Global well-posedness of coupled parabolic systems

The initial boundary value problem of a class of reaction-diffusion systems (coupled parabolic systems) with nonlinear coupled source terms is considered in order to classify the initial data for the global existence, finite time blowup and long time decay of the solution. The whole study is conduct...

Full description

Saved in:
Bibliographic Details
Published inScience China. Mathematics Vol. 63; no. 2; pp. 321 - 356
Main Authors Xu, Runzhang, Lian, Wei, Niu, Yi
Format Journal Article
LanguageEnglish
Published Beijing Science China Press 01.02.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1674-7283
1869-1862
DOI10.1007/s11425-017-9280-x

Cover

Loading…
Abstract The initial boundary value problem of a class of reaction-diffusion systems (coupled parabolic systems) with nonlinear coupled source terms is considered in order to classify the initial data for the global existence, finite time blowup and long time decay of the solution. The whole study is conducted by considering three cases according to initial energy: the low initial energy case, critical initial energy case and high initial energy case. For the low initial energy case and critical initial energy case the suffcient initial conditions of global existence, long time decay and finite time blowup are given to show a sharp-like condition. In addition, for the high initial energy case the possibility of both global existence and finite time blowup is proved first, and then some suffcient initial conditions of finite time blowup and global existence are obtained, respectively.
AbstractList The initial boundary value problem of a class of reaction-diffusion systems (coupled parabolic systems) with nonlinear coupled source terms is considered in order to classify the initial data for the global existence, finite time blowup and long time decay of the solution. The whole study is conducted by considering three cases according to initial energy: the low initial energy case, critical initial energy case and high initial energy case. For the low initial energy case and critical initial energy case the suffcient initial conditions of global existence, long time decay and finite time blowup are given to show a sharp-like condition. In addition, for the high initial energy case the possibility of both global existence and finite time blowup is proved first, and then some suffcient initial conditions of finite time blowup and global existence are obtained, respectively.
Author Lian, Wei
Xu, Runzhang
Niu, Yi
Author_xml – sequence: 1
  givenname: Runzhang
  surname: Xu
  fullname: Xu, Runzhang
  email: xurunzh@163.com
  organization: College of Automation, Harbin Engineering University, College of Science, Harbin Engineering University, The Institute of Mathematical Sciences, The Chinese University of Hong Kong
– sequence: 2
  givenname: Wei
  surname: Lian
  fullname: Lian, Wei
  organization: College of Automation, Harbin Engineering University
– sequence: 3
  givenname: Yi
  surname: Niu
  fullname: Niu, Yi
  organization: College of Automation, Harbin Engineering University, School of Information Science and Engineering, Shandong Normal University
BookMark eNp9kE1LAzEQhoNUsNb-AG8LnqP52nwcpWgVCl70HLJJVrakmzXZYvvvTVlBEHQOM8PwPjPDewlmfew9ANcY3WKExF3GmJEaIiygIhLBwxmYY8kVLInMSs8Fg4JIegGWOW9RCaoQE3QOyDrExoTq04cAh5i9633OVWwrG_dD8K4aTDJNDJ2t8jGPfpevwHlrQvbL77oAb48Pr6snuHlZP6_uN9BSzEdIMePKNdYQZkXtLGJSCkOFJa5WQjreuLYMW0VbIxWvpWi5pNIi55BgitEFuJn2Dil-7H0e9TbuU19OakIZJVLWtC4qMalsijkn32rbjWbsYj8m0wWNkT55pCePdPFInzzSh0LiX-SQup1Jx38ZMjG5aPt3n35--hv6AtTKel8
CitedBy_id crossref_primary_10_1111_sapm_12405
crossref_primary_10_1186_s13661_020_01392_7
crossref_primary_10_1515_ans_2022_0024
crossref_primary_10_3934_cam_2023033
crossref_primary_10_3934_math_20221006
crossref_primary_10_1007_s00030_025_01041_x
crossref_primary_10_1016_j_na_2020_111810
crossref_primary_10_1016_j_na_2020_111854
crossref_primary_10_1016_j_na_2020_111898
crossref_primary_10_1186_s13661_022_01609_x
crossref_primary_10_1016_j_jde_2024_02_045
crossref_primary_10_3934_mbe_2023225
crossref_primary_10_1002_mma_10873
crossref_primary_10_1186_s13661_021_01538_1
crossref_primary_10_1515_anona_2023_0133
crossref_primary_10_1016_j_jde_2020_03_047
crossref_primary_10_1186_s13661_020_01482_6
crossref_primary_10_1007_s12215_021_00698_4
crossref_primary_10_3934_cam_2024019
crossref_primary_10_3934_cam_2023008
crossref_primary_10_3934_dcdss_2021113
crossref_primary_10_3934_math_20241425
crossref_primary_10_3934_dcdss_2021115
crossref_primary_10_1186_s13661_019_1269_y
crossref_primary_10_1112_jlms_70091
crossref_primary_10_3934_dcdss_2021108
crossref_primary_10_3934_dcdss_2021109
crossref_primary_10_3934_era_2020021
crossref_primary_10_1007_s13540_023_00179_8
crossref_primary_10_1016_j_nonrwa_2024_104209
crossref_primary_10_11650_tjm_240404
crossref_primary_10_1016_j_jmaa_2021_125539
crossref_primary_10_3934_era_2021073
crossref_primary_10_3390_axioms13090575
crossref_primary_10_3934_dcds_2021206
crossref_primary_10_1007_s10092_023_00525_5
crossref_primary_10_1016_j_na_2019_02_015
crossref_primary_10_61383_ejam_20231231
crossref_primary_10_1016_j_na_2020_111873
crossref_primary_10_3934_cam_2024025
crossref_primary_10_1186_s13661_024_01835_5
crossref_primary_10_1007_s10114_022_1234_z
crossref_primary_10_1007_s10114_023_1619_7
crossref_primary_10_1002_mma_10179
crossref_primary_10_1515_anona_2022_0226
crossref_primary_10_3934_mbe_2022398
crossref_primary_10_1515_dema_2025_0099
crossref_primary_10_1515_anona_2021_0207
crossref_primary_10_1002_mma_8717
crossref_primary_10_1515_anona_2023_0117
crossref_primary_10_3934_cam_2025001
crossref_primary_10_1016_j_na_2020_111782
crossref_primary_10_1016_j_na_2020_111864
crossref_primary_10_1002_mma_9684
crossref_primary_10_1515_anona_2021_0201
crossref_primary_10_1002_jnm_3233
crossref_primary_10_1016_j_jde_2024_11_040
crossref_primary_10_3934_era_2020041
crossref_primary_10_1515_anona_2020_0141
crossref_primary_10_1007_s13540_024_00360_7
crossref_primary_10_1016_j_jmaa_2021_125719
crossref_primary_10_1016_j_nonrwa_2022_103734
crossref_primary_10_1016_j_nonrwa_2024_104220
crossref_primary_10_1080_00036811_2023_2241493
crossref_primary_10_1515_anona_2022_0290
crossref_primary_10_3934_cam_2025011
crossref_primary_10_3934_era_2020088
crossref_primary_10_3934_cam_2025010
crossref_primary_10_3934_era_2021057
Cites_doi 10.1007/PL00001549
10.1007/BF00375126
10.1090/mmono/023
10.1007/s00033-013-0330-4
10.1016/j.na.2011.12.005
10.1006/jmaa.1997.5522
10.3934/dcds.2018035
10.1016/j.jfa.2013.03.010
10.1016/j.jde.2014.04.019
10.1007/BF01765854
10.1016/j.na.2010.03.017
10.1007/PL00001504
10.1006/jmaa.2000.7163
10.1007/978-1-4612-4546-9
10.1007/s00033-012-0255-3
10.2969/jmsj/1191418646
10.1016/j.amc.2013.06.061
10.1016/0022-247X(82)90160-3
10.1090/S0033-569X-2010-01197-0
10.1007/BF02761595
10.57262/die/1356060194
10.1080/03605308408820353
10.2307/2006981
10.1007/s00033-002-8152-9
10.1016/S0362-546X(99)00419-8
10.57262/die/1356060117
10.1016/j.na.2005.09.011
10.1016/j.jde.2011.06.015
10.1016/j.jmaa.2011.03.033
10.1093/qmath/28.4.473
10.1016/0022-0396(91)90118-S
10.1007/s11425-013-4642-9
10.1016/j.na.2005.05.037
10.1016/j.jfa.2016.02.026
ContentType Journal Article
Copyright Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
2019© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Copyright_xml – notice: Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: 2019© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
DBID AAYXX
CITATION
DOI 10.1007/s11425-017-9280-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1869-1862
EndPage 356
ExternalDocumentID 10_1007_s11425_017_9280_x
GroupedDBID -5D
-5G
-BR
-EM
-SA
-S~
-Y2
-~C
.VR
06D
0R~
0VY
1N0
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
40D
40E
5VR
5VS
5XA
5XB
8TC
8UJ
92E
92I
92Q
93N
95-
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFLOW
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
B-.
BAPOH
BDATZ
BGNMA
BSONS
CAG
CAJEA
CCEZO
CCVFK
CHBEP
CJPJV
COF
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9J
P9R
PF0
PT4
Q--
QOS
R89
RIG
ROL
RSV
S16
S3B
SAP
SCL
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TCJ
TGP
TSG
TUC
U1G
U2A
U5K
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ACMFV
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c316t-31469dbca24c75dc04887a37c2d5978d6bdfc04f93fa896587f6838c0dd074943
IEDL.DBID U2A
ISSN 1674-7283
IngestDate Fri Jul 25 11:11:11 EDT 2025
Thu Apr 24 23:10:14 EDT 2025
Tue Jul 01 03:54:54 EDT 2025
Fri Feb 21 02:33:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords coupled parabolic systems
global existence
35K51
35K40
asymptotic behavior
reaction-diffusion systems
finite time blowup
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-31469dbca24c75dc04887a37c2d5978d6bdfc04f93fa896587f6838c0dd074943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2343288535
PQPubID 2043629
PageCount 36
ParticipantIDs proquest_journals_2343288535
crossref_citationtrail_10_1007_s11425_017_9280_x
crossref_primary_10_1007_s11425_017_9280_x
springer_journals_10_1007_s11425_017_9280_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Science China. Mathematics
PublicationTitleAbbrev Sci. China Math
PublicationYear 2020
Publisher Science China Press
Springer Nature B.V
Publisher_xml – name: Science China Press
– name: Springer Nature B.V
References Cazenave, Lions (CR6) 1984; 9
Alaa (CR1) 2001; 253
Duong, Phan (CR10) 2018; 38
Pao (CR26) 1992
Quiros, Rossi (CR28) 2001; 52
Li, Wang (CR22) 2005; 63
Escobedo, Levine (CR13) 1995; 129
Xu, Niu (CR37) 2016; 270
Liu, Zhao (CR24) 2006; 64
Simon (CR32) 1983; 118
Kwembe, Zhang (CR19) 2012; 75
Wu (CR35) 2012; 11
Galaktionov, Kurdyumov, Samarski (CR14) 1983; 19
Xu, Ye (CR39) 2013; 64
Ladyzenskaja, Solonnikov, Ural’ceva (CR20) 1968
Escobedo, Herrero (CR12) 1993; 165
Ball (CR3) 1977; 28
Souplet, Tayachi (CR33) 2004; 56
Zou (CR42) 2014; 257
Dancer, Wang, Zhang (CR8) 2011; 251
Payne, Sattinger (CR27) 1975; 22
Dickstein, Escobedo (CR9) 2001; 45
Bedjaoui, Souplet (CR5) 2002; 53
Bai (CR2) 2014; 65
Gu, Wang (CR17) 1994; 39
Wang (CR34) 2000; 51
Sato (CR31) 2011; 380
Pao (CR25) 1982; 87
Liu (CR23) 2010; 73
Escobedo, Herrero (CR11) 1991; 89
Gazzola, Weth (CR16) 2005; 18
Levine (CR21) 1974; 192
Xu (CR36) 2010; 68
Hoshino, Yamada (CR18) 1991; 34
Rossi, Souplet (CR30) 2005; 18
Chen (CR7) 1997; 212
Quittner (CR29) 2003; 29
Yang, Cao, Zheng (CR40) 2014; 57
Galaktionov, Kurdyumov, Samarski (CR15) 1985; 21
Zhang (CR41) 2013; 221
Bebernes, Eberly (CR4) 1989
Xu, Su (CR38) 2013; 264
M Escobedo (9280_CR12) 1993; 165
N Bedjaoui (9280_CR5) 2002; 53
V A Galaktionov (9280_CR14) 1983; 19
L E Payne (9280_CR27) 1975; 22
E N Dancer (9280_CR8) 2011; 251
H Zou (9280_CR42) 2014; 257
O A Ladyzenskaja (9280_CR20) 1968
C V Pao (9280_CR25) 1982; 87
M Escobedo (9280_CR13) 1995; 129
S Sato (9280_CR31) 2011; 380
M Escobedo (9280_CR11) 1991; 89
R Z Xu (9280_CR36) 2010; 68
H L Li (9280_CR22) 2005; 63
S T Wu (9280_CR35) 2012; 11
T A Kwembe (9280_CR19) 2012; 75
P Souplet (9280_CR33) 2004; 56
F Gazzola (9280_CR16) 2005; 18
M X Wang (9280_CR34) 2000; 51
X Bai (9280_CR2) 2014; 65
H Hoshino (9280_CR18) 1991; 34
H A Levine (9280_CR21) 1974; 192
W J Liu (9280_CR23) 2010; 73
P Quittner (9280_CR29) 2003; 29
L Simon (9280_CR32) 1983; 118
Y C Liu (9280_CR24) 2006; 64
H W Chen (9280_CR7) 1997; 212
C V Pao (9280_CR26) 1992
J K Yang (9280_CR40) 2014; 57
R Z Xu (9280_CR38) 2013; 264
R Z Xu (9280_CR37) 2016; 270
F Dickstein (9280_CR9) 2001; 45
J M Ball (9280_CR3) 1977; 28
T Cazenave (9280_CR6) 1984; 9
Y G Gu (9280_CR17) 1994; 39
J Bebernes (9280_CR4) 1989
N Alaa (9280_CR1) 2001; 253
Y Zhang (9280_CR41) 2013; 221
A T Duong (9280_CR10) 2018; 38
J D Rossi (9280_CR30) 2005; 18
X Xu (9280_CR39) 2013; 64
V A Galaktionov (9280_CR15) 1985; 21
F Quiros (9280_CR28) 2001; 52
References_xml – volume: 64
  start-page: 705
  year: 2013
  end-page: 717
  ident: CR39
  article-title: Life span of solutions with large initial data for a class of coupled parabolic systems
  publication-title: Z Angew Math Phys
– volume: 9
  start-page: 955
  year: 1984
  end-page: 978
  ident: CR6
  article-title: Solutions globales d’équations de la chaleur semi linéaies
  publication-title: Comm Partial Differential Equations
– volume: 34
  start-page: 475
  year: 1991
  end-page: 494
  ident: CR18
  article-title: Solvability and smoothing effect for semilinear parabolic equations
  publication-title: Funkcial Ekvac
– volume: 39
  start-page: 1588
  year: 1994
  end-page: 1592
  ident: CR17
  article-title: A semilinear parabolic system arising in the nuclear reactors
  publication-title: Chinese Sci Bull
– volume: 253
  start-page: 532
  year: 2001
  end-page: 557
  ident: CR1
  article-title: Global existence for reaction-diffusion systems with mass control and critical growth with respect to the gradient
  publication-title: J Math Anal Appl
– year: 1989
  ident: CR4
  publication-title: Mathematical Problems from Combustion Theory
– volume: 38
  start-page: 823
  year: 2018
  end-page: 833
  ident: CR10
  article-title: A Liouville-type theorem for cooperative parabolic systems
  publication-title: Discrete Contin Dyn Syst
– volume: 68
  start-page: 459
  year: 2010
  end-page: 468
  ident: CR36
  article-title: Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data
  publication-title: Quart Appl Math
– volume: 28
  start-page: 473
  year: 1977
  end-page: 486
  ident: CR3
  article-title: Remarks on blow-up and nonexistence theorems for nonlinear evolution equations
  publication-title: Q J Math
– volume: 118
  start-page: 525
  year: 1983
  end-page: 571
  ident: CR32
  article-title: Asymptotics for a class of nonlinear evolution equations with applications to geometric problems
  publication-title: Ann of Math (2)
– volume: 165
  start-page: 315
  year: 1993
  end-page: 336
  ident: CR12
  article-title: A semilinear parabolic system in a bounded domain
  publication-title: Ann Mat Pura Appl (4)
– volume: 29
  start-page: 757
  year: 2003
  end-page: 799
  ident: CR29
  article-title: Continuity of the blow-up time and a priori bounds for solutions in superlinear parabolic problems
  publication-title: Houston^J Math
– volume: 57
  start-page: 555
  year: 2014
  end-page: 568
  ident: CR40
  article-title: Fujita phenomena in nonlinear pseudo-parabolic system
  publication-title: Sci China Math
– volume: 75
  start-page: 3078
  year: 2012
  end-page: 3091
  ident: CR19
  article-title: A semilinear parabolic system with generalized Wentzell boundary condition
  publication-title: Nonlinear Anal
– volume: 51
  start-page: 160
  year: 2000
  end-page: 167
  ident: CR34
  article-title: Global existence and finite time blow up for a reaction-diffusion system
  publication-title: Z Angew Math Phys
– volume: 11
  start-page: 75
  year: 2012
  end-page: 95
  ident: CR35
  article-title: Global existence, blow-up and asymptotic behavior of solutions for a class of coupled nonlinear Klein-Gordon equations with damping terms
  publication-title: Acta Appl Math
– year: 1968
  ident: CR20
  publication-title: Linear and Quasilinear Equations of Parabolic Type
– volume: 18
  start-page: 405
  year: 2005
  end-page: 418
  ident: CR30
  article-title: Coexistence of simultaneous and nonsimultaneous blow-up in a semilinear parabolic system
  publication-title: Differential Integral Equations
– volume: 56
  start-page: 571
  year: 2004
  end-page: 584
  ident: CR33
  article-title: Optimal condition for non-simultaneous blow-up in a reaction-diffusion system
  publication-title: J Math Soc Japan
– year: 1992
  ident: CR26
  article-title: Nonlinear Parabolic and Elliptic Equations
  publication-title: New York: Plenum Press
– volume: 52
  start-page: 342
  year: 2001
  end-page: 346
  ident: CR28
  article-title: Non-simultaneous blow-up in a semilinear parabolic system
  publication-title: Z Angew Math Phys
– volume: 251
  start-page: 2737
  year: 2011
  end-page: 2769
  ident: CR8
  article-title: Uniform Hölder estimate for singularly perturbed parabolic systems of Bose-Einstein condensates and competing species
  publication-title: J Differential Equations
– volume: 63
  start-page: 1083
  year: 2005
  end-page: 1093
  ident: CR22
  article-title: Critical exponents and lower bounds of blow-up rate for a reaction-diffusion system
  publication-title: Nonlinear Anal
– volume: 129
  start-page: 47
  year: 1995
  end-page: 100
  ident: CR13
  article-title: Critical blowup and global existence numbers for a weakly coupled system of reactiondi ffusion equations
  publication-title: Arch Ration Mech Anal
– volume: 270
  start-page: 4039
  year: 2016
  end-page: 4041
  ident: CR37
  article-title: Addendum toλobal existence and finite time blow-up for a class of semilinear pseudo-parabolic equations" [J Funct Anal, 2013, 264: 2732–2763]
  publication-title: J Funct Anal
– volume: 45
  start-page: 825
  year: 2001
  end-page: 837
  ident: CR9
  article-title: A maximum principle for semilinear parabolic systems and applications
  publication-title: Nonlinear Anal
– volume: 65
  start-page: 135
  year: 2014
  end-page: 138
  ident: CR2
  article-title: Finite time blow-up for a reaction-diffusion system in bounded domain
  publication-title: Z Angew Math Phys
– volume: 21
  start-page: 1544
  year: 1985
  end-page: 1559
  ident: CR15
  article-title: A parabolic system of quasilinear equations II
  publication-title: Differ Uravn
– volume: 22
  start-page: 273
  year: 1975
  end-page: 303
  ident: CR27
  article-title: Saddle points and instability of nonlinear hyperbolic equations
  publication-title: Israel^J Math
– volume: 221
  start-page: 720
  year: 2013
  end-page: 726
  ident: CR41
  article-title: Uniform boundedness and convergence of global solutions to a strongly-coupled parabolic system with three competitive species
  publication-title: Appl Math Comput
– volume: 64
  start-page: 2665
  year: 2006
  end-page: 2687
  ident: CR24
  article-title: On potential wells and applications to semilinear hyperbolic equations and parabolic equations
  publication-title: Nonlinear Anal
– volume: 257
  start-page: 843
  year: 2014
  end-page: 867
  ident: CR42
  article-title: Blow-up rates for semi-linear reaction-diffusion systems
  publication-title: J Differential Equations
– volume: 53
  start-page: 197
  year: 2002
  end-page: 210
  ident: CR5
  article-title: Critical blowup exponents for a system of reaction-diffusion equations with absorption
  publication-title: Z Angew Math Phys
– volume: 212
  start-page: 481
  year: 1997
  end-page: 492
  ident: CR7
  article-title: Global existence and blow-up for a nonlinear reaction-diffusion system
  publication-title: J Math Anal Appl
– volume: 89
  start-page: 176
  year: 1991
  end-page: 202
  ident: CR11
  article-title: Boundedness and blow up for a semilinear reaction-diffusion system
  publication-title: J Differential Equations
– volume: 19
  start-page: 2123
  year: 1983
  end-page: 2143
  ident: CR14
  article-title: A parabolic system of quasilinear equations I
  publication-title: Differ Uravn
– volume: 264
  start-page: 2732
  year: 2013
  end-page: 2763
  ident: CR38
  article-title: Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations
  publication-title: J Funct Anal
– volume: 73
  start-page: 244
  year: 2010
  end-page: 255
  ident: CR23
  article-title: Global existence, asymptotic behavior and blow-up of solutions for coupled Klein-Gordon equations with damping terms
  publication-title: Nonlinear Anal
– volume: 380
  start-page: 632
  year: 2011
  end-page: 641
  ident: CR31
  article-title: Life span of solutions with large initial data for a semilinear parabolic system
  publication-title: J Math Anal Appl
– volume: 87
  start-page: 165
  year: 1982
  end-page: 198
  ident: CR25
  article-title: On nonlinear reaction-diffusion systems
  publication-title: J Math Anal Appl
– volume: 18
  start-page: 961
  year: 2005
  end-page: 990
  ident: CR16
  article-title: Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level
  publication-title: Differential Integral Equations
– volume: 192
  start-page: 1
  year: 1974
  end-page: 21
  ident: CR21
  article-title: Instability and non-existence of global solutions to nonlinear wave equations of the form Putt = Au + F(u)
  publication-title: Trans Amer Math Soc
– volume: 52
  start-page: 342
  year: 2001
  ident: 9280_CR28
  publication-title: Z Angew Math Phys
  doi: 10.1007/PL00001549
– volume: 129
  start-page: 47
  year: 1995
  ident: 9280_CR13
  publication-title: Arch Ration Mech Anal
  doi: 10.1007/BF00375126
– volume-title: Linear and Quasilinear Equations of Parabolic Type
  year: 1968
  ident: 9280_CR20
  doi: 10.1090/mmono/023
– volume: 11
  start-page: 75
  year: 2012
  ident: 9280_CR35
  publication-title: Acta Appl Math
– volume: 65
  start-page: 135
  year: 2014
  ident: 9280_CR2
  publication-title: Z Angew Math Phys
  doi: 10.1007/s00033-013-0330-4
– volume: 75
  start-page: 3078
  year: 2012
  ident: 9280_CR19
  publication-title: Nonlinear Anal
  doi: 10.1016/j.na.2011.12.005
– volume: 212
  start-page: 481
  year: 1997
  ident: 9280_CR7
  publication-title: J Math Anal Appl
  doi: 10.1006/jmaa.1997.5522
– volume: 38
  start-page: 823
  year: 2018
  ident: 9280_CR10
  publication-title: Discrete Contin Dyn Syst
  doi: 10.3934/dcds.2018035
– volume: 264
  start-page: 2732
  year: 2013
  ident: 9280_CR38
  publication-title: J Funct Anal
  doi: 10.1016/j.jfa.2013.03.010
– volume: 192
  start-page: 1
  year: 1974
  ident: 9280_CR21
  publication-title: Trans Amer Math Soc
– volume: 29
  start-page: 757
  year: 2003
  ident: 9280_CR29
  publication-title: Houston^J Math
– volume: 257
  start-page: 843
  year: 2014
  ident: 9280_CR42
  publication-title: J Differential Equations
  doi: 10.1016/j.jde.2014.04.019
– volume: 165
  start-page: 315
  year: 1993
  ident: 9280_CR12
  publication-title: Ann Mat Pura Appl (4)
  doi: 10.1007/BF01765854
– volume: 34
  start-page: 475
  year: 1991
  ident: 9280_CR18
  publication-title: Funkcial Ekvac
– volume: 73
  start-page: 244
  year: 2010
  ident: 9280_CR23
  publication-title: Nonlinear Anal
  doi: 10.1016/j.na.2010.03.017
– volume: 51
  start-page: 160
  year: 2000
  ident: 9280_CR34
  publication-title: Z Angew Math Phys
  doi: 10.1007/PL00001504
– volume: 253
  start-page: 532
  year: 2001
  ident: 9280_CR1
  publication-title: J Math Anal Appl
  doi: 10.1006/jmaa.2000.7163
– volume-title: Mathematical Problems from Combustion Theory
  year: 1989
  ident: 9280_CR4
  doi: 10.1007/978-1-4612-4546-9
– volume: 64
  start-page: 705
  year: 2013
  ident: 9280_CR39
  publication-title: Z Angew Math Phys
  doi: 10.1007/s00033-012-0255-3
– volume: 56
  start-page: 571
  year: 2004
  ident: 9280_CR33
  publication-title: J Math Soc Japan
  doi: 10.2969/jmsj/1191418646
– volume: 221
  start-page: 720
  year: 2013
  ident: 9280_CR41
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2013.06.061
– volume: 87
  start-page: 165
  year: 1982
  ident: 9280_CR25
  publication-title: J Math Anal Appl
  doi: 10.1016/0022-247X(82)90160-3
– volume: 68
  start-page: 459
  year: 2010
  ident: 9280_CR36
  publication-title: Quart Appl Math
  doi: 10.1090/S0033-569X-2010-01197-0
– volume: 22
  start-page: 273
  year: 1975
  ident: 9280_CR27
  publication-title: Israel^J Math
  doi: 10.1007/BF02761595
– volume: 18
  start-page: 405
  year: 2005
  ident: 9280_CR30
  publication-title: Differential Integral Equations
  doi: 10.57262/die/1356060194
– volume: 9
  start-page: 955
  year: 1984
  ident: 9280_CR6
  publication-title: Comm Partial Differential Equations
  doi: 10.1080/03605308408820353
– volume: 21
  start-page: 1544
  year: 1985
  ident: 9280_CR15
  publication-title: Differ Uravn
– volume: 118
  start-page: 525
  year: 1983
  ident: 9280_CR32
  publication-title: Ann of Math (2)
  doi: 10.2307/2006981
– volume: 53
  start-page: 197
  year: 2002
  ident: 9280_CR5
  publication-title: Z Angew Math Phys
  doi: 10.1007/s00033-002-8152-9
– volume: 45
  start-page: 825
  year: 2001
  ident: 9280_CR9
  publication-title: Nonlinear Anal
  doi: 10.1016/S0362-546X(99)00419-8
– volume: 39
  start-page: 1588
  year: 1994
  ident: 9280_CR17
  publication-title: Chinese Sci Bull
– volume: 18
  start-page: 961
  year: 2005
  ident: 9280_CR16
  publication-title: Differential Integral Equations
  doi: 10.57262/die/1356060117
– volume: 64
  start-page: 2665
  year: 2006
  ident: 9280_CR24
  publication-title: Nonlinear Anal
  doi: 10.1016/j.na.2005.09.011
– volume: 19
  start-page: 2123
  year: 1983
  ident: 9280_CR14
  publication-title: Differ Uravn
– volume: 251
  start-page: 2737
  year: 2011
  ident: 9280_CR8
  publication-title: J Differential Equations
  doi: 10.1016/j.jde.2011.06.015
– volume: 380
  start-page: 632
  year: 2011
  ident: 9280_CR31
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2011.03.033
– volume: 28
  start-page: 473
  year: 1977
  ident: 9280_CR3
  publication-title: Q J Math
  doi: 10.1093/qmath/28.4.473
– volume: 89
  start-page: 176
  year: 1991
  ident: 9280_CR11
  publication-title: J Differential Equations
  doi: 10.1016/0022-0396(91)90118-S
– volume-title: New York: Plenum Press
  year: 1992
  ident: 9280_CR26
– volume: 57
  start-page: 555
  year: 2014
  ident: 9280_CR40
  publication-title: Sci China Math
  doi: 10.1007/s11425-013-4642-9
– volume: 63
  start-page: 1083
  year: 2005
  ident: 9280_CR22
  publication-title: Nonlinear Anal
  doi: 10.1016/j.na.2005.05.037
– volume: 270
  start-page: 4039
  year: 2016
  ident: 9280_CR37
  publication-title: J Funct Anal
  doi: 10.1016/j.jfa.2016.02.026
SSID ssj0000390473
Score 2.4670436
Snippet The initial boundary value problem of a class of reaction-diffusion systems (coupled parabolic systems) with nonlinear coupled source terms is considered in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 321
SubjectTerms Applications of Mathematics
Boundary value problems
Decay
Energy
Initial conditions
Mathematical problems
Mathematics
Mathematics and Statistics
Nonlinear systems
Well posed problems
Title Global well-posedness of coupled parabolic systems
URI https://link.springer.com/article/10.1007/s11425-017-9280-x
https://www.proquest.com/docview/2343288535
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7SXvQgPrFayx48KYFtHrvZY5HWotSThXoKeZ5Kt7gt9Oc72UcXRQWvu9ksTCYz82VmviB0Z7hLnGYGpy5RmHnAKVr7FHuVOA5wwLiSrmn2mkzn7HnBF3Ufd9FUuzcpydJSt81uQ9AvHKxqRkSMIXDscoDuQa3nZLQ_WIkBxbMysxwK7HEK_rPJZv40y1d_1AaZ3_KipbuZnKDjOk6MRtXCnqIDtzpDR7M9yWpxjkjF1x-F4ze8zgtng9mKch-ZfLteOhsFXm8diH-jirC5uEDzyfjtcYrrKxCwocNkAxYS4KvVRhFmUm5N2G-poqkhFpCAsIm2Hh76jHolAo9L6hNBhYmthdggY_QSdVb5yl2hiAIUckoRoYRmQ081IAvGuWIug21oeQ_FjSCkqfnBwzUVS9kyGwfZSZCdDLKTux6633-yrsgx_hrcb6Qr631SSBL6WgWEDPD7h0bi7etfJ7v-1-gbdEgCTC6Lrfuos_nYuluIJTZ6gLqjp_eX8aDUoU-oWMEM
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQOwADb0ShQAYmkKs2sRNnrBCl0MfUSmWK_FyomoqkEuLXc86jERUgdU0cJzn7zvf5zt8hdCep9rUgEgfa55gYwClCmAAb7msKcEDqjK5pNPb7U_I6o7PiHHdSZruXIcnMUleH3Towv7C1qqHL2hgcxzoBCE5rqN59fhtUWyttwPEkiy3bFHscwApaxjN_6-fnilS5mRuR0WzB6R2iSfmpeZ7Je2uVipb82mBx3PJfjtBB4YA63XzGHKMdvThB-6M1e2tyity8EIBj9_XwMk60svbQiY0j49VyrpVjCcOFZRR2cibo5AxNe0-Txz4uaitg6XX8FEwv4GIlJHeJDKiSVpED7gXSVQAxmPKFMnDRhJ7hzBLEBMZnHpNtpcDpCIl3jmqLeKEvkOMBxtKcu4wzQTrGEwBZCKWc6BD0W9EGapfyjWRBPG7rX8yjijLZiiMCcURWHNFnA92vH1nmrBv_NW6WgxYVCphErj0wy8AXgdc_lGNQ3f6zs8utWt-i3f5kNIyGL-PBFdpzLRbPMrqbqJZ-rPQ1OCypuCkm6DfLZd9y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iIHoQn7i6ag-elLBtmrbpcVGX9bGLBxf2FvI8Ldtiu-DPd9LHFkUFr22awiTz-DIzXxC6VpGJjaQKJyYWmFrAKVLaBFsRmwjggDIVXdNkGo9n9GkezZt7Tou22r1NSdY9DY6laVkOcm0HXeNbAHsNOwubEuZjCCK3wBoHrqZrRobrQxYfED2tssyu2B4n4EvbzOZPs3z1TV3A-S1HWrme0T7aa2JGb1gv8gHaMMtDtDtZE64WR4jU3P2eO4rDeVYY7UyYl1lPZat8YbTnOL6lIwH2avLm4hjNRg9vd2PcXIeAVRjEJVhLgLJaKkGoSiKtnO4lIkwU0YAKmI6ltvDQpqEVzHG6JDZmIVO-1hAnpDQ8QZvLbGlOkRcCLDJCECaYpIENJaAMGkWCmhRUUkc95LeC4KrhCndXVix4x3LsZMdBdtzJjn_00M36k7wmyvhrcL-VLm90puDE9bgyCB_g97etxLvXv0529q_RV2j79X7EXx6nz-dohzj0XNVg99Fm-b4yFxBilPKy2kafb9nGpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+well-posedness+of+coupled+parabolic+systems&rft.jtitle=Science+China.+Mathematics&rft.au=Xu+Runzhang&rft.au=Lian%2C+Wei&rft.au=Niu+Yi&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1674-7283&rft.eissn=1869-1862&rft.volume=63&rft.issue=2&rft.spage=321&rft.epage=356&rft_id=info:doi/10.1007%2Fs11425-017-9280-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-7283&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-7283&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-7283&client=summon