Conditional Gambler’s Ruin Problem with Arbitrary Winning and Losing Probabilities with Applications

In this paper we provide formulas for the expectation of a conditional game duration in a finite state-space one-dimensional gambler’s ruin problem with arbitrary winning p ( n ) and losing q ( n ) probabilities ( i.e.,  they depend on the current fortune). The formulas are stated in terms of the pa...

Full description

Saved in:
Bibliographic Details
Published inMethodology and computing in applied probability Vol. 27; no. 3; p. 54
Main Authors Lorek, Paweł, Markowski, Piotr
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper we provide formulas for the expectation of a conditional game duration in a finite state-space one-dimensional gambler’s ruin problem with arbitrary winning p ( n ) and losing q ( n ) probabilities ( i.e.,  they depend on the current fortune). The formulas are stated in terms of the parameters of the system. Beyer and Waterman ( Math Mag , 50 (1):42–45, 1977) showed that for the classical gambler’s ruin problem the distribution of a conditional absorption time is symmetric in p and q . Our formulas imply that for non-constant winning/losing probabilities the expectation of a conditional game duration is symmetric in these probabilities ( i.e.,  it is the same if we exchange p ( n ) with q ( n )) as long as a ratio q ( n )/ p ( n ) is constant. Most of the formulas are applied to a non-symmetric random walk on a circle/polygon. Moreover, for a symmetric random walk on a circle we construct an optimal strong stationary dual chain – which turns out to be an absorbing, non-symmetric, birth and death chain. We apply our results and provide a formula for its expected absorption time, which is the fastest strong stationary time for the aforementioned symmetric random walk on a circle. This way we improve upon a result of Diaconis and Fill ( Ann Prob , 18 (4):1483–1522, 1990), where strong stationary time – however not the fastest – was constructed. Expectations of the fastest strong stationary time and the one constructed by Diaconis and Fill differ by 3/4, independently of a circle’s size.
AbstractList In this paper we provide formulas for the expectation of a conditional game duration in a finite state-space one-dimensional gambler’s ruin problem with arbitrary winning p ( n ) and losing q ( n ) probabilities ( i.e.,  they depend on the current fortune). The formulas are stated in terms of the parameters of the system. Beyer and Waterman ( Math Mag , 50 (1):42–45, 1977) showed that for the classical gambler’s ruin problem the distribution of a conditional absorption time is symmetric in p and q . Our formulas imply that for non-constant winning/losing probabilities the expectation of a conditional game duration is symmetric in these probabilities ( i.e.,  it is the same if we exchange p ( n ) with q ( n )) as long as a ratio q ( n )/ p ( n ) is constant. Most of the formulas are applied to a non-symmetric random walk on a circle/polygon. Moreover, for a symmetric random walk on a circle we construct an optimal strong stationary dual chain – which turns out to be an absorbing, non-symmetric, birth and death chain. We apply our results and provide a formula for its expected absorption time, which is the fastest strong stationary time for the aforementioned symmetric random walk on a circle. This way we improve upon a result of Diaconis and Fill ( Ann Prob , 18 (4):1483–1522, 1990), where strong stationary time – however not the fastest – was constructed. Expectations of the fastest strong stationary time and the one constructed by Diaconis and Fill differ by 3/4, independently of a circle’s size.
In this paper we provide formulas for the expectation of a conditional game duration in a finite state-space one-dimensional gambler’s ruin problem with arbitrary winning p ( n ) and losing q ( n ) probabilities ( i.e.,  they depend on the current fortune). The formulas are stated in terms of the parameters of the system. Beyer and Waterman ( Math Mag , 50 (1):42–45, 1977) showed that for the classical gambler’s ruin problem the distribution of a conditional absorption time is symmetric in p and q . Our formulas imply that for non-constant winning/losing probabilities the expectation of a conditional game duration is symmetric in these probabilities ( i.e.,  it is the same if we exchange p ( n ) with q ( n )) as long as a ratio q ( n )/ p ( n ) is constant. Most of the formulas are applied to a non-symmetric random walk on a circle/polygon. Moreover, for a symmetric random walk on a circle we construct an optimal strong stationary dual chain – which turns out to be an absorbing, non-symmetric, birth and death chain. We apply our results and provide a formula for its expected absorption time, which is the fastest strong stationary time for the aforementioned symmetric random walk on a circle. This way we improve upon a result of Diaconis and Fill ( Ann Prob , 18 (4):1483–1522, 1990), where strong stationary time – however not the fastest – was constructed. Expectations of the fastest strong stationary time and the one constructed by Diaconis and Fill differ by 3/4, independently of a circle’s size.
In this paper we provide formulas for the expectation of a conditional game duration in a finite state-space one-dimensional gambler’s ruin problem with arbitrary winning p(n) and losing q(n) probabilities (i.e., they depend on the current fortune). The formulas are stated in terms of the parameters of the system. Beyer and Waterman (Math Mag, 50(1):42–45, 1977) showed that for the classical gambler’s ruin problem the distribution of a conditional absorption time is symmetric in p and q. Our formulas imply that for non-constant winning/losing probabilities the expectation of a conditional game duration is symmetric in these probabilities (i.e., it is the same if we exchange p(n) with q(n)) as long as a ratio q(n)/p(n) is constant. Most of the formulas are applied to a non-symmetric random walk on a circle/polygon. Moreover, for a symmetric random walk on a circle we construct an optimal strong stationary dual chain – which turns out to be an absorbing, non-symmetric, birth and death chain. We apply our results and provide a formula for its expected absorption time, which is the fastest strong stationary time for the aforementioned symmetric random walk on a circle. This way we improve upon a result of Diaconis and Fill (Ann Prob, 18(4):1483–1522, 1990), where strong stationary time – however not the fastest – was constructed. Expectations of the fastest strong stationary time and the one constructed by Diaconis and Fill differ by 3/4, independently of a circle’s size.
ArticleNumber 54
Author Lorek, Paweł
Markowski, Piotr
Author_xml – sequence: 1
  givenname: Paweł
  orcidid: 0000-0003-2894-2799
  surname: Lorek
  fullname: Lorek, Paweł
  email: pawel.lorek@math.uni.wroc.pl
  organization: Mathematical Institute, University of Wrocław
– sequence: 2
  givenname: Piotr
  surname: Markowski
  fullname: Markowski, Piotr
  organization: Mathematical Institute, University of Wrocław
BookMark eNp9kM9KAzEYxINUsK2-gKeA52j-7G6yx1K0CgVFFI8hu5vUlG2yJlvEm6_h6_kkZt2CN0_f8PGbgZkZmDjvNADnBF8SjPlVJOmUCNMcEUwEQfwITEnOGeKcsEnSTHCUi4ycgFmMW4wpyVk2BWbpXWN7651q4UrtqlaH78-vCB_31sGH4NNjB99t_woXobJ9UOEDvljnrNtA5Rq49nGQA6kq26YoHQ9817W2VkN2PAXHRrVRnx3uHDzfXD8tb9H6fnW3XKxRzUjRI0ZLrZtciUrXedmYXCnBc2oaU2SFqeuirGidaYyZobrgWYNFyYQSZeqjBcdsDi7G3C74t72Ovdz6fUjdomSUZmwASaLoSNXBxxi0kV2wu9RMEiyHPeW4p0x7yt89JU8mNppigt1Gh7_of1w_iVZ8HQ
Cites_doi 10.1017/S0269964817000341
10.1177/0008068317695974
10.1088/0305-4470/33/49/301
10.1016/j.spl.2009.03.029
10.1016/j.aml.2008.04.007
10.1007/s11134-012-9284-z
10.1080/0025570X.1977.11976613
10.1016/0196-8858(87)90006-6
10.1007/s10959-012-0436-1
10.1214/074921706000000581
10.1214/aop/1176990628
10.1016/j.spl.2008.02.009
10.1007/s11009-016-9507-6
10.1017/S0269964816000280
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. Sep 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. Sep 2025
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s11009-025-10181-7
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef

ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Statistics
Mathematics
EISSN 1573-7713
ExternalDocumentID 10_1007_s11009_025_10181_7
GroupedDBID -Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHQJS
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBO
EBS
EBU
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAK
LLZTM
M0C
M2P
M4Y
M7S
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9R
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOS
QWB
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZL0
ZMTXR
~8M
AAYXX
ABRTQ
CITATION
PQGLB
JQ2
ID FETCH-LOGICAL-c316t-329eed5a8bec59df5aa8752fdf646fcc69b2c4e003f2e674d08938a89002e8703
IEDL.DBID C6C
ISSN 1387-5841
IngestDate Fri Jul 25 09:10:03 EDT 2025
Sun Aug 03 02:31:46 EDT 2025
Fri Jun 27 01:47:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 60J10
Strong stationary dual chain
Birth and death chain
Conditional absorption time
Random walk on a polygon
Möbius monotonicity
Random walk on a circle
60G40
Gambler’s ruin problem
60J80
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-329eed5a8bec59df5aa8752fdf646fcc69b2c4e003f2e674d08938a89002e8703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2894-2799
OpenAccessLink https://doi.org/10.1007/s11009-025-10181-7
PQID 3224390021
PQPubID 26119
ParticipantIDs proquest_journals_3224390021
crossref_primary_10_1007_s11009_025_10181_7
springer_journals_10_1007_s11009_025_10181_7
PublicationCentury 2000
PublicationDate 20250900
2025-09-00
20250901
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 9
  year: 2025
  text: 20250900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Methodology and computing in applied probability
PublicationTitleAbbrev Methodol Comput Appl Probab
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Y Gong (10181_CR6) 2012; 25
D Aldous (10181_CR1) 1987; 97
M Lefebvre (10181_CR7) 2008; 78
T Lengyel (10181_CR8) 2009; 22
MA El-Shehawey (10181_CR4) 2000; 33
P Lorek (10181_CR9) 2017; 19
P Lorek (10181_CR10) 2018; 32
P Diaconis (10181_CR3) 1990; 18
10181_CR13
WA Beyer (10181_CR2) 1977; 50
P Lorek (10181_CR11) 2012; 71
10181_CR15
J Sarkar (10181_CR16) 2017; 69
10181_CR14
MA El-Shehawey (10181_CR5) 2009; 79
P Lorek (10181_CR12) 2016; 36
References_xml – volume: 32
  start-page: 495
  issue: 4
  year: 2018
  ident: 10181_CR10
  publication-title: Prob Eng Inf Sci
  doi: 10.1017/S0269964817000341
– volume: 69
  start-page: 110
  issue: 1
  year: 2017
  ident: 10181_CR16
  publication-title: Calcutta Stat Assoc Bull
  doi: 10.1177/0008068317695974
– volume: 33
  start-page: 9005
  issue: 49
  year: 2000
  ident: 10181_CR4
  publication-title: J Phys A Math Gen
  doi: 10.1088/0305-4470/33/49/301
– volume: 79
  start-page: 1590
  issue: 14
  year: 2009
  ident: 10181_CR5
  publication-title: Stat Prob Lett
  doi: 10.1016/j.spl.2009.03.029
– volume: 22
  start-page: 351
  issue: 3
  year: 2009
  ident: 10181_CR8
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2008.04.007
– volume: 71
  start-page: 79
  issue: 1–2
  year: 2012
  ident: 10181_CR11
  publication-title: Queue Syst
  doi: 10.1007/s11134-012-9284-z
– volume: 50
  start-page: 42
  issue: 1
  year: 1977
  ident: 10181_CR2
  publication-title: Math Mag
  doi: 10.1080/0025570X.1977.11976613
– volume: 97
  start-page: 69
  year: 1987
  ident: 10181_CR1
  publication-title: Adv Appl Math
  doi: 10.1016/0196-8858(87)90006-6
– volume: 25
  start-page: 950
  issue: 4
  year: 2012
  ident: 10181_CR6
  publication-title: J Theor Prob
  doi: 10.1007/s10959-012-0436-1
– ident: 10181_CR15
  doi: 10.1214/074921706000000581
– volume: 18
  start-page: 1483
  issue: 4
  year: 1990
  ident: 10181_CR3
  publication-title: Ann Prob
  doi: 10.1214/aop/1176990628
– volume: 78
  start-page: 2314
  issue: 15
  year: 2008
  ident: 10181_CR7
  publication-title: Stat Prob Lett
  doi: 10.1016/j.spl.2008.02.009
– volume: 19
  start-page: 603
  issue: 2
  year: 2017
  ident: 10181_CR9
  publication-title: Methodol Comput Appl Prob
  doi: 10.1007/s11009-016-9507-6
– volume: 36
  start-page: 75
  issue: 1
  year: 2016
  ident: 10181_CR12
  publication-title: Prob Math Stat
– ident: 10181_CR14
– ident: 10181_CR13
  doi: 10.1017/S0269964816000280
SSID ssj0021534
Score 2.3497746
Snippet In this paper we provide formulas for the expectation of a conditional game duration in a finite state-space one-dimensional gambler’s ruin problem with...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 54
SubjectTerms Absorption
Business and Management
Economics
Eigenvalues
Electrical Engineering
Life Sciences
Mathematics and Statistics
Probability
Random variables
Random walk
Random walk theory
Statistics
Title Conditional Gambler’s Ruin Problem with Arbitrary Winning and Losing Probabilities with Applications
URI https://link.springer.com/article/10.1007/s11009-025-10181-7
https://www.proquest.com/docview/3224390021
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BOwADggKiUCoPbBDRxokbj1XVDwFFCFFRpshObKkSpKhpd_4Gf49fwtlJWqhgYIkUxfLgl8u9u8u9Azh3A8mRKWiHctrAAIXHjkAv7GjJAj-OBbosk9Af3rHByLse--NcJsf0wqzV769SI2nGHTN01WpLOa1NKPtN2jJjGjqsswyu0HKzAbZoNOhUm3mDzO97_HRCK2a5Vgy1Pqa3B7s5OSTtDM192FBJBbaK3uG0AjvDpcoq3m0bppgJLR-A7kxN9dlm9khfvMoXNft8_0jJw2KSkPtsbgwxaVfcX05stz15mtiJRUQkMbmdmrSBXZlpd2MMna__VuQ-hFGv-9gZOPkQBSeiTTZ3qMvRDfoiQLB8HmtfCAxRXB1r5jEdRYxLN_IUGrd2FWt5cQMZTCACjmeq0JjpEZSSaaKOgcQU2UyDS7R76TV1JF2qNAu00IEfUa2qcFGcaviWaWWEK1Vkg0GIGIQWg7BVhVpx8GFuN2mInxdkSAbOKlwWYKwe_73byf-Wn8K2a94H-7NYDUrz2UKdIbuYyzqU2_3nm27dvl54HbntL9E5yKI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTsMwDLZgHDYOCAaIwYAcuEGlNf1Ze5wmxoBtQmgTu0VJm0iToEPrduc1eD2eBCdtV0Bw4Fg1yiGO_X22YxvgggYiRKagLCd0WuighLHFEYUtJfzAi2OOkKUD-sOR35-4d1NvmheFpcVr9yIlaSx1Wexmm0A-1Z0zEZes9iZsIRkI9F2e0M7azUIdzkbZovogvNp5qczve3yHo5Jj_kiLGrTp7cJOThNJJ5PrHmzIpA7Vooo4rcP2cN1vFb9qmjNmLZf3QXXnOg9tYnzkhr-IZ7n4eHtPyeNqlpCHbIIM0QFY3F_MTN09eZqZ2UWEJzEZzHUAwazMunijN52v_5LuPoBJ73rc7Vv5OAUrcmx_aTk0RED0eIBi88JYeZyjs0JVrHzXV1Hkh4JGrkQ1V1T6bTduIZcJeBDimUpUa-cQKsk8kUdAYgd5TSsUaAGEa6tIUEcqP1BcBV7kKNmAy-JU2WvWNYOV_ZG1DBjKgBkZsHYDmsXBs1yDUoaGBrmSFmcDrgphlL__3u34f8vPodofDwdscDu6P4Ea1XfDPCFrQmW5WMlT5BxLcWau2CedH808
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTgIxEJ4oJooHo6gRRe3Bm25g_8ru0aCICoQYidw27bZNSHQh_Nx9DV_PJ3Ha3QU0evC42aZN-nU638x0ZgAunICHyBSU5YZuDQ2UUFgMtbClOA18IRiqLO3Q73Rpq-89DPzBSha_ee2ehyTTnAZdpSmZVcdCVZeJb7Zx6ju6iibqKKu-Dhu4kK3NrwZtLEwulOe0rS2KEqpaO0ub-X2O76ppyTd_hEiN5mnuwk5GGcl1ivEerMmkBFt5RvG0BNudRe1V_Cpq_piWX94H1RjpmLTx95E79sZf5eTz_WNKnubDhPTSbjJEO2Nxfj40OfjkZWj6GBGWCNIeaWeCGZlW9EbLOhu_Evo-gH7z9rnRsrLWClbs2nRmuU6IytFnAULoh0L5jKHh4iihqEdVHNOQO7EnUeSVI2ndEzXkNQELQtxTiSLuHkIhGSXyCIhwkePUQo63AfdsFXPHlYoGiqnAj10ly3CZ72o0TitoRMtayRqDCDGIDAZRvQyVfOOjTJqmEV46yJs0nGW4ysFY_v57tuP_DT-Hzd5NM2rfdx9PoOjoo2Fek1WgMJvM5SnSjxk_MyfsC4Ts0WI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conditional+Gambler%E2%80%99s+Ruin+Problem+with+Arbitrary+Winning+and+Losing+Probabilities+with+Applications&rft.jtitle=Methodology+and+computing+in+applied+probability&rft.au=Lorek%2C+Pawe%C5%82&rft.au=Markowski%2C+Piotr&rft.date=2025-09-01&rft.pub=Springer+US&rft.issn=1387-5841&rft.eissn=1573-7713&rft.volume=27&rft.issue=3&rft_id=info:doi/10.1007%2Fs11009-025-10181-7&rft.externalDocID=10_1007_s11009_025_10181_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-5841&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-5841&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-5841&client=summon