Retail Product Classification on Distinct Distribution of Training and Evaluation Data

Retail product classification can be beneficial in the world of commerce, take for example helping vision-disabled parties in their shopping or evaluating product placement strategy. However, the available datasets for retail product classification are few and some have very distinct distribution of...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition and image analysis Vol. 32; no. 1; pp. 142 - 152
Main Authors Jonathan, Kusuma, Gede Putra
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.03.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Retail product classification can be beneficial in the world of commerce, take for example helping vision-disabled parties in their shopping or evaluating product placement strategy. However, the available datasets for retail product classification are few and some have very distinct distribution of training and evaluation data, thus providing a huge challenge on its own. In addition, there are only few researches on this subject which can still be improved on. This paper attempts to improve previous approaches for retail product classification on very distinct training and evaluation data distribution by utilizing convolutional neural network (CNN) models inspired by well-performing CNN models in general image classification task, which later can be fine-tuned for other computer vision tasks, namely, object detection. The results show that VGG-16 performs at 66.9167% accuracy and a new modified VGG-16 model named VGG-16-D attains 66.83% accuracy with 85% fewer parameters than VGG-16, outperforming most existing approaches considering several comparison baselines.
AbstractList Retail product classification can be beneficial in the world of commerce, take for example helping vision-disabled parties in their shopping or evaluating product placement strategy. However, the available datasets for retail product classification are few and some have very distinct distribution of training and evaluation data, thus providing a huge challenge on its own. In addition, there are only few researches on this subject which can still be improved on. This paper attempts to improve previous approaches for retail product classification on very distinct training and evaluation data distribution by utilizing convolutional neural network (CNN) models inspired by well-performing CNN models in general image classification task, which later can be fine-tuned for other computer vision tasks, namely, object detection. The results show that VGG-16 performs at 66.9167% accuracy and a new modified VGG-16 model named VGG-16-D attains 66.83% accuracy with 85% fewer parameters than VGG-16, outperforming most existing approaches considering several comparison baselines.
Author Jonathan
Kusuma, Gede Putra
Author_xml – sequence: 1
  surname: Jonathan
  fullname: Jonathan
  email: jonathan016@binus.ac.id
  organization: Computer Science Department, BINUS Graduate Program–Master of Computer Science, Bina Nusantara University
– sequence: 2
  givenname: Gede Putra
  surname: Kusuma
  fullname: Kusuma, Gede Putra
  email: inegara@binus.edu
  organization: Computer Science Department, BINUS Graduate Program–Master of Computer Science, Bina Nusantara University
BookMark eNp9kF1LwzAUhoMouE1_gHcFr6s5aZO1l7LNDxgoOsW7kmYnI6OmM0kF_72pFQRFISd54T1PzseY7NvWIiEnQM8Asvz8ASjPhYCCAc0psOc9MgLOeSoYsP2oo532_iEZe7-llBZQshF5uscgTZPcuXbdqZDMGum90UbJYFqbxDM3PhgbrV44U3eDoZOVk8Yau0mkXSeLN9l0AzOXQR6RAy0bj8df74Q8Xi5Ws-t0eXt1M7tYpioDEVKGyLGuaV7qAkFkWK4lR9CKr5mQqGiNSukYHKZYaoHxliKLQvKy1DSbkNPh351rXzv0odq2nbOxZMVETnnBiqzPgiFLudZ7h7raOfMi3XsFtOrXV_1aX2SmPxhlwueAIc7d_EuygfSxit2g--7pb-gD2NWGYg
CitedBy_id crossref_primary_10_1016_j_engappai_2024_108452
crossref_primary_10_1007_s10799_024_00444_z
crossref_primary_10_1016_j_asoc_2024_112029
Cites_doi 10.1007/978-3-319-46448-0_2
10.1109/ICCV.1999.790410
10.1016/j.patrec.2019.12.023
10.1109/CVPR.2016.90
10.1109/CVPR.2017.75
10.1023/B:VISI.0000029664.99615.94
10.1007/978-3-319-10605-2_29
10.1109/CVPR.2016.91
10.1109/CVPR.2009.5206848
10.1109/CVPR.2017.634
10.1007/978-3-030-50347-5_8
10.1109/CVPR.2007.383486
10.1016/j.cviu.2020.102963
10.1109/5.726791
10.1007/s11263-015-0816-y
10.1109/CVPR.2017.690
10.1134/S1054661821020140
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2022. ISSN 1054-6618, Pattern Recognition and Image Analysis, 2022, Vol. 32, No. 1, pp. 142–152. © Pleiades Publishing, Ltd., 2022.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2022. ISSN 1054-6618, Pattern Recognition and Image Analysis, 2022, Vol. 32, No. 1, pp. 142–152. © Pleiades Publishing, Ltd., 2022.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1134/S105466182104012X
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1555-6212
EndPage 152
ExternalDocumentID 10_1134_S105466182104012X
GroupedDBID -59
-5G
-BR
-DT
-EM
-Y2
-~C
.VR
06D
0R~
0VY
123
1N0
29O
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
408
40D
40E
5VS
642
6NX
7WY
88I
8FE
8FG
8FL
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTD
ABFTV
ABHFT
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
K60
K6V
K6~
K7-
KOV
KZ1
L6V
LLZTM
LMP
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
RNS
ROL
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
7SC
8FD
ABRTQ
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c316t-2ee5ebb049f8e163e9da5e1fc5d26aec0beccfecc517e9f6e7e9a63f6ea599f03
IEDL.DBID AGYKE
ISSN 1054-6618
IngestDate Wed Aug 13 00:07:40 EDT 2025
Tue Jul 01 03:01:28 EDT 2025
Thu Apr 24 22:54:45 EDT 2025
Fri Feb 21 02:47:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords deep learning
image classification
retail product classification
dilated convolution
convolutional neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-2ee5ebb049f8e163e9da5e1fc5d26aec0beccfecc517e9f6e7e9a63f6ea599f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2640582830
PQPubID 54522
PageCount 11
ParticipantIDs proquest_journals_2640582830
crossref_primary_10_1134_S105466182104012X
crossref_citationtrail_10_1134_S105466182104012X
springer_journals_10_1134_S105466182104012X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Dordrecht
PublicationTitle Pattern recognition and image analysis
PublicationTitleAbbrev Pattern Recognit. Image Anal
PublicationYear 2022
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in IEEE Conf. on Computer Vision and Pattern Recognition, Honolulu, Hawaii,2017 (IEEE, 2017), vol. 1, pp. 6517–6525. https://doi.org/10.1109/CVPR.2017.690
J. Redmon, Darknet: Open source neural networks in C (2013). https://pjreddie.com/darknet
G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Improving neural networks by preventing co-adaptation of feature.” arXiv:1207.0580 [cs.NE]
J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement.” arXiv:1804.02767 [cs.CV]
LiQ.PengX.CaoL.DuW.XingH.QiaoY.Product image recognition with guidance learning and noisy supervisionComput. Vision Image Understanding201919610296310.1016/j.cviu.2020.102963
J. Deng, W. Dong, R. Socher, K. Li, and L. Fei-Fei, “ImageNet: A large-scale hierarchical image database,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami, 2009 (IEEE, 2019), pp. 248–255. https://doi.org/10.1109/CVPR.2009.5206848
Y. Lecun, C. Cortes, and C. Burges, “MNIST handwritten digit database,” ATT Labs. http://yann.lecun.com/exdb/mnist
S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for deep neural networks,” in IEEE Conf. on Computer Vision and Pattern Recognition, Honolulu, Hawaii,2017 (IEEE, 2017), pp. 5987–5995. https://doi.org/10.1109/CVPR.2017.634
LiuW.AnguelovD.ErhanD.SzegedyC.ReedS.FuC.-Y.BergA. C. “SSD: Single shot multiBox detector,” in Computer Vision–ECCV 20162016ChamSpringer10.1007/978-3-319-46448-0_2
SantraB.PaulA.MukherjeeD. P.Deterministic Dropout for Deep Neural Networks Using Composite Random ForestPattern Recognit. Lett.202013120521210.1016/j.patrec.2019.12.023
M. Merler, C. Galleguillos, and S. Belongie, “Recognizing groceries in situ using in vitro training data,” in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Minneapolis,2007 (IEEE, 2007), pp. 1–8. https://doi.org/10.1109/CVPR.2007.383486
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,2015 (IEEE, 2015), pp. 779–788. https://doi.org/10.1109/CVPR.2016.91
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” NIPS’12: Proc. 25th Int. Conf. on Neural Information Processing Systems, Lake Tahoe, Nev.,2012, Ed. by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Curran Associates, Red Hook, N.Y., 2012), Vol. 1, pp. 1097–1105.
F. Yu, V. Koltun, and T. Funkhouser, “Dilated residual networks,” in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii,2017 (IEEE, 2017), pp. 636–644. https://doi.org/10.1109/CVPR.2017.75
K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in Int. Conf. on Learning Representations,2015. arXiv:1409.1556 [cs.CV]
D. G. Lowe, “Object recognition from local scale-invariant features,” in Proc. 7th Int. Conf. on Computer Vision, Corfu,1999 (IEEE, 1999), Vol. 2, pp. 1150–1157.  https://doi.org/10.1109/ICCV.1999.790410
A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier Nonlinearities Improve Neural Network Acoustic Models,” in Proceedings of the 30th Int. Conf. on Machine Learning, Atlanta,2013.
RajagopalR.Comparative analysis of COVID-19 X‑ray images classification using convolutional neural network, transfer learning, and machine learning classifiers using deep featuresPattern Recognit. Image Anal.20213131332210.1134/S1054661821020140
M. Lin, Q. Chen, and S. Yan, “Network in network.” arXiv:1312.4400v3 [cs.NE]
A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The Marginal Value of Adaptive Gradient Methods in Machine Learning,” in 31st Conf. on Neural Information Processing Systems (NIPS 2017), Long Beach, Calif.,2017, Ed. by U. von Luxburg, I. Guyon, S. Bengio, H. Wallach, and R. Fergus (Curran Associates, Red Hook, N. Y., 2017), pp. 4151–4161.
GeorgeM.FloerkemeierC. “Recognizing products: A per-exemplar multi-label image classification approach,” in Computer Vision–ECCV 20142014ChamSpringer10.1007/978-3-319-10605-2_29
LeCunY.BottouL.BengioY.HaffnerP.Gradient-based learning applied to document recognitionProc. IEEE1998862278223410.1109/5.726791
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Las Vegas,2016 (IEEE, 2016), pp. 770–778. https://doi.org/10.1109/CVPR.2016.90
SrivastavaN.HintonG.KrizhevskyA.SutskeverI.SalakhutdinovR.Dropout: A simple way to prevent neural networks from overfittingJ. Mach. Learning Res.2014151929195832315921318.68153
LoweD. G.Distinctive image features from scale-invariant key pointsInt. J. Comput. Vision2004609111010.1023/B:VISI.0000029664.99615.94
RussakovskyO.DengJ.SuH.KrauseJ.SatheeshS.MaS.HuangZ.KarpathyA.KhoslaA.BernsteinM.BergA. C.Fei-FeiL.ImageNet large scale visual recognition challengeInt. J. Comput. Vision2015115211252342248210.1007/s11263-015-0816-y
SrivastavaM. M. “Bag of tricks for retail product image classification,” Image Analysis and Recognition. ICIAR 20202020ChamSpringer10.1007/978-3-030-50347-5_8
6220_CR1
6220_CR3
cr-split#-6220_CR25.1
cr-split#-6220_CR25.2
B. Santra (6220_CR21) 2020; 131
W. Liu (6220_CR10) 2016
6220_CR11
6220_CR13
6220_CR14
6220_CR19
6220_CR16
6220_CR17
6220_CR18
M. George (6220_CR2) 2014
D. G. Lowe (6220_CR12) 2004; 60
R. Rajagopal (6220_CR15) 2021; 31
M. M. Srivastava (6220_CR23) 2020
Q. Li (6220_CR8) 2019; 196
N. Srivastava (6220_CR24) 2014; 15
6220_CR22
O. Russakovsky (6220_CR20) 2015; 115
6220_CR5
6220_CR4
6220_CR7
6220_CR9
6220_CR26
6220_CR27
Y. LeCun (6220_CR6) 1998; 86
References_xml – reference: SrivastavaM. M. “Bag of tricks for retail product image classification,” Image Analysis and Recognition. ICIAR 20202020ChamSpringer10.1007/978-3-030-50347-5_8
– reference: RussakovskyO.DengJ.SuH.KrauseJ.SatheeshS.MaS.HuangZ.KarpathyA.KhoslaA.BernsteinM.BergA. C.Fei-FeiL.ImageNet large scale visual recognition challengeInt. J. Comput. Vision2015115211252342248210.1007/s11263-015-0816-y
– reference: LoweD. G.Distinctive image features from scale-invariant key pointsInt. J. Comput. Vision2004609111010.1023/B:VISI.0000029664.99615.94
– reference: Y. Lecun, C. Cortes, and C. Burges, “MNIST handwritten digit database,” ATT Labs. http://yann.lecun.com/exdb/mnist
– reference: M. Lin, Q. Chen, and S. Yan, “Network in network.” arXiv:1312.4400v3 [cs.NE]
– reference: J. Redmon, Darknet: Open source neural networks in C (2013). https://pjreddie.com/darknet/
– reference: A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier Nonlinearities Improve Neural Network Acoustic Models,” in Proceedings of the 30th Int. Conf. on Machine Learning, Atlanta,2013.
– reference: LiuW.AnguelovD.ErhanD.SzegedyC.ReedS.FuC.-Y.BergA. C. “SSD: Single shot multiBox detector,” in Computer Vision–ECCV 20162016ChamSpringer10.1007/978-3-319-46448-0_2
– reference: LeCunY.BottouL.BengioY.HaffnerP.Gradient-based learning applied to document recognitionProc. IEEE1998862278223410.1109/5.726791
– reference: RajagopalR.Comparative analysis of COVID-19 X‑ray images classification using convolutional neural network, transfer learning, and machine learning classifiers using deep featuresPattern Recognit. Image Anal.20213131332210.1134/S1054661821020140
– reference: GeorgeM.FloerkemeierC. “Recognizing products: A per-exemplar multi-label image classification approach,” in Computer Vision–ECCV 20142014ChamSpringer10.1007/978-3-319-10605-2_29
– reference: J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement.” arXiv:1804.02767 [cs.CV]
– reference: K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Las Vegas,2016 (IEEE, 2016), pp. 770–778. https://doi.org/10.1109/CVPR.2016.90
– reference: LiQ.PengX.CaoL.DuW.XingH.QiaoY.Product image recognition with guidance learning and noisy supervisionComput. Vision Image Understanding201919610296310.1016/j.cviu.2020.102963
– reference: G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Improving neural networks by preventing co-adaptation of feature.” arXiv:1207.0580 [cs.NE]
– reference: S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for deep neural networks,” in IEEE Conf. on Computer Vision and Pattern Recognition, Honolulu, Hawaii,2017 (IEEE, 2017), pp. 5987–5995. https://doi.org/10.1109/CVPR.2017.634
– reference: K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in Int. Conf. on Learning Representations,2015. arXiv:1409.1556 [cs.CV]
– reference: SrivastavaN.HintonG.KrizhevskyA.SutskeverI.SalakhutdinovR.Dropout: A simple way to prevent neural networks from overfittingJ. Mach. Learning Res.2014151929195832315921318.68153
– reference: J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in IEEE Conf. on Computer Vision and Pattern Recognition, Honolulu, Hawaii,2017 (IEEE, 2017), vol. 1, pp. 6517–6525. https://doi.org/10.1109/CVPR.2017.690
– reference: M. Merler, C. Galleguillos, and S. Belongie, “Recognizing groceries in situ using in vitro training data,” in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Minneapolis,2007 (IEEE, 2007), pp. 1–8. https://doi.org/10.1109/CVPR.2007.383486
– reference: F. Yu, V. Koltun, and T. Funkhouser, “Dilated residual networks,” in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii,2017 (IEEE, 2017), pp. 636–644. https://doi.org/10.1109/CVPR.2017.75
– reference: D. G. Lowe, “Object recognition from local scale-invariant features,” in Proc. 7th Int. Conf. on Computer Vision, Corfu,1999 (IEEE, 1999), Vol. 2, pp. 1150–1157.  https://doi.org/10.1109/ICCV.1999.790410
– reference: SantraB.PaulA.MukherjeeD. P.Deterministic Dropout for Deep Neural Networks Using Composite Random ForestPattern Recognit. Lett.202013120521210.1016/j.patrec.2019.12.023
– reference: J. Deng, W. Dong, R. Socher, K. Li, and L. Fei-Fei, “ImageNet: A large-scale hierarchical image database,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami, 2009 (IEEE, 2019), pp. 248–255. https://doi.org/10.1109/CVPR.2009.5206848
– reference: A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” NIPS’12: Proc. 25th Int. Conf. on Neural Information Processing Systems, Lake Tahoe, Nev.,2012, Ed. by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Curran Associates, Red Hook, N.Y., 2012), Vol. 1, pp. 1097–1105.
– reference: J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,2015 (IEEE, 2015), pp. 779–788. https://doi.org/10.1109/CVPR.2016.91
– reference: A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The Marginal Value of Adaptive Gradient Methods in Machine Learning,” in 31st Conf. on Neural Information Processing Systems (NIPS 2017), Long Beach, Calif.,2017, Ed. by U. von Luxburg, I. Guyon, S. Bengio, H. Wallach, and R. Fergus (Curran Associates, Red Hook, N. Y., 2017), pp. 4151–4161.
– volume: 15
  start-page: 1929
  year: 2014
  ident: 6220_CR24
  publication-title: J. Mach. Learning Res.
– volume-title: “SSD: Single shot multiBox detector,” in Computer Vision–ECCV 2016
  year: 2016
  ident: 6220_CR10
  doi: 10.1007/978-3-319-46448-0_2
– ident: 6220_CR16
– ident: 6220_CR11
  doi: 10.1109/ICCV.1999.790410
– ident: #cr-split#-6220_CR25.2
– volume: 131
  start-page: 205
  year: 2020
  ident: 6220_CR21
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.12.023
– ident: 6220_CR3
  doi: 10.1109/CVPR.2016.90
– ident: 6220_CR27
  doi: 10.1109/CVPR.2017.75
– volume: 60
  start-page: 91
  year: 2004
  ident: 6220_CR12
  publication-title: Int. J. Comput. Vision
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: 6220_CR22
– volume-title: “Recognizing products: A per-exemplar multi-label image classification approach,” in Computer Vision–ECCV 2014
  year: 2014
  ident: 6220_CR2
  doi: 10.1007/978-3-319-10605-2_29
– ident: 6220_CR17
  doi: 10.1109/CVPR.2016.91
– ident: 6220_CR1
  doi: 10.1109/CVPR.2009.5206848
– ident: 6220_CR19
– ident: 6220_CR4
– ident: 6220_CR26
  doi: 10.1109/CVPR.2017.634
– volume-title: “Bag of tricks for retail product image classification,” Image Analysis and Recognition. ICIAR 2020
  year: 2020
  ident: 6220_CR23
  doi: 10.1007/978-3-030-50347-5_8
– ident: 6220_CR13
– ident: 6220_CR14
  doi: 10.1109/CVPR.2007.383486
– ident: #cr-split#-6220_CR25.1
– volume: 196
  start-page: 102963
  year: 2019
  ident: 6220_CR8
  publication-title: Comput. Vision Image Understanding
  doi: 10.1016/j.cviu.2020.102963
– ident: 6220_CR9
– volume: 86
  start-page: 2278
  year: 1998
  ident: 6220_CR6
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: 6220_CR7
– volume: 115
  start-page: 211
  year: 2015
  ident: 6220_CR20
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/s11263-015-0816-y
– ident: 6220_CR5
– ident: 6220_CR18
  doi: 10.1109/CVPR.2017.690
– volume: 31
  start-page: 313
  year: 2021
  ident: 6220_CR15
  publication-title: Pattern Recognit. Image Anal.
  doi: 10.1134/S1054661821020140
SSID ssj0008192
Score 2.235599
Snippet Retail product classification can be beneficial in the world of commerce, take for example helping vision-disabled parties in their shopping or evaluating...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 142
SubjectTerms Accuracy
Application Problems
Artificial neural networks
Classification
Computer Science
Computer vision
Evaluation
Image classification
Image Processing and Computer Vision
Object recognition
Pattern Recognition
Training
Title Retail Product Classification on Distinct Distribution of Training and Evaluation Data
URI https://link.springer.com/article/10.1134/S105466182104012X
https://www.proquest.com/docview/2640582830
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8ovOiDKGpE0fTBJ81wXx3bIwhINBKjYPBp6bruRTOMGy_-9V63FiJ-JCTb0rRrs-2u17vd9XcA5zxAwWtxZvg0kn-rrMAIcBoZwrYEtRm3WRnlO_KGE_d2SqdqH3emo921S7KQ1GXeEffqCTUBF1cTH40UNArs6SZUUf0waQWqnZuXu_5CAEuMr8LJSV1DdlDOzF8H-b4cLXXMFbdosdoMajDWz1kGmby25nnU4p8rEI5rvsgu7Cjtk3RKdtmDDZHWoaY0UaLmeYZVOtmDrqvD9v0C4DXbh-fHIvSUPJSAsaTIrSmjjgpCEzx6Unik2CQLOqsWmSVkrJJSEJbGpL8AGyc9lrMDmAz64-uhoVI0GNyxvNywhaAiitDMSHyBqp0IYkaFlXAa2x4T3JQskuBJrbYIEk_glXkOFhgNgsR0DqGSzlJxBISztrC9JAk8n7tu7CATCdONo5h5EjTeaYCpKRVyhV8u02i8hYUd47jhjw_bgItFl_cSvOO_m5ua_KGax1mI6qIpHYuO2YBLTc1l85-DHa919wls2XJXRRHa1oRK_jEXp6jr5NEZ8vag2x2dKR7_Akrt9eE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIADjwFiPHPgBCr0kXTrcYKN8diEoEPjVKVpegF1iHUXfj1OmxQxHhJSW0VJE7W149i18xngSAQoeB3BrRaL1d8qJ7ACnEaWdB3JXC5cXkb5DvzekF6P2Ejv456YaHfjkiwkdZl3hJ49oCZAcTVpoZGCRoE7mocFiiY4WlwL7cunm04lgBXGV-HkZNRSHbQz88dBvi5HnzrmjFu0WG26qxCa5yyDTJ5Pp3l8Kt5nIBz_-SJrsKK1T9Iu2WUd5mRWh1WtiRI9zydYZZI9mLo6LPcrgNfJBjzeF6Gn5K4EjCVFbk0VdVQQmuBxoYRHhk2qYLJqkXFKQp2UgvAsIZ0KbJxc8JxvwrDbCc97lk7RYAnP8XPLlZLJOEYzI21JVO1kkHAmnVSwxPW5FLZikRRP5jRlkPoSr9z3sMBZEKS2twW1bJzJbSCCN6Xrp2ngtwSliYdMJG2axAn3FWi81wDbUCoSGr9cpdF4iQo7xqPRtw_bgOOqy2sJ3vHXzXuG_JGex5MI1UVbORY9uwEnhpqfzb8OtvOvuw9hsRf2b6Pbq8HNLiy5aodFEea2B7X8bSr3Ue_J4wPN5x9HCfdU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRAcKKsoqw-cQIEsdpocEW1ZCgixqZyC49gXUIpouPD1jBO7FWWREFISWXZsJfHYnsmM3wPYETFOvJ7gTsRS_bfKi50Yh5EjfU8ynwufV1G-l-HJHT3rsZ7hOR3YaHfrkqz2NGiUprw4eMmU4SChBzeoFVBcWSI0WNBA8HuTMEXdqBnVYOrw-KHbHk7GGu-rdHgy6ugKxrH5bSOfl6aRvjnmIi1Xnk4dHu0zVwEnT_tvRbov3sfgHP_xUvMwZ7RScliJ0QJMyHwR6kZDJWb8DzDLkkDYvEWYvRgCvw6W4P66DEklVxWQLCk5N3U0UikABI-WnlRyLNIJy7ZF-orcGrIKwvOMtIcg5KTFC74Md5327dGJY6gbHBF4YeH4UjKZpmh-qEiiyifjjDPpKcEyP-RSuFp0FJ7Ma8pYhRKvPAwwwVkcKzdYgVrez-UqEMGb0g-VisNIUJoFKFzSpVma8VCDyQcNcG2vJcLgmmt6jeektG8Cmnz5sA3YHVZ5qUA9frt5w4pCYsb3IEE10tUOx8BtwJ7t2VHxj42t_enubZi-anWS89PL7jrM-HrjRRn9tgG14vVNbqI6VKRbRuQ_AAe3AEc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retail+Product+Classification+on+Distinct+Distribution+of+Training+and+Evaluation+Data&rft.jtitle=Pattern+recognition+and+image+analysis&rft.au=Jonathan&rft.au=Kusuma%2C+Gede+Putra&rft.date=2022-03-01&rft.pub=Pleiades+Publishing&rft.issn=1054-6618&rft.eissn=1555-6212&rft.volume=32&rft.issue=1&rft.spage=142&rft.epage=152&rft_id=info:doi/10.1134%2FS105466182104012X&rft.externalDocID=10_1134_S105466182104012X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1054-6618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1054-6618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1054-6618&client=summon