A brief review on multi-task learning

Multi-task learning (MTL), which optimizes multiple related learning tasks at the same time, has been widely used in various applications, including natural language processing, speech recognition, computer vision, multimedia data processing, biomedical imaging, socio-biological data analysis, multi...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 77; no. 22; pp. 29705 - 29725
Main Authors Thung, Kim-Han, Wee, Chong-Yaw
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
DOI10.1007/s11042-018-6463-x

Cover

Loading…
Abstract Multi-task learning (MTL), which optimizes multiple related learning tasks at the same time, has been widely used in various applications, including natural language processing, speech recognition, computer vision, multimedia data processing, biomedical imaging, socio-biological data analysis, multi-modality data analysis, etc. MTL sometimes is also referred to as joint learning, and is closely related to other machine learning subfields like multi-class learning, transfer learning, and learning with auxiliary tasks, to name a few. In this paper, we provide a brief review on this topic, discuss the motivation behind this machine learning method, compare various MTL algorithms, review MTL methods for incomplete data, and discuss its application in deep learning. We aim to provide the readers with a simple way to understand MTL without too many complicated equations, and to help the readers to apply MTL in their applications.
AbstractList Multi-task learning (MTL), which optimizes multiple related learning tasks at the same time, has been widely used in various applications, including natural language processing, speech recognition, computer vision, multimedia data processing, biomedical imaging, socio-biological data analysis, multi-modality data analysis, etc. MTL sometimes is also referred to as joint learning, and is closely related to other machine learning subfields like multi-class learning, transfer learning, and learning with auxiliary tasks, to name a few. In this paper, we provide a brief review on this topic, discuss the motivation behind this machine learning method, compare various MTL algorithms, review MTL methods for incomplete data, and discuss its application in deep learning. We aim to provide the readers with a simple way to understand MTL without too many complicated equations, and to help the readers to apply MTL in their applications.
Author Thung, Kim-Han
Wee, Chong-Yaw
Author_xml – sequence: 1
  givenname: Kim-Han
  orcidid: 0000-0003-1379-2185
  surname: Thung
  fullname: Thung, Kim-Han
  organization: Department of Radiology, University of North Carolina
– sequence: 2
  givenname: Chong-Yaw
  surname: Wee
  fullname: Wee, Chong-Yaw
  email: cywee2000@gmail.com
  organization: Department of Biomedical Engineering, National University of Singapore
BookMark eNp9kE1Lw0AQhhepYFv9Ad4C4nF1Zj-TYylahYIXPS-bdFO2ppu6m2r996ZEEAQ9zRze553hmZBRaIMj5BLhBgH0bUIEwShgTpVQnB5OyBil5lRrhqN-5zlQLQHPyCSlDQAqycSYXM-yMnpXZ9G9e_eRtSHb7pvO086m16xxNgYf1ufktLZNchffc0pe7u-e5w90-bR4nM-WtOKoOsrKulZaliVXUGApuc4LK2FVqJytHHKQWFSiZBIZVyiLXFXopFihclZUIPiUXA29u9i-7V3qzKbdx9CfNAxyyUWBgvcpPaSq2KYUXW0q39nOt6GL1jcGwRydmMGJ6Z2YoxNz6En8Re6i39r4-S_DBib12bB28eenv6EvnclzKg
CitedBy_id crossref_primary_10_1007_s00371_024_03686_8
crossref_primary_10_3390_jimaging8110293
crossref_primary_10_1016_j_ijforecast_2021_03_004
crossref_primary_10_1007_s11783_024_1789_2
crossref_primary_10_1016_j_neuroimage_2022_119769
crossref_primary_10_1115_1_4063863
crossref_primary_10_3390_app9224748
crossref_primary_10_1016_j_imu_2021_100571
crossref_primary_10_1016_j_mtcomm_2023_107249
crossref_primary_10_1016_j_neunet_2023_02_007
crossref_primary_10_1109_TASLP_2024_3353578
crossref_primary_10_1109_TKDE_2022_3201058
crossref_primary_10_1186_s43074_023_00102_7
crossref_primary_10_3390_agronomy14091974
crossref_primary_10_3390_s25041271
crossref_primary_10_1016_j_jmsy_2022_07_008
crossref_primary_10_1016_j_media_2023_103067
crossref_primary_10_3389_fnagi_2022_1027224
crossref_primary_10_1007_s10489_021_02543_8
crossref_primary_10_1016_j_ecoinf_2024_102784
crossref_primary_10_1007_s00521_024_10436_3
crossref_primary_10_1109_TIP_2025_3528347
crossref_primary_10_1177_14759217231185051
crossref_primary_10_3390_s21175918
crossref_primary_10_3934_mbe_2023512
crossref_primary_10_1002_mp_15724
crossref_primary_10_1007_s10489_025_06270_2
crossref_primary_10_1016_j_advwatres_2023_104463
crossref_primary_10_1109_JBHI_2020_3037366
crossref_primary_10_1016_j_engappai_2024_108785
crossref_primary_10_1109_TIM_2024_3502821
crossref_primary_10_1016_j_foreco_2022_120011
crossref_primary_10_1016_j_measurement_2021_110085
crossref_primary_10_1016_j_ins_2022_03_067
crossref_primary_10_1007_s10845_024_02388_1
crossref_primary_10_1029_2022GL102283
crossref_primary_10_1016_j_asoc_2021_107769
crossref_primary_10_3390_s22103637
crossref_primary_10_1021_jacs_4c01524
crossref_primary_10_1007_s00170_022_10115_4
crossref_primary_10_1038_s41598_025_92769_0
crossref_primary_10_3390_s20174886
crossref_primary_10_1109_ACCESS_2022_3156638
crossref_primary_10_1109_JBHI_2024_3412103
crossref_primary_10_1016_j_seppur_2024_127790
crossref_primary_10_3389_fneur_2024_1449234
crossref_primary_10_1016_j_compbiomed_2022_106496
crossref_primary_10_1016_j_procs_2023_08_156
crossref_primary_10_1016_j_compag_2024_108868
crossref_primary_10_1007_s11036_021_01834_1
crossref_primary_10_1007_s11030_022_10565_8
crossref_primary_10_1016_j_adapen_2023_100150
crossref_primary_10_1007_s11467_024_1402_y
crossref_primary_10_3390_plants13091177
crossref_primary_10_1007_s10489_023_04600_w
crossref_primary_10_3390_electronics12173597
crossref_primary_10_1155_2021_4259629
crossref_primary_10_3389_fnins_2019_01387
crossref_primary_10_23939_acps2019_02_065
crossref_primary_10_1088_2515_7639_ab077b
crossref_primary_10_1117_1_JEI_33_1_013048
crossref_primary_10_1016_j_asoc_2023_110188
crossref_primary_10_1007_s00521_019_04628_5
crossref_primary_10_1109_TAFFC_2024_3382618
crossref_primary_10_3390_app13074226
crossref_primary_10_3233_IDA_230390
crossref_primary_10_1002_aisy_202300270
crossref_primary_10_1007_s11042_025_20631_6
crossref_primary_10_12677_AAM_2023_123124
crossref_primary_10_1088_1402_4896_ada20a
crossref_primary_10_1109_TIM_2020_3017900
crossref_primary_10_1016_j_cageo_2024_105772
crossref_primary_10_1016_j_cmpb_2023_107906
crossref_primary_10_1016_j_csl_2024_101683
crossref_primary_10_1038_s42256_024_00852_4
crossref_primary_10_1007_s10489_022_03707_w
crossref_primary_10_3390_ai5040090
crossref_primary_10_32604_cmc_2023_041395
crossref_primary_10_1039_D3MH00157A
crossref_primary_10_3390_app122412805
crossref_primary_10_1587_transinf_2024EDP7046
crossref_primary_10_1007_s40200_023_01357_4
crossref_primary_10_1016_j_knosys_2024_111672
crossref_primary_10_1016_j_nlp_2024_100076
crossref_primary_10_1109_TAFFC_2021_3131516
crossref_primary_10_3390_app132312876
crossref_primary_10_1016_j_ast_2022_107640
crossref_primary_10_1007_s13349_024_00848_z
crossref_primary_10_1155_2021_6046184
crossref_primary_10_1016_j_imavis_2024_104926
crossref_primary_10_1109_ACCESS_2021_3085218
crossref_primary_10_1016_j_aei_2024_102565
crossref_primary_10_1002_ett_4948
crossref_primary_10_1007_s11063_021_10703_7
crossref_primary_10_1109_JSAC_2022_3155526
crossref_primary_10_1038_s41583_022_00653_x
crossref_primary_10_1155_2021_5661292
crossref_primary_10_1016_j_asoc_2021_107483
crossref_primary_10_1038_s41467_025_56481_x
crossref_primary_10_1016_j_media_2019_101630
crossref_primary_10_26508_lsa_202302255
crossref_primary_10_1016_j_ast_2023_108287
crossref_primary_10_1016_j_jmsy_2024_04_021
crossref_primary_10_1109_TNSE_2021_3067454
crossref_primary_10_3390_electronics12051226
crossref_primary_10_1007_s00521_023_08381_8
crossref_primary_10_1007_s00357_024_09488_w
crossref_primary_10_3390_rs15081990
crossref_primary_10_1016_j_jmapro_2024_11_054
crossref_primary_10_1109_JIOT_2022_3228292
crossref_primary_10_1088_2632_2153_abd614
crossref_primary_10_1016_j_neunet_2023_02_026
crossref_primary_10_1109_ACCESS_2024_3478805
crossref_primary_10_1002_widm_1470
crossref_primary_10_1002_fsn3_4300
crossref_primary_10_1016_j_scitotenv_2022_159542
crossref_primary_10_1016_j_ins_2023_119142
crossref_primary_10_3390_en16114406
crossref_primary_10_1016_j_fochx_2024_101481
crossref_primary_10_1016_j_imu_2023_101161
crossref_primary_10_1109_TIM_2023_3273673
crossref_primary_10_1007_s00521_024_10165_7
crossref_primary_10_1007_s00521_023_08562_5
crossref_primary_10_1167_iovs_65_2_5
crossref_primary_10_3390_agronomy13122976
crossref_primary_10_1016_j_neuroimage_2023_120067
crossref_primary_10_3390_biomedicines10010070
crossref_primary_10_3390_e24040551
crossref_primary_10_1016_j_engstruct_2025_120030
crossref_primary_10_1016_j_knosys_2020_106248
crossref_primary_10_1364_OE_426968
crossref_primary_10_1016_j_engappai_2021_104458
crossref_primary_10_1021_acs_jcim_3c00546
crossref_primary_10_1016_j_media_2019_101534
crossref_primary_10_1016_j_imu_2024_101459
crossref_primary_10_3390_jimaging8040108
crossref_primary_10_1109_TII_2023_3342897
crossref_primary_10_1109_TNNLS_2021_3060494
crossref_primary_10_1016_j_crad_2024_106756
crossref_primary_10_1016_j_envpol_2021_117698
crossref_primary_10_1007_s10994_023_06410_0
Cites_doi 10.1145/1015330.1015426
10.1186/s40537-016-0043-6
10.1007/s11222-008-9111-x
10.1109/TIM.2017.2707898
10.1016/j.neuroimage.2017.02.035
10.1109/TNNLS.2017.2673241
10.1145/1014052.1014067
10.1109/TNNLS.2016.2521602
10.1198/004017005000000139
10.1137/090763184
10.1007/978-3-319-66179-7_1
10.7551/mitpress/7503.003.0105
10.1109/ICASSP.2013.6639012
10.1109/TIT.2013.2280272
10.1109/FG.2017.41
10.1007/978-1-4615-5529-2_5
10.1109/TIP.2016.2579306
10.1117/12.2293412
10.1109/ICIP.2014.7025029
10.1016/j.neuroimage.2013.08.015
10.1109/TIP.2017.2721106
10.1038/s41598-017-05300-5
10.24963/ijcai.2017/231
10.1109/TMM.2017.2703636
10.1016/j.media.2017.09.005
10.1609/aaai.v28i1.9009
10.1609/aaai.v30i1.10261
10.1145/1553374.1553458
10.1145/1553374.1553459
10.1145/2623330.2623641
10.1007/978-3-319-46720-7_40
10.1016/j.neuroimage.2012.03.059
10.1007/978-3-319-66179-7_24
10.1145/1390156.1390177
10.1007/978-3-319-10599-4_7
10.1109/TIP.2017.2667405
10.2139/ssrn.1031158
10.1007/978-3-319-66185-8_81
10.1145/2783258.2783393
10.1109/TBDATA.2017.2735991
10.1007/s11042-016-4231-3
10.1016/j.neuroimage.2010.07.002
10.1016/j.media.2017.05.003
10.1145/2086737.2086742
10.1109/ICPR.2016.7900120
10.1016/j.neuroimage.2011.09.069
10.1016/j.neucom.2016.05.081
10.1111/j.2517-6161.1996.tb02080.x
10.1109/ICCV.2015.169
10.1109/TKDE.2009.191
10.1109/ICPR.2002.1048350
10.17863/CAM.12584
10.1109/WACV.2014.6835990
10.1109/ICIP.2014.7025580
10.1007/s10994-008-5050-1
10.1109/ICCV.2003.1238452
10.1145/2339530.2339672
10.1145/1553374.1553392
10.1007/978-3-319-46720-7_13
10.1145/2020408.2020423
10.1145/1553374.1553463
10.1145/2020408.2020549
10.1016/j.neuroimage.2013.09.015
10.1145/2783258.2783304
10.1145/2339530.2339702
10.1007/s10994-007-5040-8
10.1016/j.neuroimage.2014.01.033
10.1109/TKDE.2017.2763618
10.1109/ICASSP.2015.7178814
10.1016/S0042-6989(97)00169-7
10.1109/CVPR.2004.1315070
10.1109/TBME.2015.2466616
10.1609/aaai.v27i1.8577
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-018-6463-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 29725
ExternalDocumentID 10_1007_s11042_018_6463_x
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c316t-2bff675bb36091b53789a50d9682de130519c4b25123615986c1e54d16ea4c043
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Fri Jul 25 23:14:00 EDT 2025
Thu Apr 24 23:09:30 EDT 2025
Thu Jul 10 08:43:40 EDT 2025
Fri Feb 21 02:33:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords Joint learning
MTL
Transfer learning
Learning with auxiliary tasks
Multi-task learning
Multi-class learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-2bff675bb36091b53789a50d9682de130519c4b25123615986c1e54d16ea4c043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1379-2185
PQID 2085349143
PQPubID 54626
PageCount 21
ParticipantIDs proquest_journals_2085349143
crossref_citationtrail_10_1007_s11042_018_6463_x
crossref_primary_10_1007_s11042_018_6463_x
springer_journals_10_1007_s11042_018_6463_x
PublicationCentury 2000
PublicationDate 20181100
2018-11-00
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 20181100
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Liu J, Ji S, Ye J (2009) Multi-task feature learning via efficient l 2, 1-norm minimization. In: Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence. pp 339–348. AUAI Press
Zhou J, Chen J, Ye J (2011) Malsar: Multi-task learning via structural regularization. Arizona State University 21
Zhang C, Zhang Z (2014) Improving multiview face detection with multi-task deep convolutional neural networks. In: Applications of computer vision (WACV), 2014 IEEE winter conference on. pp 1036–1041. IEEE
ArgyriouAEvgeniouTPontilMConvex multi-task feature learningMach Learn200873324327210.1007/s10994-007-5040-8
Zhang Z, Luo P, Loy CC, Tang X (2014) Facial landmark detection by deep multi-task learning. In: European conference on computer vision. pp 94–108. Springer
Argyriou A, Micchelli CA, Pontil M, Ying Y (2008) A spectral regularization framework for multi-task structure learning, nips 20 Journal Publications on Mathematics (Harmonic Analysis)
Liu H, Palatucci M, Zhang J (2009) Blockwise coordinate descent procedures for the multi-task lasso, with applications to neural semantic basis discovery. In: Proceedings of the 26th Annual International Conference on Machine Learning. pp 649–656. ACM
ZhuXLiXZhangSXuZYuLWangCGraph pca hashing for similarity searchIEEE Transactions on Multimedia20171992033204410.1109/TMM.2017.2703636
Fang Y, Ma Z, Zhang Z, Zhang XY, Bai X (2017) Dynamic multi-task learning with convolutional neural network. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17. pp 1668–1674. https://doi.org/10.24963/ijcai.2017/231
EvgeniouTMicchelliCAPontilMLearning multiple tasks with kernel methodsJ Mach Learn Res20056Apr61563722498331222.68197
Zheng W, Zhu X, Zhu Y, Hu R, Lei C (2017) Dynamic graph learning for spectral feature selection. Multimedia Tools and Applications, pp 1–17
Zhou Y, Jin R, Hoi SCH (2010) Exclusive lasso for multi-task feature selection. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. pp 988–995
Zhang S, Li X, Zong M, Zhu X, Wang R (2017) Efficient knn classification with different numbers of nearest neighbors IEEE transactions on neural networks and learning systems
TurlachBAVenablesWNWrightSJSimultaneous variable selectionTechnometrics2005473349363216470610.1198/004017005000000139
PongTKTsengPJiSYeJTrace norm regularization: reformulations, algorithms, and multi-task learningSIAM J Optim201020634653489276351210.1137/090763184
ThungKHNeurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completionNeuroimage20149138640010.1016/j.neuroimage.2014.01.033
Zhu Y, Zhu X, Zhang H, Gao W, Shen D, Wu G (2016) Reveal consistent spatial-temporal patterns from dynamic functional connectivity for autism spectrum disorder identification. In: International conference on medical image computing and computer-assisted intervention. pp 106–114. Springer
Li C, Gupta S, Rana S, Nguyen V, Venkatesh S, Ashley D, Livingston T (2016) Multiple adverse effects prediction in longitudinal cancer treatment. In: Pattern recognition (ICPR), 2016 23rd international conference on. pp 3156–3161. IEEE
Gong P, Zhou J, Fan W, Ye J (2014) Efficient multi-task feature learning with calibration. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. pp 761–770. ACM
JalaliARavikumarPSanghaviSA dirty model for multiple sparse regressionIEEE Trans Inf Theory2013591279477968314227510.1109/TIT.2013.2280272
ZhangJGhahramaniZYangYFlexible latent variable models for multi-task learningMach Learn200873322124210.1007/s10994-008-5050-1
Liu J, Ye J (2010) Moreau-yosida regularization for grouped tree structure learning. In: Advances in neural information processing systems. pp 1459–1467
YanKZhangDXuYCorrecting instrumental variation and time-varying drift using parallel and serial multitask learningIEEE Trans Instrum Meas20176692306231610.1109/TIM.2017.2707898
Zhu X, Zhang S, Hu R, Zhu Y et al (2017) Local and global structure preservation for robust unsupervised spectral feature selection IEEE Transactions on Knowledge and Data Engineering
Zhu Y, Kim M, Zhu X, Yan J, Kaufer D, Wu G (2017) Personalized diagnosis for alzheimers disease. In: International conference on medical image computing and computer-assisted intervention. pp 205–213. Springer
Ciliberto C (2017) Matmtl. https://github.com/cciliber/matMTL
Ranjan R, Patel VM, Chellappa R (2017) Hyperface:A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence
Zhou J, Yuan L, Liu J, Ye J (2011) A multi-task learning formulation for predicting disease progression. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. pp 814–822. ACM
Maurer A, Pontil M, Romera-Paredes B (2013) Sparse coding for multitask and transfer learning. In: International conference on machine learning. pp 343–351
YuanLMulti-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging dataNeuroImage201261362263210.1016/j.neuroimage.2012.03.059
McDonald AM, Pontil M, Stamos D (2014) Spectral k-support norm regularization. In: Advances in neural information processing systems. pp 3644–3652
WangZZhuXAdeliEZhuYNieFMunsellBWuGMulti-modal classification of neurodegenerative disease by progressive graph-based transductive learningMed Image Anal20173921823010.1016/j.media.2017.05.003
Zhang J, Ghahramani Z, Yang Y (2006) Learning multiple related tasks using latent independent component analysis. In: Advances in neural information processing systems. pp 1585–1592
Liu J, et al. (2009) SLEP: Sparse Learning with efficient projections arizona state university
Argyriou A, Evgeniou T, Pontil M (2007) Multi-task feature learning. In: Advances in neural information processing systems. vol 19, pp 41–48. MIT press
XueWBrahmGPandeySLeungSLiSFull left ventricle quantification via deep multitask relationships learningMed Image Anal201843546510.1016/j.media.2017.09.005https://doi.org/10.1016/j.media.2017.09.005
ZhangDMulti-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s diseaseNeuroimage201259289590710.1016/j.neuroimage.2011.09.069
Jebara T (2004) Multi-task feature and kernel selection for svms. In: Proceedings of the twenty-first international conference on Machine learning. p 55. ACM
VounouMNicholsTEMontanaGInitiativeADNDiscovering genetic associations with high-dimensional neuroimaging phenotypes: a sparse reduced-rank regression approachNeuroimage20105331147115910.1016/j.neuroimage.2010.07.002
Lozano AC, Swirszcz G (2012) Multi-level lasso for sparse multi-task regression. In: Proceedings of the 29th International Coference on International Conference on Machine Learning. pp 595–602. Omnipress
Agarwal A, Gerber S, Daume H (2010) Learning multiple tasks using manifold regularization. In: Advances in neural information processing systems. pp 46–54
Gong P, Ye J, Zhang C (2012) Robust multi-task feature learning. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. pp 895–903. ACM
Ng A (2018) Multi-task learning. https://www.coursera.org/learn/machine-learning-projects/lecture/l9zia/multi-task-learning
Liu M, Zhang J, Adeli E, Shen D (2017) Deep multi-task multi-channel learning for joint classification and regression of brain status. In: International conference on medical image computing and computer-assisted intervention. pp 3–11. Springer
AndoRKZhangTA framework for learning predictive structures from multiple tasks and unlabeled dataJ Mach Learn Res20056Nov1817185322498731222.68133
Suo Y, Dao M, Tran T, Mousavi H, Srinivas U, Monga V (2014) Group structured dirty dictionary learning for classification. In: Image processing (ICIP), 2014 IEEE international conference on. pp 150–154. IEEE
Titsias MK, Lázaro-Gredilla M (2011) Spike and slab variational inference for multi-task and multiple kernel learning. In: Advances in neural information processing systems. pp 2339–2347
Collobert R, Weston J (2008) A unified architecture for natural language processing: Deep neural networks with multitask learning. In: Proceedings of the 25th international conference on machine learning. pp 160–167. ACM
Zhou J, Liu J, Narayan VA, Ye J (2012) Modeling disease progression via fused sparse group lasso. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. pp 1095–1103. ACM
Mandal MK (2018) Multi-task learning in keras — implementation of multi-task classification loss. https://blog.manash.me/multi-task-learning-in-keras-implementation-of-multi-task-classification-loss-f1d42da5c3f6
Han L, Zhang Y, Song G, Xie K (2014) Encoding tree sparsity in multi-task learning: a probabilistic framework. In: AAAI. pp 1854–1860
Samala RK, Chan HP, Hadjiiski L, Helvie MA, Richter C, Cha K (2018) Cross-domain and multi-task transfer learning of deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis. In: MICCAI. vol 10575. https://doi.org/10.1117/12.2293412
Zheng J, Ni LM (2013) Time-dependent trajectory regression on road networks via multi-task learning. In: AAAI
ZhangJLiuMShenDDetecting anatomical landmarks from limited medical imaging data using two-stage task-oriented deep neural networksIEEE Trans Image Process2017261047534764368189610.1109/TIP.2017.2721106
HuRZhuXChengDHeWYanYSongJZhangSGraph self-representation method for unsupervised feature selectionNeurocomputing201722013013710.1016/j.neucom.2016.05.081
XinBKawaharaYWangYHuLGaoWEfficient generalized fused lasso and its applicationsACM Transactions on Intelligent Systems and Technology (TIST)20167460
Han L, Zhang Y (2016) Multi-stage multi-task learning with reduced rank. In: AAAI. pp 1638–1644
Gong P, Ye J, Zhang Cs (2012) Multi-stage multi-
6463_CR7
6463_CR8
6463_CR9
K Weiss (6463_CR85) 2016; 3
K Yan (6463_CR90) 2017; 66
6463_CR4
6463_CR5
6463_CR58
6463_CR59
KH Thung (6463_CR73) 2014; 91
6463_CR56
6463_CR57
6463_CR54
6463_CR55
6463_CR52
M Vounou (6463_CR79) 2010; 53
6463_CR53
6463_CR50
6463_CR51
J Fan (6463_CR20) 2017; 26
M Ghafoorian (6463_CR23) 2017; 7
BA Turlach (6463_CR76) 2005; 47
W Xue (6463_CR89) 2018; 43
Z Wang (6463_CR84) 2017; 39
SJ Pan (6463_CR63) 2010; 22
6463_CR69
6463_CR67
J Zhang (6463_CR96) 2017; 76
6463_CR68
6463_CR65
6463_CR66
A Jalali (6463_CR34) 2013; 59
6463_CR60
6463_CR1
6463_CR2
J Chen (6463_CR10) 2012; 5
6463_CR78
6463_CR112
6463_CR77
6463_CR75
6463_CR72
6463_CR106
6463_CR107
6463_CR70
6463_CR108
6463_CR71
6463_CR109
6463_CR102
S Xiang (6463_CR87) 2014; 102
6463_CR103
6463_CR104
6463_CR105
X Zhu (6463_CR113) 2017; 3
F Liu (6463_CR43) 2014; 84
T Jebara (6463_CR37) 2011; 12
6463_CR100
6463_CR101
TK Pong (6463_CR64) 2010; 20
BA Olshausen (6463_CR62) 1997; 37
6463_CR86
6463_CR83
X Zhu (6463_CR114) 2016; 63
6463_CR81
6463_CR82
X Zhu (6463_CR111) 2017; 19
G Obozinski (6463_CR61) 2010; 20
6463_CR19
6463_CR16
6463_CR17
6463_CR14
6463_CR15
6463_CR12
6463_CR13
6463_CR98
6463_CR11
6463_CR99
6463_CR94
6463_CR92
C Wachinger (6463_CR80) 2018; 170
6463_CR29
6463_CR27
6463_CR28
6463_CR25
J Zhang (6463_CR97) 2017; 26
6463_CR26
T Evgeniou (6463_CR18) 2005; 6
6463_CR24
6463_CR21
B Xin (6463_CR88) 2016; 7
6463_CR22
6463_CR117
X Li (6463_CR42) 2016; 25
D Zhang (6463_CR93) 2012; 59
6463_CR115
6463_CR116
RK Ando (6463_CR3) 2005; 6
J Zhang (6463_CR95) 2008; 73
6463_CR38
6463_CR39
6463_CR36
6463_CR35
6463_CR33
L Yuan (6463_CR91) 2012; 61
6463_CR30
6463_CR31
A Argyriou (6463_CR6) 2008; 73
R Tibshirani (6463_CR74) 1996; 58
R Hu (6463_CR32) 2017; 220
X Zhu (6463_CR110) 2017; 28
6463_CR49
6463_CR47
6463_CR48
6463_CR45
6463_CR46
6463_CR44
6463_CR41
6463_CR40
References_xml – reference: Negahban S, Wainwright MJ (2008) Joint support recovery under high-dimensional scaling: Benefits and perils of ℓ1,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{1,\infty }$\end{document}-regularization. In: Proceedings of the 21st International Conference on Neural Information Processing Systems. pp 1161–1168. Curran Associates Inc
– reference: Lee S, Zhu J, Xing EP (2010) Adaptive multi-task lasso: with application to eqtl detection. In: Advances in neural information processing systems. pp 1306–1314
– reference: Liu H, Palatucci M, Zhang J (2009) Blockwise coordinate descent procedures for the multi-task lasso, with applications to neural semantic basis discovery. In: Proceedings of the 26th Annual International Conference on Machine Learning. pp 649–656. ACM
– reference: Liu J, Ye J (2010) Moreau-yosida regularization for grouped tree structure learning. In: Advances in neural information processing systems. pp 1459–1467
– reference: ArgyriouAEvgeniouTPontilMConvex multi-task feature learningMach Learn200873324327210.1007/s10994-007-5040-8
– reference: HuRZhuXChengDHeWYanYSongJZhangSGraph self-representation method for unsupervised feature selectionNeurocomputing201722013013710.1016/j.neucom.2016.05.081
– reference: Girshick R (2015) Fast r-cnn. In: IEEE International conference on computer vision. pp 1440–1448
– reference: ZhangDMulti-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s diseaseNeuroimage201259289590710.1016/j.neuroimage.2011.09.069
– reference: FanJZhaoTKuangZZhengYZhangJYuJPengJHD-MTL: hierarchical deep multi-task learning for large-scale visual recognitionIEEE Trans Image Process201726419231938363624110.1109/TIP.2017.2667405
– reference: WeissKKhoshgoftaarTMWangDA survey of transfer learningJournal of Big Data201631910.1186/s40537-016-0043-6
– reference: ObozinskiGTaskarBJordanMIJoint covariate selection and joint subspace selection for multiple classification problemsStat Comput2010202231252261077510.1007/s11222-008-9111-x
– reference: Liu G, Yan Y, Song J, Sebe N (2014) Minimizing dataset bias: Discriminative multi-task sparse coding through shared subspace learning for image classification. In: Image processing (ICIP), 2014 IEEE international conference on. pp 2869–2873. IEEE
– reference: Zhang C, Zhang Z (2014) Improving multiview face detection with multi-task deep convolutional neural networks. In: Applications of computer vision (WACV), 2014 IEEE winter conference on. pp 1036–1041. IEEE
– reference: Zhou Y, Jin R, Hoi SCH (2010) Exclusive lasso for multi-task feature selection. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. pp 988–995
– reference: Rao N, Cox C, Nowak R, Rogers TT (2013) Sparse overlapping sets lasso for multitask learning and its application to fmri analysis. In: Advances in neural information processing systems. pp 2202–2210
– reference: Han L, Zhang Y (2016) Multi-stage multi-task learning with reduced rank. In: AAAI. pp 1638–1644
– reference: XiangSYuanLFanWWangYThompsonPMYeJInitiativeADNBi-level multi-source learning for heterogeneous block-wise missing dataNeuroImage201410219220610.1016/j.neuroimage.2013.08.015
– reference: Chen J, Zhou J, Ye J (2011) Integrating low-rank and group-sparse structures for robust multi-task learning. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining. pp 42–50. ACM
– reference: Zhu X, Suk HI, Huang H, Shen D (2016) Structured sparse low-rank regression model for brain-wide and genome-wide associations. In: International conference on medical image computing and computer-assisted intervention. pp 344–352. Springer
– reference: Lozano AC, Swirszcz G (2012) Multi-level lasso for sparse multi-task regression. In: Proceedings of the 29th International Coference on International Conference on Machine Learning. pp 595–602. Omnipress
– reference: Romera-Paredes B, Argyriou A, Berthouze N, Pontil M (2012) Exploiting unrelated tasks in multi-task learning. In: International conference on artificial intelligence and statistics. pp 951–959
– reference: XueWBrahmGPandeySLeungSLiSFull left ventricle quantification via deep multitask relationships learningMed Image Anal201843546510.1016/j.media.2017.09.005https://doi.org/10.1016/j.media.2017.09.005
– reference: OlshausenBAFieldDJSparse coding with an overcomplete basis set: a strategy employed by v1?Vis Res199737233311332510.1016/S0042-6989(97)00169-7
– reference: Zhang J, Liu M, Wang L, Chen S, Yuan P, Li J, Shen SGF, Tang Z, Chen KC, Xia JJ et al (2017) Joint craniomaxillofacial bone segmentation and landmark digitization by context-guided fully convolutional networks. In: International conference on medical image computing and computer-assisted intervention. pp 720–728. Springer
– reference: Ciliberto C (2017) Matmtl. https://github.com/cciliber/matMTL
– reference: Maurer A, Pontil M, Romera-Paredes B (2013) Sparse coding for multitask and transfer learning. In: International conference on machine learning. pp 343–351
– reference: Zhou J, Chen J, Ye J (2011) Malsar: Multi-task learning via structural regularization. Arizona State University 21
– reference: Chaichulee S, Villarroel M, Jorge J, Arteta C, Green G, McCormick K, Zisserman A, Tarassenko L (2017) Multi-task convolutional neural network for patient detection and skin segmentation in continuous non-contact vital sign monitoring. In: 2017 12th IEEE International conference on automatic face & gesture recognition (FG 2017). p 5110
– reference: Seraj RM (2014) Multi-task learning Internet: https://www.cs.ubc.ca/~schmidtm/MLRG/multi-task%20learning.pdf
– reference: Mandal MK (2018) Multi-task learning in keras — implementation of multi-task classification loss. https://blog.manash.me/multi-task-learning-in-keras-implementation-of-multi-task-classification-loss-f1d42da5c3f6
– reference: Zhang Y, Yang Q (2017) A survey on multi-task learning. arXiv:1707.08114
– reference: ZhuXLiXZhangSJuCWuXRobust joint graph sparse coding for unsupervised spectral feature selectionIEEE transactions on neural networks and learning systems201728612631275366177010.1109/TNNLS.2016.2521602
– reference: Seltzer ML, Droppo J (2013) Multi-task learning in deep neural networks for improved phoneme recognition. In: Acoustics, speech and signal processing (ICASSP), 2013 IEEE international conference on. pp 6965–6969. IEEE
– reference: Wu Z, Valentini-Botinhao C, Watts O, King S (2015) Deep neural networks employing multi-task learning and stacked bottleneck features for speech synthesis. In: Acoustics, speech and signal processing (ICASSP), 2015 IEEE international conference on. pp 4460–4464. IEEE
– reference: Zheng W, Zhu X, Zhu Y, Hu R, Lei C (2017) Dynamic graph learning for spectral feature selection. Multimedia Tools and Applications, pp 1–17
– reference: Elgammal A, Lee CS (2004) Separating style and content on a nonlinear manifold. In: Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on. vol 1, pp I–I. IEEE
– reference: PongTKTsengPJiSYeJTrace norm regularization: reformulations, algorithms, and multi-task learningSIAM J Optim201020634653489276351210.1137/090763184
– reference: Ng A (2018) Multi-task learning. https://www.coursera.org/learn/machine-learning-projects/lecture/l9zia/multi-task-learning
– reference: LiuFWeeCYChenHShenDInter-modality relationship constrained multi-modality multi-task feature selection for alzheimer’s disease and mild cognitive impairment identificationNeuroImage20148446647510.1016/j.neuroimage.2013.09.015
– reference: Collobert R, Weston J (2008) A unified architecture for natural language processing: Deep neural networks with multitask learning. In: Proceedings of the 25th international conference on machine learning. pp 160–167. ACM
– reference: Vogt J, Roth V (2012) A complete analysis of the l_1, p group-lasso. arXiv:1206.4632
– reference: GhafoorianMKarssemeijerNHeskesTvan UdenIWMSanchezCILitjensGde LeeuwFEvan GinnekenBMarchioriEPlatelBLocation sensitive deep convolutional neural networks for segmentation of white matter hyperintensitiesScientific Reports201771511010.1038/s41598-017-05300-5
– reference: Gong P, Ye J, Zhang Cs (2012) Multi-stage multi-task feature learning. In: Advances in neural information processing systems. pp 1988–1996
– reference: Agarwal A, Gerber S, Daume H (2010) Learning multiple tasks using manifold regularization. In: Advances in neural information processing systems. pp 46–54
– reference: Jebara T (2004) Multi-task feature and kernel selection for svms. In: Proceedings of the twenty-first international conference on Machine learning. p 55. ACM
– reference: Zhu Y, Kim M, Zhu X, Yan J, Kaufer D, Wu G (2017) Personalized diagnosis for alzheimers disease. In: International conference on medical image computing and computer-assisted intervention. pp 205–213. Springer
– reference: Chen J, Tang L, Liu J, Ye J (2009) A convex formulation for learning shared structures from multiple tasks. In: Proceedings of the 26th Annual International Conference on Machine Learning. pp 137–144. ACM
– reference: YanKZhangDXuYCorrecting instrumental variation and time-varying drift using parallel and serial multitask learningIEEE Trans Instrum Meas20176692306231610.1109/TIM.2017.2707898
– reference: Zhou J, Liu J, Narayan VA, Ye J (2012) Modeling disease progression via fused sparse group lasso. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. pp 1095–1103. ACM
– reference: Suo Y, Dao M, Tran T, Mousavi H, Srinivas U, Monga V (2014) Group structured dirty dictionary learning for classification. In: Image processing (ICIP), 2014 IEEE international conference on. pp 150–154. IEEE
– reference: Liu J, Ji S, Ye J (2009) Multi-task feature learning via efficient l 2, 1-norm minimization. In: Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence. pp 339–348. AUAI Press
– reference: Han L, Zhang Y, Song G, Xie K (2014) Encoding tree sparsity in multi-task learning: a probabilistic framework. In: AAAI. pp 1854–1860
– reference: Obozinski G, Taskar B, Jordan M (2006) Multi-task feature selection. Statistics Department UC Berkeley Tech Rep2
– reference: JebaraTMultitask sparsity via maximum entropy discriminationJ Mach Learn Res201112Jan7511027735491280.62077
– reference: Crichton G, Pyysalo S (2017) Code supporting: a neural network multi- task learning approach to biomedical named entity recognition. software, https://doi.org/10.17863/CAM.12584
– reference: Jalali A, Sanghavi S, Ruan C, Ravikumar PK (2010) A dirty model for multi-task learning. In: Lafferty JD, Williams CKI, Shawe-Taylor J, Zemel R. S, Culotta A (eds) Advances in neural information processing systems 23, pp 964-972. Curran Associates, Inc
– reference: Liu M, Zhang J, Adeli E, Shen D (2017) Deep multi-task multi-channel learning for joint classification and regression of brain status. In: International conference on medical image computing and computer-assisted intervention. pp 3–11. Springer
– reference: Zhang Y, Yeung DY (2012) A convex formulation for learning task relationships in multi-task learning. arXiv:1203.3536
– reference: Zhou J, Yuan L, Liu J, Ye J (2011) A multi-task learning formulation for predicting disease progression. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. pp 814–822. ACM
– reference: Ahmed B, Thesen T, Blackmon K, Kuzniecky R, Devinsky O, Dy J, Brodley C (2016) Multi-task learning with weak class labels: leveraging ieeg to detect cortical lesions in cryptogenic epilepsy. In: Machine learning for healthcare conference. pp 115–133
– reference: ChenJLiuJYeJLearning incoherent sparse and low-rank patterns from multiple tasksACM Trans Knowl Discov Data20125422:12210.1145/2086737.2086742
– reference: Caruana R (1998) Multitask learning. In: Learning to learn, pp 95–133. Springer
– reference: PanSJYangQA survey on transfer learningIEEE Trans Knowl Data Eng201022101345135910.1109/TKDE.2009.191
– reference: ZhuXSukHILeeSWShenDSubspace regularized sparse multitask learning for multiclass neurodegenerative disease identificationIEEE Trans Biomed Eng201663360761810.1109/TBME.2015.2466616
– reference: Moeskops P, Wolterink JM, van der Velden BHM, Gilhuijs KGA, Leiner T, Viergever MA, Isgum I (2017) Deep learning for multi-task medical image segmentation in multiple modalities. CoRR arXiv:1704.03379
– reference: TurlachBAVenablesWNWrightSJSimultaneous variable selectionTechnometrics2005473349363216470610.1198/004017005000000139
– reference: Godwin J (2018) Multi-task learning in tensorflow: Part 1. https://www.kdnuggets.com/2016/07/multi-task-learning-tensorflow-part-1.html
– reference: Ciliberto C, Mroueh Y, Poggio T (2015) Convex learning of multiple tasks and their structure. In: International conference on machine learning (ICML)
– reference: Zhang W, Li R, Zeng T, Sun Q, Kumar S, Ye J, Ji S (2015) Deep model based transfer and multi-task learning for biological image analysis. https://doi.org/10.1145/2783258.2783304
– reference: LiXZhaoLWeiLYangMHWuFZhuangYLingHWangJDeepsaliency: Multi-task deep neural network model for salient object detectionIEEE Trans Image Process201625839193930351940810.1109/TIP.2016.2579306
– reference: ZhuXLiXZhangSXuZYuLWangCGraph pca hashing for similarity searchIEEE Transactions on Multimedia20171992033204410.1109/TMM.2017.2703636
– reference: Ruder S (2017) An overview of multi-task learning in deep neural networks. arXiv:1706.05098
– reference: Zheng J, Ni LM (2013) Time-dependent trajectory regression on road networks via multi-task learning. In: AAAI
– reference: Wang H, et al. (2003) Facial expression decomposition. In: Computer vision, 2003. Proceedings. Ninth IEEE international conference on. pp 958–965. IEEE
– reference: YuanLMulti-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging dataNeuroImage201261362263210.1016/j.neuroimage.2012.03.059
– reference: Kim S, Xing EP (2010) Tree-guided group lasso for multi-task regression with structured sparsity. In: International conference on international conference on machine learning. pp. 543–550
– reference: Mairal J, Bach F, Ponce J, Sapiro G (2009) Online dictionary learning for sparse coding. In: Proceedings of the 26th annual international conference on machine learning. pp 689–696. ACM
– reference: AndoRKZhangTA framework for learning predictive structures from multiple tasks and unlabeled dataJ Mach Learn Res20056Nov1817185322498731222.68133
– reference: Fazel M (2002) Matrix rank minimization with applications. Ph.D. thesis, Department of Electrical Engineering Stanford University
– reference: Argyriou A, Evgeniou T, Pontil M (2007) Multi-task feature learning. In: Advances in neural information processing systems. vol 19, pp 41–48. MIT press
– reference: Wang H, Nie F, Huang H, Yan J, Kim S, Risacher S, Saykin A, Shen L (2012) High-order multi-task feature learning to identify longitudinal phenotypic markers for alzheimer’s disease progression prediction. In: Advances in neural information processing systems. pp 1277–1285
– reference: Zhang J, Ghahramani Z, Yang Y (2006) Learning multiple related tasks using latent independent component analysis. In: Advances in neural information processing systems. pp 1585–1592
– reference: Gong P, Zhou J, Fan W, Ye J (2014) Efficient multi-task feature learning with calibration. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. pp 761–770. ACM
– reference: WachingerCReuterMKleinTDeepnat: Deep convolutional neural network for segmenting neuroanatomyNeuroImage201817043444510.1016/j.neuroimage.2017.02.035http://www.sciencedirect.com/science/article/pii/S1053811917301465
– reference: Zhu X, Zhang S, Hu R, Zhu Y et al (2017) Local and global structure preservation for robust unsupervised spectral feature selection IEEE Transactions on Knowledge and Data Engineering
– reference: Jacob L, Vert Jp, Bach FR (2009) Clustered multi-task learning: A convex formulation. In: Advances in neural information processing systems. pp 745–752
– reference: JalaliARavikumarPSanghaviSA dirty model for multiple sparse regressionIEEE Trans Inf Theory2013591279477968314227510.1109/TIT.2013.2280272
– reference: Liu J, et al. (2009) SLEP: Sparse Learning with efficient projections arizona state university
– reference: Zhu Y, Zhu X, Zhang H, Gao W, Shen D, Wu G (2016) Reveal consistent spatial-temporal patterns from dynamic functional connectivity for autism spectrum disorder identification. In: International conference on medical image computing and computer-assisted intervention. pp 106–114. Springer
– reference: Zhang Z, Luo P, Loy CC, Tang X (2014) Facial landmark detection by deep multi-task learning. In: European conference on computer vision. pp 94–108. Springer
– reference: Ranjan R, Patel VM, Chellappa R (2017) Hyperface:A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: ThungKHNeurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completionNeuroimage20149138640010.1016/j.neuroimage.2014.01.033
– reference: XinBKawaharaYWangYHuLGaoWEfficient generalized fused lasso and its applicationsACM Transactions on Intelligent Systems and Technology (TIST)20167460
– reference: TibshiraniRRegression shrinkage and selection via the lasso. Journal of the Royal Statistical SocietySeries B (Methodological)199658126728813792420850.62538
– reference: Vasilescu MAO, Terzopoulos D (2002) Multilinear image analysis for facial recognition. In: Pattern recognition, 2002. Proceedings. 16th international conference on. vol 2, pp 511–514. IEEE
– reference: ZhangJLiangJHuHMulti-view texture classification using hierarchical synthetic imagesMultimedia Tools and Applications20177616175111752310.1007/s11042-016-4231-3
– reference: Han L, Zhang Y (2015) Learning tree structure in multi-task learning. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp 397–406. ACM
– reference: Wang J, Ye J (2015) Safe screening for multi-task feature learning with multiple data matrices. In: International conference on machine learning. pp 1747–1756
– reference: ZhangJGhahramaniZYangYFlexible latent variable models for multi-task learningMach Learn200873322124210.1007/s10994-008-5050-1
– reference: EvgeniouTMicchelliCAPontilMLearning multiple tasks with kernel methodsJ Mach Learn Res20056Apr61563722498331222.68197
– reference: VounouMNicholsTEMontanaGInitiativeADNDiscovering genetic associations with high-dimensional neuroimaging phenotypes: a sparse reduced-rank regression approachNeuroimage20105331147115910.1016/j.neuroimage.2010.07.002
– reference: Liu J, Ye J (2009) Efficient euclidean projections in linear time. In: Proceedings of the 26th Annual International Conference on Machine Learning. pp 657–664. ACM
– reference: Gong P, Ye J, Zhang C (2012) Robust multi-task feature learning. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. pp 895–903. ACM
– reference: Samala RK, Chan HP, Hadjiiski L, Helvie MA, Richter C, Cha K (2018) Cross-domain and multi-task transfer learning of deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis. In: MICCAI. vol 10575. https://doi.org/10.1117/12.2293412
– reference: Titsias MK, Lázaro-Gredilla M (2011) Spike and slab variational inference for multi-task and multiple kernel learning. In: Advances in neural information processing systems. pp 2339–2347
– reference: Lounici K, Pontil M, Tsybakov AB, Van De Geer S (2009)
– reference: Argyriou A, Micchelli CA, Pontil M, Ying Y (2008) A spectral regularization framework for multi-task structure learning, nips 20 Journal Publications on Mathematics (Harmonic Analysis)
– reference: ZhangJLiuMShenDDetecting anatomical landmarks from limited medical imaging data using two-stage task-oriented deep neural networksIEEE Trans Image Process2017261047534764368189610.1109/TIP.2017.2721106
– reference: McDonald AM, Pontil M, Stamos D (2014) Spectral k-support norm regularization. In: Advances in neural information processing systems. pp 3644–3652
– reference: Evgeniou T, Pontil M (2004) Regularized multi–task learning. In: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. pp 109–117. ACM
– reference: WangZZhuXAdeliEZhuYNieFMunsellBWuGMulti-modal classification of neurodegenerative disease by progressive graph-based transductive learningMed Image Anal20173921823010.1016/j.media.2017.05.003
– reference: ZhuXSukHIHuangHShenDLow-rank graph-regularized structured sparse regression for identifying genetic biomarkersIEEE Transactions on Big Data20173440541410.1109/TBDATA.2017.2735991
– reference: Lee H, Battle A, Raina R, Ng AY (2007) Efficient sparse coding algorithms. In: Advances in neural information processing systems. pp 801–808
– reference: Zhang S, Li X, Zong M, Zhu X, Wang R (2017) Efficient knn classification with different numbers of nearest neighbors IEEE transactions on neural networks and learning systems
– reference: Li C, Gupta S, Rana S, Nguyen V, Venkatesh S, Ashley D, Livingston T (2016) Multiple adverse effects prediction in longitudinal cancer treatment. In: Pattern recognition (ICPR), 2016 23rd international conference on. pp 3156–3161. IEEE
– reference: Fang Y, Ma Z, Zhang Z, Zhang XY, Bai X (2017) Dynamic multi-task learning with convolutional neural network. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17. pp 1668–1674. https://doi.org/10.24963/ijcai.2017/231
– reference: Argyriou A (2015) Machine learning software. http://ttic.uchicago.edu/~argyriou/code/
– ident: 6463_CR66
– ident: 6463_CR14
– ident: 6463_CR36
  doi: 10.1145/1015330.1015426
– volume: 3
  start-page: 9
  issue: 1
  year: 2016
  ident: 6463_CR85
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-016-0043-6
– volume: 20
  start-page: 231
  issue: 2
  year: 2010
  ident: 6463_CR61
  publication-title: Stat Comput
  doi: 10.1007/s11222-008-9111-x
– volume: 66
  start-page: 2306
  issue: 9
  year: 2017
  ident: 6463_CR90
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2017.2707898
– volume: 170
  start-page: 434
  year: 2018
  ident: 6463_CR80
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.02.035
– ident: 6463_CR99
  doi: 10.1109/TNNLS.2017.2673241
– ident: 6463_CR57
– ident: 6463_CR19
  doi: 10.1145/1014052.1014067
– volume: 28
  start-page: 1263
  issue: 6
  year: 2017
  ident: 6463_CR110
  publication-title: IEEE transactions on neural networks and learning systems
  doi: 10.1109/TNNLS.2016.2521602
– volume: 47
  start-page: 349
  issue: 3
  year: 2005
  ident: 6463_CR76
  publication-title: Technometrics
  doi: 10.1198/004017005000000139
– volume: 20
  start-page: 3465
  issue: 6
  year: 2010
  ident: 6463_CR64
  publication-title: SIAM J Optim
  doi: 10.1137/090763184
– ident: 6463_CR50
  doi: 10.1007/978-3-319-66179-7_1
– ident: 6463_CR39
  doi: 10.7551/mitpress/7503.003.0105
– ident: 6463_CR46
– ident: 6463_CR70
  doi: 10.1109/ICASSP.2013.6639012
– volume: 59
  start-page: 7947
  issue: 12
  year: 2013
  ident: 6463_CR34
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2013.2280272
– ident: 6463_CR9
  doi: 10.1109/FG.2017.41
– ident: 6463_CR8
  doi: 10.1007/978-1-4615-5529-2_5
– volume: 25
  start-page: 3919
  issue: 8
  year: 2016
  ident: 6463_CR42
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2016.2579306
– ident: 6463_CR49
– ident: 6463_CR52
– ident: 6463_CR69
  doi: 10.1117/12.2293412
– ident: 6463_CR83
– ident: 6463_CR72
  doi: 10.1109/ICIP.2014.7025029
– volume: 102
  start-page: 192
  year: 2014
  ident: 6463_CR87
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.08.015
– volume: 26
  start-page: 4753
  issue: 10
  year: 2017
  ident: 6463_CR97
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2721106
– volume: 7
  start-page: 5110
  issue: 1
  year: 2017
  ident: 6463_CR23
  publication-title: Scientific Reports
  doi: 10.1038/s41598-017-05300-5
– ident: 6463_CR68
– ident: 6463_CR60
– ident: 6463_CR21
  doi: 10.24963/ijcai.2017/231
– ident: 6463_CR105
– volume: 19
  start-page: 2033
  issue: 9
  year: 2017
  ident: 6463_CR111
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2017.2703636
– volume: 43
  start-page: 54
  year: 2018
  ident: 6463_CR89
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.09.005
– ident: 6463_CR51
– ident: 6463_CR31
  doi: 10.1609/aaai.v28i1.9009
– ident: 6463_CR30
  doi: 10.1609/aaai.v30i1.10261
– ident: 6463_CR45
  doi: 10.1145/1553374.1553458
– ident: 6463_CR65
– ident: 6463_CR48
  doi: 10.1145/1553374.1553459
– ident: 6463_CR40
– ident: 6463_CR71
– ident: 6463_CR28
  doi: 10.1145/2623330.2623641
– ident: 6463_CR112
  doi: 10.1007/978-3-319-46720-7_40
– volume: 12
  start-page: 75
  issue: Jan
  year: 2011
  ident: 6463_CR37
  publication-title: J Mach Learn Res
– volume: 61
  start-page: 622
  issue: 3
  year: 2012
  ident: 6463_CR91
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.03.059
– ident: 6463_CR116
  doi: 10.1007/978-3-319-66179-7_24
– ident: 6463_CR102
– ident: 6463_CR54
– ident: 6463_CR15
  doi: 10.1145/1390156.1390177
– ident: 6463_CR103
  doi: 10.1007/978-3-319-10599-4_7
– volume: 6
  start-page: 615
  issue: Apr
  year: 2005
  ident: 6463_CR18
  publication-title: J Mach Learn Res
– ident: 6463_CR26
– volume: 26
  start-page: 1923
  issue: 4
  year: 2017
  ident: 6463_CR20
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2667405
– ident: 6463_CR5
  doi: 10.2139/ssrn.1031158
– ident: 6463_CR98
  doi: 10.1007/978-3-319-66185-8_81
– ident: 6463_CR29
  doi: 10.1145/2783258.2783393
– volume: 3
  start-page: 405
  issue: 4
  year: 2017
  ident: 6463_CR113
  publication-title: IEEE Transactions on Big Data
  doi: 10.1109/TBDATA.2017.2735991
– volume: 76
  start-page: 17511
  issue: 16
  year: 2017
  ident: 6463_CR96
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-016-4231-3
– volume: 53
  start-page: 1147
  issue: 3
  year: 2010
  ident: 6463_CR79
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.07.002
– volume: 39
  start-page: 218
  year: 2017
  ident: 6463_CR84
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.05.003
– volume: 5
  start-page: 22:1
  issue: 4
  year: 2012
  ident: 6463_CR10
  publication-title: ACM Trans Knowl Discov Data
  doi: 10.1145/2086737.2086742
– ident: 6463_CR41
  doi: 10.1109/ICPR.2016.7900120
– volume: 59
  start-page: 895
  issue: 2
  year: 2012
  ident: 6463_CR93
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.069
– volume: 220
  start-page: 130
  year: 2017
  ident: 6463_CR32
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.05.081
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 6463_CR74
  publication-title: Series B (Methodological)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: 6463_CR24
  doi: 10.1109/ICCV.2015.169
– ident: 6463_CR1
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 6463_CR63
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2009.191
– ident: 6463_CR77
  doi: 10.1109/ICPR.2002.1048350
– ident: 6463_CR82
– ident: 6463_CR16
  doi: 10.17863/CAM.12584
– ident: 6463_CR92
  doi: 10.1109/WACV.2014.6835990
– ident: 6463_CR44
  doi: 10.1109/ICIP.2014.7025580
– volume: 73
  start-page: 221
  issue: 3
  year: 2008
  ident: 6463_CR95
  publication-title: Mach Learn
  doi: 10.1007/s10994-008-5050-1
– ident: 6463_CR67
– ident: 6463_CR38
– ident: 6463_CR59
– volume: 7
  start-page: 60
  issue: 4
  year: 2016
  ident: 6463_CR88
  publication-title: ACM Transactions on Intelligent Systems and Technology (TIST)
– ident: 6463_CR94
– ident: 6463_CR81
  doi: 10.1109/ICCV.2003.1238452
– ident: 6463_CR27
  doi: 10.1145/2339530.2339672
– ident: 6463_CR4
– ident: 6463_CR56
– ident: 6463_CR35
– ident: 6463_CR11
  doi: 10.1145/1553374.1553392
– ident: 6463_CR117
  doi: 10.1007/978-3-319-46720-7_13
– ident: 6463_CR109
– ident: 6463_CR12
  doi: 10.1145/2020408.2020423
– ident: 6463_CR22
– ident: 6463_CR53
  doi: 10.1145/1553374.1553463
– ident: 6463_CR58
– ident: 6463_CR108
  doi: 10.1145/2020408.2020549
– ident: 6463_CR101
– ident: 6463_CR78
– volume: 84
  start-page: 466
  year: 2014
  ident: 6463_CR43
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.09.015
– ident: 6463_CR100
  doi: 10.1145/2783258.2783304
– ident: 6463_CR25
– volume: 6
  start-page: 1817
  issue: Nov
  year: 2005
  ident: 6463_CR3
  publication-title: J Mach Learn Res
– ident: 6463_CR55
– ident: 6463_CR107
  doi: 10.1145/2339530.2339702
– ident: 6463_CR13
– volume: 73
  start-page: 243
  issue: 3
  year: 2008
  ident: 6463_CR6
  publication-title: Mach Learn
  doi: 10.1007/s10994-007-5040-8
– volume: 91
  start-page: 386
  year: 2014
  ident: 6463_CR73
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.01.033
– ident: 6463_CR7
– ident: 6463_CR106
– ident: 6463_CR115
  doi: 10.1109/TKDE.2017.2763618
– ident: 6463_CR86
  doi: 10.1109/ICASSP.2015.7178814
– ident: 6463_CR2
– volume: 37
  start-page: 3311
  issue: 23
  year: 1997
  ident: 6463_CR62
  publication-title: Vis Res
  doi: 10.1016/S0042-6989(97)00169-7
– ident: 6463_CR75
– ident: 6463_CR33
– ident: 6463_CR17
  doi: 10.1109/CVPR.2004.1315070
– ident: 6463_CR47
– volume: 63
  start-page: 607
  issue: 3
  year: 2016
  ident: 6463_CR114
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2466616
– ident: 6463_CR104
  doi: 10.1609/aaai.v27i1.8577
SSID ssj0016524
Score 2.5902588
Snippet Multi-task learning (MTL), which optimizes multiple related learning tasks at the same time, has been widely used in various applications, including natural...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 29705
SubjectTerms Artificial intelligence
Biomedical data
Computer Communication Networks
Computer Science
Computer vision
Data analysis
Data processing
Data Structures and Information Theory
Machine learning
Multimedia
Multimedia Information Systems
Natural language processing
Readers
Special Purpose and Application-Based Systems
Speech recognition
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2hssDARwFRKMgDLCBLTuy4zlghUIUEE5W6WbGdMIBSRIPEz-ec2g0gQGKO7eE59r3z3bsDODNMCe6Mo5z7pxtmJC24cDQtpBW5cY61Cu-7ezmZittZNgs67kXMdo8hyfam7sRuiZeSsERRKSSnSBzXM3TdfR7fNB2vQgcyC51sFaNoDpMYyvxpia_GqGOY34Kira252YGtQBLJeLmru7BW1n3Yjg0YSDiPfdj8VE1wD87HxKDjW5GlHIXMa9KmC9KmWDyR0B7icR-mN9cPVxMauiBQyxPZ0NRUFbJ6Y7hE224yPlJ5kTGXS5W6Ek0QcjArjOcpHOlJrqRNyky4RJaFsEzwA-jV87o8BKJsJUYWrz9mDTpGvhQbTq9cqkqnuOUDYBEObUOJcN-p4ll3xY09ghoR1B5B_T6Ai9WUl2V9jL8GDyPGOhyVhfZNQrnIkbcN4DLi3n3-dbGjf40-ho3U73urIhxCr3l9K0-QTjTmtP19PgAfDL25
  priority: 102
  providerName: Springer Nature
Title A brief review on multi-task learning
URI https://link.springer.com/article/10.1007/s11042-018-6463-x
https://www.proquest.com/docview/2085349143
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED3RdoGBjwKiUKoMsIAsnNhxnQkF1A-BqBCiUpmi2E4YQGmhQerPx06dBpDomsQezvG95zvfPYAzgTklSihEiAndYMFQTKhCXswkDYRSuKjwfhix4ZjeTfyJDbjN7bXK0icWjlpNpYmRXxktSUIDDe_Xsw9kVKNMdtVKaNSgoV0w9-vQuOmNHp9WeQTmW1lbjpHGRrfMaxbFc64pTcEuR4wygha_kamim38ypAXw9Hdh2zJGJ1wu8R5sJFkTdko1BsduziZs_WgtuA_noSP0KTh1lrUpzjRziruDKI_nb47Ving9gHG_93w7RFYSAUnishx5Ik01xReCMA30widdHsQ-VgHjnko0HmlCJqkwpIVorhJwJt3Ep8plSUwlpuQQ6tk0S47A4TKlXal9IZZCn5JMXzY9PFUeTxQnkrQAl-aIpO0XbmQr3qOq07GxYKQtGBkLRosWXKyGzJbNMtZ93C5tHNl9M4-qVW7BZWn36vW_kx2vn-wENj2z0EUNYRvq-edXcqrJRC46UOP9QQca4eDlvtex_49-OvbCb1IaxXU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGYCBN6JQwAMsIAsndlxnQKi8VF4VQiCxhdhOGEBtoUGUP8Vv5JwmFJBgY07s4fP5vrPPdx_AhmZKcKst5dxd3TAtacyFpX4sjQi1tSyv8L5oyeaNOL0NbkfgvayFcc8qS5-YO2rbMe6OfMdpSXIRIr3vdZ-oU41y2dVSQmNgFmfJ2yse2Xq7J4e4vpu-f3x0fdCkhaoANdyTGfV1mmKUrDWXyJU64HUVxgGzoVS-TdClY0xjhHa8z5HuQyWNlwTCejKJhWGC47yjMIZhRoi7aGz_qHV59Zm3kEEho6sYRS72yjxqXqznuVIY5ikqheS0_50Jh-Htj4xsTnTHMzBVRKikMTCpWRhJ2nMwXao_kMIZzMHkl1aG87DZIBpP3SkZ1MKQTpvkbxVpFvceSKFNcb8AN_8C1iJU2p12sgREmVTUDfpeZjSeylwfOByeWl8lVnHDq8BKOCJT9Cd3MhmP0bCzskMwQgQjh2DUr8LW55DuoDnHXz_XSoyjYp_2oqFVVWG7xH34-dfJlv-ebB3Gm9cX59H5SetsBSZ8t-h5_WINKtnzS7KKgUym1wrrIXD33wb7AfkY_Hs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BkRAMvBGFAh5gAVk4seM6A0LlUfGsEAKJLcR2wgBqgRYBf41fxzl1KCDBxpzYw-fzfWef7z6ANc2U4FZbyrm7umFa0pQLS8NUGhFra1lR4X3WkodX4vg6uh6C97IWxj2rLH1i4ahtx7g78i2nJclFjPS-lftnEef7zZ2HR-oUpFymtZTT6JvISfb2gse37vbRPq71ehg2Dy73DqlXGKCGB7JHQ53nGDFrzSXypo54XcVpxGwsVWgzdO8Y3xihXQzAkfpjJU2QRcIGMkuFYYLjvMMwUkdWVBUY2T1onV985jBk5CV1FaPIy0GZUy0K9wJXFsMCRaWQnL5-Z8VBqPsjO1uQXnMKJny0Shp985qGoaw9A5OlEgTxjmEGxr-0NZyF9QbReALPSb8uhnTapHi3SHtp9454nYrbObj6F7DmodLutLMFIMrkom7QDzOj8YTmesLh8NyGKrOKG14FVsKRGN-r3Elm3CeDLssOwQQRTByCyWsVNj6HPPQbdfz1c63EOPF7tpsMLKwKmyXug8-_Trb492SrMIqGmpwetU6WYCx0a16UMtag0nt6zpYxpunpFW88BG7-214_ANvXALY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+brief+review+on+multi-task+learning&rft.jtitle=Multimedia+tools+and+applications&rft.au=Thung%2C+Kim-Han&rft.au=Wee%2C+Chong-Yaw&rft.date=2018-11-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=77&rft.issue=22&rft.spage=29705&rft.epage=29725&rft_id=info:doi/10.1007%2Fs11042-018-6463-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_018_6463_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon