Nussbaum-Based Adaptive Fuzzy Tracking Control of Unmanned Surface Vehicles with Fully Unknown Dynamics and Complex Input Nonlinearities
In this paper, subject to both fully unknown dynamics and complex input nonlinearities including unknown control directions and dead zones, a Nussbaum-based adaptive fuzzy trajectory tracking control scheme of an unmanned surface vehicle is addressed by combining adaptive fuzzy backstepping techniqu...
Saved in:
Published in | International journal of fuzzy systems Vol. 20; no. 1; pp. 259 - 268 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, subject to both fully unknown dynamics and complex input nonlinearities including unknown control directions and dead zones, a Nussbaum-based adaptive fuzzy trajectory tracking control scheme of an unmanned surface vehicle is addressed by combining adaptive fuzzy backstepping technique with Nussbaum approach. The dead-zone input nonlinearity is firstly divided into input-dependent functions and time-varying input coefficients which can be treated as system uncertainties. Together with disturbances, unknown dynamics and uncertainties, the lumped nonlinearity is online approximated by employing an adaptive fuzzy approximator. Within the backstepping framework, a Nussbaum gain function is further designed to tackle unknown control directions, and thereby devising an adaptive fuzzy trajectory tracking control scheme which is constructed recursively to deal with complex input nonlinearities and fully unknown dynamics. Theoretical analysis reveals that all signals of the closed-loop tracking system are bounded and tracking errors can converge to an arbitrarily small neighborhood of zero. Simulation studies demonstrate the effectiveness and superiority of the proposed approach. |
---|---|
AbstractList | In this paper, subject to both fully unknown dynamics and complex input nonlinearities including unknown control directions and dead zones, a Nussbaum-based adaptive fuzzy trajectory tracking control scheme of an unmanned surface vehicle is addressed by combining adaptive fuzzy backstepping technique with Nussbaum approach. The dead-zone input nonlinearity is firstly divided into input-dependent functions and time-varying input coefficients which can be treated as system uncertainties. Together with disturbances, unknown dynamics and uncertainties, the lumped nonlinearity is online approximated by employing an adaptive fuzzy approximator. Within the backstepping framework, a Nussbaum gain function is further designed to tackle unknown control directions, and thereby devising an adaptive fuzzy trajectory tracking control scheme which is constructed recursively to deal with complex input nonlinearities and fully unknown dynamics. Theoretical analysis reveals that all signals of the closed-loop tracking system are bounded and tracking errors can converge to an arbitrarily small neighborhood of zero. Simulation studies demonstrate the effectiveness and superiority of the proposed approach. |
Author | Gao, Ying Wang, Ning Sun, Zhuo Zheng, Zhongjiu |
Author_xml | – sequence: 1 givenname: Ning orcidid: 0000-0003-1745-1425 surname: Wang fullname: Wang, Ning email: n.wang.dmu.cn@gmail.com organization: Center for Intelligent Marine Vehicles, and School of Marine Electrical Engineering, Dalian Maritime University – sequence: 2 givenname: Ying surname: Gao fullname: Gao, Ying organization: Center for Intelligent Marine Vehicles, and School of Marine Electrical Engineering, Dalian Maritime University – sequence: 3 givenname: Zhuo surname: Sun fullname: Sun, Zhuo organization: Center for Intelligent Marine Vehicles, and School of Marine Electrical Engineering, Dalian Maritime University – sequence: 4 givenname: Zhongjiu surname: Zheng fullname: Zheng, Zhongjiu organization: Center for Intelligent Marine Vehicles, and School of Marine Electrical Engineering, Dalian Maritime University |
BookMark | eNp9kM1O3DAUha0KJKaUB2BnqWu3_kmceEmnpSAhuiiwtWzHBpfETm0HZngCHrseTaVKldrV3ZzvnKvvLTgIMVgATgn-QDDuPuYG96RFmHQIs75DmzdgRYkQiFFCDsCKtJwi2nTiCJzk7DVmhHLWcrYCr9dLzlotE_qksh3g2aDm4p8sPF9eXrbwJinz6MM9XMdQUhxhdPA2TCqEmv2-JKeMhXf2wZvRZvjsy0MFx3FbQ48hPgf4eRvU5E2GKgy1ZJpHu4GXYV4KvI5h9MGq5Iu3-R04dGrM9uT3PQa3519u1hfo6tvXy_XZFTKM8IKoU9zqVvdM9VRwPTDNGt1Sxw0dFLGD4Jg7TZToycCxo6bXrmmUYIJSQSg7Bu_3vXOKPxebi_wRlxTqpKSCsa5pOs5riuxTJsWck3VyTn5SaSsJljvncu9cVudy51xuKtP9xRhfVPE7c8qP_yXpnsx1Jdzb9Oenf0O_AOqSmsU |
CitedBy_id | crossref_primary_10_1177_09596518231199208 crossref_primary_10_1002_rnc_5978 crossref_primary_10_1155_2019_6738594 crossref_primary_10_1002_asjc_2760 crossref_primary_10_3390_jmse12091484 crossref_primary_10_1007_s40815_017_0392_0 crossref_primary_10_1177_1729881419877758 crossref_primary_10_1049_iet_its_2019_0221 crossref_primary_10_1109_ACCESS_2018_2797084 crossref_primary_10_1007_s40815_017_0394_y crossref_primary_10_1007_s40815_018_0571_7 crossref_primary_10_1016_j_neucom_2021_04_133 crossref_primary_10_1109_TCSII_2020_3001314 crossref_primary_10_3390_app8040598 crossref_primary_10_1109_ACCESS_2020_3042091 crossref_primary_10_1007_s40815_021_01058_1 crossref_primary_10_1109_ACCESS_2020_3015589 crossref_primary_10_1109_TNNLS_2020_3009214 crossref_primary_10_1109_TIV_2022_3146085 crossref_primary_10_1007_s40815_022_01389_7 crossref_primary_10_1155_2019_3943472 crossref_primary_10_1016_j_oceaneng_2019_106906 crossref_primary_10_1016_j_oceaneng_2023_114562 crossref_primary_10_3233_JIFS_230688 crossref_primary_10_1007_s40815_022_01304_0 crossref_primary_10_1109_TITS_2024_3525073 crossref_primary_10_1109_TVT_2019_2927893 crossref_primary_10_3390_machines11060666 crossref_primary_10_1007_s40815_017_0401_3 crossref_primary_10_1007_s40815_020_00898_7 crossref_primary_10_1080_00207721_2020_1808733 crossref_primary_10_1016_j_jfranklin_2019_07_019 crossref_primary_10_1007_s40815_022_01444_3 crossref_primary_10_3934_mbe_2022106 |
Cites_doi | 10.1016/j.automatica.2015.12.026 10.1109/TCST.2014.2359880 10.1109/TCST.2015.2510587 10.1007/s40815-015-0071-y 10.1109/TFUZZ.2013.2291562 10.1109/TCYB.2015.2411285 10.3390/s16081335 10.1109/TIV.2017.2657379 10.4031/MTSJ.50.1.4 10.1007/0-8176-4470-9_23 10.1109/TNN.2010.2042611 10.1109/TSMC.2015.2429555 10.1109/TCYB.2015.2423635 10.1016/j.robot.2016.01.005 10.1109/TCST.2010.2090526 10.1049/iet-cta.2011.0176 10.1016/j.automatica.2017.02.026 10.1109/87.852916 10.1109/TFUZZ.2014.2362144 10.1109/TCYB.2014.2382679 10.1109/TCYB.2015.2451116 10.1016/j.cor.2016.09.017 10.1109/TCST.2013.2281211 10.1016/j.automatica.2009.03.010 10.1109/TNNLS.2013.2296048 10.1109/TFUZZ.2013.2291554 10.1109/TNNLS.2014.2334366 10.1109/TCST.2015.2496585 10.1109/TNN.2008.2010349 10.1109/TII.2012.2219541 10.1109/TNNLS.2017.2665581 10.1109/TFUZZ.2014.2348017 10.1016/j.neucom.2015.10.016 10.1016/j.neucom.2015.11.017 10.1016/j.fss.2015.04.005 10.1016/j.robot.2014.09.024 10.1016/j.sysconle.2015.07.002 10.1016/j.automatica.2004.10.006 10.1109/TFUZZ.2017.2697399 10.1109/TII.2016.2608739 10.1109/TNNLS.2016.2544786 10.1016/j.fss.2009.04.011 10.1016/j.apor.2015.09.010 10.1007/s40815-015-0015-6 10.1007/s11071-015-1958-8 |
ContentType | Journal Article |
Copyright | Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany 2017 Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany 2017. |
Copyright_xml | – notice: Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany 2017 – notice: Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany 2017. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s40815-017-0387-x |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2199-3211 |
EndPage | 268 |
ExternalDocumentID | 10_1007_s40815_017_0387_x |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51009017; 51379002 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -EM .4S .DC 0R~ 188 203 2UF 4.4 406 5GY 9RA A8Z AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABDZT ABECU ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFKRA AFQWF AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AILAN AINHJ AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ARAPS ARCSS ATFKH AVXWI AXYYD BENPR BGLVJ BGNMA CCPQU CNMHZ CSCUP CVCKV DNIVK DPUIP EBLON EBS EDO EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GJIRD HCIFZ HG6 HRMNR I-F IKXTQ IWAJR IXD J-C J9A JBSCW JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9J OK1 P2P PT4 PTHSS RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUS TUXDW UG4 UOJIU UTJUX UZ4 UZXMN VFIZW Z88 ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c316t-2fa6eb5b83a8296bd3b34b52f6c2da1ed9606fb1a981d60f2c8bf44a939229123 |
IEDL.DBID | BENPR |
ISSN | 1562-2479 |
IngestDate | Fri Jul 25 11:09:14 EDT 2025 Tue Jul 01 03:11:08 EDT 2025 Thu Apr 24 23:02:45 EDT 2025 Fri Feb 21 02:32:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Adaptive fuzzy control Fully unknown dynamics Complex input nonlinearities Unmanned surface vehicles Fuzzy approximation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-2fa6eb5b83a8296bd3b34b52f6c2da1ed9606fb1a981d60f2c8bf44a939229123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1745-1425 |
PQID | 2933744766 |
PQPubID | 2043640 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2933744766 crossref_primary_10_1007_s40815_017_0387_x crossref_citationtrail_10_1007_s40815_017_0387_x springer_journals_10_1007_s40815_017_0387_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180100 2018-1-00 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 1 year: 2018 text: 20180100 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | International journal of fuzzy systems |
PublicationTitleAbbrev | Int. J. Fuzzy Syst |
PublicationYear | 2018 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | GaoYTongSCComposite adaptive fuzzy output feedback dynamic surface control design for stochastic large-scale nonlinear systems with unknown dead zoneNeurocomputing2015175556410.1016/j.neucom.2015.10.016 XiangXBYuCYZhangQRobust fuzzy 3D path following for autonomous underwater vehicle subject to uncertaintiesComput. Oper. Res.201784165177363801510.1016/j.cor.2016.09.017 ZhangRChenYSunFXuHPath control of a surface ship in restricted water using sliding modeIEEE Trans. Control Syst. Technol.20008472273210.1109/87.852916 SlotineJJELiWApplied Nonlinear Control1991Englewood CliffsPrentice Hall0753.93036 WangNErMJHanMParsimonious extreme learning machine using recursive orthogonal least squaresIEEE Trans. Neural Netw. Learn. Syst.201425101828184110.1109/TNNLS.2013.2296048 HeWChenYHYinZAdaptive neural network control of an uncertain robot with full-state constraintsIEEE Trans. Cybernet.201646362062910.1109/TCYB.2015.2411285 WangNErMJHanMLarge tanker motion model identification using generalized ellipsoidal basis function-based fuzzy neural networksIEEE Trans. Cybernet.201545122732274310.1109/TCYB.2014.2382679 XuBRobust adaptive neural control of flexible hypersonic flight vehicle with dead-zone input nonlinearityNonlinear Dyn.201580315091520333440210.1007/s11071-015-1958-81351.93102 ChuZZZhuDQYangSXObserver-based adaptive neural network trajectory tracking control for remotely operated vehicleIEEE Trans. Neural Netw. Learn. Syst.20173666186 XiangXBLapierreLJouvencelBSmooth transition of AUV motion control: from fully-actuated to under-actuated configurationRobot. Auton. Syst.2015675142210.1016/j.robot.2014.09.024 WangNSunJCErMJLiuYCA novel extreme learning control framework of unmanned surface vehiclesIEEE Trans. Cybernet.20164651106111710.1109/TCYB.2015.2423635 BoulkrouneATadjineMSaadMFarzaMFuzzy adaptive controller for MIMO nonlinear systems with known and unknown control directionFuzzy Sets Syst.20101616797820258559810.1016/j.fss.2009.04.0111217.93086 LiZSunJOhSDesign, analysis and experimental validation of a robust nonlinear path following controller for marine surface vesselsAutomatica200945716491658287947810.1016/j.automatica.2009.03.0101184.93038 HeWDongYTAdaptive fuzzy neural network control for a constrained robot using impedance learningIEEE Trans. Neural Netw. Learn. Syst.2017 ZhengZSunLPath following control for marine surface vessel with uncertainties and input saturationNeurocomputing2016177115816710.1016/j.neucom.2015.11.017 GaoYTongSCComposite adaptive fuzzy output feedback dynamic surface control design for uncertain nonlinear stochastic systems with input quantizationInt. J. Fuzzy Syst.2015174609622342204910.1007/s40815-015-0071-y KhalilHNonlinear Systems19962Upper Saddle RiverPrentice-Hall Press ShojaeiKNeural adaptive robust control of underactuated marine surfacevehicles with input saturationAppl. Ocean Res.201553426727810.1016/j.apor.2015.09.010 ShojaeiKObserver-based neural adaptive formation control of autonomous surface vessels with limited torqueRobot. Auton. Syst.2016781839610.1016/j.robot.2016.01.005 GaoYTongSCLiYMObserver-based adaptive fuzzy output constrained control for MIMO nonlinear systems with unknown control directionsFuzzy Sets Syst.201629017999346025210.1016/j.fss.2015.04.0051374.93211 TongSCSuiSLiYMAdaptive fuzzy decentralized output stabilization for stochastic nonlinear large-scale systems with unknown control directionsIEEE Trans. Fuzzy Syst.20142251365137210.1109/TFUZZ.2013.2291554 WangNSunJCErMJTracking-error-based universal adaptive fuzzy control for output tracking of nonlinear systems with completely unknown dynamicsIEEE Trans. Fuzzy Syst.2017 ZhangTPGeSSAdaptive neural network tracking control of MIMO nonlinear systems with unknown dead zones and control directionsIEEE Trans. Neural Netw.200920348349310.1109/TNN.2008.2010349 HeWDongYTSunCYAdaptive neural impedance control of a robotic manipulator with input saturationIEEE Trans. Syst. Man Cybernet. Syst.201646333434410.1109/TSMC.2015.2429555 HuangJWenCWangWSongYDGlobal stable tracking control of underactuated ships with input saturationSyst. Control Lett.201585117341714610.1016/j.sysconle.2015.07.0021322.93050 WangNQianCSunZYGlobal asymptotic output tracking of nonlinear second-order systems with power integratorsAutomatica2017801156161363806810.1016/j.automatica.2017.02.0261370.93082 WangNErMJSelf-constructing adaptive robust fuzzy neural tracking control of surface vehicles with uncertainties and unknown disturbancesIEEE Trans. Control Syst. Technol.2015233991100210.1109/TCST.2014.2359880 HeWGeSSCooperative control of a nonuniform gantry crane with constrained tensionAutomatica2016664146154345842310.1016/j.automatica.2015.12.0261335.93012 FossenTIMarine Control Systems: Guidance. Navigation and Control of Ships, Rigs and Underwater Vehicles2002TrondheimMarine Cybernetics XiangXBYuCYNiuZMZhangQSubsea cable tracking by autonomous underwater vehicle with magnetic sensing guidanceSensors2016168133510.3390/s16081335 ZhangQLapierreLXiangXBDistributed control of coordinated path tracking for networked nonholonomic mobile vehiclesIEEE Trans. Ind. Inform.20139147248410.1109/TII.2012.2219541 YuRZhuQXiaGLiuZSliding mode tracking control of an underactuated surface vesselIET Control Theory Appl.201263461466295187910.1049/iet-cta.2011.0176 BoldbaatarEALinCMSelf-learning fuzzy sliding-mode control for a water bath temperature control systemInt. J. Fuzzy Syst.2015171313810.1007/s40815-015-0015-6 XiangXBYuCYZhangQXuGHPath-following control of an AUV: Fully actuated versus under-actuated configurationMar. Technol. Soc. J.2016501344710.4031/MTSJ.50.1.4 WangNErMJDirect adaptive fuzzy tracking control of marine vehicle with fully unknown parametric dynamics and uncertaintiesIEEE Trans. Control Syst. Technol.20162451845185210.1109/TCST.2015.2510587 HarmoucheMLaghroucheSChitourYGlobal tracking for underactuated ships with bounded feedback controllersInt. J. Control201487102035204332543941308.93091 WangNQianCSunJCLiuYCAdaptive robust finite-time trajectory tracking control of fully actuated marine surface vehiclesIEEE Trans. Control Syst. Technol.20162441454146210.1109/TCST.2015.2496585 ChenMGeSSVoon Ee HowBRobust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearitiesIEEE Trans. Neural Netw.201021579681210.1109/TNN.2010.2042611 SkjetneRFossenTIKokotovicPVAdaptive maneuvering with experiments, for a model ships in a marine control laboratoryAutomatica2005412289298215766410.1016/j.automatica.2004.10.0061096.93026 WangNErMJHanMDynamic tanker steering control using generalized-ellipsoidal-basis-function-based fuzzy neural networksIEEE Trans. Fuzzy Syst.20152351414142710.1109/TFUZZ.2014.2362144 HeWOuyangYCHongJVibration control of a flexible robotic manipulator in the presence of input deadzoneIEEE Trans. Ind. Inform.2017131485910.1109/TII.2016.2608739 ShiWXAdaptive fuzzy control for MIMO nonlinear systems with nonsymmetric control gain matrix and unknown control directionIEEE Trans. Fuzzy Syst.20142251288123010.1109/TFUZZ.2013.2291562 WangNErMJHanMGeneralized single-hidden layer feedforward networks for regression problemsIEEE Trans. Neural Netw. Learn. Syst.201526611611176345484010.1109/TNNLS.2014.2334366 ChwaDGlobal tracking control of underactuated ships with input and velocity constraints using dynamic surface control methodIEEE Trans. Control Syst. Technol.20111961357137010.1109/TCST.2010.2090526 LiYMTongSCLiTSObserver-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control directions and unknown dead-zonesIEEE Trans. Fuzzy Syst.20152341228124110.1109/TFUZZ.2014.2348017 WangNErMJSunJCLiuYCAdaptive robust online constructive fuzzy control of a complex surface vehicle systemIEEE Trans. Cybernet.20164671511152310.1109/TCYB.2015.2451116 LeonessaAVanZwietenTMorelYMeniniLZaccarianLAbdallahCNeural network model reference adaptive control of marine vehiclesCurrent Trends in Nonlinear Systems and Control2006Birkhäuser BostonSpringer42144010.1007/0-8176-4470-9_23 ZhaoZHeWGeSSAdaptive neural network control of a fully actuated marine surface vessel with multiple output constraintsIEEE Trans. Control Syst. Technol.2014221536154310.1109/TCST.2013.2281211 WangNLvSLErMJChenWHFast and accurate trajectory tracking control of an autonomous surface vehicle with unmodeled dynamics and disturbancesIEEE Trans. Intell. Veh.20161323024310.1109/TIV.2017.2657379 W He (387_CR22) 2017 N Wang (387_CR46) 2015; 26 EA Boldbaatar (387_CR17) 2015; 17 M Harmouche (387_CR32) 2014; 87 B Xu (387_CR37) 2015; 80 JJE Slotine (387_CR15) 1991 A Boulkroune (387_CR42) 2010; 161 N Wang (387_CR26) 2016; 24 YM Li (387_CR40) 2015; 23 Y Gao (387_CR41) 2015; 175 Z Li (387_CR12) 2009; 45 ZZ Chu (387_CR23) 2017 Z Zheng (387_CR31) 2016; 177 R Zhang (387_CR16) 2000; 8 XB Xiang (387_CR5) 2016; 16 TP Zhang (387_CR44) 2009; 20 XB Xiang (387_CR8) 2015; 67 N Wang (387_CR47) 2014; 25 M Chen (387_CR13) 2010; 21 R Skjetne (387_CR49) 2005; 41 Z Zhao (387_CR25) 2014; 22 Y Gao (387_CR48) 2015; 17 TI Fossen (387_CR1) 2002 XB Xiang (387_CR9) 2016; 50 K Shojaei (387_CR35) 2016; 78 N Wang (387_CR2) 2015; 23 N Wang (387_CR6) 2017; 80 W He (387_CR21) 2016; 46 W He (387_CR4) 2016; 66 N Wang (387_CR19) 2016; 46 N Wang (387_CR7) 2017 Y Gao (387_CR39) 2016; 290 K Shojaei (387_CR34) 2015; 53 SC Tong (387_CR45) 2014; 22 XB Xiang (387_CR14) 2017; 84 W He (387_CR36) 2017; 13 N Wang (387_CR3) 2015; 45 N Wang (387_CR29) 2016; 24 N Wang (387_CR28) 2015; 23 N Wang (387_CR24) 2016; 46 WX Shi (387_CR43) 2014; 22 H Khalil (387_CR11) 1996 J Huang (387_CR33) 2015; 85 W He (387_CR20) 2016; 46 R Yu (387_CR18) 2012; 6 Q Zhang (387_CR10) 2013; 9 D Chwa (387_CR30) 2011; 19 A Leonessa (387_CR27) 2006 N Wang (387_CR38) 2016; 1 |
References_xml | – reference: HuangJWenCWangWSongYDGlobal stable tracking control of underactuated ships with input saturationSyst. Control Lett.201585117341714610.1016/j.sysconle.2015.07.0021322.93050 – reference: HeWGeSSCooperative control of a nonuniform gantry crane with constrained tensionAutomatica2016664146154345842310.1016/j.automatica.2015.12.0261335.93012 – reference: WangNErMJDirect adaptive fuzzy tracking control of marine vehicle with fully unknown parametric dynamics and uncertaintiesIEEE Trans. Control Syst. Technol.20162451845185210.1109/TCST.2015.2510587 – reference: ZhangTPGeSSAdaptive neural network tracking control of MIMO nonlinear systems with unknown dead zones and control directionsIEEE Trans. Neural Netw.200920348349310.1109/TNN.2008.2010349 – reference: WangNSunJCErMJTracking-error-based universal adaptive fuzzy control for output tracking of nonlinear systems with completely unknown dynamicsIEEE Trans. Fuzzy Syst.2017 – reference: ChuZZZhuDQYangSXObserver-based adaptive neural network trajectory tracking control for remotely operated vehicleIEEE Trans. Neural Netw. Learn. Syst.20173666186 – reference: HarmoucheMLaghroucheSChitourYGlobal tracking for underactuated ships with bounded feedback controllersInt. J. Control201487102035204332543941308.93091 – reference: HeWOuyangYCHongJVibration control of a flexible robotic manipulator in the presence of input deadzoneIEEE Trans. Ind. Inform.2017131485910.1109/TII.2016.2608739 – reference: HeWDongYTSunCYAdaptive neural impedance control of a robotic manipulator with input saturationIEEE Trans. Syst. Man Cybernet. Syst.201646333434410.1109/TSMC.2015.2429555 – reference: WangNErMJHanMParsimonious extreme learning machine using recursive orthogonal least squaresIEEE Trans. Neural Netw. Learn. Syst.201425101828184110.1109/TNNLS.2013.2296048 – reference: HeWChenYHYinZAdaptive neural network control of an uncertain robot with full-state constraintsIEEE Trans. Cybernet.201646362062910.1109/TCYB.2015.2411285 – reference: XiangXBYuCYZhangQXuGHPath-following control of an AUV: Fully actuated versus under-actuated configurationMar. Technol. Soc. J.2016501344710.4031/MTSJ.50.1.4 – reference: BoulkrouneATadjineMSaadMFarzaMFuzzy adaptive controller for MIMO nonlinear systems with known and unknown control directionFuzzy Sets Syst.20101616797820258559810.1016/j.fss.2009.04.0111217.93086 – reference: WangNLvSLErMJChenWHFast and accurate trajectory tracking control of an autonomous surface vehicle with unmodeled dynamics and disturbancesIEEE Trans. Intell. Veh.20161323024310.1109/TIV.2017.2657379 – reference: WangNQianCSunJCLiuYCAdaptive robust finite-time trajectory tracking control of fully actuated marine surface vehiclesIEEE Trans. Control Syst. Technol.20162441454146210.1109/TCST.2015.2496585 – reference: GaoYTongSCComposite adaptive fuzzy output feedback dynamic surface control design for stochastic large-scale nonlinear systems with unknown dead zoneNeurocomputing2015175556410.1016/j.neucom.2015.10.016 – reference: ChenMGeSSVoon Ee HowBRobust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearitiesIEEE Trans. Neural Netw.201021579681210.1109/TNN.2010.2042611 – reference: XiangXBLapierreLJouvencelBSmooth transition of AUV motion control: from fully-actuated to under-actuated configurationRobot. Auton. Syst.2015675142210.1016/j.robot.2014.09.024 – reference: WangNSunJCErMJLiuYCA novel extreme learning control framework of unmanned surface vehiclesIEEE Trans. Cybernet.20164651106111710.1109/TCYB.2015.2423635 – reference: GaoYTongSCComposite adaptive fuzzy output feedback dynamic surface control design for uncertain nonlinear stochastic systems with input quantizationInt. J. Fuzzy Syst.2015174609622342204910.1007/s40815-015-0071-y – reference: WangNErMJHanMDynamic tanker steering control using generalized-ellipsoidal-basis-function-based fuzzy neural networksIEEE Trans. Fuzzy Syst.20152351414142710.1109/TFUZZ.2014.2362144 – reference: ShojaeiKObserver-based neural adaptive formation control of autonomous surface vessels with limited torqueRobot. Auton. Syst.2016781839610.1016/j.robot.2016.01.005 – reference: LiYMTongSCLiTSObserver-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control directions and unknown dead-zonesIEEE Trans. Fuzzy Syst.20152341228124110.1109/TFUZZ.2014.2348017 – reference: WangNErMJHanMGeneralized single-hidden layer feedforward networks for regression problemsIEEE Trans. Neural Netw. Learn. Syst.201526611611176345484010.1109/TNNLS.2014.2334366 – reference: ShojaeiKNeural adaptive robust control of underactuated marine surfacevehicles with input saturationAppl. Ocean Res.201553426727810.1016/j.apor.2015.09.010 – reference: XuBRobust adaptive neural control of flexible hypersonic flight vehicle with dead-zone input nonlinearityNonlinear Dyn.201580315091520333440210.1007/s11071-015-1958-81351.93102 – reference: ZhangQLapierreLXiangXBDistributed control of coordinated path tracking for networked nonholonomic mobile vehiclesIEEE Trans. Ind. Inform.20139147248410.1109/TII.2012.2219541 – reference: LeonessaAVanZwietenTMorelYMeniniLZaccarianLAbdallahCNeural network model reference adaptive control of marine vehiclesCurrent Trends in Nonlinear Systems and Control2006Birkhäuser BostonSpringer42144010.1007/0-8176-4470-9_23 – reference: TongSCSuiSLiYMAdaptive fuzzy decentralized output stabilization for stochastic nonlinear large-scale systems with unknown control directionsIEEE Trans. Fuzzy Syst.20142251365137210.1109/TFUZZ.2013.2291554 – reference: SlotineJJELiWApplied Nonlinear Control1991Englewood CliffsPrentice Hall0753.93036 – reference: HeWDongYTAdaptive fuzzy neural network control for a constrained robot using impedance learningIEEE Trans. Neural Netw. Learn. Syst.2017 – reference: WangNErMJSelf-constructing adaptive robust fuzzy neural tracking control of surface vehicles with uncertainties and unknown disturbancesIEEE Trans. Control Syst. Technol.2015233991100210.1109/TCST.2014.2359880 – reference: KhalilHNonlinear Systems19962Upper Saddle RiverPrentice-Hall Press – reference: ZhaoZHeWGeSSAdaptive neural network control of a fully actuated marine surface vessel with multiple output constraintsIEEE Trans. Control Syst. Technol.2014221536154310.1109/TCST.2013.2281211 – reference: WangNErMJSunJCLiuYCAdaptive robust online constructive fuzzy control of a complex surface vehicle systemIEEE Trans. Cybernet.20164671511152310.1109/TCYB.2015.2451116 – reference: WangNQianCSunZYGlobal asymptotic output tracking of nonlinear second-order systems with power integratorsAutomatica2017801156161363806810.1016/j.automatica.2017.02.0261370.93082 – reference: ChwaDGlobal tracking control of underactuated ships with input and velocity constraints using dynamic surface control methodIEEE Trans. Control Syst. Technol.20111961357137010.1109/TCST.2010.2090526 – reference: GaoYTongSCLiYMObserver-based adaptive fuzzy output constrained control for MIMO nonlinear systems with unknown control directionsFuzzy Sets Syst.201629017999346025210.1016/j.fss.2015.04.0051374.93211 – reference: LiZSunJOhSDesign, analysis and experimental validation of a robust nonlinear path following controller for marine surface vesselsAutomatica200945716491658287947810.1016/j.automatica.2009.03.0101184.93038 – reference: XiangXBYuCYNiuZMZhangQSubsea cable tracking by autonomous underwater vehicle with magnetic sensing guidanceSensors2016168133510.3390/s16081335 – reference: ZhangRChenYSunFXuHPath control of a surface ship in restricted water using sliding modeIEEE Trans. Control Syst. Technol.20008472273210.1109/87.852916 – reference: ZhengZSunLPath following control for marine surface vessel with uncertainties and input saturationNeurocomputing2016177115816710.1016/j.neucom.2015.11.017 – reference: BoldbaatarEALinCMSelf-learning fuzzy sliding-mode control for a water bath temperature control systemInt. J. Fuzzy Syst.2015171313810.1007/s40815-015-0015-6 – reference: FossenTIMarine Control Systems: Guidance. Navigation and Control of Ships, Rigs and Underwater Vehicles2002TrondheimMarine Cybernetics – reference: WangNErMJHanMLarge tanker motion model identification using generalized ellipsoidal basis function-based fuzzy neural networksIEEE Trans. Cybernet.201545122732274310.1109/TCYB.2014.2382679 – reference: YuRZhuQXiaGLiuZSliding mode tracking control of an underactuated surface vesselIET Control Theory Appl.201263461466295187910.1049/iet-cta.2011.0176 – reference: XiangXBYuCYZhangQRobust fuzzy 3D path following for autonomous underwater vehicle subject to uncertaintiesComput. Oper. Res.201784165177363801510.1016/j.cor.2016.09.017 – reference: ShiWXAdaptive fuzzy control for MIMO nonlinear systems with nonsymmetric control gain matrix and unknown control directionIEEE Trans. Fuzzy Syst.20142251288123010.1109/TFUZZ.2013.2291562 – reference: SkjetneRFossenTIKokotovicPVAdaptive maneuvering with experiments, for a model ships in a marine control laboratoryAutomatica2005412289298215766410.1016/j.automatica.2004.10.0061096.93026 – volume: 66 start-page: 146 issue: 4 year: 2016 ident: 387_CR4 publication-title: Automatica doi: 10.1016/j.automatica.2015.12.026 – volume: 23 start-page: 991 issue: 3 year: 2015 ident: 387_CR28 publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2014.2359880 – volume: 24 start-page: 1845 issue: 5 year: 2016 ident: 387_CR29 publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2015.2510587 – volume: 17 start-page: 609 issue: 4 year: 2015 ident: 387_CR48 publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-015-0071-y – volume: 22 start-page: 1288 issue: 5 year: 2014 ident: 387_CR43 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2013.2291562 – volume: 46 start-page: 620 issue: 3 year: 2016 ident: 387_CR20 publication-title: IEEE Trans. Cybernet. doi: 10.1109/TCYB.2015.2411285 – volume: 16 start-page: 1335 issue: 8 year: 2016 ident: 387_CR5 publication-title: Sensors doi: 10.3390/s16081335 – volume: 1 start-page: 230 issue: 3 year: 2016 ident: 387_CR38 publication-title: IEEE Trans. Intell. Veh. doi: 10.1109/TIV.2017.2657379 – volume: 50 start-page: 34 issue: 1 year: 2016 ident: 387_CR9 publication-title: Mar. Technol. Soc. J. doi: 10.4031/MTSJ.50.1.4 – start-page: 421 volume-title: Current Trends in Nonlinear Systems and Control year: 2006 ident: 387_CR27 doi: 10.1007/0-8176-4470-9_23 – volume: 21 start-page: 796 issue: 5 year: 2010 ident: 387_CR13 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2010.2042611 – volume: 46 start-page: 334 issue: 3 year: 2016 ident: 387_CR21 publication-title: IEEE Trans. Syst. Man Cybernet. Syst. doi: 10.1109/TSMC.2015.2429555 – volume: 46 start-page: 1106 issue: 5 year: 2016 ident: 387_CR19 publication-title: IEEE Trans. Cybernet. doi: 10.1109/TCYB.2015.2423635 – volume: 78 start-page: 83 issue: 1 year: 2016 ident: 387_CR35 publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2016.01.005 – volume: 19 start-page: 1357 issue: 6 year: 2011 ident: 387_CR30 publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2010.2090526 – volume: 6 start-page: 461 issue: 3 year: 2012 ident: 387_CR18 publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2011.0176 – volume: 87 start-page: 2035 issue: 10 year: 2014 ident: 387_CR32 publication-title: Int. J. Control – volume: 80 start-page: 156 issue: 1 year: 2017 ident: 387_CR6 publication-title: Automatica doi: 10.1016/j.automatica.2017.02.026 – volume: 8 start-page: 722 issue: 4 year: 2000 ident: 387_CR16 publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/87.852916 – volume: 23 start-page: 1414 issue: 5 year: 2015 ident: 387_CR2 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2014.2362144 – volume: 45 start-page: 2732 issue: 12 year: 2015 ident: 387_CR3 publication-title: IEEE Trans. Cybernet. doi: 10.1109/TCYB.2014.2382679 – volume: 46 start-page: 1511 issue: 7 year: 2016 ident: 387_CR24 publication-title: IEEE Trans. Cybernet. doi: 10.1109/TCYB.2015.2451116 – volume: 84 start-page: 165 year: 2017 ident: 387_CR14 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2016.09.017 – volume: 22 start-page: 1536 year: 2014 ident: 387_CR25 publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2013.2281211 – volume: 45 start-page: 1649 issue: 7 year: 2009 ident: 387_CR12 publication-title: Automatica doi: 10.1016/j.automatica.2009.03.010 – volume: 25 start-page: 1828 issue: 10 year: 2014 ident: 387_CR47 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2013.2296048 – volume: 22 start-page: 1365 issue: 5 year: 2014 ident: 387_CR45 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2013.2291554 – volume-title: Marine Control Systems: Guidance. Navigation and Control of Ships, Rigs and Underwater Vehicles year: 2002 ident: 387_CR1 – volume: 26 start-page: 1161 issue: 6 year: 2015 ident: 387_CR46 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2334366 – volume-title: Applied Nonlinear Control year: 1991 ident: 387_CR15 – volume: 24 start-page: 1454 issue: 4 year: 2016 ident: 387_CR26 publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2015.2496585 – volume: 20 start-page: 483 issue: 3 year: 2009 ident: 387_CR44 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2008.2010349 – volume: 9 start-page: 472 issue: 1 year: 2013 ident: 387_CR10 publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2012.2219541 – year: 2017 ident: 387_CR22 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2017.2665581 – volume: 23 start-page: 1228 issue: 4 year: 2015 ident: 387_CR40 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2014.2348017 – volume: 175 start-page: 55 year: 2015 ident: 387_CR41 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.10.016 – volume: 177 start-page: 158 issue: 1 year: 2016 ident: 387_CR31 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.017 – volume: 290 start-page: 79 issue: 1 year: 2016 ident: 387_CR39 publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2015.04.005 – volume: 67 start-page: 14 issue: 5 year: 2015 ident: 387_CR8 publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2014.09.024 – volume: 85 start-page: 1 issue: 1 year: 2015 ident: 387_CR33 publication-title: Syst. Control Lett. doi: 10.1016/j.sysconle.2015.07.002 – volume: 41 start-page: 289 issue: 2 year: 2005 ident: 387_CR49 publication-title: Automatica doi: 10.1016/j.automatica.2004.10.006 – year: 2017 ident: 387_CR7 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2017.2697399 – volume-title: Nonlinear Systems year: 1996 ident: 387_CR11 – volume: 13 start-page: 48 issue: 1 year: 2017 ident: 387_CR36 publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2016.2608739 – year: 2017 ident: 387_CR23 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2544786 – volume: 161 start-page: 797 issue: 6 year: 2010 ident: 387_CR42 publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2009.04.011 – volume: 53 start-page: 267 issue: 4 year: 2015 ident: 387_CR34 publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2015.09.010 – volume: 17 start-page: 31 issue: 1 year: 2015 ident: 387_CR17 publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-015-0015-6 – volume: 80 start-page: 1509 issue: 3 year: 2015 ident: 387_CR37 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-015-1958-8 |
SSID | ssib031263563 ssib053833614 ssib026410675 ssj0002147029 ssib008679421 |
Score | 2.2856193 |
Snippet | In this paper, subject to both fully unknown dynamics and complex input nonlinearities including unknown control directions and dead zones, a Nussbaum-based... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 259 |
SubjectTerms | Adaptive control Approximation Artificial Intelligence Closed loops Computational Intelligence Controllers Design Engineering Fluid mechanics Fuzzy control Fuzzy logic Management Science Neural networks Nonlinearity Operations Research Surface vehicles Systems stability Tracking control Tracking errors Tracking systems Trajectory control Uncertainty Unmanned vehicles |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQ9gIH3oiFgnzgBHKV-JXNcVu6FBB7oYvKKfIrAtFNV5tE6u4v6M9mJq8tFSD1HCdyxvZ8n2fGnwl5471X4BcjZoNUTFodsTRSnHEpvEXKLCQeFP4y1ycL-elMnXXnuMu-2r1PSTaeejjsJgG9sNAsYZhyZUAc94B-RGpE9qYfvn8-HqYRashdO74JkI86acO0FTEKsOxUp2DJC9GhVOPA8eqeqLnfDDY32O0k7fOhf-vHn4i2o6k3MqsNYM0ekNP-V9s6lV8HdWUP3PaGCuQtbfGQ3O8ILJ22M-4RuROKx-TeNVnDJ-RqXpelNfWSHQJGejr1ZoVelc7q7XZDAR4dBujpUVsmTy9yuiiWBj0-_Vqvc-MC_RZ-NAV7FAPFFDfKG2iEEcCCvt8UZvnTldQUnqJDOw-X9GOxqis6b5U_zLoRin1KFrPj06MT1t34wJyIdcV4bnSwyk6EmfBUWy-skFbxXDvuTRw87rdyG5sUaLaOcu4mNpfSpMDyeAog_IyMiosiPCdUidzrNPaYJoRNoDIuCUp6KZ23IeJ2TKJ-1DLXyaHjrRzn2SDk3Bg5AyNnaOTsckzeDq-sWi2Q_zXe76dC1rmFMgNuJRIpE63H5F0_srvH__zYi1u1fknuAq2btIGifTKq1nV4BdSpsq-7pfIb6moKIg priority: 102 providerName: Springer Nature |
Title | Nussbaum-Based Adaptive Fuzzy Tracking Control of Unmanned Surface Vehicles with Fully Unknown Dynamics and Complex Input Nonlinearities |
URI | https://link.springer.com/article/10.1007/s40815-017-0387-x https://www.proquest.com/docview/2933744766 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB7R5AIHxFMESrQHTqAV9r5sn1BakhYQEQKCysna9a7VQ-uEOJbS_gJ-Njv2OilI9Oz1SvbMzjev_QbglbVWersYUeOEpMKoiGaRZJQJbg26zFzgReHPc3W6EB_P5FlIuNWhrbK3ia2htssCc-RvPSzxRIhEqXerXxSnRmF1NYzQOIChN8FpOoDh0XT-5etOo5BO7sZNTo_-SJm202AeIxfLnoDKn37OA2C1thyn-ETtqDMf5-AXJFlfGsX7d8IDKva-JRSrwHT7N7jtPdZ_iqwtds0ewP3gdJJJpyUP4Y6rHsG9G1SEj-H3vKlro5tLeuRxzZKJ1Su0hGTWXF9fEQ9pBSbVyXHX2k6WJVlUlxqtNPnWrEtdOPLDnbdNdgSTuwSD2yu_CLN2FXnfTb6via4sQSN04bbkQ7VqNmTesXXodUvu-gQWs-n341MapjTQgsdqQ1mplTPSpFynLFPGcsOFkaxUBbM6dhZjpNLEOvOusYpKVqSmFEJn3jNjmQfOpzColpV7BkTy0qostlja84Gb1EXipLBCFNa4iJkRRP3vzYtAYY6TNC7yHflyK5HcSyRHieTbEbzevbLq-DtuW3zYyywPR7nO94o3gje9HPeP_7vZ89s3ewF3ve-VdtmcQxhs1o176f2bjRnDQTo7GcNwcvLz03QcVPoPJaLz3w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7QE4oPISgQJ7gAtohb27XseHqiotIaFtLjSoN7Mvq0iNk8axmvQX8Gv4jcz4kRQkeuvZax92xvN9O7PzDSFvnXMRxMWAGS8jJo0KWBJEnHEpnEHKLCQ2Cp8MVX8kv55FZxvkd9sLg9cq25hYBWo3sZgj_wiwJGIpY6X2ppcMp0ZhdbUdoVG7xZFfXsGRrdgdHIJ933He-3x60GfNVAFmRajmjGdaeROZrtBdnijjhBHSRDxTljsdeoecPjOhToDKqSDjtmsyKXUCTIInIQodQMjfkgKQHDvTe19W_ovidTf6RoFroEDb6n8RISq_rOWuINYI0cBjhRw4MyioBqvBqQr3K07aQix2-0mAb7xpFzOsObPF31C65sf_lHQrpOxtk4cNxaX7tU8-Ihs-f0we3BA-fEJ-DcuiMLocs0-Aoo7uOz3FuEt75fX1kgKAWkzh04P6Ij2dZHSUjzViAv1WzjJtPf3uz6srfRRTyRSP0ktYhDnCnB4ucz3-aQuqc0cx5F34BR3k03JOh7U2iJ5VUrJPyehOrPeMbOaT3D8nNBKZU0nosJAIx8RI29hH0klpnfEBNx0StNub2kYwHed2XKQrqefKIilYJEWLpIsOeb96ZVqrhdy2eKe1WdoEjiJdu3mHfGjtuH7834-9uP1jb8i9_unJcXo8GB69JPeB9XXrPNIO2ZzPSv8KmNXcvK7cmZIfd_3__AFN1i0O |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQVkJwAMpDXSitD5xAbpP4keS4tN22FFZIsKicgl8RiK672iRSd38BPxtPXlsqQEJcEydKxvZ8nz3jbxB6YYzh3i8GRFnGCVMiIGnAIxIxahRQZsrgoPC7iTiZsjfn_Lytc1p02e5dSLI50wAqTa7cn5t8vz_4xjySQdJZTCD8SjyJ3PCX4mSANkbHn8-O-iEFenLXjnJ6-AfNtH4I0xDEWNYKVH76U9oiVu3MoYxPUNc68wsd-IU47WKjv_uOX9FtTVlvRFlr8BrfR1-6325yVr7vVaXa06sbipD_YZcH6F5LbPGoGYmb6JZ1D9Hda3KHj9CPSVUUSlYz8tpjp8EjI-fgbfG4Wq2W2MOmho17fNCkz-PLHE_dTAIS4A_VIpfa4k_2a53Ih2EDGcMCeukbwc6gw4dLJ2ffdIGlMxgc3YW9wqduXpV40iiCyEUtIPsYTcdHHw9OSFsJgmgaipJEuRRWcZVQmUSpUIYqyhSPcqEjI0NrYB2Wq1Cmnn6LII90onLGZOrZX5R6cH6CBu7S2S2EOc2NSEMD4UO_OORSx5Yzw5g2ygaRGqKg68FMtzLpUK3jIusFnmsjZ97IGRg5uxqil_0j80Yj5G-Nt7thkbXuosg856IxY7EQQ_Sq6-X17T--7Ok_td5Ft98fjrO3p5OzZ-iOZ35Js5e0jQblorLPPbsq1U47g34CgIcV9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nussbaum-Based+Adaptive+Fuzzy+Tracking+Control+of+Unmanned+Surface+Vehicles+with+Fully+Unknown+Dynamics+and+Complex+Input+Nonlinearities&rft.jtitle=International+journal+of+fuzzy+systems&rft.au=Wang%2C+Ning&rft.au=Gao%2C+Ying&rft.au=Sun%2C+Zhuo&rft.au=Zheng%2C+Zhongjiu&rft.date=2018-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1562-2479&rft.eissn=2199-3211&rft.volume=20&rft.issue=1&rft.spage=259&rft.epage=268&rft_id=info:doi/10.1007%2Fs40815-017-0387-x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1562-2479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1562-2479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1562-2479&client=summon |