Global well-posedness of coupled parabolic systems
The initial boundary value problem of a class of reaction-diffusion systems (coupled parabolic systems) with nonlinear coupled source terms is considered in order to classify the initial data for the global existence, finite time blowup and long time decay of the solution. The whole study is conduct...
Saved in:
Published in | Science China. Mathematics Vol. 63; no. 2; pp. 321 - 356 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Science China Press
01.02.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1674-7283 1869-1862 |
DOI | 10.1007/s11425-017-9280-x |
Cover
Loading…
Abstract | The initial boundary value problem of a class of reaction-diffusion systems (coupled parabolic systems) with nonlinear coupled source terms is considered in order to classify the initial data for the global existence, finite time blowup and long time decay of the solution. The whole study is conducted by considering three cases according to initial energy: the low initial energy case, critical initial energy case and high initial energy case. For the low initial energy case and critical initial energy case the suffcient initial conditions of global existence, long time decay and finite time blowup are given to show a sharp-like condition. In addition, for the high initial energy case the possibility of both global existence and finite time blowup is proved first, and then some suffcient initial conditions of finite time blowup and global existence are obtained, respectively. |
---|---|
AbstractList | The initial boundary value problem of a class of reaction-diffusion systems (coupled parabolic systems) with nonlinear coupled source terms is considered in order to classify the initial data for the global existence, finite time blowup and long time decay of the solution. The whole study is conducted by considering three cases according to initial energy: the low initial energy case, critical initial energy case and high initial energy case. For the low initial energy case and critical initial energy case the suffcient initial conditions of global existence, long time decay and finite time blowup are given to show a sharp-like condition. In addition, for the high initial energy case the possibility of both global existence and finite time blowup is proved first, and then some suffcient initial conditions of finite time blowup and global existence are obtained, respectively. |
Author | Lian, Wei Xu, Runzhang Niu, Yi |
Author_xml | – sequence: 1 givenname: Runzhang surname: Xu fullname: Xu, Runzhang email: xurunzh@163.com organization: College of Automation, Harbin Engineering University, College of Science, Harbin Engineering University, The Institute of Mathematical Sciences, The Chinese University of Hong Kong – sequence: 2 givenname: Wei surname: Lian fullname: Lian, Wei organization: College of Automation, Harbin Engineering University – sequence: 3 givenname: Yi surname: Niu fullname: Niu, Yi organization: College of Automation, Harbin Engineering University, School of Information Science and Engineering, Shandong Normal University |
BookMark | eNp9kE1LAzEQhoNUsNb-AG8LnqP52nwcpWgVCl70HLJJVrakmzXZYvvvTVlBEHQOM8PwPjPDewlmfew9ANcY3WKExF3GmJEaIiygIhLBwxmYY8kVLInMSs8Fg4JIegGWOW9RCaoQE3QOyDrExoTq04cAh5i9633OVWwrG_dD8K4aTDJNDJ2t8jGPfpevwHlrQvbL77oAb48Pr6snuHlZP6_uN9BSzEdIMePKNdYQZkXtLGJSCkOFJa5WQjreuLYMW0VbIxWvpWi5pNIi55BgitEFuJn2Dil-7H0e9TbuU19OakIZJVLWtC4qMalsijkn32rbjWbsYj8m0wWNkT55pCePdPFInzzSh0LiX-SQup1Jx38ZMjG5aPt3n35--hv6AtTKel8 |
CitedBy_id | crossref_primary_10_1111_sapm_12405 crossref_primary_10_1186_s13661_020_01392_7 crossref_primary_10_1515_ans_2022_0024 crossref_primary_10_3934_cam_2023033 crossref_primary_10_3934_math_20221006 crossref_primary_10_1007_s00030_025_01041_x crossref_primary_10_1016_j_na_2020_111810 crossref_primary_10_1016_j_na_2020_111854 crossref_primary_10_1016_j_na_2020_111898 crossref_primary_10_1186_s13661_022_01609_x crossref_primary_10_1016_j_jde_2024_02_045 crossref_primary_10_3934_mbe_2023225 crossref_primary_10_1002_mma_10873 crossref_primary_10_1186_s13661_021_01538_1 crossref_primary_10_1515_anona_2023_0133 crossref_primary_10_1016_j_jde_2020_03_047 crossref_primary_10_1186_s13661_020_01482_6 crossref_primary_10_1007_s12215_021_00698_4 crossref_primary_10_3934_cam_2024019 crossref_primary_10_3934_cam_2023008 crossref_primary_10_3934_dcdss_2021113 crossref_primary_10_3934_math_20241425 crossref_primary_10_3934_dcdss_2021115 crossref_primary_10_1186_s13661_019_1269_y crossref_primary_10_1112_jlms_70091 crossref_primary_10_3934_dcdss_2021108 crossref_primary_10_3934_dcdss_2021109 crossref_primary_10_3934_era_2020021 crossref_primary_10_1007_s13540_023_00179_8 crossref_primary_10_1016_j_nonrwa_2024_104209 crossref_primary_10_11650_tjm_240404 crossref_primary_10_1016_j_jmaa_2021_125539 crossref_primary_10_3934_era_2021073 crossref_primary_10_3390_axioms13090575 crossref_primary_10_3934_dcds_2021206 crossref_primary_10_1007_s10092_023_00525_5 crossref_primary_10_1016_j_na_2019_02_015 crossref_primary_10_61383_ejam_20231231 crossref_primary_10_1016_j_na_2020_111873 crossref_primary_10_3934_cam_2024025 crossref_primary_10_1186_s13661_024_01835_5 crossref_primary_10_1007_s10114_022_1234_z crossref_primary_10_1007_s10114_023_1619_7 crossref_primary_10_1002_mma_10179 crossref_primary_10_1515_anona_2022_0226 crossref_primary_10_3934_mbe_2022398 crossref_primary_10_1515_dema_2025_0099 crossref_primary_10_1515_anona_2021_0207 crossref_primary_10_1002_mma_8717 crossref_primary_10_1515_anona_2023_0117 crossref_primary_10_3934_cam_2025001 crossref_primary_10_1016_j_na_2020_111782 crossref_primary_10_1016_j_na_2020_111864 crossref_primary_10_1002_mma_9684 crossref_primary_10_1515_anona_2021_0201 crossref_primary_10_1002_jnm_3233 crossref_primary_10_1016_j_jde_2024_11_040 crossref_primary_10_3934_era_2020041 crossref_primary_10_1515_anona_2020_0141 crossref_primary_10_1007_s13540_024_00360_7 crossref_primary_10_1016_j_jmaa_2021_125719 crossref_primary_10_1016_j_nonrwa_2022_103734 crossref_primary_10_1016_j_nonrwa_2024_104220 crossref_primary_10_1080_00036811_2023_2241493 crossref_primary_10_1515_anona_2022_0290 crossref_primary_10_3934_cam_2025011 crossref_primary_10_3934_era_2020088 crossref_primary_10_3934_cam_2025010 crossref_primary_10_3934_era_2021057 |
Cites_doi | 10.1007/PL00001549 10.1007/BF00375126 10.1090/mmono/023 10.1007/s00033-013-0330-4 10.1016/j.na.2011.12.005 10.1006/jmaa.1997.5522 10.3934/dcds.2018035 10.1016/j.jfa.2013.03.010 10.1016/j.jde.2014.04.019 10.1007/BF01765854 10.1016/j.na.2010.03.017 10.1007/PL00001504 10.1006/jmaa.2000.7163 10.1007/978-1-4612-4546-9 10.1007/s00033-012-0255-3 10.2969/jmsj/1191418646 10.1016/j.amc.2013.06.061 10.1016/0022-247X(82)90160-3 10.1090/S0033-569X-2010-01197-0 10.1007/BF02761595 10.57262/die/1356060194 10.1080/03605308408820353 10.2307/2006981 10.1007/s00033-002-8152-9 10.1016/S0362-546X(99)00419-8 10.57262/die/1356060117 10.1016/j.na.2005.09.011 10.1016/j.jde.2011.06.015 10.1016/j.jmaa.2011.03.033 10.1093/qmath/28.4.473 10.1016/0022-0396(91)90118-S 10.1007/s11425-013-4642-9 10.1016/j.na.2005.05.037 10.1016/j.jfa.2016.02.026 |
ContentType | Journal Article |
Copyright | Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019 2019© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
Copyright_xml | – notice: Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: 2019© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11425-017-9280-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1869-1862 |
EndPage | 356 |
ExternalDocumentID | 10_1007_s11425_017_9280_x |
GroupedDBID | -5D -5G -BR -EM -SA -S~ -Y2 -~C .VR 06D 0R~ 0VY 1N0 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 40D 40E 5VR 5VS 5XA 5XB 8TC 8UJ 92E 92I 92Q 93N 95- 95. 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFLOW AFQWF AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARMRJ AXYYD B-. BAPOH BDATZ BGNMA BSONS CAG CAJEA CCEZO CCVFK CHBEP CJPJV COF CSCUP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9J P9R PF0 PT4 Q-- QOS R89 RIG ROL RSV S16 S3B SAP SCL SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TCJ TGP TSG TUC U1G U2A U5K UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ACMFV AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c316t-31469dbca24c75dc04887a37c2d5978d6bdfc04f93fa896587f6838c0dd074943 |
IEDL.DBID | U2A |
ISSN | 1674-7283 |
IngestDate | Fri Jul 25 11:11:11 EDT 2025 Thu Apr 24 23:10:14 EDT 2025 Tue Jul 01 03:54:54 EDT 2025 Fri Feb 21 02:33:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | coupled parabolic systems global existence 35K51 35K40 asymptotic behavior reaction-diffusion systems finite time blowup |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-31469dbca24c75dc04887a37c2d5978d6bdfc04f93fa896587f6838c0dd074943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2343288535 |
PQPubID | 2043629 |
PageCount | 36 |
ParticipantIDs | proquest_journals_2343288535 crossref_citationtrail_10_1007_s11425_017_9280_x crossref_primary_10_1007_s11425_017_9280_x springer_journals_10_1007_s11425_017_9280_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Science China. Mathematics |
PublicationTitleAbbrev | Sci. China Math |
PublicationYear | 2020 |
Publisher | Science China Press Springer Nature B.V |
Publisher_xml | – name: Science China Press – name: Springer Nature B.V |
References | Cazenave, Lions (CR6) 1984; 9 Alaa (CR1) 2001; 253 Duong, Phan (CR10) 2018; 38 Pao (CR26) 1992 Quiros, Rossi (CR28) 2001; 52 Li, Wang (CR22) 2005; 63 Escobedo, Levine (CR13) 1995; 129 Xu, Niu (CR37) 2016; 270 Liu, Zhao (CR24) 2006; 64 Simon (CR32) 1983; 118 Kwembe, Zhang (CR19) 2012; 75 Wu (CR35) 2012; 11 Galaktionov, Kurdyumov, Samarski (CR14) 1983; 19 Xu, Ye (CR39) 2013; 64 Ladyzenskaja, Solonnikov, Ural’ceva (CR20) 1968 Escobedo, Herrero (CR12) 1993; 165 Ball (CR3) 1977; 28 Souplet, Tayachi (CR33) 2004; 56 Zou (CR42) 2014; 257 Dancer, Wang, Zhang (CR8) 2011; 251 Payne, Sattinger (CR27) 1975; 22 Dickstein, Escobedo (CR9) 2001; 45 Bedjaoui, Souplet (CR5) 2002; 53 Bai (CR2) 2014; 65 Gu, Wang (CR17) 1994; 39 Wang (CR34) 2000; 51 Sato (CR31) 2011; 380 Pao (CR25) 1982; 87 Liu (CR23) 2010; 73 Escobedo, Herrero (CR11) 1991; 89 Gazzola, Weth (CR16) 2005; 18 Levine (CR21) 1974; 192 Xu (CR36) 2010; 68 Hoshino, Yamada (CR18) 1991; 34 Rossi, Souplet (CR30) 2005; 18 Chen (CR7) 1997; 212 Quittner (CR29) 2003; 29 Yang, Cao, Zheng (CR40) 2014; 57 Galaktionov, Kurdyumov, Samarski (CR15) 1985; 21 Zhang (CR41) 2013; 221 Bebernes, Eberly (CR4) 1989 Xu, Su (CR38) 2013; 264 M Escobedo (9280_CR12) 1993; 165 N Bedjaoui (9280_CR5) 2002; 53 V A Galaktionov (9280_CR14) 1983; 19 L E Payne (9280_CR27) 1975; 22 E N Dancer (9280_CR8) 2011; 251 H Zou (9280_CR42) 2014; 257 O A Ladyzenskaja (9280_CR20) 1968 C V Pao (9280_CR25) 1982; 87 M Escobedo (9280_CR13) 1995; 129 S Sato (9280_CR31) 2011; 380 M Escobedo (9280_CR11) 1991; 89 R Z Xu (9280_CR36) 2010; 68 H L Li (9280_CR22) 2005; 63 S T Wu (9280_CR35) 2012; 11 T A Kwembe (9280_CR19) 2012; 75 P Souplet (9280_CR33) 2004; 56 F Gazzola (9280_CR16) 2005; 18 M X Wang (9280_CR34) 2000; 51 X Bai (9280_CR2) 2014; 65 H Hoshino (9280_CR18) 1991; 34 H A Levine (9280_CR21) 1974; 192 W J Liu (9280_CR23) 2010; 73 P Quittner (9280_CR29) 2003; 29 L Simon (9280_CR32) 1983; 118 Y C Liu (9280_CR24) 2006; 64 H W Chen (9280_CR7) 1997; 212 C V Pao (9280_CR26) 1992 J K Yang (9280_CR40) 2014; 57 R Z Xu (9280_CR38) 2013; 264 R Z Xu (9280_CR37) 2016; 270 F Dickstein (9280_CR9) 2001; 45 J M Ball (9280_CR3) 1977; 28 T Cazenave (9280_CR6) 1984; 9 Y G Gu (9280_CR17) 1994; 39 J Bebernes (9280_CR4) 1989 N Alaa (9280_CR1) 2001; 253 Y Zhang (9280_CR41) 2013; 221 A T Duong (9280_CR10) 2018; 38 J D Rossi (9280_CR30) 2005; 18 X Xu (9280_CR39) 2013; 64 V A Galaktionov (9280_CR15) 1985; 21 F Quiros (9280_CR28) 2001; 52 |
References_xml | – volume: 64 start-page: 705 year: 2013 end-page: 717 ident: CR39 article-title: Life span of solutions with large initial data for a class of coupled parabolic systems publication-title: Z Angew Math Phys – volume: 9 start-page: 955 year: 1984 end-page: 978 ident: CR6 article-title: Solutions globales d’équations de la chaleur semi linéaies publication-title: Comm Partial Differential Equations – volume: 34 start-page: 475 year: 1991 end-page: 494 ident: CR18 article-title: Solvability and smoothing effect for semilinear parabolic equations publication-title: Funkcial Ekvac – volume: 39 start-page: 1588 year: 1994 end-page: 1592 ident: CR17 article-title: A semilinear parabolic system arising in the nuclear reactors publication-title: Chinese Sci Bull – volume: 253 start-page: 532 year: 2001 end-page: 557 ident: CR1 article-title: Global existence for reaction-diffusion systems with mass control and critical growth with respect to the gradient publication-title: J Math Anal Appl – year: 1989 ident: CR4 publication-title: Mathematical Problems from Combustion Theory – volume: 38 start-page: 823 year: 2018 end-page: 833 ident: CR10 article-title: A Liouville-type theorem for cooperative parabolic systems publication-title: Discrete Contin Dyn Syst – volume: 68 start-page: 459 year: 2010 end-page: 468 ident: CR36 article-title: Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data publication-title: Quart Appl Math – volume: 28 start-page: 473 year: 1977 end-page: 486 ident: CR3 article-title: Remarks on blow-up and nonexistence theorems for nonlinear evolution equations publication-title: Q J Math – volume: 118 start-page: 525 year: 1983 end-page: 571 ident: CR32 article-title: Asymptotics for a class of nonlinear evolution equations with applications to geometric problems publication-title: Ann of Math (2) – volume: 165 start-page: 315 year: 1993 end-page: 336 ident: CR12 article-title: A semilinear parabolic system in a bounded domain publication-title: Ann Mat Pura Appl (4) – volume: 29 start-page: 757 year: 2003 end-page: 799 ident: CR29 article-title: Continuity of the blow-up time and a priori bounds for solutions in superlinear parabolic problems publication-title: Houston^J Math – volume: 57 start-page: 555 year: 2014 end-page: 568 ident: CR40 article-title: Fujita phenomena in nonlinear pseudo-parabolic system publication-title: Sci China Math – volume: 75 start-page: 3078 year: 2012 end-page: 3091 ident: CR19 article-title: A semilinear parabolic system with generalized Wentzell boundary condition publication-title: Nonlinear Anal – volume: 51 start-page: 160 year: 2000 end-page: 167 ident: CR34 article-title: Global existence and finite time blow up for a reaction-diffusion system publication-title: Z Angew Math Phys – volume: 11 start-page: 75 year: 2012 end-page: 95 ident: CR35 article-title: Global existence, blow-up and asymptotic behavior of solutions for a class of coupled nonlinear Klein-Gordon equations with damping terms publication-title: Acta Appl Math – year: 1968 ident: CR20 publication-title: Linear and Quasilinear Equations of Parabolic Type – volume: 18 start-page: 405 year: 2005 end-page: 418 ident: CR30 article-title: Coexistence of simultaneous and nonsimultaneous blow-up in a semilinear parabolic system publication-title: Differential Integral Equations – volume: 56 start-page: 571 year: 2004 end-page: 584 ident: CR33 article-title: Optimal condition for non-simultaneous blow-up in a reaction-diffusion system publication-title: J Math Soc Japan – year: 1992 ident: CR26 article-title: Nonlinear Parabolic and Elliptic Equations publication-title: New York: Plenum Press – volume: 52 start-page: 342 year: 2001 end-page: 346 ident: CR28 article-title: Non-simultaneous blow-up in a semilinear parabolic system publication-title: Z Angew Math Phys – volume: 251 start-page: 2737 year: 2011 end-page: 2769 ident: CR8 article-title: Uniform Hölder estimate for singularly perturbed parabolic systems of Bose-Einstein condensates and competing species publication-title: J Differential Equations – volume: 63 start-page: 1083 year: 2005 end-page: 1093 ident: CR22 article-title: Critical exponents and lower bounds of blow-up rate for a reaction-diffusion system publication-title: Nonlinear Anal – volume: 129 start-page: 47 year: 1995 end-page: 100 ident: CR13 article-title: Critical blowup and global existence numbers for a weakly coupled system of reactiondi ffusion equations publication-title: Arch Ration Mech Anal – volume: 270 start-page: 4039 year: 2016 end-page: 4041 ident: CR37 article-title: Addendum toλobal existence and finite time blow-up for a class of semilinear pseudo-parabolic equations" [J Funct Anal, 2013, 264: 2732–2763] publication-title: J Funct Anal – volume: 45 start-page: 825 year: 2001 end-page: 837 ident: CR9 article-title: A maximum principle for semilinear parabolic systems and applications publication-title: Nonlinear Anal – volume: 65 start-page: 135 year: 2014 end-page: 138 ident: CR2 article-title: Finite time blow-up for a reaction-diffusion system in bounded domain publication-title: Z Angew Math Phys – volume: 21 start-page: 1544 year: 1985 end-page: 1559 ident: CR15 article-title: A parabolic system of quasilinear equations II publication-title: Differ Uravn – volume: 22 start-page: 273 year: 1975 end-page: 303 ident: CR27 article-title: Saddle points and instability of nonlinear hyperbolic equations publication-title: Israel^J Math – volume: 221 start-page: 720 year: 2013 end-page: 726 ident: CR41 article-title: Uniform boundedness and convergence of global solutions to a strongly-coupled parabolic system with three competitive species publication-title: Appl Math Comput – volume: 64 start-page: 2665 year: 2006 end-page: 2687 ident: CR24 article-title: On potential wells and applications to semilinear hyperbolic equations and parabolic equations publication-title: Nonlinear Anal – volume: 257 start-page: 843 year: 2014 end-page: 867 ident: CR42 article-title: Blow-up rates for semi-linear reaction-diffusion systems publication-title: J Differential Equations – volume: 53 start-page: 197 year: 2002 end-page: 210 ident: CR5 article-title: Critical blowup exponents for a system of reaction-diffusion equations with absorption publication-title: Z Angew Math Phys – volume: 212 start-page: 481 year: 1997 end-page: 492 ident: CR7 article-title: Global existence and blow-up for a nonlinear reaction-diffusion system publication-title: J Math Anal Appl – volume: 89 start-page: 176 year: 1991 end-page: 202 ident: CR11 article-title: Boundedness and blow up for a semilinear reaction-diffusion system publication-title: J Differential Equations – volume: 19 start-page: 2123 year: 1983 end-page: 2143 ident: CR14 article-title: A parabolic system of quasilinear equations I publication-title: Differ Uravn – volume: 264 start-page: 2732 year: 2013 end-page: 2763 ident: CR38 article-title: Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations publication-title: J Funct Anal – volume: 73 start-page: 244 year: 2010 end-page: 255 ident: CR23 article-title: Global existence, asymptotic behavior and blow-up of solutions for coupled Klein-Gordon equations with damping terms publication-title: Nonlinear Anal – volume: 380 start-page: 632 year: 2011 end-page: 641 ident: CR31 article-title: Life span of solutions with large initial data for a semilinear parabolic system publication-title: J Math Anal Appl – volume: 87 start-page: 165 year: 1982 end-page: 198 ident: CR25 article-title: On nonlinear reaction-diffusion systems publication-title: J Math Anal Appl – volume: 18 start-page: 961 year: 2005 end-page: 990 ident: CR16 article-title: Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level publication-title: Differential Integral Equations – volume: 192 start-page: 1 year: 1974 end-page: 21 ident: CR21 article-title: Instability and non-existence of global solutions to nonlinear wave equations of the form Putt = Au + F(u) publication-title: Trans Amer Math Soc – volume: 52 start-page: 342 year: 2001 ident: 9280_CR28 publication-title: Z Angew Math Phys doi: 10.1007/PL00001549 – volume: 129 start-page: 47 year: 1995 ident: 9280_CR13 publication-title: Arch Ration Mech Anal doi: 10.1007/BF00375126 – volume-title: Linear and Quasilinear Equations of Parabolic Type year: 1968 ident: 9280_CR20 doi: 10.1090/mmono/023 – volume: 11 start-page: 75 year: 2012 ident: 9280_CR35 publication-title: Acta Appl Math – volume: 65 start-page: 135 year: 2014 ident: 9280_CR2 publication-title: Z Angew Math Phys doi: 10.1007/s00033-013-0330-4 – volume: 75 start-page: 3078 year: 2012 ident: 9280_CR19 publication-title: Nonlinear Anal doi: 10.1016/j.na.2011.12.005 – volume: 212 start-page: 481 year: 1997 ident: 9280_CR7 publication-title: J Math Anal Appl doi: 10.1006/jmaa.1997.5522 – volume: 38 start-page: 823 year: 2018 ident: 9280_CR10 publication-title: Discrete Contin Dyn Syst doi: 10.3934/dcds.2018035 – volume: 264 start-page: 2732 year: 2013 ident: 9280_CR38 publication-title: J Funct Anal doi: 10.1016/j.jfa.2013.03.010 – volume: 192 start-page: 1 year: 1974 ident: 9280_CR21 publication-title: Trans Amer Math Soc – volume: 29 start-page: 757 year: 2003 ident: 9280_CR29 publication-title: Houston^J Math – volume: 257 start-page: 843 year: 2014 ident: 9280_CR42 publication-title: J Differential Equations doi: 10.1016/j.jde.2014.04.019 – volume: 165 start-page: 315 year: 1993 ident: 9280_CR12 publication-title: Ann Mat Pura Appl (4) doi: 10.1007/BF01765854 – volume: 34 start-page: 475 year: 1991 ident: 9280_CR18 publication-title: Funkcial Ekvac – volume: 73 start-page: 244 year: 2010 ident: 9280_CR23 publication-title: Nonlinear Anal doi: 10.1016/j.na.2010.03.017 – volume: 51 start-page: 160 year: 2000 ident: 9280_CR34 publication-title: Z Angew Math Phys doi: 10.1007/PL00001504 – volume: 253 start-page: 532 year: 2001 ident: 9280_CR1 publication-title: J Math Anal Appl doi: 10.1006/jmaa.2000.7163 – volume-title: Mathematical Problems from Combustion Theory year: 1989 ident: 9280_CR4 doi: 10.1007/978-1-4612-4546-9 – volume: 64 start-page: 705 year: 2013 ident: 9280_CR39 publication-title: Z Angew Math Phys doi: 10.1007/s00033-012-0255-3 – volume: 56 start-page: 571 year: 2004 ident: 9280_CR33 publication-title: J Math Soc Japan doi: 10.2969/jmsj/1191418646 – volume: 221 start-page: 720 year: 2013 ident: 9280_CR41 publication-title: Appl Math Comput doi: 10.1016/j.amc.2013.06.061 – volume: 87 start-page: 165 year: 1982 ident: 9280_CR25 publication-title: J Math Anal Appl doi: 10.1016/0022-247X(82)90160-3 – volume: 68 start-page: 459 year: 2010 ident: 9280_CR36 publication-title: Quart Appl Math doi: 10.1090/S0033-569X-2010-01197-0 – volume: 22 start-page: 273 year: 1975 ident: 9280_CR27 publication-title: Israel^J Math doi: 10.1007/BF02761595 – volume: 18 start-page: 405 year: 2005 ident: 9280_CR30 publication-title: Differential Integral Equations doi: 10.57262/die/1356060194 – volume: 9 start-page: 955 year: 1984 ident: 9280_CR6 publication-title: Comm Partial Differential Equations doi: 10.1080/03605308408820353 – volume: 21 start-page: 1544 year: 1985 ident: 9280_CR15 publication-title: Differ Uravn – volume: 118 start-page: 525 year: 1983 ident: 9280_CR32 publication-title: Ann of Math (2) doi: 10.2307/2006981 – volume: 53 start-page: 197 year: 2002 ident: 9280_CR5 publication-title: Z Angew Math Phys doi: 10.1007/s00033-002-8152-9 – volume: 45 start-page: 825 year: 2001 ident: 9280_CR9 publication-title: Nonlinear Anal doi: 10.1016/S0362-546X(99)00419-8 – volume: 39 start-page: 1588 year: 1994 ident: 9280_CR17 publication-title: Chinese Sci Bull – volume: 18 start-page: 961 year: 2005 ident: 9280_CR16 publication-title: Differential Integral Equations doi: 10.57262/die/1356060117 – volume: 64 start-page: 2665 year: 2006 ident: 9280_CR24 publication-title: Nonlinear Anal doi: 10.1016/j.na.2005.09.011 – volume: 19 start-page: 2123 year: 1983 ident: 9280_CR14 publication-title: Differ Uravn – volume: 251 start-page: 2737 year: 2011 ident: 9280_CR8 publication-title: J Differential Equations doi: 10.1016/j.jde.2011.06.015 – volume: 380 start-page: 632 year: 2011 ident: 9280_CR31 publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2011.03.033 – volume: 28 start-page: 473 year: 1977 ident: 9280_CR3 publication-title: Q J Math doi: 10.1093/qmath/28.4.473 – volume: 89 start-page: 176 year: 1991 ident: 9280_CR11 publication-title: J Differential Equations doi: 10.1016/0022-0396(91)90118-S – volume-title: New York: Plenum Press year: 1992 ident: 9280_CR26 – volume: 57 start-page: 555 year: 2014 ident: 9280_CR40 publication-title: Sci China Math doi: 10.1007/s11425-013-4642-9 – volume: 63 start-page: 1083 year: 2005 ident: 9280_CR22 publication-title: Nonlinear Anal doi: 10.1016/j.na.2005.05.037 – volume: 270 start-page: 4039 year: 2016 ident: 9280_CR37 publication-title: J Funct Anal doi: 10.1016/j.jfa.2016.02.026 |
SSID | ssj0000390473 |
Score | 2.4670436 |
Snippet | The initial boundary value problem of a class of reaction-diffusion systems (coupled parabolic systems) with nonlinear coupled source terms is considered in... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 321 |
SubjectTerms | Applications of Mathematics Boundary value problems Decay Energy Initial conditions Mathematical problems Mathematics Mathematics and Statistics Nonlinear systems Well posed problems |
Title | Global well-posedness of coupled parabolic systems |
URI | https://link.springer.com/article/10.1007/s11425-017-9280-x https://www.proquest.com/docview/2343288535 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7SXvQgPrFayx48KYFtHrvZY5HWotSThXoKeZ5Kt7gt9Oc72UcXRQWvu9ksTCYz82VmviB0Z7hLnGYGpy5RmHnAKVr7FHuVOA5wwLiSrmn2mkzn7HnBF3Ufd9FUuzcpydJSt81uQ9AvHKxqRkSMIXDscoDuQa3nZLQ_WIkBxbMysxwK7HEK_rPJZv40y1d_1AaZ3_KipbuZnKDjOk6MRtXCnqIDtzpDR7M9yWpxjkjF1x-F4ze8zgtng9mKch-ZfLteOhsFXm8diH-jirC5uEDzyfjtcYrrKxCwocNkAxYS4KvVRhFmUm5N2G-poqkhFpCAsIm2Hh76jHolAo9L6hNBhYmthdggY_QSdVb5yl2hiAIUckoRoYRmQ081IAvGuWIug21oeQ_FjSCkqfnBwzUVS9kyGwfZSZCdDLKTux6633-yrsgx_hrcb6Qr631SSBL6WgWEDPD7h0bi7etfJ7v-1-gbdEgCTC6Lrfuos_nYuluIJTZ6gLqjp_eX8aDUoU-oWMEM |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQOwADb0ShQAYmkKs2sRNnrBCl0MfUSmWK_FyomoqkEuLXc86jERUgdU0cJzn7zvf5zt8hdCep9rUgEgfa55gYwClCmAAb7msKcEDqjK5pNPb7U_I6o7PiHHdSZruXIcnMUleH3Towv7C1qqHL2hgcxzoBCE5rqN59fhtUWyttwPEkiy3bFHscwApaxjN_6-fnilS5mRuR0WzB6R2iSfmpeZ7Je2uVipb82mBx3PJfjtBB4YA63XzGHKMdvThB-6M1e2tyity8EIBj9_XwMk60svbQiY0j49VyrpVjCcOFZRR2cibo5AxNe0-Txz4uaitg6XX8FEwv4GIlJHeJDKiSVpED7gXSVQAxmPKFMnDRhJ7hzBLEBMZnHpNtpcDpCIl3jmqLeKEvkOMBxtKcu4wzQTrGEwBZCKWc6BD0W9EGapfyjWRBPG7rX8yjijLZiiMCcURWHNFnA92vH1nmrBv_NW6WgxYVCphErj0wy8AXgdc_lGNQ3f6zs8utWt-i3f5kNIyGL-PBFdpzLRbPMrqbqJZ-rPQ1OCypuCkm6DfLZd9y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iIHoQn7i6ag-elLBtmrbpcVGX9bGLBxf2FvI8Ldtiu-DPd9LHFkUFr22awiTz-DIzXxC6VpGJjaQKJyYWmFrAKVLaBFsRmwjggDIVXdNkGo9n9GkezZt7Tou22r1NSdY9DY6laVkOcm0HXeNbAHsNOwubEuZjCCK3wBoHrqZrRobrQxYfED2tssyu2B4n4EvbzOZPs3z1TV3A-S1HWrme0T7aa2JGb1gv8gHaMMtDtDtZE64WR4jU3P2eO4rDeVYY7UyYl1lPZat8YbTnOL6lIwH2avLm4hjNRg9vd2PcXIeAVRjEJVhLgLJaKkGoSiKtnO4lIkwU0YAKmI6ltvDQpqEVzHG6JDZmIVO-1hAnpDQ8QZvLbGlOkRcCLDJCECaYpIENJaAMGkWCmhRUUkc95LeC4KrhCndXVix4x3LsZMdBdtzJjn_00M36k7wmyvhrcL-VLm90puDE9bgyCB_g97etxLvXv0529q_RV2j79X7EXx6nz-dohzj0XNVg99Fm-b4yFxBilPKy2kafb9nGpw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+well-posedness+of+coupled+parabolic+systems&rft.jtitle=Science+China.+Mathematics&rft.au=Xu+Runzhang&rft.au=Lian%2C+Wei&rft.au=Niu+Yi&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1674-7283&rft.eissn=1869-1862&rft.volume=63&rft.issue=2&rft.spage=321&rft.epage=356&rft_id=info:doi/10.1007%2Fs11425-017-9280-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-7283&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-7283&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-7283&client=summon |