A brief review on multi-task learning
Multi-task learning (MTL), which optimizes multiple related learning tasks at the same time, has been widely used in various applications, including natural language processing, speech recognition, computer vision, multimedia data processing, biomedical imaging, socio-biological data analysis, multi...
Saved in:
Published in | Multimedia tools and applications Vol. 77; no. 22; pp. 29705 - 29725 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.11.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1380-7501 1573-7721 |
DOI | 10.1007/s11042-018-6463-x |
Cover
Loading…
Abstract | Multi-task learning (MTL), which optimizes multiple related learning tasks at the same time, has been widely used in various applications, including natural language processing, speech recognition, computer vision, multimedia data processing, biomedical imaging, socio-biological data analysis, multi-modality data analysis, etc. MTL sometimes is also referred to as joint learning, and is closely related to other machine learning subfields like multi-class learning, transfer learning, and learning with auxiliary tasks, to name a few. In this paper, we provide a brief review on this topic, discuss the motivation behind this machine learning method, compare various MTL algorithms, review MTL methods for incomplete data, and discuss its application in deep learning. We aim to provide the readers with a simple way to understand MTL without too many complicated equations, and to help the readers to apply MTL in their applications. |
---|---|
AbstractList | Multi-task learning (MTL), which optimizes multiple related learning tasks at the same time, has been widely used in various applications, including natural language processing, speech recognition, computer vision, multimedia data processing, biomedical imaging, socio-biological data analysis, multi-modality data analysis, etc. MTL sometimes is also referred to as joint learning, and is closely related to other machine learning subfields like multi-class learning, transfer learning, and learning with auxiliary tasks, to name a few. In this paper, we provide a brief review on this topic, discuss the motivation behind this machine learning method, compare various MTL algorithms, review MTL methods for incomplete data, and discuss its application in deep learning. We aim to provide the readers with a simple way to understand MTL without too many complicated equations, and to help the readers to apply MTL in their applications. |
Author | Thung, Kim-Han Wee, Chong-Yaw |
Author_xml | – sequence: 1 givenname: Kim-Han orcidid: 0000-0003-1379-2185 surname: Thung fullname: Thung, Kim-Han organization: Department of Radiology, University of North Carolina – sequence: 2 givenname: Chong-Yaw surname: Wee fullname: Wee, Chong-Yaw email: cywee2000@gmail.com organization: Department of Biomedical Engineering, National University of Singapore |
BookMark | eNp9kE1Lw0AQhhepYFv9Ad4C4nF1Zj-TYylahYIXPS-bdFO2ppu6m2r996ZEEAQ9zRze553hmZBRaIMj5BLhBgH0bUIEwShgTpVQnB5OyBil5lRrhqN-5zlQLQHPyCSlDQAqycSYXM-yMnpXZ9G9e_eRtSHb7pvO086m16xxNgYf1ufktLZNchffc0pe7u-e5w90-bR4nM-WtOKoOsrKulZaliVXUGApuc4LK2FVqJytHHKQWFSiZBIZVyiLXFXopFihclZUIPiUXA29u9i-7V3qzKbdx9CfNAxyyUWBgvcpPaSq2KYUXW0q39nOt6GL1jcGwRydmMGJ6Z2YoxNz6En8Re6i39r4-S_DBib12bB28eenv6EvnclzKg |
CitedBy_id | crossref_primary_10_1007_s00371_024_03686_8 crossref_primary_10_3390_jimaging8110293 crossref_primary_10_1016_j_ijforecast_2021_03_004 crossref_primary_10_1007_s11783_024_1789_2 crossref_primary_10_1016_j_neuroimage_2022_119769 crossref_primary_10_1115_1_4063863 crossref_primary_10_3390_app9224748 crossref_primary_10_1016_j_imu_2021_100571 crossref_primary_10_1016_j_mtcomm_2023_107249 crossref_primary_10_1016_j_neunet_2023_02_007 crossref_primary_10_1109_TASLP_2024_3353578 crossref_primary_10_1109_TKDE_2022_3201058 crossref_primary_10_1186_s43074_023_00102_7 crossref_primary_10_3390_agronomy14091974 crossref_primary_10_3390_s25041271 crossref_primary_10_1016_j_jmsy_2022_07_008 crossref_primary_10_1016_j_media_2023_103067 crossref_primary_10_3389_fnagi_2022_1027224 crossref_primary_10_1007_s10489_021_02543_8 crossref_primary_10_1016_j_ecoinf_2024_102784 crossref_primary_10_1007_s00521_024_10436_3 crossref_primary_10_1109_TIP_2025_3528347 crossref_primary_10_1177_14759217231185051 crossref_primary_10_3390_s21175918 crossref_primary_10_3934_mbe_2023512 crossref_primary_10_1002_mp_15724 crossref_primary_10_1007_s10489_025_06270_2 crossref_primary_10_1016_j_advwatres_2023_104463 crossref_primary_10_1109_JBHI_2020_3037366 crossref_primary_10_1016_j_engappai_2024_108785 crossref_primary_10_1109_TIM_2024_3502821 crossref_primary_10_1016_j_foreco_2022_120011 crossref_primary_10_1016_j_measurement_2021_110085 crossref_primary_10_1016_j_ins_2022_03_067 crossref_primary_10_1007_s10845_024_02388_1 crossref_primary_10_1029_2022GL102283 crossref_primary_10_1016_j_asoc_2021_107769 crossref_primary_10_3390_s22103637 crossref_primary_10_1021_jacs_4c01524 crossref_primary_10_1007_s00170_022_10115_4 crossref_primary_10_1038_s41598_025_92769_0 crossref_primary_10_3390_s20174886 crossref_primary_10_1109_ACCESS_2022_3156638 crossref_primary_10_1109_JBHI_2024_3412103 crossref_primary_10_1016_j_seppur_2024_127790 crossref_primary_10_3389_fneur_2024_1449234 crossref_primary_10_1016_j_compbiomed_2022_106496 crossref_primary_10_1016_j_procs_2023_08_156 crossref_primary_10_1016_j_compag_2024_108868 crossref_primary_10_1007_s11036_021_01834_1 crossref_primary_10_1007_s11030_022_10565_8 crossref_primary_10_1016_j_adapen_2023_100150 crossref_primary_10_1007_s11467_024_1402_y crossref_primary_10_3390_plants13091177 crossref_primary_10_1007_s10489_023_04600_w crossref_primary_10_3390_electronics12173597 crossref_primary_10_1155_2021_4259629 crossref_primary_10_3389_fnins_2019_01387 crossref_primary_10_23939_acps2019_02_065 crossref_primary_10_1088_2515_7639_ab077b crossref_primary_10_1117_1_JEI_33_1_013048 crossref_primary_10_1016_j_asoc_2023_110188 crossref_primary_10_1007_s00521_019_04628_5 crossref_primary_10_1109_TAFFC_2024_3382618 crossref_primary_10_3390_app13074226 crossref_primary_10_3233_IDA_230390 crossref_primary_10_1002_aisy_202300270 crossref_primary_10_1007_s11042_025_20631_6 crossref_primary_10_12677_AAM_2023_123124 crossref_primary_10_1088_1402_4896_ada20a crossref_primary_10_1109_TIM_2020_3017900 crossref_primary_10_1016_j_cageo_2024_105772 crossref_primary_10_1016_j_cmpb_2023_107906 crossref_primary_10_1016_j_csl_2024_101683 crossref_primary_10_1038_s42256_024_00852_4 crossref_primary_10_1007_s10489_022_03707_w crossref_primary_10_3390_ai5040090 crossref_primary_10_32604_cmc_2023_041395 crossref_primary_10_1039_D3MH00157A crossref_primary_10_3390_app122412805 crossref_primary_10_1587_transinf_2024EDP7046 crossref_primary_10_1007_s40200_023_01357_4 crossref_primary_10_1016_j_knosys_2024_111672 crossref_primary_10_1016_j_nlp_2024_100076 crossref_primary_10_1109_TAFFC_2021_3131516 crossref_primary_10_3390_app132312876 crossref_primary_10_1016_j_ast_2022_107640 crossref_primary_10_1007_s13349_024_00848_z crossref_primary_10_1155_2021_6046184 crossref_primary_10_1016_j_imavis_2024_104926 crossref_primary_10_1109_ACCESS_2021_3085218 crossref_primary_10_1016_j_aei_2024_102565 crossref_primary_10_1002_ett_4948 crossref_primary_10_1007_s11063_021_10703_7 crossref_primary_10_1109_JSAC_2022_3155526 crossref_primary_10_1038_s41583_022_00653_x crossref_primary_10_1155_2021_5661292 crossref_primary_10_1016_j_asoc_2021_107483 crossref_primary_10_1038_s41467_025_56481_x crossref_primary_10_1016_j_media_2019_101630 crossref_primary_10_26508_lsa_202302255 crossref_primary_10_1016_j_ast_2023_108287 crossref_primary_10_1016_j_jmsy_2024_04_021 crossref_primary_10_1109_TNSE_2021_3067454 crossref_primary_10_3390_electronics12051226 crossref_primary_10_1007_s00521_023_08381_8 crossref_primary_10_1007_s00357_024_09488_w crossref_primary_10_3390_rs15081990 crossref_primary_10_1016_j_jmapro_2024_11_054 crossref_primary_10_1109_JIOT_2022_3228292 crossref_primary_10_1088_2632_2153_abd614 crossref_primary_10_1016_j_neunet_2023_02_026 crossref_primary_10_1109_ACCESS_2024_3478805 crossref_primary_10_1002_widm_1470 crossref_primary_10_1002_fsn3_4300 crossref_primary_10_1016_j_scitotenv_2022_159542 crossref_primary_10_1016_j_ins_2023_119142 crossref_primary_10_3390_en16114406 crossref_primary_10_1016_j_fochx_2024_101481 crossref_primary_10_1016_j_imu_2023_101161 crossref_primary_10_1109_TIM_2023_3273673 crossref_primary_10_1007_s00521_024_10165_7 crossref_primary_10_1007_s00521_023_08562_5 crossref_primary_10_1167_iovs_65_2_5 crossref_primary_10_3390_agronomy13122976 crossref_primary_10_1016_j_neuroimage_2023_120067 crossref_primary_10_3390_biomedicines10010070 crossref_primary_10_3390_e24040551 crossref_primary_10_1016_j_engstruct_2025_120030 crossref_primary_10_1016_j_knosys_2020_106248 crossref_primary_10_1364_OE_426968 crossref_primary_10_1016_j_engappai_2021_104458 crossref_primary_10_1021_acs_jcim_3c00546 crossref_primary_10_1016_j_media_2019_101534 crossref_primary_10_1016_j_imu_2024_101459 crossref_primary_10_3390_jimaging8040108 crossref_primary_10_1109_TII_2023_3342897 crossref_primary_10_1109_TNNLS_2021_3060494 crossref_primary_10_1016_j_crad_2024_106756 crossref_primary_10_1016_j_envpol_2021_117698 crossref_primary_10_1007_s10994_023_06410_0 |
Cites_doi | 10.1145/1015330.1015426 10.1186/s40537-016-0043-6 10.1007/s11222-008-9111-x 10.1109/TIM.2017.2707898 10.1016/j.neuroimage.2017.02.035 10.1109/TNNLS.2017.2673241 10.1145/1014052.1014067 10.1109/TNNLS.2016.2521602 10.1198/004017005000000139 10.1137/090763184 10.1007/978-3-319-66179-7_1 10.7551/mitpress/7503.003.0105 10.1109/ICASSP.2013.6639012 10.1109/TIT.2013.2280272 10.1109/FG.2017.41 10.1007/978-1-4615-5529-2_5 10.1109/TIP.2016.2579306 10.1117/12.2293412 10.1109/ICIP.2014.7025029 10.1016/j.neuroimage.2013.08.015 10.1109/TIP.2017.2721106 10.1038/s41598-017-05300-5 10.24963/ijcai.2017/231 10.1109/TMM.2017.2703636 10.1016/j.media.2017.09.005 10.1609/aaai.v28i1.9009 10.1609/aaai.v30i1.10261 10.1145/1553374.1553458 10.1145/1553374.1553459 10.1145/2623330.2623641 10.1007/978-3-319-46720-7_40 10.1016/j.neuroimage.2012.03.059 10.1007/978-3-319-66179-7_24 10.1145/1390156.1390177 10.1007/978-3-319-10599-4_7 10.1109/TIP.2017.2667405 10.2139/ssrn.1031158 10.1007/978-3-319-66185-8_81 10.1145/2783258.2783393 10.1109/TBDATA.2017.2735991 10.1007/s11042-016-4231-3 10.1016/j.neuroimage.2010.07.002 10.1016/j.media.2017.05.003 10.1145/2086737.2086742 10.1109/ICPR.2016.7900120 10.1016/j.neuroimage.2011.09.069 10.1016/j.neucom.2016.05.081 10.1111/j.2517-6161.1996.tb02080.x 10.1109/ICCV.2015.169 10.1109/TKDE.2009.191 10.1109/ICPR.2002.1048350 10.17863/CAM.12584 10.1109/WACV.2014.6835990 10.1109/ICIP.2014.7025580 10.1007/s10994-008-5050-1 10.1109/ICCV.2003.1238452 10.1145/2339530.2339672 10.1145/1553374.1553392 10.1007/978-3-319-46720-7_13 10.1145/2020408.2020423 10.1145/1553374.1553463 10.1145/2020408.2020549 10.1016/j.neuroimage.2013.09.015 10.1145/2783258.2783304 10.1145/2339530.2339702 10.1007/s10994-007-5040-8 10.1016/j.neuroimage.2014.01.033 10.1109/TKDE.2017.2763618 10.1109/ICASSP.2015.7178814 10.1016/S0042-6989(97)00169-7 10.1109/CVPR.2004.1315070 10.1109/TBME.2015.2466616 10.1609/aaai.v27i1.8577 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-018-6463-x |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 29725 |
ExternalDocumentID | 10_1007_s11042_018_6463_x |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c316t-2bff675bb36091b53789a50d9682de130519c4b25123615986c1e54d16ea4c043 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Fri Jul 25 23:14:00 EDT 2025 Thu Apr 24 23:09:30 EDT 2025 Thu Jul 10 08:43:40 EDT 2025 Fri Feb 21 02:33:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | Joint learning MTL Transfer learning Learning with auxiliary tasks Multi-task learning Multi-class learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-2bff675bb36091b53789a50d9682de130519c4b25123615986c1e54d16ea4c043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1379-2185 |
PQID | 2085349143 |
PQPubID | 54626 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2085349143 crossref_citationtrail_10_1007_s11042_018_6463_x crossref_primary_10_1007_s11042_018_6463_x springer_journals_10_1007_s11042_018_6463_x |
PublicationCentury | 2000 |
PublicationDate | 20181100 2018-11-00 20181101 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 20181100 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2018 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Liu J, Ji S, Ye J (2009) Multi-task feature learning via efficient l 2, 1-norm minimization. In: Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence. pp 339–348. AUAI Press Zhou J, Chen J, Ye J (2011) Malsar: Multi-task learning via structural regularization. Arizona State University 21 Zhang C, Zhang Z (2014) Improving multiview face detection with multi-task deep convolutional neural networks. In: Applications of computer vision (WACV), 2014 IEEE winter conference on. pp 1036–1041. IEEE ArgyriouAEvgeniouTPontilMConvex multi-task feature learningMach Learn200873324327210.1007/s10994-007-5040-8 Zhang Z, Luo P, Loy CC, Tang X (2014) Facial landmark detection by deep multi-task learning. In: European conference on computer vision. pp 94–108. Springer Argyriou A, Micchelli CA, Pontil M, Ying Y (2008) A spectral regularization framework for multi-task structure learning, nips 20 Journal Publications on Mathematics (Harmonic Analysis) Liu H, Palatucci M, Zhang J (2009) Blockwise coordinate descent procedures for the multi-task lasso, with applications to neural semantic basis discovery. In: Proceedings of the 26th Annual International Conference on Machine Learning. pp 649–656. ACM ZhuXLiXZhangSXuZYuLWangCGraph pca hashing for similarity searchIEEE Transactions on Multimedia20171992033204410.1109/TMM.2017.2703636 Fang Y, Ma Z, Zhang Z, Zhang XY, Bai X (2017) Dynamic multi-task learning with convolutional neural network. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17. pp 1668–1674. https://doi.org/10.24963/ijcai.2017/231 EvgeniouTMicchelliCAPontilMLearning multiple tasks with kernel methodsJ Mach Learn Res20056Apr61563722498331222.68197 Zheng W, Zhu X, Zhu Y, Hu R, Lei C (2017) Dynamic graph learning for spectral feature selection. Multimedia Tools and Applications, pp 1–17 Zhou Y, Jin R, Hoi SCH (2010) Exclusive lasso for multi-task feature selection. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. pp 988–995 Zhang S, Li X, Zong M, Zhu X, Wang R (2017) Efficient knn classification with different numbers of nearest neighbors IEEE transactions on neural networks and learning systems TurlachBAVenablesWNWrightSJSimultaneous variable selectionTechnometrics2005473349363216470610.1198/004017005000000139 PongTKTsengPJiSYeJTrace norm regularization: reformulations, algorithms, and multi-task learningSIAM J Optim201020634653489276351210.1137/090763184 ThungKHNeurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completionNeuroimage20149138640010.1016/j.neuroimage.2014.01.033 Zhu Y, Zhu X, Zhang H, Gao W, Shen D, Wu G (2016) Reveal consistent spatial-temporal patterns from dynamic functional connectivity for autism spectrum disorder identification. In: International conference on medical image computing and computer-assisted intervention. pp 106–114. Springer Li C, Gupta S, Rana S, Nguyen V, Venkatesh S, Ashley D, Livingston T (2016) Multiple adverse effects prediction in longitudinal cancer treatment. In: Pattern recognition (ICPR), 2016 23rd international conference on. pp 3156–3161. IEEE Gong P, Zhou J, Fan W, Ye J (2014) Efficient multi-task feature learning with calibration. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. pp 761–770. ACM JalaliARavikumarPSanghaviSA dirty model for multiple sparse regressionIEEE Trans Inf Theory2013591279477968314227510.1109/TIT.2013.2280272 ZhangJGhahramaniZYangYFlexible latent variable models for multi-task learningMach Learn200873322124210.1007/s10994-008-5050-1 Liu J, Ye J (2010) Moreau-yosida regularization for grouped tree structure learning. In: Advances in neural information processing systems. pp 1459–1467 YanKZhangDXuYCorrecting instrumental variation and time-varying drift using parallel and serial multitask learningIEEE Trans Instrum Meas20176692306231610.1109/TIM.2017.2707898 Zhu X, Zhang S, Hu R, Zhu Y et al (2017) Local and global structure preservation for robust unsupervised spectral feature selection IEEE Transactions on Knowledge and Data Engineering Zhu Y, Kim M, Zhu X, Yan J, Kaufer D, Wu G (2017) Personalized diagnosis for alzheimers disease. In: International conference on medical image computing and computer-assisted intervention. pp 205–213. Springer Ciliberto C (2017) Matmtl. https://github.com/cciliber/matMTL Ranjan R, Patel VM, Chellappa R (2017) Hyperface:A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence Zhou J, Yuan L, Liu J, Ye J (2011) A multi-task learning formulation for predicting disease progression. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. pp 814–822. ACM Maurer A, Pontil M, Romera-Paredes B (2013) Sparse coding for multitask and transfer learning. In: International conference on machine learning. pp 343–351 YuanLMulti-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging dataNeuroImage201261362263210.1016/j.neuroimage.2012.03.059 McDonald AM, Pontil M, Stamos D (2014) Spectral k-support norm regularization. In: Advances in neural information processing systems. pp 3644–3652 WangZZhuXAdeliEZhuYNieFMunsellBWuGMulti-modal classification of neurodegenerative disease by progressive graph-based transductive learningMed Image Anal20173921823010.1016/j.media.2017.05.003 Zhang J, Ghahramani Z, Yang Y (2006) Learning multiple related tasks using latent independent component analysis. In: Advances in neural information processing systems. pp 1585–1592 Liu J, et al. (2009) SLEP: Sparse Learning with efficient projections arizona state university Argyriou A, Evgeniou T, Pontil M (2007) Multi-task feature learning. In: Advances in neural information processing systems. vol 19, pp 41–48. MIT press XueWBrahmGPandeySLeungSLiSFull left ventricle quantification via deep multitask relationships learningMed Image Anal201843546510.1016/j.media.2017.09.005https://doi.org/10.1016/j.media.2017.09.005 ZhangDMulti-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s diseaseNeuroimage201259289590710.1016/j.neuroimage.2011.09.069 Jebara T (2004) Multi-task feature and kernel selection for svms. In: Proceedings of the twenty-first international conference on Machine learning. p 55. ACM VounouMNicholsTEMontanaGInitiativeADNDiscovering genetic associations with high-dimensional neuroimaging phenotypes: a sparse reduced-rank regression approachNeuroimage20105331147115910.1016/j.neuroimage.2010.07.002 Lozano AC, Swirszcz G (2012) Multi-level lasso for sparse multi-task regression. In: Proceedings of the 29th International Coference on International Conference on Machine Learning. pp 595–602. Omnipress Agarwal A, Gerber S, Daume H (2010) Learning multiple tasks using manifold regularization. In: Advances in neural information processing systems. pp 46–54 Gong P, Ye J, Zhang C (2012) Robust multi-task feature learning. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. pp 895–903. ACM Ng A (2018) Multi-task learning. https://www.coursera.org/learn/machine-learning-projects/lecture/l9zia/multi-task-learning Liu M, Zhang J, Adeli E, Shen D (2017) Deep multi-task multi-channel learning for joint classification and regression of brain status. In: International conference on medical image computing and computer-assisted intervention. pp 3–11. Springer AndoRKZhangTA framework for learning predictive structures from multiple tasks and unlabeled dataJ Mach Learn Res20056Nov1817185322498731222.68133 Suo Y, Dao M, Tran T, Mousavi H, Srinivas U, Monga V (2014) Group structured dirty dictionary learning for classification. In: Image processing (ICIP), 2014 IEEE international conference on. pp 150–154. IEEE Titsias MK, Lázaro-Gredilla M (2011) Spike and slab variational inference for multi-task and multiple kernel learning. In: Advances in neural information processing systems. pp 2339–2347 Collobert R, Weston J (2008) A unified architecture for natural language processing: Deep neural networks with multitask learning. In: Proceedings of the 25th international conference on machine learning. pp 160–167. ACM Zhou J, Liu J, Narayan VA, Ye J (2012) Modeling disease progression via fused sparse group lasso. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. pp 1095–1103. ACM Mandal MK (2018) Multi-task learning in keras — implementation of multi-task classification loss. https://blog.manash.me/multi-task-learning-in-keras-implementation-of-multi-task-classification-loss-f1d42da5c3f6 Han L, Zhang Y, Song G, Xie K (2014) Encoding tree sparsity in multi-task learning: a probabilistic framework. In: AAAI. pp 1854–1860 Samala RK, Chan HP, Hadjiiski L, Helvie MA, Richter C, Cha K (2018) Cross-domain and multi-task transfer learning of deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis. In: MICCAI. vol 10575. https://doi.org/10.1117/12.2293412 Zheng J, Ni LM (2013) Time-dependent trajectory regression on road networks via multi-task learning. In: AAAI ZhangJLiuMShenDDetecting anatomical landmarks from limited medical imaging data using two-stage task-oriented deep neural networksIEEE Trans Image Process2017261047534764368189610.1109/TIP.2017.2721106 HuRZhuXChengDHeWYanYSongJZhangSGraph self-representation method for unsupervised feature selectionNeurocomputing201722013013710.1016/j.neucom.2016.05.081 XinBKawaharaYWangYHuLGaoWEfficient generalized fused lasso and its applicationsACM Transactions on Intelligent Systems and Technology (TIST)20167460 Han L, Zhang Y (2016) Multi-stage multi-task learning with reduced rank. In: AAAI. pp 1638–1644 Gong P, Ye J, Zhang Cs (2012) Multi-stage multi- 6463_CR7 6463_CR8 6463_CR9 K Weiss (6463_CR85) 2016; 3 K Yan (6463_CR90) 2017; 66 6463_CR4 6463_CR5 6463_CR58 6463_CR59 KH Thung (6463_CR73) 2014; 91 6463_CR56 6463_CR57 6463_CR54 6463_CR55 6463_CR52 M Vounou (6463_CR79) 2010; 53 6463_CR53 6463_CR50 6463_CR51 J Fan (6463_CR20) 2017; 26 M Ghafoorian (6463_CR23) 2017; 7 BA Turlach (6463_CR76) 2005; 47 W Xue (6463_CR89) 2018; 43 Z Wang (6463_CR84) 2017; 39 SJ Pan (6463_CR63) 2010; 22 6463_CR69 6463_CR67 J Zhang (6463_CR96) 2017; 76 6463_CR68 6463_CR65 6463_CR66 A Jalali (6463_CR34) 2013; 59 6463_CR60 6463_CR1 6463_CR2 J Chen (6463_CR10) 2012; 5 6463_CR78 6463_CR112 6463_CR77 6463_CR75 6463_CR72 6463_CR106 6463_CR107 6463_CR70 6463_CR108 6463_CR71 6463_CR109 6463_CR102 S Xiang (6463_CR87) 2014; 102 6463_CR103 6463_CR104 6463_CR105 X Zhu (6463_CR113) 2017; 3 F Liu (6463_CR43) 2014; 84 T Jebara (6463_CR37) 2011; 12 6463_CR100 6463_CR101 TK Pong (6463_CR64) 2010; 20 BA Olshausen (6463_CR62) 1997; 37 6463_CR86 6463_CR83 X Zhu (6463_CR114) 2016; 63 6463_CR81 6463_CR82 X Zhu (6463_CR111) 2017; 19 G Obozinski (6463_CR61) 2010; 20 6463_CR19 6463_CR16 6463_CR17 6463_CR14 6463_CR15 6463_CR12 6463_CR13 6463_CR98 6463_CR11 6463_CR99 6463_CR94 6463_CR92 C Wachinger (6463_CR80) 2018; 170 6463_CR29 6463_CR27 6463_CR28 6463_CR25 J Zhang (6463_CR97) 2017; 26 6463_CR26 T Evgeniou (6463_CR18) 2005; 6 6463_CR24 6463_CR21 B Xin (6463_CR88) 2016; 7 6463_CR22 6463_CR117 X Li (6463_CR42) 2016; 25 D Zhang (6463_CR93) 2012; 59 6463_CR115 6463_CR116 RK Ando (6463_CR3) 2005; 6 J Zhang (6463_CR95) 2008; 73 6463_CR38 6463_CR39 6463_CR36 6463_CR35 6463_CR33 L Yuan (6463_CR91) 2012; 61 6463_CR30 6463_CR31 A Argyriou (6463_CR6) 2008; 73 R Tibshirani (6463_CR74) 1996; 58 R Hu (6463_CR32) 2017; 220 X Zhu (6463_CR110) 2017; 28 6463_CR49 6463_CR47 6463_CR48 6463_CR45 6463_CR46 6463_CR44 6463_CR41 6463_CR40 |
References_xml | – reference: Negahban S, Wainwright MJ (2008) Joint support recovery under high-dimensional scaling: Benefits and perils of ℓ1,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{1,\infty }$\end{document}-regularization. In: Proceedings of the 21st International Conference on Neural Information Processing Systems. pp 1161–1168. Curran Associates Inc – reference: Lee S, Zhu J, Xing EP (2010) Adaptive multi-task lasso: with application to eqtl detection. In: Advances in neural information processing systems. pp 1306–1314 – reference: Liu H, Palatucci M, Zhang J (2009) Blockwise coordinate descent procedures for the multi-task lasso, with applications to neural semantic basis discovery. In: Proceedings of the 26th Annual International Conference on Machine Learning. pp 649–656. ACM – reference: Liu J, Ye J (2010) Moreau-yosida regularization for grouped tree structure learning. In: Advances in neural information processing systems. pp 1459–1467 – reference: ArgyriouAEvgeniouTPontilMConvex multi-task feature learningMach Learn200873324327210.1007/s10994-007-5040-8 – reference: HuRZhuXChengDHeWYanYSongJZhangSGraph self-representation method for unsupervised feature selectionNeurocomputing201722013013710.1016/j.neucom.2016.05.081 – reference: Girshick R (2015) Fast r-cnn. In: IEEE International conference on computer vision. pp 1440–1448 – reference: ZhangDMulti-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s diseaseNeuroimage201259289590710.1016/j.neuroimage.2011.09.069 – reference: FanJZhaoTKuangZZhengYZhangJYuJPengJHD-MTL: hierarchical deep multi-task learning for large-scale visual recognitionIEEE Trans Image Process201726419231938363624110.1109/TIP.2017.2667405 – reference: WeissKKhoshgoftaarTMWangDA survey of transfer learningJournal of Big Data201631910.1186/s40537-016-0043-6 – reference: ObozinskiGTaskarBJordanMIJoint covariate selection and joint subspace selection for multiple classification problemsStat Comput2010202231252261077510.1007/s11222-008-9111-x – reference: Liu G, Yan Y, Song J, Sebe N (2014) Minimizing dataset bias: Discriminative multi-task sparse coding through shared subspace learning for image classification. In: Image processing (ICIP), 2014 IEEE international conference on. pp 2869–2873. IEEE – reference: Zhang C, Zhang Z (2014) Improving multiview face detection with multi-task deep convolutional neural networks. In: Applications of computer vision (WACV), 2014 IEEE winter conference on. pp 1036–1041. IEEE – reference: Zhou Y, Jin R, Hoi SCH (2010) Exclusive lasso for multi-task feature selection. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. pp 988–995 – reference: Rao N, Cox C, Nowak R, Rogers TT (2013) Sparse overlapping sets lasso for multitask learning and its application to fmri analysis. In: Advances in neural information processing systems. pp 2202–2210 – reference: Han L, Zhang Y (2016) Multi-stage multi-task learning with reduced rank. In: AAAI. pp 1638–1644 – reference: XiangSYuanLFanWWangYThompsonPMYeJInitiativeADNBi-level multi-source learning for heterogeneous block-wise missing dataNeuroImage201410219220610.1016/j.neuroimage.2013.08.015 – reference: Chen J, Zhou J, Ye J (2011) Integrating low-rank and group-sparse structures for robust multi-task learning. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining. pp 42–50. ACM – reference: Zhu X, Suk HI, Huang H, Shen D (2016) Structured sparse low-rank regression model for brain-wide and genome-wide associations. In: International conference on medical image computing and computer-assisted intervention. pp 344–352. Springer – reference: Lozano AC, Swirszcz G (2012) Multi-level lasso for sparse multi-task regression. In: Proceedings of the 29th International Coference on International Conference on Machine Learning. pp 595–602. Omnipress – reference: Romera-Paredes B, Argyriou A, Berthouze N, Pontil M (2012) Exploiting unrelated tasks in multi-task learning. In: International conference on artificial intelligence and statistics. pp 951–959 – reference: XueWBrahmGPandeySLeungSLiSFull left ventricle quantification via deep multitask relationships learningMed Image Anal201843546510.1016/j.media.2017.09.005https://doi.org/10.1016/j.media.2017.09.005 – reference: OlshausenBAFieldDJSparse coding with an overcomplete basis set: a strategy employed by v1?Vis Res199737233311332510.1016/S0042-6989(97)00169-7 – reference: Zhang J, Liu M, Wang L, Chen S, Yuan P, Li J, Shen SGF, Tang Z, Chen KC, Xia JJ et al (2017) Joint craniomaxillofacial bone segmentation and landmark digitization by context-guided fully convolutional networks. In: International conference on medical image computing and computer-assisted intervention. pp 720–728. Springer – reference: Ciliberto C (2017) Matmtl. https://github.com/cciliber/matMTL – reference: Maurer A, Pontil M, Romera-Paredes B (2013) Sparse coding for multitask and transfer learning. In: International conference on machine learning. pp 343–351 – reference: Zhou J, Chen J, Ye J (2011) Malsar: Multi-task learning via structural regularization. Arizona State University 21 – reference: Chaichulee S, Villarroel M, Jorge J, Arteta C, Green G, McCormick K, Zisserman A, Tarassenko L (2017) Multi-task convolutional neural network for patient detection and skin segmentation in continuous non-contact vital sign monitoring. In: 2017 12th IEEE International conference on automatic face & gesture recognition (FG 2017). p 5110 – reference: Seraj RM (2014) Multi-task learning Internet: https://www.cs.ubc.ca/~schmidtm/MLRG/multi-task%20learning.pdf – reference: Mandal MK (2018) Multi-task learning in keras — implementation of multi-task classification loss. https://blog.manash.me/multi-task-learning-in-keras-implementation-of-multi-task-classification-loss-f1d42da5c3f6 – reference: Zhang Y, Yang Q (2017) A survey on multi-task learning. arXiv:1707.08114 – reference: ZhuXLiXZhangSJuCWuXRobust joint graph sparse coding for unsupervised spectral feature selectionIEEE transactions on neural networks and learning systems201728612631275366177010.1109/TNNLS.2016.2521602 – reference: Seltzer ML, Droppo J (2013) Multi-task learning in deep neural networks for improved phoneme recognition. In: Acoustics, speech and signal processing (ICASSP), 2013 IEEE international conference on. pp 6965–6969. IEEE – reference: Wu Z, Valentini-Botinhao C, Watts O, King S (2015) Deep neural networks employing multi-task learning and stacked bottleneck features for speech synthesis. In: Acoustics, speech and signal processing (ICASSP), 2015 IEEE international conference on. pp 4460–4464. IEEE – reference: Zheng W, Zhu X, Zhu Y, Hu R, Lei C (2017) Dynamic graph learning for spectral feature selection. Multimedia Tools and Applications, pp 1–17 – reference: Elgammal A, Lee CS (2004) Separating style and content on a nonlinear manifold. In: Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on. vol 1, pp I–I. IEEE – reference: PongTKTsengPJiSYeJTrace norm regularization: reformulations, algorithms, and multi-task learningSIAM J Optim201020634653489276351210.1137/090763184 – reference: Ng A (2018) Multi-task learning. https://www.coursera.org/learn/machine-learning-projects/lecture/l9zia/multi-task-learning – reference: LiuFWeeCYChenHShenDInter-modality relationship constrained multi-modality multi-task feature selection for alzheimer’s disease and mild cognitive impairment identificationNeuroImage20148446647510.1016/j.neuroimage.2013.09.015 – reference: Collobert R, Weston J (2008) A unified architecture for natural language processing: Deep neural networks with multitask learning. In: Proceedings of the 25th international conference on machine learning. pp 160–167. ACM – reference: Vogt J, Roth V (2012) A complete analysis of the l_1, p group-lasso. arXiv:1206.4632 – reference: GhafoorianMKarssemeijerNHeskesTvan UdenIWMSanchezCILitjensGde LeeuwFEvan GinnekenBMarchioriEPlatelBLocation sensitive deep convolutional neural networks for segmentation of white matter hyperintensitiesScientific Reports201771511010.1038/s41598-017-05300-5 – reference: Gong P, Ye J, Zhang Cs (2012) Multi-stage multi-task feature learning. In: Advances in neural information processing systems. pp 1988–1996 – reference: Agarwal A, Gerber S, Daume H (2010) Learning multiple tasks using manifold regularization. In: Advances in neural information processing systems. pp 46–54 – reference: Jebara T (2004) Multi-task feature and kernel selection for svms. In: Proceedings of the twenty-first international conference on Machine learning. p 55. ACM – reference: Zhu Y, Kim M, Zhu X, Yan J, Kaufer D, Wu G (2017) Personalized diagnosis for alzheimers disease. In: International conference on medical image computing and computer-assisted intervention. pp 205–213. Springer – reference: Chen J, Tang L, Liu J, Ye J (2009) A convex formulation for learning shared structures from multiple tasks. In: Proceedings of the 26th Annual International Conference on Machine Learning. pp 137–144. ACM – reference: YanKZhangDXuYCorrecting instrumental variation and time-varying drift using parallel and serial multitask learningIEEE Trans Instrum Meas20176692306231610.1109/TIM.2017.2707898 – reference: Zhou J, Liu J, Narayan VA, Ye J (2012) Modeling disease progression via fused sparse group lasso. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. pp 1095–1103. ACM – reference: Suo Y, Dao M, Tran T, Mousavi H, Srinivas U, Monga V (2014) Group structured dirty dictionary learning for classification. In: Image processing (ICIP), 2014 IEEE international conference on. pp 150–154. IEEE – reference: Liu J, Ji S, Ye J (2009) Multi-task feature learning via efficient l 2, 1-norm minimization. In: Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence. pp 339–348. AUAI Press – reference: Han L, Zhang Y, Song G, Xie K (2014) Encoding tree sparsity in multi-task learning: a probabilistic framework. In: AAAI. pp 1854–1860 – reference: Obozinski G, Taskar B, Jordan M (2006) Multi-task feature selection. Statistics Department UC Berkeley Tech Rep2 – reference: JebaraTMultitask sparsity via maximum entropy discriminationJ Mach Learn Res201112Jan7511027735491280.62077 – reference: Crichton G, Pyysalo S (2017) Code supporting: a neural network multi- task learning approach to biomedical named entity recognition. software, https://doi.org/10.17863/CAM.12584 – reference: Jalali A, Sanghavi S, Ruan C, Ravikumar PK (2010) A dirty model for multi-task learning. In: Lafferty JD, Williams CKI, Shawe-Taylor J, Zemel R. S, Culotta A (eds) Advances in neural information processing systems 23, pp 964-972. Curran Associates, Inc – reference: Liu M, Zhang J, Adeli E, Shen D (2017) Deep multi-task multi-channel learning for joint classification and regression of brain status. In: International conference on medical image computing and computer-assisted intervention. pp 3–11. Springer – reference: Zhang Y, Yeung DY (2012) A convex formulation for learning task relationships in multi-task learning. arXiv:1203.3536 – reference: Zhou J, Yuan L, Liu J, Ye J (2011) A multi-task learning formulation for predicting disease progression. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. pp 814–822. ACM – reference: Ahmed B, Thesen T, Blackmon K, Kuzniecky R, Devinsky O, Dy J, Brodley C (2016) Multi-task learning with weak class labels: leveraging ieeg to detect cortical lesions in cryptogenic epilepsy. In: Machine learning for healthcare conference. pp 115–133 – reference: ChenJLiuJYeJLearning incoherent sparse and low-rank patterns from multiple tasksACM Trans Knowl Discov Data20125422:12210.1145/2086737.2086742 – reference: Caruana R (1998) Multitask learning. In: Learning to learn, pp 95–133. Springer – reference: PanSJYangQA survey on transfer learningIEEE Trans Knowl Data Eng201022101345135910.1109/TKDE.2009.191 – reference: ZhuXSukHILeeSWShenDSubspace regularized sparse multitask learning for multiclass neurodegenerative disease identificationIEEE Trans Biomed Eng201663360761810.1109/TBME.2015.2466616 – reference: Moeskops P, Wolterink JM, van der Velden BHM, Gilhuijs KGA, Leiner T, Viergever MA, Isgum I (2017) Deep learning for multi-task medical image segmentation in multiple modalities. CoRR arXiv:1704.03379 – reference: TurlachBAVenablesWNWrightSJSimultaneous variable selectionTechnometrics2005473349363216470610.1198/004017005000000139 – reference: Godwin J (2018) Multi-task learning in tensorflow: Part 1. https://www.kdnuggets.com/2016/07/multi-task-learning-tensorflow-part-1.html – reference: Ciliberto C, Mroueh Y, Poggio T (2015) Convex learning of multiple tasks and their structure. In: International conference on machine learning (ICML) – reference: Zhang W, Li R, Zeng T, Sun Q, Kumar S, Ye J, Ji S (2015) Deep model based transfer and multi-task learning for biological image analysis. https://doi.org/10.1145/2783258.2783304 – reference: LiXZhaoLWeiLYangMHWuFZhuangYLingHWangJDeepsaliency: Multi-task deep neural network model for salient object detectionIEEE Trans Image Process201625839193930351940810.1109/TIP.2016.2579306 – reference: ZhuXLiXZhangSXuZYuLWangCGraph pca hashing for similarity searchIEEE Transactions on Multimedia20171992033204410.1109/TMM.2017.2703636 – reference: Ruder S (2017) An overview of multi-task learning in deep neural networks. arXiv:1706.05098 – reference: Zheng J, Ni LM (2013) Time-dependent trajectory regression on road networks via multi-task learning. In: AAAI – reference: Wang H, et al. (2003) Facial expression decomposition. In: Computer vision, 2003. Proceedings. Ninth IEEE international conference on. pp 958–965. IEEE – reference: YuanLMulti-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging dataNeuroImage201261362263210.1016/j.neuroimage.2012.03.059 – reference: Kim S, Xing EP (2010) Tree-guided group lasso for multi-task regression with structured sparsity. In: International conference on international conference on machine learning. pp. 543–550 – reference: Mairal J, Bach F, Ponce J, Sapiro G (2009) Online dictionary learning for sparse coding. In: Proceedings of the 26th annual international conference on machine learning. pp 689–696. ACM – reference: AndoRKZhangTA framework for learning predictive structures from multiple tasks and unlabeled dataJ Mach Learn Res20056Nov1817185322498731222.68133 – reference: Fazel M (2002) Matrix rank minimization with applications. Ph.D. thesis, Department of Electrical Engineering Stanford University – reference: Argyriou A, Evgeniou T, Pontil M (2007) Multi-task feature learning. In: Advances in neural information processing systems. vol 19, pp 41–48. MIT press – reference: Wang H, Nie F, Huang H, Yan J, Kim S, Risacher S, Saykin A, Shen L (2012) High-order multi-task feature learning to identify longitudinal phenotypic markers for alzheimer’s disease progression prediction. In: Advances in neural information processing systems. pp 1277–1285 – reference: Zhang J, Ghahramani Z, Yang Y (2006) Learning multiple related tasks using latent independent component analysis. In: Advances in neural information processing systems. pp 1585–1592 – reference: Gong P, Zhou J, Fan W, Ye J (2014) Efficient multi-task feature learning with calibration. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. pp 761–770. ACM – reference: WachingerCReuterMKleinTDeepnat: Deep convolutional neural network for segmenting neuroanatomyNeuroImage201817043444510.1016/j.neuroimage.2017.02.035http://www.sciencedirect.com/science/article/pii/S1053811917301465 – reference: Zhu X, Zhang S, Hu R, Zhu Y et al (2017) Local and global structure preservation for robust unsupervised spectral feature selection IEEE Transactions on Knowledge and Data Engineering – reference: Jacob L, Vert Jp, Bach FR (2009) Clustered multi-task learning: A convex formulation. In: Advances in neural information processing systems. pp 745–752 – reference: JalaliARavikumarPSanghaviSA dirty model for multiple sparse regressionIEEE Trans Inf Theory2013591279477968314227510.1109/TIT.2013.2280272 – reference: Liu J, et al. (2009) SLEP: Sparse Learning with efficient projections arizona state university – reference: Zhu Y, Zhu X, Zhang H, Gao W, Shen D, Wu G (2016) Reveal consistent spatial-temporal patterns from dynamic functional connectivity for autism spectrum disorder identification. In: International conference on medical image computing and computer-assisted intervention. pp 106–114. Springer – reference: Zhang Z, Luo P, Loy CC, Tang X (2014) Facial landmark detection by deep multi-task learning. In: European conference on computer vision. pp 94–108. Springer – reference: Ranjan R, Patel VM, Chellappa R (2017) Hyperface:A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: ThungKHNeurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completionNeuroimage20149138640010.1016/j.neuroimage.2014.01.033 – reference: XinBKawaharaYWangYHuLGaoWEfficient generalized fused lasso and its applicationsACM Transactions on Intelligent Systems and Technology (TIST)20167460 – reference: TibshiraniRRegression shrinkage and selection via the lasso. Journal of the Royal Statistical SocietySeries B (Methodological)199658126728813792420850.62538 – reference: Vasilescu MAO, Terzopoulos D (2002) Multilinear image analysis for facial recognition. In: Pattern recognition, 2002. Proceedings. 16th international conference on. vol 2, pp 511–514. IEEE – reference: ZhangJLiangJHuHMulti-view texture classification using hierarchical synthetic imagesMultimedia Tools and Applications20177616175111752310.1007/s11042-016-4231-3 – reference: Han L, Zhang Y (2015) Learning tree structure in multi-task learning. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp 397–406. ACM – reference: Wang J, Ye J (2015) Safe screening for multi-task feature learning with multiple data matrices. In: International conference on machine learning. pp 1747–1756 – reference: ZhangJGhahramaniZYangYFlexible latent variable models for multi-task learningMach Learn200873322124210.1007/s10994-008-5050-1 – reference: EvgeniouTMicchelliCAPontilMLearning multiple tasks with kernel methodsJ Mach Learn Res20056Apr61563722498331222.68197 – reference: VounouMNicholsTEMontanaGInitiativeADNDiscovering genetic associations with high-dimensional neuroimaging phenotypes: a sparse reduced-rank regression approachNeuroimage20105331147115910.1016/j.neuroimage.2010.07.002 – reference: Liu J, Ye J (2009) Efficient euclidean projections in linear time. In: Proceedings of the 26th Annual International Conference on Machine Learning. pp 657–664. ACM – reference: Gong P, Ye J, Zhang C (2012) Robust multi-task feature learning. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. pp 895–903. ACM – reference: Samala RK, Chan HP, Hadjiiski L, Helvie MA, Richter C, Cha K (2018) Cross-domain and multi-task transfer learning of deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis. In: MICCAI. vol 10575. https://doi.org/10.1117/12.2293412 – reference: Titsias MK, Lázaro-Gredilla M (2011) Spike and slab variational inference for multi-task and multiple kernel learning. In: Advances in neural information processing systems. pp 2339–2347 – reference: Lounici K, Pontil M, Tsybakov AB, Van De Geer S (2009) – reference: Argyriou A, Micchelli CA, Pontil M, Ying Y (2008) A spectral regularization framework for multi-task structure learning, nips 20 Journal Publications on Mathematics (Harmonic Analysis) – reference: ZhangJLiuMShenDDetecting anatomical landmarks from limited medical imaging data using two-stage task-oriented deep neural networksIEEE Trans Image Process2017261047534764368189610.1109/TIP.2017.2721106 – reference: McDonald AM, Pontil M, Stamos D (2014) Spectral k-support norm regularization. In: Advances in neural information processing systems. pp 3644–3652 – reference: Evgeniou T, Pontil M (2004) Regularized multi–task learning. In: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. pp 109–117. ACM – reference: WangZZhuXAdeliEZhuYNieFMunsellBWuGMulti-modal classification of neurodegenerative disease by progressive graph-based transductive learningMed Image Anal20173921823010.1016/j.media.2017.05.003 – reference: ZhuXSukHIHuangHShenDLow-rank graph-regularized structured sparse regression for identifying genetic biomarkersIEEE Transactions on Big Data20173440541410.1109/TBDATA.2017.2735991 – reference: Lee H, Battle A, Raina R, Ng AY (2007) Efficient sparse coding algorithms. In: Advances in neural information processing systems. pp 801–808 – reference: Zhang S, Li X, Zong M, Zhu X, Wang R (2017) Efficient knn classification with different numbers of nearest neighbors IEEE transactions on neural networks and learning systems – reference: Li C, Gupta S, Rana S, Nguyen V, Venkatesh S, Ashley D, Livingston T (2016) Multiple adverse effects prediction in longitudinal cancer treatment. In: Pattern recognition (ICPR), 2016 23rd international conference on. pp 3156–3161. IEEE – reference: Fang Y, Ma Z, Zhang Z, Zhang XY, Bai X (2017) Dynamic multi-task learning with convolutional neural network. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17. pp 1668–1674. https://doi.org/10.24963/ijcai.2017/231 – reference: Argyriou A (2015) Machine learning software. http://ttic.uchicago.edu/~argyriou/code/ – ident: 6463_CR66 – ident: 6463_CR14 – ident: 6463_CR36 doi: 10.1145/1015330.1015426 – volume: 3 start-page: 9 issue: 1 year: 2016 ident: 6463_CR85 publication-title: Journal of Big Data doi: 10.1186/s40537-016-0043-6 – volume: 20 start-page: 231 issue: 2 year: 2010 ident: 6463_CR61 publication-title: Stat Comput doi: 10.1007/s11222-008-9111-x – volume: 66 start-page: 2306 issue: 9 year: 2017 ident: 6463_CR90 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2017.2707898 – volume: 170 start-page: 434 year: 2018 ident: 6463_CR80 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.02.035 – ident: 6463_CR99 doi: 10.1109/TNNLS.2017.2673241 – ident: 6463_CR57 – ident: 6463_CR19 doi: 10.1145/1014052.1014067 – volume: 28 start-page: 1263 issue: 6 year: 2017 ident: 6463_CR110 publication-title: IEEE transactions on neural networks and learning systems doi: 10.1109/TNNLS.2016.2521602 – volume: 47 start-page: 349 issue: 3 year: 2005 ident: 6463_CR76 publication-title: Technometrics doi: 10.1198/004017005000000139 – volume: 20 start-page: 3465 issue: 6 year: 2010 ident: 6463_CR64 publication-title: SIAM J Optim doi: 10.1137/090763184 – ident: 6463_CR50 doi: 10.1007/978-3-319-66179-7_1 – ident: 6463_CR39 doi: 10.7551/mitpress/7503.003.0105 – ident: 6463_CR46 – ident: 6463_CR70 doi: 10.1109/ICASSP.2013.6639012 – volume: 59 start-page: 7947 issue: 12 year: 2013 ident: 6463_CR34 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2013.2280272 – ident: 6463_CR9 doi: 10.1109/FG.2017.41 – ident: 6463_CR8 doi: 10.1007/978-1-4615-5529-2_5 – volume: 25 start-page: 3919 issue: 8 year: 2016 ident: 6463_CR42 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2016.2579306 – ident: 6463_CR49 – ident: 6463_CR52 – ident: 6463_CR69 doi: 10.1117/12.2293412 – ident: 6463_CR83 – ident: 6463_CR72 doi: 10.1109/ICIP.2014.7025029 – volume: 102 start-page: 192 year: 2014 ident: 6463_CR87 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.08.015 – volume: 26 start-page: 4753 issue: 10 year: 2017 ident: 6463_CR97 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2017.2721106 – volume: 7 start-page: 5110 issue: 1 year: 2017 ident: 6463_CR23 publication-title: Scientific Reports doi: 10.1038/s41598-017-05300-5 – ident: 6463_CR68 – ident: 6463_CR60 – ident: 6463_CR21 doi: 10.24963/ijcai.2017/231 – ident: 6463_CR105 – volume: 19 start-page: 2033 issue: 9 year: 2017 ident: 6463_CR111 publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2017.2703636 – volume: 43 start-page: 54 year: 2018 ident: 6463_CR89 publication-title: Med Image Anal doi: 10.1016/j.media.2017.09.005 – ident: 6463_CR51 – ident: 6463_CR31 doi: 10.1609/aaai.v28i1.9009 – ident: 6463_CR30 doi: 10.1609/aaai.v30i1.10261 – ident: 6463_CR45 doi: 10.1145/1553374.1553458 – ident: 6463_CR65 – ident: 6463_CR48 doi: 10.1145/1553374.1553459 – ident: 6463_CR40 – ident: 6463_CR71 – ident: 6463_CR28 doi: 10.1145/2623330.2623641 – ident: 6463_CR112 doi: 10.1007/978-3-319-46720-7_40 – volume: 12 start-page: 75 issue: Jan year: 2011 ident: 6463_CR37 publication-title: J Mach Learn Res – volume: 61 start-page: 622 issue: 3 year: 2012 ident: 6463_CR91 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.03.059 – ident: 6463_CR116 doi: 10.1007/978-3-319-66179-7_24 – ident: 6463_CR102 – ident: 6463_CR54 – ident: 6463_CR15 doi: 10.1145/1390156.1390177 – ident: 6463_CR103 doi: 10.1007/978-3-319-10599-4_7 – volume: 6 start-page: 615 issue: Apr year: 2005 ident: 6463_CR18 publication-title: J Mach Learn Res – ident: 6463_CR26 – volume: 26 start-page: 1923 issue: 4 year: 2017 ident: 6463_CR20 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2017.2667405 – ident: 6463_CR5 doi: 10.2139/ssrn.1031158 – ident: 6463_CR98 doi: 10.1007/978-3-319-66185-8_81 – ident: 6463_CR29 doi: 10.1145/2783258.2783393 – volume: 3 start-page: 405 issue: 4 year: 2017 ident: 6463_CR113 publication-title: IEEE Transactions on Big Data doi: 10.1109/TBDATA.2017.2735991 – volume: 76 start-page: 17511 issue: 16 year: 2017 ident: 6463_CR96 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-016-4231-3 – volume: 53 start-page: 1147 issue: 3 year: 2010 ident: 6463_CR79 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.07.002 – volume: 39 start-page: 218 year: 2017 ident: 6463_CR84 publication-title: Med Image Anal doi: 10.1016/j.media.2017.05.003 – volume: 5 start-page: 22:1 issue: 4 year: 2012 ident: 6463_CR10 publication-title: ACM Trans Knowl Discov Data doi: 10.1145/2086737.2086742 – ident: 6463_CR41 doi: 10.1109/ICPR.2016.7900120 – volume: 59 start-page: 895 issue: 2 year: 2012 ident: 6463_CR93 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.069 – volume: 220 start-page: 130 year: 2017 ident: 6463_CR32 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.05.081 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 6463_CR74 publication-title: Series B (Methodological) doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: 6463_CR24 doi: 10.1109/ICCV.2015.169 – ident: 6463_CR1 – volume: 22 start-page: 1345 issue: 10 year: 2010 ident: 6463_CR63 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2009.191 – ident: 6463_CR77 doi: 10.1109/ICPR.2002.1048350 – ident: 6463_CR82 – ident: 6463_CR16 doi: 10.17863/CAM.12584 – ident: 6463_CR92 doi: 10.1109/WACV.2014.6835990 – ident: 6463_CR44 doi: 10.1109/ICIP.2014.7025580 – volume: 73 start-page: 221 issue: 3 year: 2008 ident: 6463_CR95 publication-title: Mach Learn doi: 10.1007/s10994-008-5050-1 – ident: 6463_CR67 – ident: 6463_CR38 – ident: 6463_CR59 – volume: 7 start-page: 60 issue: 4 year: 2016 ident: 6463_CR88 publication-title: ACM Transactions on Intelligent Systems and Technology (TIST) – ident: 6463_CR94 – ident: 6463_CR81 doi: 10.1109/ICCV.2003.1238452 – ident: 6463_CR27 doi: 10.1145/2339530.2339672 – ident: 6463_CR4 – ident: 6463_CR56 – ident: 6463_CR35 – ident: 6463_CR11 doi: 10.1145/1553374.1553392 – ident: 6463_CR117 doi: 10.1007/978-3-319-46720-7_13 – ident: 6463_CR109 – ident: 6463_CR12 doi: 10.1145/2020408.2020423 – ident: 6463_CR22 – ident: 6463_CR53 doi: 10.1145/1553374.1553463 – ident: 6463_CR58 – ident: 6463_CR108 doi: 10.1145/2020408.2020549 – ident: 6463_CR101 – ident: 6463_CR78 – volume: 84 start-page: 466 year: 2014 ident: 6463_CR43 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.09.015 – ident: 6463_CR100 doi: 10.1145/2783258.2783304 – ident: 6463_CR25 – volume: 6 start-page: 1817 issue: Nov year: 2005 ident: 6463_CR3 publication-title: J Mach Learn Res – ident: 6463_CR55 – ident: 6463_CR107 doi: 10.1145/2339530.2339702 – ident: 6463_CR13 – volume: 73 start-page: 243 issue: 3 year: 2008 ident: 6463_CR6 publication-title: Mach Learn doi: 10.1007/s10994-007-5040-8 – volume: 91 start-page: 386 year: 2014 ident: 6463_CR73 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.01.033 – ident: 6463_CR7 – ident: 6463_CR106 – ident: 6463_CR115 doi: 10.1109/TKDE.2017.2763618 – ident: 6463_CR86 doi: 10.1109/ICASSP.2015.7178814 – ident: 6463_CR2 – volume: 37 start-page: 3311 issue: 23 year: 1997 ident: 6463_CR62 publication-title: Vis Res doi: 10.1016/S0042-6989(97)00169-7 – ident: 6463_CR75 – ident: 6463_CR33 – ident: 6463_CR17 doi: 10.1109/CVPR.2004.1315070 – ident: 6463_CR47 – volume: 63 start-page: 607 issue: 3 year: 2016 ident: 6463_CR114 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2015.2466616 – ident: 6463_CR104 doi: 10.1609/aaai.v27i1.8577 |
SSID | ssj0016524 |
Score | 2.5902588 |
Snippet | Multi-task learning (MTL), which optimizes multiple related learning tasks at the same time, has been widely used in various applications, including natural... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 29705 |
SubjectTerms | Artificial intelligence Biomedical data Computer Communication Networks Computer Science Computer vision Data analysis Data processing Data Structures and Information Theory Machine learning Multimedia Multimedia Information Systems Natural language processing Readers Special Purpose and Application-Based Systems Speech recognition |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2hssDARwFRKMgDLCBLTuy4zlghUIUEE5W6WbGdMIBSRIPEz-ec2g0gQGKO7eE59r3z3bsDODNMCe6Mo5z7pxtmJC24cDQtpBW5cY61Cu-7ezmZittZNgs67kXMdo8hyfam7sRuiZeSsERRKSSnSBzXM3TdfR7fNB2vQgcyC51sFaNoDpMYyvxpia_GqGOY34Kira252YGtQBLJeLmru7BW1n3Yjg0YSDiPfdj8VE1wD87HxKDjW5GlHIXMa9KmC9KmWDyR0B7icR-mN9cPVxMauiBQyxPZ0NRUFbJ6Y7hE224yPlJ5kTGXS5W6Ek0QcjArjOcpHOlJrqRNyky4RJaFsEzwA-jV87o8BKJsJUYWrz9mDTpGvhQbTq9cqkqnuOUDYBEObUOJcN-p4ll3xY09ghoR1B5B_T6Ai9WUl2V9jL8GDyPGOhyVhfZNQrnIkbcN4DLi3n3-dbGjf40-ho3U73urIhxCr3l9K0-QTjTmtP19PgAfDL25 priority: 102 providerName: Springer Nature |
Title | A brief review on multi-task learning |
URI | https://link.springer.com/article/10.1007/s11042-018-6463-x https://www.proquest.com/docview/2085349143 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED3RdoGBjwKiUKoMsIAsnNhxnQkF1A-BqBCiUpmi2E4YQGmhQerPx06dBpDomsQezvG95zvfPYAzgTklSihEiAndYMFQTKhCXswkDYRSuKjwfhix4ZjeTfyJDbjN7bXK0icWjlpNpYmRXxktSUIDDe_Xsw9kVKNMdtVKaNSgoV0w9-vQuOmNHp9WeQTmW1lbjpHGRrfMaxbFc64pTcEuR4wygha_kamim38ypAXw9Hdh2zJGJ1wu8R5sJFkTdko1BsduziZs_WgtuA_noSP0KTh1lrUpzjRziruDKI_nb47Ving9gHG_93w7RFYSAUnishx5Ik01xReCMA30widdHsQ-VgHjnko0HmlCJqkwpIVorhJwJt3Ep8plSUwlpuQQ6tk0S47A4TKlXal9IZZCn5JMXzY9PFUeTxQnkrQAl-aIpO0XbmQr3qOq07GxYKQtGBkLRosWXKyGzJbNMtZ93C5tHNl9M4-qVW7BZWn36vW_kx2vn-wENj2z0EUNYRvq-edXcqrJRC46UOP9QQca4eDlvtex_49-OvbCb1IaxXU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGYCBN6JQwAMsIAsndlxnQKi8VF4VQiCxhdhOGEBtoUGUP8Vv5JwmFJBgY07s4fP5vrPPdx_AhmZKcKst5dxd3TAtacyFpX4sjQi1tSyv8L5oyeaNOL0NbkfgvayFcc8qS5-YO2rbMe6OfMdpSXIRIr3vdZ-oU41y2dVSQmNgFmfJ2yse2Xq7J4e4vpu-f3x0fdCkhaoANdyTGfV1mmKUrDWXyJU64HUVxgGzoVS-TdClY0xjhHa8z5HuQyWNlwTCejKJhWGC47yjMIZhRoi7aGz_qHV59Zm3kEEho6sYRS72yjxqXqznuVIY5ikqheS0_50Jh-Htj4xsTnTHMzBVRKikMTCpWRhJ2nMwXao_kMIZzMHkl1aG87DZIBpP3SkZ1MKQTpvkbxVpFvceSKFNcb8AN_8C1iJU2p12sgREmVTUDfpeZjSeylwfOByeWl8lVnHDq8BKOCJT9Cd3MhmP0bCzskMwQgQjh2DUr8LW55DuoDnHXz_XSoyjYp_2oqFVVWG7xH34-dfJlv-ebB3Gm9cX59H5SetsBSZ8t-h5_WINKtnzS7KKgUym1wrrIXD33wb7AfkY_Hs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BkRAMvBGFAh5gAVk4seM6A0LlUfGsEAKJLcR2wgBqgRYBf41fxzl1KCDBxpzYw-fzfWef7z6ANc2U4FZbyrm7umFa0pQLS8NUGhFra1lR4X3WkodX4vg6uh6C97IWxj2rLH1i4ahtx7g78i2nJclFjPS-lftnEef7zZ2HR-oUpFymtZTT6JvISfb2gse37vbRPq71ehg2Dy73DqlXGKCGB7JHQ53nGDFrzSXypo54XcVpxGwsVWgzdO8Y3xihXQzAkfpjJU2QRcIGMkuFYYLjvMMwUkdWVBUY2T1onV985jBk5CV1FaPIy0GZUy0K9wJXFsMCRaWQnL5-Z8VBqPsjO1uQXnMKJny0Shp985qGoaw9A5OlEgTxjmEGxr-0NZyF9QbReALPSb8uhnTapHi3SHtp9454nYrbObj6F7DmodLutLMFIMrkom7QDzOj8YTmesLh8NyGKrOKG14FVsKRGN-r3Elm3CeDLssOwQQRTByCyWsVNj6HPPQbdfz1c63EOPF7tpsMLKwKmyXug8-_Trb492SrMIqGmpwetU6WYCx0a16UMtag0nt6zpYxpunpFW88BG7-214_ANvXALY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+brief+review+on+multi-task+learning&rft.jtitle=Multimedia+tools+and+applications&rft.au=Thung%2C+Kim-Han&rft.au=Wee%2C+Chong-Yaw&rft.date=2018-11-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=77&rft.issue=22&rft.spage=29705&rft.epage=29725&rft_id=info:doi/10.1007%2Fs11042-018-6463-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_018_6463_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |