Self-Similarity Properties of the Kerch Peninsula Stream Network and Their Comparison with the Results of Structural and Geomorphological Analysis
— The results of the fractal analysis of a drainage network reconstructed using a digital elevation model and the structural and geomorphological analysis of the relief of the Kerch Peninsula are compared. Three sectors with different geomorphological expression and the uplifts and depressions assoc...
Saved in:
Published in | Izvestiya. Atmospheric and oceanic physics Vol. 55; no. 7; pp. 721 - 730 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
01.12.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0001-4338 1555-628X |
DOI | 10.1134/S0001433819070120 |
Cover
Loading…
Abstract | —
The results of the fractal analysis of a drainage network reconstructed using a digital elevation model and the structural and geomorphological analysis of the relief of the Kerch Peninsula are compared. Three sectors with different geomorphological expression and the uplifts and depressions associated with them have been identified by the results of the structural and geomorphological analysis. At the same time, the newest structural geometry does not coincide with the structural geometry that developed until the Late Pliocene period. The neotectonic structures of several orders are distinguished according to the results of the structural and geomorphological analysis. The relationship between the magnitude of the fractal dimension
D
of the drainage network and the movement direction was found: higher values correspond to uplifts and lower values correspond to depressions. This is due to the fact that the areas of neotectonic uplifts are characterized by the active restructuring of the drainage system and the formation of new streambeds and valleys as well as the branching of streams. The increasing complexity of the river network is seen in the higher values of the fractal dimension
D
, which is a quantitative measure of the complexity of objects. At the same time, the increased values of the
D
field correlate with rather large first-order structures. It is also found that the results of fractal analysis are subject to the scale effect, and the sensitivity depends on the accuracy and scale of the data. This should be taken into account in further research. It is shown that the fractal approach is promising for the quantitative analysis of the drainage pattern in the study of the newest tectonic structures. |
---|---|
AbstractList | —
The results of the fractal analysis of a drainage network reconstructed using a digital elevation model and the structural and geomorphological analysis of the relief of the Kerch Peninsula are compared. Three sectors with different geomorphological expression and the uplifts and depressions associated with them have been identified by the results of the structural and geomorphological analysis. At the same time, the newest structural geometry does not coincide with the structural geometry that developed until the Late Pliocene period. The neotectonic structures of several orders are distinguished according to the results of the structural and geomorphological analysis. The relationship between the magnitude of the fractal dimension
D
of the drainage network and the movement direction was found: higher values correspond to uplifts and lower values correspond to depressions. This is due to the fact that the areas of neotectonic uplifts are characterized by the active restructuring of the drainage system and the formation of new streambeds and valleys as well as the branching of streams. The increasing complexity of the river network is seen in the higher values of the fractal dimension
D
, which is a quantitative measure of the complexity of objects. At the same time, the increased values of the
D
field correlate with rather large first-order structures. It is also found that the results of fractal analysis are subject to the scale effect, and the sensitivity depends on the accuracy and scale of the data. This should be taken into account in further research. It is shown that the fractal approach is promising for the quantitative analysis of the drainage pattern in the study of the newest tectonic structures. Abstract—The results of the fractal analysis of a drainage network reconstructed using a digital elevation model and the structural and geomorphological analysis of the relief of the Kerch Peninsula are compared. Three sectors with different geomorphological expression and the uplifts and depressions associated with them have been identified by the results of the structural and geomorphological analysis. At the same time, the newest structural geometry does not coincide with the structural geometry that developed until the Late Pliocene period. The neotectonic structures of several orders are distinguished according to the results of the structural and geomorphological analysis. The relationship between the magnitude of the fractal dimension D of the drainage network and the movement direction was found: higher values correspond to uplifts and lower values correspond to depressions. This is due to the fact that the areas of neotectonic uplifts are characterized by the active restructuring of the drainage system and the formation of new streambeds and valleys as well as the branching of streams. The increasing complexity of the river network is seen in the higher values of the fractal dimension D, which is a quantitative measure of the complexity of objects. At the same time, the increased values of the D field correlate with rather large first-order structures. It is also found that the results of fractal analysis are subject to the scale effect, and the sensitivity depends on the accuracy and scale of the data. This should be taken into account in further research. It is shown that the fractal approach is promising for the quantitative analysis of the drainage pattern in the study of the newest tectonic structures. |
Author | Bryantseva, G. V. Simonov, D. A. Zakharov, V. S. Kosevich, N. I. |
Author_xml | – sequence: 1 givenname: V. S. surname: Zakharov fullname: Zakharov, V. S. email: zakharov@geol.msu.ru organization: Moscow State University, Dubna State University – sequence: 2 givenname: D. A. surname: Simonov fullname: Simonov, D. A. organization: Moscow State University – sequence: 3 givenname: G. V. surname: Bryantseva fullname: Bryantseva, G. V. organization: Moscow State University, Dubna State University – sequence: 4 givenname: N. I. surname: Kosevich fullname: Kosevich, N. I. organization: Moscow State University |
BookMark | eNp9kN1q3DAQhUVIIZu0D5A7Qa_djiT_XoalTUpDG7op9M7I8jhWYkvuSCbsa_SJ690NFBKaq4GZ8505nFN27LxDxs4FfBBCpR83ACBSpUpRQQFCwhFbiSzLklyWv47ZandOdvcTdhrCPUAuUyhW7M8Ghy7Z2NEOmmzc8hvyE1K0GLjveOyRf0UyPb9BZ12YB803kVCP_BvGR08PXLuW3_Zoia_9OC0mwTv-aGO_h3_gwsS918LNJs6khz1ziX70NPV-8HfWLMsLp4dtsOEte9PpIeC7p3nGfn7-dLu-Sq6_X35ZX1wnRok8JrJtWgXGNE0DVWpk2UqFnVFV2eaqLfXSRqoqVWQFFE1WNUWhoNQ5aNWKvM2FOmPvD74T-d8zhljf-5mWEKGWSkGapancqcRBZciHQNjVE9lR07YWUO-qr19UvzDFM8bYqKP1LpK2w6ukPJBh-eLukP5l-j_0Fwo8miM |
CitedBy_id | crossref_primary_10_1134_S0001433824701342 crossref_primary_10_3390_jmse12010068 crossref_primary_10_3103_S0145875220040158 crossref_primary_10_1134_S0001433821080090 crossref_primary_10_1109_ACCESS_2020_2997923 crossref_primary_10_3103_S0145875221060077 crossref_primary_10_3390_jmse10101392 |
Cites_doi | 10.1016/j.gloplacha.2007.02.011 10.3103/S0145875211060123 10.15356/0435-4281-2014-1-3-14 10.15356/0435-4281-2008-3-86-95 10.1017/CBO9781139174695 10.1007/978-1-4899-2124-6 10.1029/1998JB900110 |
ContentType | Journal Article |
Copyright | Pleiades Publishing, Ltd. 2019 Pleiades Publishing, Ltd. 2019. |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2019 – notice: Pleiades Publishing, Ltd. 2019. |
DBID | AAYXX CITATION 7TG 7TN F1W H96 KL. L.G |
DOI | 10.1134/S0001433819070120 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1555-628X |
EndPage | 730 |
ExternalDocumentID | 10_1134_S0001433819070120 |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C -~X .VR 06D 0R~ 0VY 1N0 29J 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 408 40D 40E 4P2 5GY 5VS 67M 6NX 6TJ 78A 7XC 88I 8CJ 8FE 8FH 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABEFU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEUYN AEVLU AEXYK AFBBN AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC B-. BA0 BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J D1K DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ H~9 IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ K6- KOV L8X LK5 LLZTM M1Q M2P M4Y M7R MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J PATMY PCBAR PF0 PQQKQ PROAC PT4 PYCSY Q2X QOS R89 R9I RNS ROL RSV S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 XOL XU3 YLTOR Z7R ~02 ~A9 AAPKM AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PHGZT 7TG 7TN ABRTQ F1W H96 KL. L.G |
ID | FETCH-LOGICAL-c316t-2dbd30ccbbb094c28d23efc398d63d8a143439375707b59b77308a60a3d16d613 |
IEDL.DBID | AGYKE |
ISSN | 0001-4338 |
IngestDate | Fri Jul 25 22:33:36 EDT 2025 Tue Jul 01 04:30:00 EDT 2025 Thu Apr 24 22:53:15 EDT 2025 Fri Feb 21 02:37:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | structural geomorphology Kerch Peninsula drainage network fractal analysis digital elevation model neotectonics self-similarity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-2dbd30ccbbb094c28d23efc398d63d8a143439375707b59b77308a60a3d16d613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2330454421 |
PQPubID | 54469 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2330454421 crossref_primary_10_1134_S0001433819070120 crossref_citationtrail_10_1134_S0001433819070120 springer_journals_10_1134_S0001433819070120 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: Washington |
PublicationTitle | Izvestiya. Atmospheric and oceanic physics |
PublicationTitleAbbrev | Izv. Atmos. Ocean. Phys |
PublicationYear | 2019 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | Geologiya SSSR (Geology of the USSR), vol. 8: Krym (The Crimea), Part 1: Geologicheskoe opisanie (Geological Description), Muratov, M.V., Ed., Moscow Nedra, 1969. Feder, J., Fractals, New York: Springer, 1988; Moscow: Mir, 1991. TurcotteD.L.Fractals and Chaos in Geology and Geophysics1997CambridgeCambridge Univ. Press10.1017/CBO9781139174695 Kalush, Yu.A., Loginov, V.M., and Chupikova, S.A., The use of GIS technologies in the analysis of fractal characteristics of the river network of Tuva, Geoinformatika, 2005, no. 4, pp. 31–40. Sidorchuk, A.Yu., Fractal geometry of river networks, Geomorfologiya, 2014, no. 1, pp. 3–14. Chupikova, S.A., Fractal methods for revealing hidden regularity in erosive surface breakdown (the test case of analysis of the Sayan–Tuva Mountains, Republic of Tuva), Abstract of Cand. Sci. (Geogr.) Dissertation, Tomsk, 2010. DombradiE.TimarG.BadaG.CloetinghS.HorvathF.Fractal dimension estimations of drainage network in the Carpathian–Pannonian systemGlobal and Planet. Change20075819721310.1016/j.gloplacha.2007.02.011 ZakharovV. S.Analysis of the characteristics of self-similarity of seismicity and the active fault network of EurasiaMoscow University Geology Bulletin201166638539210.3103/S0145875211060123 Muratov, M.V., Kratkii ocherk geologicheskogo stroenie Krymskogo poluostrova (A Brief Outline of the Geological Structure of the Crimean Peninsula), Moscow: Gosgeoltekhizdat, 1960. PelletierJ.D.Self-organization and scaling relationships of evolving river networksJ. Geophys. Res.19991047359737510.1029/1998JB900110 Mel’nik, M.A. and Pozdnyakov, A.V., Fractal analysis of erosive topography breakdown: Methodological approaches, Vestn. Tomsk. Gos. Univ., 2007, no. 301, pp. 201–205. Mel’nik, M.A. and Pozdnyakov, A.V., Fractals in the erosive surface breakdown and self-oscillations in the dynamics of geomorphosystems, Geomorfologiya, 2008, no. 3, pp. 86–95. Korchuganova, N.I., Kostenko, N.P., and Mezhelovskii, N.N., Neotektonicheskie metody poiskov poleznykh iskopaemykh (Neotectonic Methods of Search for Minerals), Moscow: MPR RF geokart. MGGA, 2001. ShnyukovE.F.SobolevskiiYu.V.GnatenkoG.I.NaumenkoP.I.KutniiV.A.Gryazevye vulkany Kerchensko–Tamanskoi oblasti: Atlas (Atlas of Grease Volcanoes of the Kerch–Taman Region)1986KievNaukova dumka JensonS.K.DomingueJ.O.Extracting topographic structure from digital elevation data for geographic information system analysisPhotogram. Eng. Remote Sens.19885415931600 Makarova, N.V. and Makarov, V.I., Quaternary tectonic zonality of the Kerch Peninsula, Vestn. Mosk. Univ., Ser. 4: Geol., 1994, no. 4, pp. 20–33. 8179_CR1 J.D. Pelletier (8179_CR13) 1999; 104 S.K. Jenson (8179_CR6) 1988; 54 8179_CR14 8179_CR12 8179_CR11 8179_CR10 E. Dombradi (8179_CR2) 2007; 58 8179_CR8 V. S. Zakharov (8179_CR16) 2011; 66 8179_CR7 (8179_CR5) 1986 8179_CR9 8179_CR4 8179_CR3 D.L. Turcotte (8179_CR15) 1997 |
References_xml | – reference: Feder, J., Fractals, New York: Springer, 1988; Moscow: Mir, 1991. – reference: Korchuganova, N.I., Kostenko, N.P., and Mezhelovskii, N.N., Neotektonicheskie metody poiskov poleznykh iskopaemykh (Neotectonic Methods of Search for Minerals), Moscow: MPR RF geokart. MGGA, 2001. – reference: Sidorchuk, A.Yu., Fractal geometry of river networks, Geomorfologiya, 2014, no. 1, pp. 3–14. – reference: ZakharovV. S.Analysis of the characteristics of self-similarity of seismicity and the active fault network of EurasiaMoscow University Geology Bulletin201166638539210.3103/S0145875211060123 – reference: Makarova, N.V. and Makarov, V.I., Quaternary tectonic zonality of the Kerch Peninsula, Vestn. Mosk. Univ., Ser. 4: Geol., 1994, no. 4, pp. 20–33. – reference: ShnyukovE.F.SobolevskiiYu.V.GnatenkoG.I.NaumenkoP.I.KutniiV.A.Gryazevye vulkany Kerchensko–Tamanskoi oblasti: Atlas (Atlas of Grease Volcanoes of the Kerch–Taman Region)1986KievNaukova dumka – reference: Mel’nik, M.A. and Pozdnyakov, A.V., Fractal analysis of erosive topography breakdown: Methodological approaches, Vestn. Tomsk. Gos. Univ., 2007, no. 301, pp. 201–205. – reference: Mel’nik, M.A. and Pozdnyakov, A.V., Fractals in the erosive surface breakdown and self-oscillations in the dynamics of geomorphosystems, Geomorfologiya, 2008, no. 3, pp. 86–95. – reference: Chupikova, S.A., Fractal methods for revealing hidden regularity in erosive surface breakdown (the test case of analysis of the Sayan–Tuva Mountains, Republic of Tuva), Abstract of Cand. Sci. (Geogr.) Dissertation, Tomsk, 2010. – reference: Geologiya SSSR (Geology of the USSR), vol. 8: Krym (The Crimea), Part 1: Geologicheskoe opisanie (Geological Description), Muratov, M.V., Ed., Moscow Nedra, 1969. – reference: PelletierJ.D.Self-organization and scaling relationships of evolving river networksJ. Geophys. Res.19991047359737510.1029/1998JB900110 – reference: JensonS.K.DomingueJ.O.Extracting topographic structure from digital elevation data for geographic information system analysisPhotogram. Eng. Remote Sens.19885415931600 – reference: Kalush, Yu.A., Loginov, V.M., and Chupikova, S.A., The use of GIS technologies in the analysis of fractal characteristics of the river network of Tuva, Geoinformatika, 2005, no. 4, pp. 31–40. – reference: DombradiE.TimarG.BadaG.CloetinghS.HorvathF.Fractal dimension estimations of drainage network in the Carpathian–Pannonian systemGlobal and Planet. Change20075819721310.1016/j.gloplacha.2007.02.011 – reference: Muratov, M.V., Kratkii ocherk geologicheskogo stroenie Krymskogo poluostrova (A Brief Outline of the Geological Structure of the Crimean Peninsula), Moscow: Gosgeoltekhizdat, 1960. – reference: TurcotteD.L.Fractals and Chaos in Geology and Geophysics1997CambridgeCambridge Univ. Press10.1017/CBO9781139174695 – volume: 58 start-page: 197 year: 2007 ident: 8179_CR2 publication-title: Global and Planet. Change doi: 10.1016/j.gloplacha.2007.02.011 – volume: 66 start-page: 385 issue: 6 year: 2011 ident: 8179_CR16 publication-title: Moscow University Geology Bulletin doi: 10.3103/S0145875211060123 – volume-title: Gryazevye vulkany Kerchensko–Tamanskoi oblasti: Atlas (Atlas of Grease Volcanoes of the Kerch–Taman Region) year: 1986 ident: 8179_CR5 – ident: 8179_CR14 doi: 10.15356/0435-4281-2014-1-3-14 – ident: 8179_CR7 – ident: 8179_CR8 – ident: 8179_CR10 – ident: 8179_CR12 – ident: 8179_CR11 doi: 10.15356/0435-4281-2008-3-86-95 – volume-title: Fractals and Chaos in Geology and Geophysics year: 1997 ident: 8179_CR15 doi: 10.1017/CBO9781139174695 – ident: 8179_CR3 doi: 10.1007/978-1-4899-2124-6 – volume: 104 start-page: 7359 year: 1999 ident: 8179_CR13 publication-title: J. Geophys. Res. doi: 10.1029/1998JB900110 – volume: 54 start-page: 1593 year: 1988 ident: 8179_CR6 publication-title: Photogram. Eng. Remote Sens. – ident: 8179_CR1 – ident: 8179_CR4 – ident: 8179_CR9 |
SSID | ssj0062407 |
Score | 2.199059 |
Snippet | —
The results of the fractal analysis of a drainage network reconstructed using a digital elevation model and the structural and geomorphological analysis of... Abstract—The results of the fractal analysis of a drainage network reconstructed using a digital elevation model and the structural and geomorphological... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 721 |
SubjectTerms | Analysis Climatology Complexity Digital Elevation Models Dimensions Drainage network Drainage patterns Drainage systems Earth and Environmental Science Earth Sciences Fractal analysis Fractal geometry Fractals Geomorphology Geophysics/Geodesy Neotectonics Pliocene Quantitative analysis River networks Rivers Scale effect Self-similarity Streambeds Structures Tectonics Valleys |
Title | Self-Similarity Properties of the Kerch Peninsula Stream Network and Their Comparison with the Results of Structural and Geomorphological Analysis |
URI | https://link.springer.com/article/10.1134/S0001433819070120 https://www.proquest.com/docview/2330454421 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6yvfjiXZw38iA-KJU2adP00Q2nODbETdCnkqQpDLdWdL74M_zFnqSNw3kBH0t7QtucJN93rggdAe2JCZfCyyPqe4DAcy8BmOtxzqTSAcuI9Z73B-zqLry-j-7rPO4XF-3uXJJ2p676joQmp9fUojMMA9Q0IMDTm1HAE95AzfPLh96F24CZISkV6g1MQhCvnZk_DvL1OJpjzAW3qD1tuqto5N6zCjJ5PHudyTP1tlDC8Z8fsoZWavSJzyt1WUdLuthArT4A5_LZ2tfxMe5MxoBi7dUmeh_qSe4Nx9MxMGAA7PjGGO-fTRVWXOYY0CPuaVgq-EYXNqxdYOPnFlM8qOLLsSgyPDLeCNz5bHmIjfXXCt9qkJnZsYa2kq2pAmJlLnU5LUEJ3OaMXfmULXTXvRh1rry6jYOnaMBmHslkRn2lpJTAJRXhGaE6VzThGaMZF4FJbgWUFMV-LKNExrDpcMF8QTPQFYAb26hRlIXeQZgyxhXXLJbStG2ngioBp7wgUgO1iqIW8t1spqqucW5abUxSy3VomH77-S108inyVBX4-Ovhfaciab3WX1JiTEJRGJKghU7djM9v_zrY7r-e3kPLgNWSKpJmHzVgTvQB4KGZPAT977bbg8N6HXwAYkUAQw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH-aymFc2Acgytd8mDgMBSV24rhHVLV0K63QWiQ4RbbjSBVtMpVy4c_gL96zE4MGA4ljlDwriZ_t3-99AnxH2pNSoWRQJCwMEIEXQQdhbiAEV9pEPKfOez4a88Fl_OsquWryuG99tLt3Sbqduu47EtucXluLzjIMVNOIIk9fi5GChy1YOz27Hvb8BswtSalRb2QTgkTjzPzvIP8eR08Y85lb1J02_U8w9e9ZB5ncnNyt1Im-f1bC8Z0f8hk2GvRJTmt1-QIfTPkV2iMEztXS2dfJEenOZ4hi3dUmPEzMvAgms8UMGTACdnJhjfdLW4WVVAVB9EiGBpcKuTClC2uXxPq55YKM6_hyIsucTK03gnQfWx4Sa_11wr8NyqzcWBNXydZWAXEyZ6ZaVKgEfnMmvnzKFlz2e9PuIGjaOASaRXwV0FzlLNRaKYVcUlORU2YKzToi5ywXMrLJrYiSkjRMVdJRKW46QvJQshx1BeHGNrTKqjQ7QBjnQgvDU6Vs23YmmZZ4ykuqDFKrJGlD6Gcz002Nc9tqY545rsPi7MXPb8OPR5E_dYGPtx7e9yqSNWv9NqPWJJTEMY3acOxn_On2q4Ptvuvpb_BxMB2dZ-c_x8M9WEfc1qmjavahhfNjDhAbrdRhsxb-AlCYAaQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6hRUK9lD7VpVB8qHqgCk3sxPEe0cJCu2W1YkGip9SvSCt2EwTppT-jv7hjJwbxaKWqxygZK4nH9jevbwDeo9mTU6FkVGYsjhCBl9EAYW4kBFfaJtxQHz0_nvCjs_TLeXbe9Tm9DtnuISTZ1jQ4lqaq-XRpyq4HSerqex0vnbM2UGUTijb7ahoj9u_B6t7ht_FB2Iy5M1haBJy44iDRBTYfHeTu0XSLN--FSP3JM1qH7-Gd24STi90fjdrVP-_ROf7HRz2Dpx0qJXutGj2HFVu9gP4xAur6yvvdyQcyXMwR3fqrl_BrZhdlNJsv52gZI5AnU-fUv3LsrKQuCaJKMra4hMjUVj7dXRIX_5ZLMmnzzomsDDl1UQoyvGmFSJxX2AufWJRp_Fgzz3Dr2EG8zKGtlzUqR9i0SaBVeQVno4PT4VHUtXeINEt4E1GjDIu1VkqhjampMJTZUrOBMJwZIRNX9IroKcvjXGUDleNmJCSPJTOoQwhDXkOvqiv7BgjjXGhhea6Ua-fOJNMST39JlUWTK8v6EIeZLXTHfe5acCwKbwOxtHjw8_uwcyNy2RJ__O3hzaAuRbcHXBfUuYqyNKVJHz6G2b-9_cfBNv7p6W1Ym-6Piq-fJ-O38ATh3KBNttmEHk6P3ULI1Kh33bL4DTHKCog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Similarity+Properties+of+the+Kerch+Peninsula+Stream+Network+and+Their+Comparison+with+the+Results+of+Structural+and+Geomorphological+Analysis&rft.jtitle=Izvestiya.+Atmospheric+and+oceanic+physics&rft.au=Zakharov%2C+V.+S.&rft.au=Simonov%2C+D.+A.&rft.au=Bryantseva%2C+G.+V.&rft.au=Kosevich%2C+N.+I.&rft.date=2019-12-01&rft.issn=0001-4338&rft.eissn=1555-628X&rft.volume=55&rft.issue=7&rft.spage=721&rft.epage=730&rft_id=info:doi/10.1134%2FS0001433819070120&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S0001433819070120 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4338&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4338&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4338&client=summon |