLUPfZpUSwFLdTTkscUS2Er3daD4H832UdFq4eeszuwO7OTmZ3MNwhd3U6U1FopIhUEhGuoE-mbgACAtuE4015C4HsciP6I34_r4wLy178uolktr0gmjjodO8JdS69PmeCOeG5TKed2S67vlBdRqXn38tBd1w6skWaDWilxN2S1zD-F_NyNvkPMX1XRZLPp7acNgHHCKHRnTGa11VLV9McmwXGL5zhAe1nsiZupsRyiAkRHaCc5A6rjY_TZcaT_lNJhY3PSWThPiLvvmXXi-QR311Nz8FNCnl0tAMvI4DUkHQ_d7_2F47TiaYTT9sMFEDcjRIPBw1e7b8ZOVlv6g0zg1MAJGvW6z-0-yaYzEM2oWBIbqDAjFWdCBxPhsDF1AVJyBpoaOvE8aABTIBvSD6ikyviSgU1mPDCOgdhgp6gYzSM4Q7ghPZBC2yWbH0klZN1KpL6mQnkBC0wZXedaCt9SCEeYJC-Mhxvvs4wquR7D7HuMQz-wzoY7ll4Z3eR6-V7-V9j5VldfoF03jT5tVaygotUDXNqYZamq1kh7rdagmhnrF35T46c
link.rule.ids 315,783,787,27937,27938,41094,42163,52124
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbQEIILb8R45sAJFNQ0WUaPiA0GGxMSQ4JTlYcnJqSCtsEBif9O0qabeB04p7Xa2nE-1_ZngIOTvlbGaE2VxoQKgzWqYptQRDQOjnMT5Qx8113ZuhNX97X70Mc9Kqvdy5Rk7qmLuSPC9_TGjEvhKc9dLOX97qyIHZyowOzpxUO7OUkeOCsNk1oZ9TeEZOavQr4eR1OM-S0tmp8250vQK5-zKDJ5On4d62Pz_o3C8Z8vsgyLAX2S08JcVmAGs1WYy6tAzWgNPhqe67_g6XDonDaG3heS5luwT_LcJ83J3Bxym3PPvg6RqMySCU06ufE_-IeeqZUMMlI0IA6R-ikhBi25eXQn58jLOlNxNwgcWFyHu_Nm76xFw3wGajiTY-qgCrdKCy5N0peeOKYmUSnB0TDL-lGEdeQaVV3FCVNM21hxdOFMhNazINb5BlSy5ww3gdRVhEoat-QiJKWlqjmJLDZM6ijhia3CYamm9KWg4Ujz8IWL9Mf3rMJOqcg07MhRGifO3QjPpleFo1Iv0-U_hW396-p9mG_1rjtp57Lb3oYFP5u-aFzcgYrTCe46BDPWe8FiPwHJ1eX_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6hRCAuhVIQ4dHugRPVBq93s6mPiCQNrygSREpPZh9jEVUyKA8Olfrfu2uvg0rhUHFee2R7ZmdnPDPfB3D0LdPKGK2p0phQYbBFVWwTiojGhePcRAUC3_VA9kfiYtwaB57TWdXtXpUky5kGj9KUz08ebRY4SISf740Zl8LDn7u8yvvgumAuU6lB_fT7j8vuspDgLDawtjLqbwiFzVeF_H00PcebL0qkxcnT24C76pnLhpOfzcVcN82vF3CO73ipTfgQolJyWprRR1jBfAtWi-5QM_sEvzueA6DE73BRO-1MvY8k3adgt-QhI90lnw65KTBpF1MkKrdkCZ9Ohv7H_9QjuJJJTsrBxClSzx5i0JLhvTtRZ17WmYoHQeDE4jaMet3bsz4NvA3UcCbn1IUw3CotuDRJJj2gTEuiUoKjYZZlUYRt5BpVW8UJU0zbWHF0aU6E1qMjtvkO1PKHHHeBtFWEShq35DInpaVqOYksNkzqKOGJbcBxpbL0sYTnSIu0hov0n-_ZgINKqWnYqbM0TpwbEh5lrwFfKx09L78pbO-_rv4Ca8NOL706H1zuw7qnrC_nGQ-g5lSChy6wmevPwXj_ALYC7uM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dimensionality-Driven+Evolution+of+Electronic+Structure+and+Transport+Properties+in+Pressure-Induced+Phases+of+Ca2N+Electride&rft.jtitle=JETP+letters&rft.au=Mazannikova%2C+M.+A.&rft.au=Korotin%2C+Dm.+M.&rft.au=Anisimov%2C+V.+I.&rft.au=Oganov%2C+A.+R.&rft.date=2023-11-01&rft.issn=0021-3640&rft.eissn=1090-6487&rft.volume=118&rft.issue=9&rft.spage=651&rft.epage=657&rft_id=info:doi/10.1134%2FS0021364023602762&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S0021364023602762
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-3640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-3640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-3640&client=summon