Conditional Gambler’s Ruin Problem with Arbitrary Winning and Losing Probabilities with Applications
In this paper we provide formulas for the expectation of a conditional game duration in a finite state-space one-dimensional gambler’s ruin problem with arbitrary winning p ( n ) and losing q ( n ) probabilities ( i.e., they depend on the current fortune). The formulas are stated in terms of the pa...
Saved in:
Published in | Methodology and computing in applied probability Vol. 27; no. 3; p. 54 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper we provide formulas for the expectation of a conditional game duration in a finite state-space one-dimensional gambler’s ruin problem with arbitrary winning
p
(
n
) and losing
q
(
n
) probabilities (
i.e.,
they depend on the current fortune). The formulas are stated in terms of the parameters of the system. Beyer and Waterman (
Math Mag
,
50
(1):42–45, 1977) showed that for the classical gambler’s ruin problem the distribution of a conditional absorption time is symmetric in
p
and
q
. Our formulas imply that for non-constant winning/losing probabilities the expectation of a conditional game duration is symmetric in these probabilities (
i.e.,
it is the same if we exchange
p
(
n
) with
q
(
n
)) as long as a ratio
q
(
n
)/
p
(
n
) is constant. Most of the formulas are applied to a non-symmetric random walk on a circle/polygon. Moreover, for a symmetric random walk on a circle we construct an optimal strong stationary dual chain – which turns out to be an absorbing, non-symmetric, birth and death chain. We apply our results and provide a formula for its expected absorption time, which is the fastest strong stationary time for the aforementioned symmetric random walk on a circle. This way we improve upon a result of Diaconis and Fill (
Ann Prob
,
18
(4):1483–1522, 1990), where strong stationary time – however not the fastest – was constructed. Expectations of the fastest strong stationary time and the one constructed by Diaconis and Fill differ by 3/4, independently of a circle’s size. |
---|---|
AbstractList | In this paper we provide formulas for the expectation of a conditional game duration in a finite state-space one-dimensional gambler’s ruin problem with arbitrary winning p ( n ) and losing q ( n ) probabilities ( i.e., they depend on the current fortune). The formulas are stated in terms of the parameters of the system. Beyer and Waterman ( Math Mag , 50 (1):42–45, 1977) showed that for the classical gambler’s ruin problem the distribution of a conditional absorption time is symmetric in p and q . Our formulas imply that for non-constant winning/losing probabilities the expectation of a conditional game duration is symmetric in these probabilities ( i.e., it is the same if we exchange p ( n ) with q ( n )) as long as a ratio q ( n )/ p ( n ) is constant. Most of the formulas are applied to a non-symmetric random walk on a circle/polygon. Moreover, for a symmetric random walk on a circle we construct an optimal strong stationary dual chain – which turns out to be an absorbing, non-symmetric, birth and death chain. We apply our results and provide a formula for its expected absorption time, which is the fastest strong stationary time for the aforementioned symmetric random walk on a circle. This way we improve upon a result of Diaconis and Fill ( Ann Prob , 18 (4):1483–1522, 1990), where strong stationary time – however not the fastest – was constructed. Expectations of the fastest strong stationary time and the one constructed by Diaconis and Fill differ by 3/4, independently of a circle’s size. In this paper we provide formulas for the expectation of a conditional game duration in a finite state-space one-dimensional gambler’s ruin problem with arbitrary winning p ( n ) and losing q ( n ) probabilities ( i.e., they depend on the current fortune). The formulas are stated in terms of the parameters of the system. Beyer and Waterman ( Math Mag , 50 (1):42–45, 1977) showed that for the classical gambler’s ruin problem the distribution of a conditional absorption time is symmetric in p and q . Our formulas imply that for non-constant winning/losing probabilities the expectation of a conditional game duration is symmetric in these probabilities ( i.e., it is the same if we exchange p ( n ) with q ( n )) as long as a ratio q ( n )/ p ( n ) is constant. Most of the formulas are applied to a non-symmetric random walk on a circle/polygon. Moreover, for a symmetric random walk on a circle we construct an optimal strong stationary dual chain – which turns out to be an absorbing, non-symmetric, birth and death chain. We apply our results and provide a formula for its expected absorption time, which is the fastest strong stationary time for the aforementioned symmetric random walk on a circle. This way we improve upon a result of Diaconis and Fill ( Ann Prob , 18 (4):1483–1522, 1990), where strong stationary time – however not the fastest – was constructed. Expectations of the fastest strong stationary time and the one constructed by Diaconis and Fill differ by 3/4, independently of a circle’s size. In this paper we provide formulas for the expectation of a conditional game duration in a finite state-space one-dimensional gambler’s ruin problem with arbitrary winning p(n) and losing q(n) probabilities (i.e., they depend on the current fortune). The formulas are stated in terms of the parameters of the system. Beyer and Waterman (Math Mag, 50(1):42–45, 1977) showed that for the classical gambler’s ruin problem the distribution of a conditional absorption time is symmetric in p and q. Our formulas imply that for non-constant winning/losing probabilities the expectation of a conditional game duration is symmetric in these probabilities (i.e., it is the same if we exchange p(n) with q(n)) as long as a ratio q(n)/p(n) is constant. Most of the formulas are applied to a non-symmetric random walk on a circle/polygon. Moreover, for a symmetric random walk on a circle we construct an optimal strong stationary dual chain – which turns out to be an absorbing, non-symmetric, birth and death chain. We apply our results and provide a formula for its expected absorption time, which is the fastest strong stationary time for the aforementioned symmetric random walk on a circle. This way we improve upon a result of Diaconis and Fill (Ann Prob, 18(4):1483–1522, 1990), where strong stationary time – however not the fastest – was constructed. Expectations of the fastest strong stationary time and the one constructed by Diaconis and Fill differ by 3/4, independently of a circle’s size. |
ArticleNumber | 54 |
Author | Lorek, Paweł Markowski, Piotr |
Author_xml | – sequence: 1 givenname: Paweł orcidid: 0000-0003-2894-2799 surname: Lorek fullname: Lorek, Paweł email: pawel.lorek@math.uni.wroc.pl organization: Mathematical Institute, University of Wrocław – sequence: 2 givenname: Piotr surname: Markowski fullname: Markowski, Piotr organization: Mathematical Institute, University of Wrocław |
BookMark | eNp9kM9KAzEYxINUsK2-gKeA52j-7G6yx1K0CgVFFI8hu5vUlG2yJlvEm6_h6_kkZt2CN0_f8PGbgZkZmDjvNADnBF8SjPlVJOmUCNMcEUwEQfwITEnOGeKcsEnSTHCUi4ycgFmMW4wpyVk2BWbpXWN7651q4UrtqlaH78-vCB_31sGH4NNjB99t_woXobJ9UOEDvljnrNtA5Rq49nGQA6kq26YoHQ9817W2VkN2PAXHRrVRnx3uHDzfXD8tb9H6fnW3XKxRzUjRI0ZLrZtciUrXedmYXCnBc2oaU2SFqeuirGidaYyZobrgWYNFyYQSZeqjBcdsDi7G3C74t72Ovdz6fUjdomSUZmwASaLoSNXBxxi0kV2wu9RMEiyHPeW4p0x7yt89JU8mNppigt1Gh7_of1w_iVZ8HQ |
Cites_doi | 10.1017/S0269964817000341 10.1177/0008068317695974 10.1088/0305-4470/33/49/301 10.1016/j.spl.2009.03.029 10.1016/j.aml.2008.04.007 10.1007/s11134-012-9284-z 10.1080/0025570X.1977.11976613 10.1016/0196-8858(87)90006-6 10.1007/s10959-012-0436-1 10.1214/074921706000000581 10.1214/aop/1176990628 10.1016/j.spl.2008.02.009 10.1007/s11009-016-9507-6 10.1017/S0269964816000280 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright Springer Nature B.V. Sep 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. Sep 2025 |
DBID | C6C AAYXX CITATION JQ2 |
DOI | 10.1007/s11009-025-10181-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | CrossRef ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Statistics Mathematics |
EISSN | 1573-7713 |
ExternalDocumentID | 10_1007_s11009_025_10181_7 |
GroupedDBID | -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 7WY 88I 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHQJS AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBO EBS EBU EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV L6V LAK LLZTM M0C M2P M4Y M7S MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9R PF0 PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOS QWB R89 R9I RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZL0 ZMTXR ~8M AAYXX ABRTQ CITATION PQGLB JQ2 |
ID | FETCH-LOGICAL-c316t-329eed5a8bec59df5aa8752fdf646fcc69b2c4e003f2e674d08938a89002e8703 |
IEDL.DBID | C6C |
ISSN | 1387-5841 |
IngestDate | Fri Jul 25 09:10:03 EDT 2025 Sun Aug 03 02:31:46 EDT 2025 Fri Jun 27 01:47:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | 60J10 Strong stationary dual chain Birth and death chain Conditional absorption time Random walk on a polygon Möbius monotonicity Random walk on a circle 60G40 Gambler’s ruin problem 60J80 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-329eed5a8bec59df5aa8752fdf646fcc69b2c4e003f2e674d08938a89002e8703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2894-2799 |
OpenAccessLink | https://doi.org/10.1007/s11009-025-10181-7 |
PQID | 3224390021 |
PQPubID | 26119 |
ParticipantIDs | proquest_journals_3224390021 crossref_primary_10_1007_s11009_025_10181_7 springer_journals_10_1007_s11009_025_10181_7 |
PublicationCentury | 2000 |
PublicationDate | 20250900 2025-09-00 20250901 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 9 year: 2025 text: 20250900 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Methodology and computing in applied probability |
PublicationTitleAbbrev | Methodol Comput Appl Probab |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Y Gong (10181_CR6) 2012; 25 D Aldous (10181_CR1) 1987; 97 M Lefebvre (10181_CR7) 2008; 78 T Lengyel (10181_CR8) 2009; 22 MA El-Shehawey (10181_CR4) 2000; 33 P Lorek (10181_CR9) 2017; 19 P Lorek (10181_CR10) 2018; 32 P Diaconis (10181_CR3) 1990; 18 10181_CR13 WA Beyer (10181_CR2) 1977; 50 P Lorek (10181_CR11) 2012; 71 10181_CR15 J Sarkar (10181_CR16) 2017; 69 10181_CR14 MA El-Shehawey (10181_CR5) 2009; 79 P Lorek (10181_CR12) 2016; 36 |
References_xml | – volume: 32 start-page: 495 issue: 4 year: 2018 ident: 10181_CR10 publication-title: Prob Eng Inf Sci doi: 10.1017/S0269964817000341 – volume: 69 start-page: 110 issue: 1 year: 2017 ident: 10181_CR16 publication-title: Calcutta Stat Assoc Bull doi: 10.1177/0008068317695974 – volume: 33 start-page: 9005 issue: 49 year: 2000 ident: 10181_CR4 publication-title: J Phys A Math Gen doi: 10.1088/0305-4470/33/49/301 – volume: 79 start-page: 1590 issue: 14 year: 2009 ident: 10181_CR5 publication-title: Stat Prob Lett doi: 10.1016/j.spl.2009.03.029 – volume: 22 start-page: 351 issue: 3 year: 2009 ident: 10181_CR8 publication-title: Appl Math Lett doi: 10.1016/j.aml.2008.04.007 – volume: 71 start-page: 79 issue: 1–2 year: 2012 ident: 10181_CR11 publication-title: Queue Syst doi: 10.1007/s11134-012-9284-z – volume: 50 start-page: 42 issue: 1 year: 1977 ident: 10181_CR2 publication-title: Math Mag doi: 10.1080/0025570X.1977.11976613 – volume: 97 start-page: 69 year: 1987 ident: 10181_CR1 publication-title: Adv Appl Math doi: 10.1016/0196-8858(87)90006-6 – volume: 25 start-page: 950 issue: 4 year: 2012 ident: 10181_CR6 publication-title: J Theor Prob doi: 10.1007/s10959-012-0436-1 – ident: 10181_CR15 doi: 10.1214/074921706000000581 – volume: 18 start-page: 1483 issue: 4 year: 1990 ident: 10181_CR3 publication-title: Ann Prob doi: 10.1214/aop/1176990628 – volume: 78 start-page: 2314 issue: 15 year: 2008 ident: 10181_CR7 publication-title: Stat Prob Lett doi: 10.1016/j.spl.2008.02.009 – volume: 19 start-page: 603 issue: 2 year: 2017 ident: 10181_CR9 publication-title: Methodol Comput Appl Prob doi: 10.1007/s11009-016-9507-6 – volume: 36 start-page: 75 issue: 1 year: 2016 ident: 10181_CR12 publication-title: Prob Math Stat – ident: 10181_CR14 – ident: 10181_CR13 doi: 10.1017/S0269964816000280 |
SSID | ssj0021534 |
Score | 2.3497746 |
Snippet | In this paper we provide formulas for the expectation of a conditional game duration in a finite state-space one-dimensional gambler’s ruin problem with... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 54 |
SubjectTerms | Absorption Business and Management Economics Eigenvalues Electrical Engineering Life Sciences Mathematics and Statistics Probability Random variables Random walk Random walk theory Statistics |
Title | Conditional Gambler’s Ruin Problem with Arbitrary Winning and Losing Probabilities with Applications |
URI | https://link.springer.com/article/10.1007/s11009-025-10181-7 https://www.proquest.com/docview/3224390021 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BOwADggKiUCoPbBDRxokbj1XVDwFFCFFRpshObKkSpKhpd_4Gf49fwtlJWqhgYIkUxfLgl8u9u8u9Azh3A8mRKWiHctrAAIXHjkAv7GjJAj-OBbosk9Af3rHByLse--NcJsf0wqzV769SI2nGHTN01WpLOa1NKPtN2jJjGjqsswyu0HKzAbZoNOhUm3mDzO97_HRCK2a5Vgy1Pqa3B7s5OSTtDM192FBJBbaK3uG0AjvDpcoq3m0bppgJLR-A7kxN9dlm9khfvMoXNft8_0jJw2KSkPtsbgwxaVfcX05stz15mtiJRUQkMbmdmrSBXZlpd2MMna__VuQ-hFGv-9gZOPkQBSeiTTZ3qMvRDfoiQLB8HmtfCAxRXB1r5jEdRYxLN_IUGrd2FWt5cQMZTCACjmeq0JjpEZSSaaKOgcQU2UyDS7R76TV1JF2qNAu00IEfUa2qcFGcaviWaWWEK1Vkg0GIGIQWg7BVhVpx8GFuN2mInxdkSAbOKlwWYKwe_73byf-Wn8K2a94H-7NYDUrz2UKdIbuYyzqU2_3nm27dvl54HbntL9E5yKI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTsMwDLZgHDYOCAaIwYAcuEGlNf1Ze5wmxoBtQmgTu0VJm0iToEPrduc1eD2eBCdtV0Bw4Fg1yiGO_X22YxvgggYiRKagLCd0WuighLHFEYUtJfzAi2OOkKUD-sOR35-4d1NvmheFpcVr9yIlaSx1Wexmm0A-1Z0zEZes9iZsIRkI9F2e0M7azUIdzkbZovogvNp5qczve3yHo5Jj_kiLGrTp7cJOThNJJ5PrHmzIpA7Vooo4rcP2cN1vFb9qmjNmLZf3QXXnOg9tYnzkhr-IZ7n4eHtPyeNqlpCHbIIM0QFY3F_MTN09eZqZ2UWEJzEZzHUAwazMunijN52v_5LuPoBJ73rc7Vv5OAUrcmx_aTk0RED0eIBi88JYeZyjs0JVrHzXV1Hkh4JGrkQ1V1T6bTduIZcJeBDimUpUa-cQKsk8kUdAYgd5TSsUaAGEa6tIUEcqP1BcBV7kKNmAy-JU2WvWNYOV_ZG1DBjKgBkZsHYDmsXBs1yDUoaGBrmSFmcDrgphlL__3u34f8vPodofDwdscDu6P4Ea1XfDPCFrQmW5WMlT5BxLcWau2CedH808 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTgIxEJ4oJooHo6gRRe3Bm25g_8ru0aCICoQYidw27bZNSHQh_Nx9DV_PJ3Ha3QU0evC42aZN-nU638x0ZgAunICHyBSU5YZuDQ2UUFgMtbClOA18IRiqLO3Q73Rpq-89DPzBSha_ee2ehyTTnAZdpSmZVcdCVZeJb7Zx6ju6iibqKKu-Dhu4kK3NrwZtLEwulOe0rS2KEqpaO0ub-X2O76ppyTd_hEiN5mnuwk5GGcl1ivEerMmkBFt5RvG0BNudRe1V_Cpq_piWX94H1RjpmLTx95E79sZf5eTz_WNKnubDhPTSbjJEO2Nxfj40OfjkZWj6GBGWCNIeaWeCGZlW9EbLOhu_Evo-gH7z9rnRsrLWClbs2nRmuU6IytFnAULoh0L5jKHh4iihqEdVHNOQO7EnUeSVI2ndEzXkNQELQtxTiSLuHkIhGSXyCIhwkePUQo63AfdsFXPHlYoGiqnAj10ly3CZ72o0TitoRMtayRqDCDGIDAZRvQyVfOOjTJqmEV46yJs0nGW4ysFY_v57tuP_DT-Hzd5NM2rfdx9PoOjoo2Fek1WgMJvM5SnSjxk_MyfsC4Ts0WI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conditional+Gambler%E2%80%99s+Ruin+Problem+with+Arbitrary+Winning+and+Losing+Probabilities+with+Applications&rft.jtitle=Methodology+and+computing+in+applied+probability&rft.au=Lorek%2C+Pawe%C5%82&rft.au=Markowski%2C+Piotr&rft.date=2025-09-01&rft.pub=Springer+US&rft.issn=1387-5841&rft.eissn=1573-7713&rft.volume=27&rft.issue=3&rft_id=info:doi/10.1007%2Fs11009-025-10181-7&rft.externalDocID=10_1007_s11009_025_10181_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-5841&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-5841&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-5841&client=summon |