Topological Fusion Model for Molecular Property Prediction
The prominence of 3D molecular property prediction arises from its ability to provide insights into the drug discovery and design, material science and chemical synthesis. Transformer-based models have been widely adopted to autonomously learn long-range atom-to-atom interactions on a global scale,...
Saved in:
Published in | Applied intelligence (Dordrecht, Netherlands) Vol. 55; no. 11; p. 819 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The prominence of 3D molecular property prediction arises from its ability to provide insights into the drug discovery and design, material science and chemical synthesis. Transformer-based models have been widely adopted to autonomously learn long-range atom-to-atom interactions on a global scale, resulting in significant success. However, these models may struggle to capture intricate substructure details (
e
.
g
., covalent bond and functional group). In this work, topological simplices defined on nodes, links, triangles are extracted from the atoms’ 3D positional information to provide comprehensive representations of the local substructure information, such as atoms, covalent bonds and functional groups. We then propose a topological fusion network, which enhances each atom’s features not only through global atom-to-atom interactions but also by incorporating the fine-grained topological substructure information. In comparison to existing popular methods, our proposed method outperforms the state-of-the-art (SOTA) method by 1.2%, 3.0%, 2.4%, 2.7% on BBBP, BACE, ClinTox, MUV datasets for classification task and 0.048, 0.022, 3.8 on FreeSolv, Lipo and QM7 datasets for regression task, respectively. The code will be released soon. |
---|---|
AbstractList | The prominence of 3D molecular property prediction arises from its ability to provide insights into the drug discovery and design, material science and chemical synthesis. Transformer-based models have been widely adopted to autonomously learn long-range atom-to-atom interactions on a global scale, resulting in significant success. However, these models may struggle to capture intricate substructure details (e.g., covalent bond and functional group). In this work, topological simplices defined on nodes, links, triangles are extracted from the atoms’ 3D positional information to provide comprehensive representations of the local substructure information, such as atoms, covalent bonds and functional groups. We then propose a topological fusion network, which enhances each atom’s features not only through global atom-to-atom interactions but also by incorporating the fine-grained topological substructure information. In comparison to existing popular methods, our proposed method outperforms the state-of-the-art (SOTA) method by 1.2%, 3.0%, 2.4%, 2.7% on BBBP, BACE, ClinTox, MUV datasets for classification task and 0.048, 0.022, 3.8 on FreeSolv, Lipo and QM7 datasets for regression task, respectively. The code will be released soon. The prominence of 3D molecular property prediction arises from its ability to provide insights into the drug discovery and design, material science and chemical synthesis. Transformer-based models have been widely adopted to autonomously learn long-range atom-to-atom interactions on a global scale, resulting in significant success. However, these models may struggle to capture intricate substructure details ( e . g ., covalent bond and functional group). In this work, topological simplices defined on nodes, links, triangles are extracted from the atoms’ 3D positional information to provide comprehensive representations of the local substructure information, such as atoms, covalent bonds and functional groups. We then propose a topological fusion network, which enhances each atom’s features not only through global atom-to-atom interactions but also by incorporating the fine-grained topological substructure information. In comparison to existing popular methods, our proposed method outperforms the state-of-the-art (SOTA) method by 1.2%, 3.0%, 2.4%, 2.7% on BBBP, BACE, ClinTox, MUV datasets for classification task and 0.048, 0.022, 3.8 on FreeSolv, Lipo and QM7 datasets for regression task, respectively. The code will be released soon. The prominence of 3D molecular property prediction arises from its ability to provide insights into the drug discovery and design, material science and chemical synthesis. Transformer-based models have been widely adopted to autonomously learn long-range atom-to-atom interactions on a global scale, resulting in significant success. However, these models may struggle to capture intricate substructure details ( e . g ., covalent bond and functional group). In this work, topological simplices defined on nodes, links, triangles are extracted from the atoms’ 3D positional information to provide comprehensive representations of the local substructure information, such as atoms, covalent bonds and functional groups. We then propose a topological fusion network, which enhances each atom’s features not only through global atom-to-atom interactions but also by incorporating the fine-grained topological substructure information. In comparison to existing popular methods, our proposed method outperforms the state-of-the-art (SOTA) method by 1.2%, 3.0%, 2.4%, 2.7% on BBBP, BACE, ClinTox, MUV datasets for classification task and 0.048, 0.022, 3.8 on FreeSolv, Lipo and QM7 datasets for regression task, respectively. The code will be released soon. |
ArticleNumber | 819 |
Author | Shufei, Zhang Mingjie, Sun Junwei, Wu Haotian, Xu Quan, Zhang Rong, Xia Jiejie, Liu |
Author_xml | – sequence: 1 givenname: Xia surname: Rong fullname: Rong, Xia organization: College of Art, Suzhou University of Science and Technology – sequence: 2 givenname: Xu surname: Haotian fullname: Haotian, Xu organization: RippleInfo – sequence: 3 givenname: Wu orcidid: 0000-0001-6155-4259 surname: Junwei fullname: Junwei, Wu email: junwei.wu@liverpool.ac.uk organization: Department of Electrical Engineering and Electronics, University of Liverpool, School of Advanced Technology, Xi’an Jiaotong-Liverpool University – sequence: 4 givenname: Zhang surname: Shufei fullname: Shufei, Zhang organization: Shanghai AI LAB – sequence: 5 givenname: Sun surname: Mingjie fullname: Mingjie, Sun organization: School of Computer Science and Technology, Soochow University – sequence: 6 givenname: Liu surname: Jiejie fullname: Jiejie, Liu organization: School of Advanced Technology, Xi’an Jiaotong-Liverpool University – sequence: 7 givenname: Zhang surname: Quan fullname: Quan, Zhang organization: School of Advanced Technology, Xi’an Jiaotong-Liverpool University |
BookMark | eNp9kE1Lw0AQhhepYFv9A54CnldnP7JJvEmxKlT0UMHbstmPkhKzcTeh9N-7GsGbp3kZnncGngWadb6zCF0SuCYAxU0kwMsKA80xiIISfDhBc5IXDBe8KmZoDhXlWIjq_QwtYtwDAGNA5uh263vf-l2jVZutx9j4Lnv2xraZ8yGl1uqxVSF7Db63YTimYE2jh8Sdo1On2mgvfucSva3vt6tHvHl5eFrdbbBmRAyYOiJyx6kCzUTJhKgtVYYaXgOtlHB1Wbu0IVoxXpalMcDAsUIrbgwxtGBLdDXd7YP_HG0c5N6PoUsvJaOUAyOV4ImiE6WDjzFYJ_vQfKhwlATktyM5OZLJkfxxJA-pxKZSTHC3s-Hv9D-tL2-YbAg |
Cites_doi | 10.1186/s13321-020-00456-1 10.1016/j.ailsci.2021.100014 10.1021/acs.jcim.9b00237 10.1101/2024.04.13.589331 10.1007/s10489-020-01801-5 10.1109/TMM.2020.3025166 10.1021/acs.jpclett.9b01570 10.1038/s42256-021-00438-4 10.1021/acs.molpharmaceut.7b01134 10.1016/j.ijleo.2022.170204 10.1093/bib/bbac231 10.1007/s10489-022-03930-5 10.1109/ICCV48922.2021.00986 10.1021/ci00057a005 10.1021/acs.jcim.3c02058 10.1016/j.patcog.2024.111067 10.1093/bib/bbac168 10.1109/TPAMI.2023.3323624 10.1155/2022/8464452 10.1038/s41567-021-01371-4 10.3390/molecules26154475 10.1007/s10489-021-02195-8 10.1109/CCECE53047.2021.9569072 10.1038/s42256-021-00301-6 10.1109/ICIP.2016.7533141 10.1002/cmdc.201900458 10.1021/acs.jmedchem.9b00959 10.1186/s12859-018-2523-5 10.1007/s00158-021-02881-8 10.1038/s42256-022-00447-x 10.1016/j.neucom.2021.02.025 10.1021/acs.jcim.9b01145 10.1016/j.eswa.2024.124023 10.1186/1758-2946-3-1 10.1609/aaai.v33i01.33011052 10.1007/s10462-024-10710-9 10.1109/TPAMI.2020.3013679 10.1021/acs.jmedchem.7b00696 10.1016/j.sigpro.2020.107766 10.1093/bib/bbz125 10.1039/C7SC02664A 10.26434/chemrxiv-2022-jjm0j-v4 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright Springer Nature B.V. Jul 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. Jul 2025 |
DBID | C6C AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s10489-025-06721-w |
DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-7497 |
ExternalDocumentID | 10_1007_s10489_025_06721_w |
GrantInformation_xml | – fundername: Young Scientists Fund of the National Natural Science Foundation of China grantid: 62302328 – fundername: Jiangsu Province Foundation for Young Scientists grantid: BK20230482 |
GroupedDBID | -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZY4 ~A9 ~EX AAYXX CITATION 7SC 8FD ABRTQ JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c316t-2f165f42a0c368366be2ad2d4b029a6fb8bfe2a1ca34888dd030f37ca4dd1d273 |
IEDL.DBID | U2A |
ISSN | 0924-669X |
IngestDate | Fri Jul 25 09:11:33 EDT 2025 Thu Jul 03 08:34:30 EDT 2025 Thu Jun 26 01:51:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Topological structure Positional encoding 3D molecular |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-2f165f42a0c368366be2ad2d4b029a6fb8bfe2a1ca34888dd030f37ca4dd1d273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6155-4259 |
OpenAccessLink | https://link.springer.com/10.1007/s10489-025-06721-w |
PQID | 3224031964 |
PQPubID | 326365 |
ParticipantIDs | proquest_journals_3224031964 crossref_primary_10_1007_s10489_025_06721_w springer_journals_10_1007_s10489_025_06721_w |
PublicationCentury | 2000 |
PublicationDate | 20250700 2025-07-00 20250701 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 7 year: 2025 text: 20250700 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Boston |
PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
PublicationTitleAbbrev | Appl Intell |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | 6721_CR4 X Fang (6721_CR45) 2022; 4 6721_CR3 D Weininger (6721_CR16) 1988; 28 Z Xiong (6721_CR49) 2019; 63 X Lin (6721_CR12) 2020; 21 K Yang (6721_CR48) 2019; 59 6721_CR9 6721_CR38 6721_CR8 6721_CR37 6721_CR7 6721_CR6 J Wu (6721_CR11) 2021; 63 6721_CR33 H Cho (6721_CR30) 2019; 14 6721_CR31 A Zia (6721_CR10) 2024; 57 JR Clough (6721_CR39) 2020; 44 G Jiang (6721_CR1) 2021; 51 A Jhaldiyal (6721_CR2) 2023; 53 F Battiston (6721_CR42) 2021; 17 6721_CR29 6721_CR28 6721_CR26 SD Axen (6721_CR32) 2017; 60 6721_CR25 Y Wang (6721_CR47) 2022; 4 6721_CR22 6721_CR20 L Song (6721_CR50) 2024; 64 WX Shen (6721_CR27) 2021; 3 D Kuzminykh (6721_CR36) 2018; 15 NM O’Boyle (6721_CR23) 2011; 3 6721_CR19 Z Wu (6721_CR44) 2018; 9 6721_CR17 S Liu (6721_CR35) 2019; 10 J Sunseri (6721_CR34) 2020; 60 6721_CR13 6721_CR55 6721_CR54 6721_CR53 6721_CR52 6721_CR51 M Hirohara (6721_CR18) 2018; 19 AP Bento (6721_CR15) 2020; 12 C Shang (6721_CR21) 2021; 445 K Bayoudh (6721_CR5) 2021; 51 6721_CR46 6721_CR43 6721_CR41 6721_CR40 W Zhou (6721_CR24) 2020; 23 A Yoshimori (6721_CR14) 2021; 26 |
References_xml | – volume: 12 start-page: 1 year: 2020 ident: 6721_CR15 publication-title: J Cheminf doi: 10.1186/s13321-020-00456-1 – ident: 6721_CR17 doi: 10.1016/j.ailsci.2021.100014 – volume: 59 start-page: 3370 issue: 8 year: 2019 ident: 6721_CR48 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.9b00237 – ident: 6721_CR55 doi: 10.1101/2024.04.13.589331 – volume: 51 start-page: 124 issue: 1 year: 2021 ident: 6721_CR5 publication-title: Appl Intell doi: 10.1007/s10489-020-01801-5 – volume: 23 start-page: 3388 year: 2020 ident: 6721_CR24 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2020.3025166 – volume: 10 start-page: 4558 issue: 16 year: 2019 ident: 6721_CR35 publication-title: The J Phys Chem Lett doi: 10.1021/acs.jpclett.9b01570 – volume: 4 start-page: 127 issue: 2 year: 2022 ident: 6721_CR45 publication-title: Nature Mach Intell doi: 10.1038/s42256-021-00438-4 – volume: 15 start-page: 4378 issue: 10 year: 2018 ident: 6721_CR36 publication-title: Molec Pharma doi: 10.1021/acs.molpharmaceut.7b01134 – ident: 6721_CR25 doi: 10.1016/j.ijleo.2022.170204 – ident: 6721_CR22 doi: 10.1093/bib/bbac231 – volume: 53 start-page: 6844 issue: 6 year: 2023 ident: 6721_CR2 publication-title: Appl Intell doi: 10.1007/s10489-022-03930-5 – ident: 6721_CR26 doi: 10.1109/ICCV48922.2021.00986 – volume: 28 start-page: 31 issue: 1 year: 1988 ident: 6721_CR16 publication-title: J Chem Inf Comput Sci doi: 10.1021/ci00057a005 – volume: 64 start-page: 3105 issue: 8 year: 2024 ident: 6721_CR50 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.3c02058 – ident: 6721_CR6 doi: 10.1016/j.patcog.2024.111067 – ident: 6721_CR51 – ident: 6721_CR13 – ident: 6721_CR40 doi: 10.1093/bib/bbac168 – ident: 6721_CR41 doi: 10.1109/TPAMI.2023.3323624 – ident: 6721_CR19 doi: 10.1155/2022/8464452 – volume: 17 start-page: 1093 issue: 10 year: 2021 ident: 6721_CR42 publication-title: Nature Phys doi: 10.1038/s41567-021-01371-4 – volume: 26 start-page: 4475 issue: 15 year: 2021 ident: 6721_CR14 publication-title: Molecules doi: 10.3390/molecules26154475 – ident: 6721_CR33 – volume: 51 start-page: 7043 issue: 10 year: 2021 ident: 6721_CR1 publication-title: Appl Intell doi: 10.1007/s10489-021-02195-8 – ident: 6721_CR28 doi: 10.1109/CCECE53047.2021.9569072 – volume: 3 start-page: 334 issue: 4 year: 2021 ident: 6721_CR27 publication-title: Nature Mach Intell doi: 10.1038/s42256-021-00301-6 – ident: 6721_CR37 doi: 10.1109/ICIP.2016.7533141 – volume: 14 start-page: 1604 issue: 17 year: 2019 ident: 6721_CR30 publication-title: ChemMedChem doi: 10.1002/cmdc.201900458 – volume: 63 start-page: 8749 issue: 16 year: 2019 ident: 6721_CR49 publication-title: J Med Chem doi: 10.1021/acs.jmedchem.9b00959 – volume: 19 start-page: 83 year: 2018 ident: 6721_CR18 publication-title: BMC Bioinf doi: 10.1186/s12859-018-2523-5 – ident: 6721_CR54 – volume: 63 start-page: 1455 year: 2021 ident: 6721_CR11 publication-title: Struct Multidiscip Optimiz doi: 10.1007/s00158-021-02881-8 – volume: 4 start-page: 279 issue: 3 year: 2022 ident: 6721_CR47 publication-title: Nature Mach Intell doi: 10.1038/s42256-022-00447-x – ident: 6721_CR43 – ident: 6721_CR20 – volume: 445 start-page: 12 year: 2021 ident: 6721_CR21 publication-title: Neurocomput doi: 10.1016/j.neucom.2021.02.025 – volume: 60 start-page: 1079 issue: 3 year: 2020 ident: 6721_CR34 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.9b01145 – ident: 6721_CR7 doi: 10.1016/j.eswa.2024.124023 – ident: 6721_CR38 – ident: 6721_CR53 – volume: 3 start-page: 1 issue: 1 year: 2011 ident: 6721_CR23 publication-title: J Cheminf doi: 10.1186/1758-2946-3-1 – ident: 6721_CR4 – ident: 6721_CR46 – ident: 6721_CR8 – ident: 6721_CR29 – ident: 6721_CR31 doi: 10.1609/aaai.v33i01.33011052 – volume: 57 start-page: 77 issue: 4 year: 2024 ident: 6721_CR10 publication-title: Artif Intell Rev doi: 10.1007/s10462-024-10710-9 – volume: 44 start-page: 8766 issue: 12 year: 2020 ident: 6721_CR39 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2020.3013679 – volume: 60 start-page: 7393 issue: 17 year: 2017 ident: 6721_CR32 publication-title: J Med Chem doi: 10.1021/acs.jmedchem.7b00696 – ident: 6721_CR3 doi: 10.1016/j.sigpro.2020.107766 – ident: 6721_CR52 – volume: 21 start-page: 2099 issue: 6 year: 2020 ident: 6721_CR12 publication-title: Brief Bioinf doi: 10.1093/bib/bbz125 – volume: 9 start-page: 513 issue: 2 year: 2018 ident: 6721_CR44 publication-title: Chem Sci doi: 10.1039/C7SC02664A – ident: 6721_CR9 doi: 10.26434/chemrxiv-2022-jjm0j-v4 |
SSID | ssj0003301 |
Score | 2.3884346 |
Snippet | The prominence of 3D molecular property prediction arises from its ability to provide insights into the drug discovery and design, material science and... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 819 |
SubjectTerms | Aldehydes Artificial Intelligence Chemical bonds Chemical synthesis Computer Science Covalent bonds Data analysis Datasets Deep learning Functional groups Hydrogen bonds Machine learning Machines Manufacturing Mechanical Engineering Molecular properties Neural networks Processes Signal processing Topology |
Title | Topological Fusion Model for Molecular Property Prediction |
URI | https://link.springer.com/article/10.1007/s10489-025-06721-w https://www.proquest.com/docview/3224031964 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdmHhjSiUKgMbWEr8SsLWVg0ViIqhlcoUxXYyoYLaVBX_nrObUEAwMMVKIg_f-ezvfC-AKzRJTCash1UUivDC50ThwUKiWFOfxUblLl3scSxHU34_E7MqKWxZR7vXLkm3U39JduM2vIcKYt2HAVk3oCWs7Y6reEp7n_svWuiuTx5aFkTKeFalyvw-x_fjaMsxf7hF3WmTHMBeRRO93kauh7CTz49gv27B4FUaeQy3k02TAwu1l6zs1Zdn25u9eEhGcVT1vvWe7J37onzHgfXMWGmcwDQZTgYjUrVDIJoFsiS0CKQoOM18zWTEpFQ5zQw1XPk0zmShIlXgm0BnDLUyMgb1t2ChzrgxgUGacgrN-es8PwOP89AYLjQ3sUZGlilhYqZjRU1EwzyM2nBdo5K-bapepNv6xhbDFDFMHYbpug2dGri00oBlyixXcOW-2nBTg7n9_Pds5__7_QJ2qZOnjaDtQLNcrPJL5Aml6kKrl_T7Y_u8e34YdqExkIOuWywfg_u4Mg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGWDhjSgUyMAGlhLbcRI2VFEVaCuGVupmxXYyoYJKqop_z10eVFQwsFlJ5OE7X-473wvgGl0Sl4YUYQ1zw2TuS2bQsLA4sdwXiTNZWS42HKn-RD5Nw2ndJodqYdbi91TiJimph4eMgoYBW27ClkRPmdL3uqr7_ddFv7ycjof-BFMqmdYFMr_v8dMIrZjlWjC0tDG9fdityaF3X0nzADay2SHsNYMXvFoPj-BuXI02IIC93oIuvDwaavbqIQXFVT3x1nuhm_Z58YkLiseQDI5h0nsYd_usHoLArAhUwXgeqDCXPPWtULFQymQ8ddxJ4_MkVbmJTY5PApsK1MXYOdTaXEQ2lc4FDsnJCbRmb7PsFDwpI-dkaKVLLPKw1IQuETYx3MU8yqK4DTcNKvq96nWhV12NCUONGOoSQ71sQ6cBTtfn_kMLYghlk6823DZgrl7_vdvZ_z6_gu3-eDjQg8fR8zns8FK2lEPbgVYxX2QXyBQKc1kekS9XYrMX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRALb0ShQAY2sJrYjpOwoUJUXlWHVupmxXY8oVCVVBX_HttJaEEwsFlJ5OE7X-473wvg0rgkKgtthDXUAlHtUySMYUFxIrFPEiVyVy72MmD9MX2chJOVKn6X7d6EJKuaBtulqSi7U6W7K4Vv1Kb64BDZUGKAFuuwYTwVF6jtsd7Xv9h4625mnvEyEGPJpC6b-X2P76ZpyTd_hEid5Ul3YbumjN5tJeM9WMuLfdhpxjF4tXYewM2oGnhgYffSub0G8-yos1fPEFOzqufgekN7_z4rP8zCRmmsZA5hnN6Pen1Uj0ZAkgSsRFgHLNQUZ74kLCaMiRxnCisqfJxkTItYaPMkkBkxGhorZXRZk0hmVKlAGcpyBK3irciPwaM0UoqGkqpEGnaWiVAlRCYCqxhHeRS34apBhU-rDhh82evYYsgNhtxhyBdt6DTA8Vob3jmxvMG1_mrDdQPm8vXfu5387_ML2Bzepfz5YfB0ClvYidYm1nagVc7m-ZmhD6U4dyfkE1sIu14 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+Fusion+Model+for+Molecular+Property+Prediction&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Rong%2C+Xia&rft.au=Haotian%2C+Xu&rft.au=Junwei%2C+Wu&rft.au=Shufei%2C+Zhang&rft.date=2025-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=55&rft.issue=11&rft.spage=819&rft_id=info:doi/10.1007%2Fs10489-025-06721-w&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |