Retail Product Classification on Distinct Distribution of Training and Evaluation Data
Retail product classification can be beneficial in the world of commerce, take for example helping vision-disabled parties in their shopping or evaluating product placement strategy. However, the available datasets for retail product classification are few and some have very distinct distribution of...
Saved in:
Published in | Pattern recognition and image analysis Vol. 32; no. 1; pp. 142 - 152 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
01.03.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Retail product classification can be beneficial in the world of commerce, take for example helping vision-disabled parties in their shopping or evaluating product placement strategy. However, the available datasets for retail product classification are few and some have very distinct distribution of training and evaluation data, thus providing a huge challenge on its own. In addition, there are only few researches on this subject which can still be improved on. This paper attempts to improve previous approaches for retail product classification on very distinct training and evaluation data distribution by utilizing convolutional neural network (CNN) models inspired by well-performing CNN models in general image classification task, which later can be fine-tuned for other computer vision tasks, namely, object detection. The results show that VGG-16 performs at 66.9167% accuracy and a new modified VGG-16 model named VGG-16-D attains 66.83% accuracy with 85% fewer parameters than VGG-16, outperforming most existing approaches considering several comparison baselines. |
---|---|
AbstractList | Retail product classification can be beneficial in the world of commerce, take for example helping vision-disabled parties in their shopping or evaluating product placement strategy. However, the available datasets for retail product classification are few and some have very distinct distribution of training and evaluation data, thus providing a huge challenge on its own. In addition, there are only few researches on this subject which can still be improved on. This paper attempts to improve previous approaches for retail product classification on very distinct training and evaluation data distribution by utilizing convolutional neural network (CNN) models inspired by well-performing CNN models in general image classification task, which later can be fine-tuned for other computer vision tasks, namely, object detection. The results show that VGG-16 performs at 66.9167% accuracy and a new modified VGG-16 model named VGG-16-D attains 66.83% accuracy with 85% fewer parameters than VGG-16, outperforming most existing approaches considering several comparison baselines. |
Author | Jonathan Kusuma, Gede Putra |
Author_xml | – sequence: 1 surname: Jonathan fullname: Jonathan email: jonathan016@binus.ac.id organization: Computer Science Department, BINUS Graduate Program–Master of Computer Science, Bina Nusantara University – sequence: 2 givenname: Gede Putra surname: Kusuma fullname: Kusuma, Gede Putra email: inegara@binus.edu organization: Computer Science Department, BINUS Graduate Program–Master of Computer Science, Bina Nusantara University |
BookMark | eNp9kF1LwzAUhoMouE1_gHcFr6s5aZO1l7LNDxgoOsW7kmYnI6OmM0kF_72pFQRFISd54T1PzseY7NvWIiEnQM8Asvz8ASjPhYCCAc0psOc9MgLOeSoYsP2oo532_iEZe7-llBZQshF5uscgTZPcuXbdqZDMGum90UbJYFqbxDM3PhgbrV44U3eDoZOVk8Yau0mkXSeLN9l0AzOXQR6RAy0bj8df74Q8Xi5Ws-t0eXt1M7tYpioDEVKGyLGuaV7qAkFkWK4lR9CKr5mQqGiNSukYHKZYaoHxliKLQvKy1DSbkNPh351rXzv0odq2nbOxZMVETnnBiqzPgiFLudZ7h7raOfMi3XsFtOrXV_1aX2SmPxhlwueAIc7d_EuygfSxit2g--7pb-gD2NWGYg |
CitedBy_id | crossref_primary_10_1016_j_engappai_2024_108452 crossref_primary_10_1007_s10799_024_00444_z crossref_primary_10_1016_j_asoc_2024_112029 |
Cites_doi | 10.1007/978-3-319-46448-0_2 10.1109/ICCV.1999.790410 10.1016/j.patrec.2019.12.023 10.1109/CVPR.2016.90 10.1109/CVPR.2017.75 10.1023/B:VISI.0000029664.99615.94 10.1007/978-3-319-10605-2_29 10.1109/CVPR.2016.91 10.1109/CVPR.2009.5206848 10.1109/CVPR.2017.634 10.1007/978-3-030-50347-5_8 10.1109/CVPR.2007.383486 10.1016/j.cviu.2020.102963 10.1109/5.726791 10.1007/s11263-015-0816-y 10.1109/CVPR.2017.690 10.1134/S1054661821020140 |
ContentType | Journal Article |
Copyright | Pleiades Publishing, Ltd. 2022. ISSN 1054-6618, Pattern Recognition and Image Analysis, 2022, Vol. 32, No. 1, pp. 142–152. © Pleiades Publishing, Ltd., 2022. |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2022. ISSN 1054-6618, Pattern Recognition and Image Analysis, 2022, Vol. 32, No. 1, pp. 142–152. © Pleiades Publishing, Ltd., 2022. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1134/S105466182104012X |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics Computer Science |
EISSN | 1555-6212 |
EndPage | 152 |
ExternalDocumentID | 10_1134_S105466182104012X |
GroupedDBID | -59 -5G -BR -DT -EM -Y2 -~C .VR 06D 0R~ 0VY 123 1N0 29O 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 408 40D 40E 5VS 642 6NX 7WY 88I 8FE 8FG 8FL 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTD ABFTV ABHFT ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ K60 K6V K6~ K7- KOV KZ1 L6V LLZTM LMP M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I RNS ROL RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PHGZT 7SC 8FD ABRTQ JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c316t-2ee5ebb049f8e163e9da5e1fc5d26aec0beccfecc517e9f6e7e9a63f6ea599f03 |
IEDL.DBID | AGYKE |
ISSN | 1054-6618 |
IngestDate | Wed Aug 13 00:07:40 EDT 2025 Tue Jul 01 03:01:28 EDT 2025 Thu Apr 24 22:54:45 EDT 2025 Fri Feb 21 02:47:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | deep learning image classification retail product classification dilated convolution convolutional neural network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-2ee5ebb049f8e163e9da5e1fc5d26aec0beccfecc517e9f6e7e9a63f6ea599f03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2640582830 |
PQPubID | 54522 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2640582830 crossref_primary_10_1134_S105466182104012X crossref_citationtrail_10_1134_S105466182104012X springer_journals_10_1134_S105466182104012X |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: Dordrecht |
PublicationTitle | Pattern recognition and image analysis |
PublicationTitleAbbrev | Pattern Recognit. Image Anal |
PublicationYear | 2022 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in IEEE Conf. on Computer Vision and Pattern Recognition, Honolulu, Hawaii,2017 (IEEE, 2017), vol. 1, pp. 6517–6525. https://doi.org/10.1109/CVPR.2017.690 J. Redmon, Darknet: Open source neural networks in C (2013). https://pjreddie.com/darknet G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Improving neural networks by preventing co-adaptation of feature.” arXiv:1207.0580 [cs.NE] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement.” arXiv:1804.02767 [cs.CV] LiQ.PengX.CaoL.DuW.XingH.QiaoY.Product image recognition with guidance learning and noisy supervisionComput. Vision Image Understanding201919610296310.1016/j.cviu.2020.102963 J. Deng, W. Dong, R. Socher, K. Li, and L. Fei-Fei, “ImageNet: A large-scale hierarchical image database,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami, 2009 (IEEE, 2019), pp. 248–255. https://doi.org/10.1109/CVPR.2009.5206848 Y. Lecun, C. Cortes, and C. Burges, “MNIST handwritten digit database,” ATT Labs. http://yann.lecun.com/exdb/mnist S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for deep neural networks,” in IEEE Conf. on Computer Vision and Pattern Recognition, Honolulu, Hawaii,2017 (IEEE, 2017), pp. 5987–5995. https://doi.org/10.1109/CVPR.2017.634 LiuW.AnguelovD.ErhanD.SzegedyC.ReedS.FuC.-Y.BergA. C. “SSD: Single shot multiBox detector,” in Computer Vision–ECCV 20162016ChamSpringer10.1007/978-3-319-46448-0_2 SantraB.PaulA.MukherjeeD. P.Deterministic Dropout for Deep Neural Networks Using Composite Random ForestPattern Recognit. Lett.202013120521210.1016/j.patrec.2019.12.023 M. Merler, C. Galleguillos, and S. Belongie, “Recognizing groceries in situ using in vitro training data,” in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Minneapolis,2007 (IEEE, 2007), pp. 1–8. https://doi.org/10.1109/CVPR.2007.383486 J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,2015 (IEEE, 2015), pp. 779–788. https://doi.org/10.1109/CVPR.2016.91 A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” NIPS’12: Proc. 25th Int. Conf. on Neural Information Processing Systems, Lake Tahoe, Nev.,2012, Ed. by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Curran Associates, Red Hook, N.Y., 2012), Vol. 1, pp. 1097–1105. F. Yu, V. Koltun, and T. Funkhouser, “Dilated residual networks,” in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii,2017 (IEEE, 2017), pp. 636–644. https://doi.org/10.1109/CVPR.2017.75 K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in Int. Conf. on Learning Representations,2015. arXiv:1409.1556 [cs.CV] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proc. 7th Int. Conf. on Computer Vision, Corfu,1999 (IEEE, 1999), Vol. 2, pp. 1150–1157. https://doi.org/10.1109/ICCV.1999.790410 A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier Nonlinearities Improve Neural Network Acoustic Models,” in Proceedings of the 30th Int. Conf. on Machine Learning, Atlanta,2013. RajagopalR.Comparative analysis of COVID-19 X‑ray images classification using convolutional neural network, transfer learning, and machine learning classifiers using deep featuresPattern Recognit. Image Anal.20213131332210.1134/S1054661821020140 M. Lin, Q. Chen, and S. Yan, “Network in network.” arXiv:1312.4400v3 [cs.NE] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The Marginal Value of Adaptive Gradient Methods in Machine Learning,” in 31st Conf. on Neural Information Processing Systems (NIPS 2017), Long Beach, Calif.,2017, Ed. by U. von Luxburg, I. Guyon, S. Bengio, H. Wallach, and R. Fergus (Curran Associates, Red Hook, N. Y., 2017), pp. 4151–4161. GeorgeM.FloerkemeierC. “Recognizing products: A per-exemplar multi-label image classification approach,” in Computer Vision–ECCV 20142014ChamSpringer10.1007/978-3-319-10605-2_29 LeCunY.BottouL.BengioY.HaffnerP.Gradient-based learning applied to document recognitionProc. IEEE1998862278223410.1109/5.726791 K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Las Vegas,2016 (IEEE, 2016), pp. 770–778. https://doi.org/10.1109/CVPR.2016.90 SrivastavaN.HintonG.KrizhevskyA.SutskeverI.SalakhutdinovR.Dropout: A simple way to prevent neural networks from overfittingJ. Mach. Learning Res.2014151929195832315921318.68153 LoweD. G.Distinctive image features from scale-invariant key pointsInt. J. Comput. Vision2004609111010.1023/B:VISI.0000029664.99615.94 RussakovskyO.DengJ.SuH.KrauseJ.SatheeshS.MaS.HuangZ.KarpathyA.KhoslaA.BernsteinM.BergA. C.Fei-FeiL.ImageNet large scale visual recognition challengeInt. J. Comput. Vision2015115211252342248210.1007/s11263-015-0816-y SrivastavaM. M. “Bag of tricks for retail product image classification,” Image Analysis and Recognition. ICIAR 20202020ChamSpringer10.1007/978-3-030-50347-5_8 6220_CR1 6220_CR3 cr-split#-6220_CR25.1 cr-split#-6220_CR25.2 B. Santra (6220_CR21) 2020; 131 W. Liu (6220_CR10) 2016 6220_CR11 6220_CR13 6220_CR14 6220_CR19 6220_CR16 6220_CR17 6220_CR18 M. George (6220_CR2) 2014 D. G. Lowe (6220_CR12) 2004; 60 R. Rajagopal (6220_CR15) 2021; 31 M. M. Srivastava (6220_CR23) 2020 Q. Li (6220_CR8) 2019; 196 N. Srivastava (6220_CR24) 2014; 15 6220_CR22 O. Russakovsky (6220_CR20) 2015; 115 6220_CR5 6220_CR4 6220_CR7 6220_CR9 6220_CR26 6220_CR27 Y. LeCun (6220_CR6) 1998; 86 |
References_xml | – reference: SrivastavaM. M. “Bag of tricks for retail product image classification,” Image Analysis and Recognition. ICIAR 20202020ChamSpringer10.1007/978-3-030-50347-5_8 – reference: RussakovskyO.DengJ.SuH.KrauseJ.SatheeshS.MaS.HuangZ.KarpathyA.KhoslaA.BernsteinM.BergA. C.Fei-FeiL.ImageNet large scale visual recognition challengeInt. J. Comput. Vision2015115211252342248210.1007/s11263-015-0816-y – reference: LoweD. G.Distinctive image features from scale-invariant key pointsInt. J. Comput. Vision2004609111010.1023/B:VISI.0000029664.99615.94 – reference: Y. Lecun, C. Cortes, and C. Burges, “MNIST handwritten digit database,” ATT Labs. http://yann.lecun.com/exdb/mnist – reference: M. Lin, Q. Chen, and S. Yan, “Network in network.” arXiv:1312.4400v3 [cs.NE] – reference: J. Redmon, Darknet: Open source neural networks in C (2013). https://pjreddie.com/darknet/ – reference: A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier Nonlinearities Improve Neural Network Acoustic Models,” in Proceedings of the 30th Int. Conf. on Machine Learning, Atlanta,2013. – reference: LiuW.AnguelovD.ErhanD.SzegedyC.ReedS.FuC.-Y.BergA. C. “SSD: Single shot multiBox detector,” in Computer Vision–ECCV 20162016ChamSpringer10.1007/978-3-319-46448-0_2 – reference: LeCunY.BottouL.BengioY.HaffnerP.Gradient-based learning applied to document recognitionProc. IEEE1998862278223410.1109/5.726791 – reference: RajagopalR.Comparative analysis of COVID-19 X‑ray images classification using convolutional neural network, transfer learning, and machine learning classifiers using deep featuresPattern Recognit. Image Anal.20213131332210.1134/S1054661821020140 – reference: GeorgeM.FloerkemeierC. “Recognizing products: A per-exemplar multi-label image classification approach,” in Computer Vision–ECCV 20142014ChamSpringer10.1007/978-3-319-10605-2_29 – reference: J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement.” arXiv:1804.02767 [cs.CV] – reference: K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Las Vegas,2016 (IEEE, 2016), pp. 770–778. https://doi.org/10.1109/CVPR.2016.90 – reference: LiQ.PengX.CaoL.DuW.XingH.QiaoY.Product image recognition with guidance learning and noisy supervisionComput. Vision Image Understanding201919610296310.1016/j.cviu.2020.102963 – reference: G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Improving neural networks by preventing co-adaptation of feature.” arXiv:1207.0580 [cs.NE] – reference: S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for deep neural networks,” in IEEE Conf. on Computer Vision and Pattern Recognition, Honolulu, Hawaii,2017 (IEEE, 2017), pp. 5987–5995. https://doi.org/10.1109/CVPR.2017.634 – reference: K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in Int. Conf. on Learning Representations,2015. arXiv:1409.1556 [cs.CV] – reference: SrivastavaN.HintonG.KrizhevskyA.SutskeverI.SalakhutdinovR.Dropout: A simple way to prevent neural networks from overfittingJ. Mach. Learning Res.2014151929195832315921318.68153 – reference: J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in IEEE Conf. on Computer Vision and Pattern Recognition, Honolulu, Hawaii,2017 (IEEE, 2017), vol. 1, pp. 6517–6525. https://doi.org/10.1109/CVPR.2017.690 – reference: M. Merler, C. Galleguillos, and S. Belongie, “Recognizing groceries in situ using in vitro training data,” in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Minneapolis,2007 (IEEE, 2007), pp. 1–8. https://doi.org/10.1109/CVPR.2007.383486 – reference: F. Yu, V. Koltun, and T. Funkhouser, “Dilated residual networks,” in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii,2017 (IEEE, 2017), pp. 636–644. https://doi.org/10.1109/CVPR.2017.75 – reference: D. G. Lowe, “Object recognition from local scale-invariant features,” in Proc. 7th Int. Conf. on Computer Vision, Corfu,1999 (IEEE, 1999), Vol. 2, pp. 1150–1157. https://doi.org/10.1109/ICCV.1999.790410 – reference: SantraB.PaulA.MukherjeeD. P.Deterministic Dropout for Deep Neural Networks Using Composite Random ForestPattern Recognit. Lett.202013120521210.1016/j.patrec.2019.12.023 – reference: J. Deng, W. Dong, R. Socher, K. Li, and L. Fei-Fei, “ImageNet: A large-scale hierarchical image database,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami, 2009 (IEEE, 2019), pp. 248–255. https://doi.org/10.1109/CVPR.2009.5206848 – reference: A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” NIPS’12: Proc. 25th Int. Conf. on Neural Information Processing Systems, Lake Tahoe, Nev.,2012, Ed. by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Curran Associates, Red Hook, N.Y., 2012), Vol. 1, pp. 1097–1105. – reference: J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,2015 (IEEE, 2015), pp. 779–788. https://doi.org/10.1109/CVPR.2016.91 – reference: A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The Marginal Value of Adaptive Gradient Methods in Machine Learning,” in 31st Conf. on Neural Information Processing Systems (NIPS 2017), Long Beach, Calif.,2017, Ed. by U. von Luxburg, I. Guyon, S. Bengio, H. Wallach, and R. Fergus (Curran Associates, Red Hook, N. Y., 2017), pp. 4151–4161. – volume: 15 start-page: 1929 year: 2014 ident: 6220_CR24 publication-title: J. Mach. Learning Res. – volume-title: “SSD: Single shot multiBox detector,” in Computer Vision–ECCV 2016 year: 2016 ident: 6220_CR10 doi: 10.1007/978-3-319-46448-0_2 – ident: 6220_CR16 – ident: 6220_CR11 doi: 10.1109/ICCV.1999.790410 – ident: #cr-split#-6220_CR25.2 – volume: 131 start-page: 205 year: 2020 ident: 6220_CR21 publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2019.12.023 – ident: 6220_CR3 doi: 10.1109/CVPR.2016.90 – ident: 6220_CR27 doi: 10.1109/CVPR.2017.75 – volume: 60 start-page: 91 year: 2004 ident: 6220_CR12 publication-title: Int. J. Comput. Vision doi: 10.1023/B:VISI.0000029664.99615.94 – ident: 6220_CR22 – volume-title: “Recognizing products: A per-exemplar multi-label image classification approach,” in Computer Vision–ECCV 2014 year: 2014 ident: 6220_CR2 doi: 10.1007/978-3-319-10605-2_29 – ident: 6220_CR17 doi: 10.1109/CVPR.2016.91 – ident: 6220_CR1 doi: 10.1109/CVPR.2009.5206848 – ident: 6220_CR19 – ident: 6220_CR4 – ident: 6220_CR26 doi: 10.1109/CVPR.2017.634 – volume-title: “Bag of tricks for retail product image classification,” Image Analysis and Recognition. ICIAR 2020 year: 2020 ident: 6220_CR23 doi: 10.1007/978-3-030-50347-5_8 – ident: 6220_CR13 – ident: 6220_CR14 doi: 10.1109/CVPR.2007.383486 – ident: #cr-split#-6220_CR25.1 – volume: 196 start-page: 102963 year: 2019 ident: 6220_CR8 publication-title: Comput. Vision Image Understanding doi: 10.1016/j.cviu.2020.102963 – ident: 6220_CR9 – volume: 86 start-page: 2278 year: 1998 ident: 6220_CR6 publication-title: Proc. IEEE doi: 10.1109/5.726791 – ident: 6220_CR7 – volume: 115 start-page: 211 year: 2015 ident: 6220_CR20 publication-title: Int. J. Comput. Vision doi: 10.1007/s11263-015-0816-y – ident: 6220_CR5 – ident: 6220_CR18 doi: 10.1109/CVPR.2017.690 – volume: 31 start-page: 313 year: 2021 ident: 6220_CR15 publication-title: Pattern Recognit. Image Anal. doi: 10.1134/S1054661821020140 |
SSID | ssj0008192 |
Score | 2.235599 |
Snippet | Retail product classification can be beneficial in the world of commerce, take for example helping vision-disabled parties in their shopping or evaluating... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 142 |
SubjectTerms | Accuracy Application Problems Artificial neural networks Classification Computer Science Computer vision Evaluation Image classification Image Processing and Computer Vision Object recognition Pattern Recognition Training |
Title | Retail Product Classification on Distinct Distribution of Training and Evaluation Data |
URI | https://link.springer.com/article/10.1134/S105466182104012X https://www.proquest.com/docview/2640582830 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8ovOiDKGpE0fTBJ81wXx3bIwhINBKjYPBp6bruRTOMGy_-9V63FiJ-JCTb0rRrs-2u17vd9XcA5zxAwWtxZvg0kn-rrMAIcBoZwrYEtRm3WRnlO_KGE_d2SqdqH3emo921S7KQ1GXeEffqCTUBF1cTH40UNArs6SZUUf0waQWqnZuXu_5CAEuMr8LJSV1DdlDOzF8H-b4cLXXMFbdosdoMajDWz1kGmby25nnU4p8rEI5rvsgu7Cjtk3RKdtmDDZHWoaY0UaLmeYZVOtmDrqvD9v0C4DXbh-fHIvSUPJSAsaTIrSmjjgpCEzx6Unik2CQLOqsWmSVkrJJSEJbGpL8AGyc9lrMDmAz64-uhoVI0GNyxvNywhaAiitDMSHyBqp0IYkaFlXAa2x4T3JQskuBJrbYIEk_glXkOFhgNgsR0DqGSzlJxBISztrC9JAk8n7tu7CATCdONo5h5EjTeaYCpKRVyhV8u02i8hYUd47jhjw_bgItFl_cSvOO_m5ua_KGax1mI6qIpHYuO2YBLTc1l85-DHa919wls2XJXRRHa1oRK_jEXp6jr5NEZ8vag2x2dKR7_Akrt9eE |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIADjwFiPHPgBCr0kXTrcYKN8diEoEPjVKVpegF1iHUXfj1OmxQxHhJSW0VJE7W149i18xngSAQoeB3BrRaL1d8qJ7ACnEaWdB3JXC5cXkb5DvzekF6P2Ejv456YaHfjkiwkdZl3hJ49oCZAcTVpoZGCRoE7mocFiiY4WlwL7cunm04lgBXGV-HkZNRSHbQz88dBvi5HnzrmjFu0WG26qxCa5yyDTJ5Pp3l8Kt5nIBz_-SJrsKK1T9Iu2WUd5mRWh1WtiRI9zydYZZI9mLo6LPcrgNfJBjzeF6Gn5K4EjCVFbk0VdVQQmuBxoYRHhk2qYLJqkXFKQp2UgvAsIZ0KbJxc8JxvwrDbCc97lk7RYAnP8XPLlZLJOEYzI21JVO1kkHAmnVSwxPW5FLZikRRP5jRlkPoSr9z3sMBZEKS2twW1bJzJbSCCN6Xrp2ngtwSliYdMJG2axAn3FWi81wDbUCoSGr9cpdF4iQo7xqPRtw_bgOOqy2sJ3vHXzXuG_JGex5MI1UVbORY9uwEnhpqfzb8OtvOvuw9hsRf2b6Pbq8HNLiy5aodFEea2B7X8bSr3Ue_J4wPN5x9HCfdU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRAcKKsoqw-cQIEsdpocEW1ZCgixqZyC49gXUIpouPD1jBO7FWWREFISWXZsJfHYnsmM3wPYETFOvJ7gTsRS_bfKi50Yh5EjfU8ynwufV1G-l-HJHT3rsZ7hOR3YaHfrkqz2NGiUprw4eMmU4SChBzeoFVBcWSI0WNBA8HuTMEXdqBnVYOrw-KHbHk7GGu-rdHgy6ugKxrH5bSOfl6aRvjnmIi1Xnk4dHu0zVwEnT_tvRbov3sfgHP_xUvMwZ7RScliJ0QJMyHwR6kZDJWb8DzDLkkDYvEWYvRgCvw6W4P66DEklVxWQLCk5N3U0UikABI-WnlRyLNIJy7ZF-orcGrIKwvOMtIcg5KTFC74Md5327dGJY6gbHBF4YeH4UjKZpmh-qEiiyifjjDPpKcEyP-RSuFp0FJ7Ma8pYhRKvPAwwwVkcKzdYgVrez-UqEMGb0g-VisNIUJoFKFzSpVma8VCDyQcNcG2vJcLgmmt6jeektG8Cmnz5sA3YHVZ5qUA9frt5w4pCYsb3IEE10tUOx8BtwJ7t2VHxj42t_enubZi-anWS89PL7jrM-HrjRRn9tgG14vVNbqI6VKRbRuQ_AAe3AEc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retail+Product+Classification+on+Distinct+Distribution+of+Training+and+Evaluation+Data&rft.jtitle=Pattern+recognition+and+image+analysis&rft.au=Jonathan&rft.au=Kusuma%2C+Gede+Putra&rft.date=2022-03-01&rft.pub=Pleiades+Publishing&rft.issn=1054-6618&rft.eissn=1555-6212&rft.volume=32&rft.issue=1&rft.spage=142&rft.epage=152&rft_id=info:doi/10.1134%2FS105466182104012X&rft.externalDocID=10_1134_S105466182104012X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1054-6618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1054-6618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1054-6618&client=summon |