Topological Fusion Model for Molecular Property Prediction

The prominence of 3D molecular property prediction arises from its ability to provide insights into the drug discovery and design, material science and chemical synthesis. Transformer-based models have been widely adopted to autonomously learn long-range atom-to-atom interactions on a global scale,...

Full description

Saved in:
Bibliographic Details
Published inApplied intelligence (Dordrecht, Netherlands) Vol. 55; no. 11; p. 819
Main Authors Rong, Xia, Haotian, Xu, Junwei, Wu, Shufei, Zhang, Mingjie, Sun, Jiejie, Liu, Quan, Zhang
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The prominence of 3D molecular property prediction arises from its ability to provide insights into the drug discovery and design, material science and chemical synthesis. Transformer-based models have been widely adopted to autonomously learn long-range atom-to-atom interactions on a global scale, resulting in significant success. However, these models may struggle to capture intricate substructure details ( e . g .,  covalent bond and functional group). In this work, topological simplices defined on nodes, links, triangles are extracted from the atoms’ 3D positional information to provide comprehensive representations of the local substructure information, such as atoms, covalent bonds and functional groups. We then propose a topological fusion network, which enhances each atom’s features not only through global atom-to-atom interactions but also by incorporating the fine-grained topological substructure information. In comparison to existing popular methods, our proposed method outperforms the state-of-the-art (SOTA) method by 1.2%, 3.0%, 2.4%, 2.7% on BBBP, BACE, ClinTox, MUV datasets for classification task and 0.048, 0.022, 3.8 on FreeSolv, Lipo and QM7 datasets for regression task, respectively. The code will be released soon.
AbstractList The prominence of 3D molecular property prediction arises from its ability to provide insights into the drug discovery and design, material science and chemical synthesis. Transformer-based models have been widely adopted to autonomously learn long-range atom-to-atom interactions on a global scale, resulting in significant success. However, these models may struggle to capture intricate substructure details (e.g., covalent bond and functional group). In this work, topological simplices defined on nodes, links, triangles are extracted from the atoms’ 3D positional information to provide comprehensive representations of the local substructure information, such as atoms, covalent bonds and functional groups. We then propose a topological fusion network, which enhances each atom’s features not only through global atom-to-atom interactions but also by incorporating the fine-grained topological substructure information. In comparison to existing popular methods, our proposed method outperforms the state-of-the-art (SOTA) method by 1.2%, 3.0%, 2.4%, 2.7% on BBBP, BACE, ClinTox, MUV datasets for classification task and 0.048, 0.022, 3.8 on FreeSolv, Lipo and QM7 datasets for regression task, respectively. The code will be released soon.
The prominence of 3D molecular property prediction arises from its ability to provide insights into the drug discovery and design, material science and chemical synthesis. Transformer-based models have been widely adopted to autonomously learn long-range atom-to-atom interactions on a global scale, resulting in significant success. However, these models may struggle to capture intricate substructure details ( e . g .,  covalent bond and functional group). In this work, topological simplices defined on nodes, links, triangles are extracted from the atoms’ 3D positional information to provide comprehensive representations of the local substructure information, such as atoms, covalent bonds and functional groups. We then propose a topological fusion network, which enhances each atom’s features not only through global atom-to-atom interactions but also by incorporating the fine-grained topological substructure information. In comparison to existing popular methods, our proposed method outperforms the state-of-the-art (SOTA) method by 1.2%, 3.0%, 2.4%, 2.7% on BBBP, BACE, ClinTox, MUV datasets for classification task and 0.048, 0.022, 3.8 on FreeSolv, Lipo and QM7 datasets for regression task, respectively. The code will be released soon.
The prominence of 3D molecular property prediction arises from its ability to provide insights into the drug discovery and design, material science and chemical synthesis. Transformer-based models have been widely adopted to autonomously learn long-range atom-to-atom interactions on a global scale, resulting in significant success. However, these models may struggle to capture intricate substructure details ( e . g .,  covalent bond and functional group). In this work, topological simplices defined on nodes, links, triangles are extracted from the atoms’ 3D positional information to provide comprehensive representations of the local substructure information, such as atoms, covalent bonds and functional groups. We then propose a topological fusion network, which enhances each atom’s features not only through global atom-to-atom interactions but also by incorporating the fine-grained topological substructure information. In comparison to existing popular methods, our proposed method outperforms the state-of-the-art (SOTA) method by 1.2%, 3.0%, 2.4%, 2.7% on BBBP, BACE, ClinTox, MUV datasets for classification task and 0.048, 0.022, 3.8 on FreeSolv, Lipo and QM7 datasets for regression task, respectively. The code will be released soon.
ArticleNumber 819
Author Shufei, Zhang
Mingjie, Sun
Junwei, Wu
Haotian, Xu
Quan, Zhang
Rong, Xia
Jiejie, Liu
Author_xml – sequence: 1
  givenname: Xia
  surname: Rong
  fullname: Rong, Xia
  organization: College of Art, Suzhou University of Science and Technology
– sequence: 2
  givenname: Xu
  surname: Haotian
  fullname: Haotian, Xu
  organization: RippleInfo
– sequence: 3
  givenname: Wu
  orcidid: 0000-0001-6155-4259
  surname: Junwei
  fullname: Junwei, Wu
  email: junwei.wu@liverpool.ac.uk
  organization: Department of Electrical Engineering and Electronics, University of Liverpool, School of Advanced Technology, Xi’an Jiaotong-Liverpool University
– sequence: 4
  givenname: Zhang
  surname: Shufei
  fullname: Shufei, Zhang
  organization: Shanghai AI LAB
– sequence: 5
  givenname: Sun
  surname: Mingjie
  fullname: Mingjie, Sun
  organization: School of Computer Science and Technology, Soochow University
– sequence: 6
  givenname: Liu
  surname: Jiejie
  fullname: Jiejie, Liu
  organization: School of Advanced Technology, Xi’an Jiaotong-Liverpool University
– sequence: 7
  givenname: Zhang
  surname: Quan
  fullname: Quan, Zhang
  organization: School of Advanced Technology, Xi’an Jiaotong-Liverpool University
BookMark eNp9kE1Lw0AQhhepYFv9A54CnldnP7JJvEmxKlT0UMHbstmPkhKzcTeh9N-7GsGbp3kZnncGngWadb6zCF0SuCYAxU0kwMsKA80xiIISfDhBc5IXDBe8KmZoDhXlWIjq_QwtYtwDAGNA5uh263vf-l2jVZutx9j4Lnv2xraZ8yGl1uqxVSF7Db63YTimYE2jh8Sdo1On2mgvfucSva3vt6tHvHl5eFrdbbBmRAyYOiJyx6kCzUTJhKgtVYYaXgOtlHB1Wbu0IVoxXpalMcDAsUIrbgwxtGBLdDXd7YP_HG0c5N6PoUsvJaOUAyOV4ImiE6WDjzFYJ_vQfKhwlATktyM5OZLJkfxxJA-pxKZSTHC3s-Hv9D-tL2-YbAg
Cites_doi 10.1186/s13321-020-00456-1
10.1016/j.ailsci.2021.100014
10.1021/acs.jcim.9b00237
10.1101/2024.04.13.589331
10.1007/s10489-020-01801-5
10.1109/TMM.2020.3025166
10.1021/acs.jpclett.9b01570
10.1038/s42256-021-00438-4
10.1021/acs.molpharmaceut.7b01134
10.1016/j.ijleo.2022.170204
10.1093/bib/bbac231
10.1007/s10489-022-03930-5
10.1109/ICCV48922.2021.00986
10.1021/ci00057a005
10.1021/acs.jcim.3c02058
10.1016/j.patcog.2024.111067
10.1093/bib/bbac168
10.1109/TPAMI.2023.3323624
10.1155/2022/8464452
10.1038/s41567-021-01371-4
10.3390/molecules26154475
10.1007/s10489-021-02195-8
10.1109/CCECE53047.2021.9569072
10.1038/s42256-021-00301-6
10.1109/ICIP.2016.7533141
10.1002/cmdc.201900458
10.1021/acs.jmedchem.9b00959
10.1186/s12859-018-2523-5
10.1007/s00158-021-02881-8
10.1038/s42256-022-00447-x
10.1016/j.neucom.2021.02.025
10.1021/acs.jcim.9b01145
10.1016/j.eswa.2024.124023
10.1186/1758-2946-3-1
10.1609/aaai.v33i01.33011052
10.1007/s10462-024-10710-9
10.1109/TPAMI.2020.3013679
10.1021/acs.jmedchem.7b00696
10.1016/j.sigpro.2020.107766
10.1093/bib/bbz125
10.1039/C7SC02664A
10.26434/chemrxiv-2022-jjm0j-v4
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. Jul 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. Jul 2025
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10489-025-06721-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
ExternalDocumentID 10_1007_s10489_025_06721_w
GrantInformation_xml – fundername: Young Scientists Fund of the National Natural Science Foundation of China
  grantid: 62302328
– fundername: Jiangsu Province Foundation for Young Scientists
  grantid: BK20230482
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZY4
~A9
~EX
AAYXX
CITATION
7SC
8FD
ABRTQ
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c316t-2f165f42a0c368366be2ad2d4b029a6fb8bfe2a1ca34888dd030f37ca4dd1d273
IEDL.DBID U2A
ISSN 0924-669X
IngestDate Fri Jul 25 09:11:33 EDT 2025
Thu Jul 03 08:34:30 EDT 2025
Thu Jun 26 01:51:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Topological structure
Positional encoding
3D molecular
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-2f165f42a0c368366be2ad2d4b029a6fb8bfe2a1ca34888dd030f37ca4dd1d273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6155-4259
OpenAccessLink https://link.springer.com/10.1007/s10489-025-06721-w
PQID 3224031964
PQPubID 326365
ParticipantIDs proquest_journals_3224031964
crossref_primary_10_1007_s10489_025_06721_w
springer_journals_10_1007_s10489_025_06721_w
PublicationCentury 2000
PublicationDate 20250700
2025-07-00
20250701
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 7
  year: 2025
  text: 20250700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 6721_CR4
X Fang (6721_CR45) 2022; 4
6721_CR3
D Weininger (6721_CR16) 1988; 28
Z Xiong (6721_CR49) 2019; 63
X Lin (6721_CR12) 2020; 21
K Yang (6721_CR48) 2019; 59
6721_CR9
6721_CR38
6721_CR8
6721_CR37
6721_CR7
6721_CR6
J Wu (6721_CR11) 2021; 63
6721_CR33
H Cho (6721_CR30) 2019; 14
6721_CR31
A Zia (6721_CR10) 2024; 57
JR Clough (6721_CR39) 2020; 44
G Jiang (6721_CR1) 2021; 51
A Jhaldiyal (6721_CR2) 2023; 53
F Battiston (6721_CR42) 2021; 17
6721_CR29
6721_CR28
6721_CR26
SD Axen (6721_CR32) 2017; 60
6721_CR25
Y Wang (6721_CR47) 2022; 4
6721_CR22
6721_CR20
L Song (6721_CR50) 2024; 64
WX Shen (6721_CR27) 2021; 3
D Kuzminykh (6721_CR36) 2018; 15
NM O’Boyle (6721_CR23) 2011; 3
6721_CR19
Z Wu (6721_CR44) 2018; 9
6721_CR17
S Liu (6721_CR35) 2019; 10
J Sunseri (6721_CR34) 2020; 60
6721_CR13
6721_CR55
6721_CR54
6721_CR53
6721_CR52
6721_CR51
M Hirohara (6721_CR18) 2018; 19
AP Bento (6721_CR15) 2020; 12
C Shang (6721_CR21) 2021; 445
K Bayoudh (6721_CR5) 2021; 51
6721_CR46
6721_CR43
6721_CR41
6721_CR40
W Zhou (6721_CR24) 2020; 23
A Yoshimori (6721_CR14) 2021; 26
References_xml – volume: 12
  start-page: 1
  year: 2020
  ident: 6721_CR15
  publication-title: J Cheminf
  doi: 10.1186/s13321-020-00456-1
– ident: 6721_CR17
  doi: 10.1016/j.ailsci.2021.100014
– volume: 59
  start-page: 3370
  issue: 8
  year: 2019
  ident: 6721_CR48
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.9b00237
– ident: 6721_CR55
  doi: 10.1101/2024.04.13.589331
– volume: 51
  start-page: 124
  issue: 1
  year: 2021
  ident: 6721_CR5
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01801-5
– volume: 23
  start-page: 3388
  year: 2020
  ident: 6721_CR24
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2020.3025166
– volume: 10
  start-page: 4558
  issue: 16
  year: 2019
  ident: 6721_CR35
  publication-title: The J Phys Chem Lett
  doi: 10.1021/acs.jpclett.9b01570
– volume: 4
  start-page: 127
  issue: 2
  year: 2022
  ident: 6721_CR45
  publication-title: Nature Mach Intell
  doi: 10.1038/s42256-021-00438-4
– volume: 15
  start-page: 4378
  issue: 10
  year: 2018
  ident: 6721_CR36
  publication-title: Molec Pharma
  doi: 10.1021/acs.molpharmaceut.7b01134
– ident: 6721_CR25
  doi: 10.1016/j.ijleo.2022.170204
– ident: 6721_CR22
  doi: 10.1093/bib/bbac231
– volume: 53
  start-page: 6844
  issue: 6
  year: 2023
  ident: 6721_CR2
  publication-title: Appl Intell
  doi: 10.1007/s10489-022-03930-5
– ident: 6721_CR26
  doi: 10.1109/ICCV48922.2021.00986
– volume: 28
  start-page: 31
  issue: 1
  year: 1988
  ident: 6721_CR16
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci00057a005
– volume: 64
  start-page: 3105
  issue: 8
  year: 2024
  ident: 6721_CR50
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.3c02058
– ident: 6721_CR6
  doi: 10.1016/j.patcog.2024.111067
– ident: 6721_CR51
– ident: 6721_CR13
– ident: 6721_CR40
  doi: 10.1093/bib/bbac168
– ident: 6721_CR41
  doi: 10.1109/TPAMI.2023.3323624
– ident: 6721_CR19
  doi: 10.1155/2022/8464452
– volume: 17
  start-page: 1093
  issue: 10
  year: 2021
  ident: 6721_CR42
  publication-title: Nature Phys
  doi: 10.1038/s41567-021-01371-4
– volume: 26
  start-page: 4475
  issue: 15
  year: 2021
  ident: 6721_CR14
  publication-title: Molecules
  doi: 10.3390/molecules26154475
– ident: 6721_CR33
– volume: 51
  start-page: 7043
  issue: 10
  year: 2021
  ident: 6721_CR1
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-02195-8
– ident: 6721_CR28
  doi: 10.1109/CCECE53047.2021.9569072
– volume: 3
  start-page: 334
  issue: 4
  year: 2021
  ident: 6721_CR27
  publication-title: Nature Mach Intell
  doi: 10.1038/s42256-021-00301-6
– ident: 6721_CR37
  doi: 10.1109/ICIP.2016.7533141
– volume: 14
  start-page: 1604
  issue: 17
  year: 2019
  ident: 6721_CR30
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.201900458
– volume: 63
  start-page: 8749
  issue: 16
  year: 2019
  ident: 6721_CR49
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.9b00959
– volume: 19
  start-page: 83
  year: 2018
  ident: 6721_CR18
  publication-title: BMC Bioinf
  doi: 10.1186/s12859-018-2523-5
– ident: 6721_CR54
– volume: 63
  start-page: 1455
  year: 2021
  ident: 6721_CR11
  publication-title: Struct Multidiscip Optimiz
  doi: 10.1007/s00158-021-02881-8
– volume: 4
  start-page: 279
  issue: 3
  year: 2022
  ident: 6721_CR47
  publication-title: Nature Mach Intell
  doi: 10.1038/s42256-022-00447-x
– ident: 6721_CR43
– ident: 6721_CR20
– volume: 445
  start-page: 12
  year: 2021
  ident: 6721_CR21
  publication-title: Neurocomput
  doi: 10.1016/j.neucom.2021.02.025
– volume: 60
  start-page: 1079
  issue: 3
  year: 2020
  ident: 6721_CR34
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.9b01145
– ident: 6721_CR7
  doi: 10.1016/j.eswa.2024.124023
– ident: 6721_CR38
– ident: 6721_CR53
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  ident: 6721_CR23
  publication-title: J Cheminf
  doi: 10.1186/1758-2946-3-1
– ident: 6721_CR4
– ident: 6721_CR46
– ident: 6721_CR8
– ident: 6721_CR29
– ident: 6721_CR31
  doi: 10.1609/aaai.v33i01.33011052
– volume: 57
  start-page: 77
  issue: 4
  year: 2024
  ident: 6721_CR10
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-024-10710-9
– volume: 44
  start-page: 8766
  issue: 12
  year: 2020
  ident: 6721_CR39
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2020.3013679
– volume: 60
  start-page: 7393
  issue: 17
  year: 2017
  ident: 6721_CR32
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.7b00696
– ident: 6721_CR3
  doi: 10.1016/j.sigpro.2020.107766
– ident: 6721_CR52
– volume: 21
  start-page: 2099
  issue: 6
  year: 2020
  ident: 6721_CR12
  publication-title: Brief Bioinf
  doi: 10.1093/bib/bbz125
– volume: 9
  start-page: 513
  issue: 2
  year: 2018
  ident: 6721_CR44
  publication-title: Chem Sci
  doi: 10.1039/C7SC02664A
– ident: 6721_CR9
  doi: 10.26434/chemrxiv-2022-jjm0j-v4
SSID ssj0003301
Score 2.3884346
Snippet The prominence of 3D molecular property prediction arises from its ability to provide insights into the drug discovery and design, material science and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 819
SubjectTerms Aldehydes
Artificial Intelligence
Chemical bonds
Chemical synthesis
Computer Science
Covalent bonds
Data analysis
Datasets
Deep learning
Functional groups
Hydrogen bonds
Machine learning
Machines
Manufacturing
Mechanical Engineering
Molecular properties
Neural networks
Processes
Signal processing
Topology
Title Topological Fusion Model for Molecular Property Prediction
URI https://link.springer.com/article/10.1007/s10489-025-06721-w
https://www.proquest.com/docview/3224031964
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdmHhjSiUKgMbWEr8SsLWVg0ViIqhlcoUxXYyoYLaVBX_nrObUEAwMMVKIg_f-ezvfC-AKzRJTCash1UUivDC50ThwUKiWFOfxUblLl3scSxHU34_E7MqKWxZR7vXLkm3U39JduM2vIcKYt2HAVk3oCWs7Y6reEp7n_svWuiuTx5aFkTKeFalyvw-x_fjaMsxf7hF3WmTHMBeRRO93kauh7CTz49gv27B4FUaeQy3k02TAwu1l6zs1Zdn25u9eEhGcVT1vvWe7J37onzHgfXMWGmcwDQZTgYjUrVDIJoFsiS0CKQoOM18zWTEpFQ5zQw1XPk0zmShIlXgm0BnDLUyMgb1t2ChzrgxgUGacgrN-es8PwOP89AYLjQ3sUZGlilhYqZjRU1EwzyM2nBdo5K-bapepNv6xhbDFDFMHYbpug2dGri00oBlyixXcOW-2nBTg7n9_Pds5__7_QJ2qZOnjaDtQLNcrPJL5Aml6kKrl_T7Y_u8e34YdqExkIOuWywfg_u4Mg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGWDhjSgUyMAGlhLbcRI2VFEVaCuGVupmxXYyoYJKqop_z10eVFQwsFlJ5OE7X-473wvgGl0Sl4YUYQ1zw2TuS2bQsLA4sdwXiTNZWS42HKn-RD5Nw2ndJodqYdbi91TiJimph4eMgoYBW27ClkRPmdL3uqr7_ddFv7ycjof-BFMqmdYFMr_v8dMIrZjlWjC0tDG9fdityaF3X0nzADay2SHsNYMXvFoPj-BuXI02IIC93oIuvDwaavbqIQXFVT3x1nuhm_Z58YkLiseQDI5h0nsYd_usHoLArAhUwXgeqDCXPPWtULFQymQ8ddxJ4_MkVbmJTY5PApsK1MXYOdTaXEQ2lc4FDsnJCbRmb7PsFDwpI-dkaKVLLPKw1IQuETYx3MU8yqK4DTcNKvq96nWhV12NCUONGOoSQ71sQ6cBTtfn_kMLYghlk6823DZgrl7_vdvZ_z6_gu3-eDjQg8fR8zns8FK2lEPbgVYxX2QXyBQKc1kekS9XYrMX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRALb0ShQAY2sJrYjpOwoUJUXlWHVupmxXY8oVCVVBX_HttJaEEwsFlJ5OE7X-473wvg0rgkKgtthDXUAlHtUySMYUFxIrFPEiVyVy72MmD9MX2chJOVKn6X7d6EJKuaBtulqSi7U6W7K4Vv1Kb64BDZUGKAFuuwYTwVF6jtsd7Xv9h4625mnvEyEGPJpC6b-X2P76ZpyTd_hEid5Ul3YbumjN5tJeM9WMuLfdhpxjF4tXYewM2oGnhgYffSub0G8-yos1fPEFOzqufgekN7_z4rP8zCRmmsZA5hnN6Pen1Uj0ZAkgSsRFgHLNQUZ74kLCaMiRxnCisqfJxkTItYaPMkkBkxGhorZXRZk0hmVKlAGcpyBK3irciPwaM0UoqGkqpEGnaWiVAlRCYCqxhHeRS34apBhU-rDhh82evYYsgNhtxhyBdt6DTA8Vob3jmxvMG1_mrDdQPm8vXfu5387_ML2Bzepfz5YfB0ClvYidYm1nagVc7m-ZmhD6U4dyfkE1sIu14
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+Fusion+Model+for+Molecular+Property+Prediction&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Rong%2C+Xia&rft.au=Haotian%2C+Xu&rft.au=Junwei%2C+Wu&rft.au=Shufei%2C+Zhang&rft.date=2025-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=55&rft.issue=11&rft.spage=819&rft_id=info:doi/10.1007%2Fs10489-025-06721-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon