Identification of putative biomarkers for type 2 diabetes using metabolomics in the Korea Association REsource (KARE) cohort
Introduction Type 2 diabetes (T2D) is a multifactorial disease resulting from a complex interaction between environmental and genetic risk factors. Metabolomics provide a logical framework that reflects the functional endpoints of biological processes being triggered by genetic information and vario...
Saved in:
Published in | Metabolomics Vol. 12; no. 12; p. 1 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1573-3882 1573-3890 |
DOI | 10.1007/s11306-016-1103-9 |
Cover
Abstract | Introduction
Type 2 diabetes (T2D) is a multifactorial disease resulting from a complex interaction between environmental and genetic risk factors. Metabolomics provide a logical framework that reflects the functional endpoints of biological processes being triggered by genetic information and various external influences.
Objectives
Identification of metabolite biomarkers can shed insight into etiological pathways and improve the prediction of disease risk. Here, we aimed to identify serum metabolites as putative biomarkers for T2D and their association with genetic variants in the Korean population.
Methods
A targeted metabolomics approach was employed to quantify serum metabolites for 2240 participants in the Korea Association REsource (KARE) cohort. T2D-related metabolites were identified by statistical methods including multivariable linear and logistic regression, and were independently replicated in the Cooperative Health Research in the Region of Augsburg (KORA) cohort. Additionally, by combining a genome wide association study (GWAS) with metabolomics, genetic variants associated with the identified T2D-related metabolites were uncovered.
Results
123 metabolites were quantified from fasting serum samples and four metabolites, hexadecanoylcarnitine (C16), glycine, lysophosphatidylcholine acyl C18:2 (lysoPC a C18:2), and phosphatidylcholine acyl-alkyl C36:0 (PC ae C36:0), were significantly altered in T2D compared to non-T2D subjects (after the Bonferroni correction for multiple testing with P < 4.07E − 04, α = 0.05). Among them, C16, glycine, and lysoPC a C18:2 were independently replicated in the KORA cohort. Alterations of these metabolites were associated with ten genetic loci including six that were previously implicated in T2D or obesity.
Conclusion
Using a targeted-metabolomics and in combination with GWAS approach, we identified three serum metabolites associated with risk of T2D in both the KARE and KORA cohort and discovered ten genetic variants in relation to the identified metabolites. These findings provide a better understanding to develop novel preventive strategies for T2D in the Korean population. |
---|---|
AbstractList | Introduction Type 2 diabetes (T2D) is a multifactorial disease resulting from a complex interaction between environmental and genetic risk factors. Metabolomics provide a logical framework that reflects the functional endpoints of biological processes being triggered by genetic information and various external influences. Objectives Identification of metabolite biomarkers can shed insight into etiological pathways and improve the prediction of disease risk. Here, we aimed to identify serum metabolites as putative biomarkers for T2D and their association with genetic variants in the Korean population. Methods A targeted metabolomics approach was employed to quantify serum metabolites for 2240 participants in the Korea Association REsource (KARE) cohort. T2D-related metabolites were identified by statistical methods including multivariable linear and logistic regression, and were independently replicated in the Cooperative Health Research in the Region of Augsburg (KORA) cohort. Additionally, by combining a genome wide association study (GWAS) with metabolomics, genetic variants associated with the identified T2D-related metabolites were uncovered. Results 123 metabolites were quantified from fasting serum samples and four metabolites, hexadecanoylcarnitine (C16), glycine, lysophosphatidylcholine acyl C18:2 (lysoPC a C18:2), and phosphatidylcholine acyl-alkyl C36:0 (PC ae C36:0), were significantly altered in T2D compared to non-T2D subjects (after the Bonferroni correction for multiple testing with P < 4.07E - 04, [alpha] = 0.05). Among them, C16, glycine, and lysoPC a C18:2 were independently replicated in the KORA cohort. Alterations of these metabolites were associated with ten genetic loci including six that were previously implicated in T2D or obesity. Conclusion Using a targeted-metabolomics and in combination with GWAS approach, we identified three serum metabolites associated with risk of T2D in both the KARE and KORA cohort and discovered ten genetic variants in relation to the identified metabolites. These findings provide a better understanding to develop novel preventive strategies for T2D in the Korean population. Introduction Type 2 diabetes (T2D) is a multifactorial disease resulting from a complex interaction between environmental and genetic risk factors. Metabolomics provide a logical framework that reflects the functional endpoints of biological processes being triggered by genetic information and various external influences. Objectives Identification of metabolite biomarkers can shed insight into etiological pathways and improve the prediction of disease risk. Here, we aimed to identify serum metabolites as putative biomarkers for T2D and their association with genetic variants in the Korean population. Methods A targeted metabolomics approach was employed to quantify serum metabolites for 2240 participants in the Korea Association REsource (KARE) cohort. T2D-related metabolites were identified by statistical methods including multivariable linear and logistic regression, and were independently replicated in the Cooperative Health Research in the Region of Augsburg (KORA) cohort. Additionally, by combining a genome wide association study (GWAS) with metabolomics, genetic variants associated with the identified T2D-related metabolites were uncovered. Results 123 metabolites were quantified from fasting serum samples and four metabolites, hexadecanoylcarnitine (C16), glycine, lysophosphatidylcholine acyl C18:2 (lysoPC a C18:2), and phosphatidylcholine acyl-alkyl C36:0 (PC ae C36:0), were significantly altered in T2D compared to non-T2D subjects (after the Bonferroni correction for multiple testing with P < 4.07E − 04, α = 0.05). Among them, C16, glycine, and lysoPC a C18:2 were independently replicated in the KORA cohort. Alterations of these metabolites were associated with ten genetic loci including six that were previously implicated in T2D or obesity. Conclusion Using a targeted-metabolomics and in combination with GWAS approach, we identified three serum metabolites associated with risk of T2D in both the KARE and KORA cohort and discovered ten genetic variants in relation to the identified metabolites. These findings provide a better understanding to develop novel preventive strategies for T2D in the Korean population. |
ArticleNumber | 178 |
Author | Kim, Bong-Jo Lee, Heun-Sik Peters, Annette Cho, Sang Yun Kim, Kwang-Youl Kim, Jeong-Min Adamski, Jerzy Rathmann, Wolfgang Lee, Young Nam, Moonsuk Xu, Tao Han, Bok-Ghee Kim, Nam-Hee Kim, Yeon-Jung Suhre, Karsten Wang-Sattler, Rui |
Author_xml | – sequence: 1 givenname: Heun-Sik surname: Lee fullname: Lee, Heun-Sik organization: Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health – sequence: 2 givenname: Tao surname: Xu fullname: Xu, Tao organization: Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Institute of Epidemiology II, Helmholtz Zentrum München – sequence: 3 givenname: Young surname: Lee fullname: Lee, Young organization: Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health – sequence: 4 givenname: Nam-Hee surname: Kim fullname: Kim, Nam-Hee organization: Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health – sequence: 5 givenname: Yeon-Jung surname: Kim fullname: Kim, Yeon-Jung organization: Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health – sequence: 6 givenname: Jeong-Min surname: Kim fullname: Kim, Jeong-Min organization: Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health – sequence: 7 givenname: Sang Yun surname: Cho fullname: Cho, Sang Yun organization: Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health – sequence: 8 givenname: Kwang-Youl surname: Kim fullname: Kim, Kwang-Youl organization: Department of Clinical Pharmacology, Inha University Hospital – sequence: 9 givenname: Moonsuk surname: Nam fullname: Nam, Moonsuk organization: Department of Clinical Pharmacology, Inha University Hospital, Department of Internal Medicine, Inha University School of Medicine – sequence: 10 givenname: Jerzy surname: Adamski fullname: Adamski, Jerzy organization: Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München – sequence: 11 givenname: Karsten surname: Suhre fullname: Suhre, Karsten organization: Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar – sequence: 12 givenname: Wolfgang surname: Rathmann fullname: Rathmann, Wolfgang organization: Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University – sequence: 13 givenname: Annette surname: Peters fullname: Peters, Annette organization: Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Institute of Epidemiology II, Helmholtz Zentrum München – sequence: 14 givenname: Rui surname: Wang-Sattler fullname: Wang-Sattler, Rui organization: Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Institute of Epidemiology II, Helmholtz Zentrum München – sequence: 15 givenname: Bok-Ghee surname: Han fullname: Han, Bok-Ghee email: bokghee@nih.go.kr organization: Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health – sequence: 16 givenname: Bong-Jo surname: Kim fullname: Kim, Bong-Jo email: kbj6181@cdc.go.kr organization: Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health |
BookMark | eNp9kM1KAzEURoNUsFYfwF3AjS5Gk8nMJFkWqVoqCEXXIZO5qdF2UpNUKPjwTh0REXR1v8U99-ccokHrW0DohJILSgi_jJQyUmWEVhmlhGVyDw1pyVnGhCSD7yzyA3QY4zMhRSE5GaL3aQNtctYZnZxvsbd4vUldfgNcO7_S4QVCxNYHnLZrwDlunK4hQcSb6NoFXkHStV_6lTMRuxanJ8AzH0DjcYzeuH7sfBL9JhjAZ7PxfHKOjX_yIR2hfauXEY6_6gg9Xk8erm6zu_ub6dX4LjOMVinLJZdQV1zYSjSSC0rBFEyLwpY1KWtruCmJrauiYRUzkunc2LoprOQgNKsMG6HTfu46-NcNxKSeu2vabqWiIi-oICUVXRftu0zwMQawah1cJ2CrKFE7yaqXrDrJaidZyY7hvxjj0ufLKWi3_JfMezJ2W9oFhB83_Ql9AMNWk8w |
CitedBy_id | crossref_primary_10_1042_BSR20190078 crossref_primary_10_1089_met_2024_0038 crossref_primary_10_3390_metabo13040541 crossref_primary_10_1089_met_2019_0047 crossref_primary_10_3390_metabo13020227 crossref_primary_10_1002_mnfr_202300154 crossref_primary_10_1210_clinem_dgaa745 crossref_primary_10_1089_bio_2023_0130 crossref_primary_10_1007_s00125_024_06282_6 crossref_primary_10_1186_s12902_020_00653_x crossref_primary_10_1016_j_advnut_2023_100164 crossref_primary_10_3389_fphar_2022_1011608 crossref_primary_10_1210_clinem_dgz240 crossref_primary_10_3390_genes12121905 crossref_primary_10_1016_j_diabres_2018_03_045 crossref_primary_10_1038_s41598_020_78961_4 crossref_primary_10_1038_s41598_020_73384_7 crossref_primary_10_1038_s41598_018_26320_9 crossref_primary_10_1111_dom_15084 crossref_primary_10_1007_s11306_022_01905_8 crossref_primary_10_1016_j_biocel_2017_10_011 crossref_primary_10_1016_j_jff_2023_105448 crossref_primary_10_3390_genes14071464 |
Cites_doi | 10.1038/nm.2307 10.1016/S0140-6736(78)91380-6 10.1016/j.jmb.2011.10.043 10.1371/journal.pone.0084034 10.2337/db12-0876 10.1074/jbc.273.12.6830 10.1038/jhg.2013.14 10.1016/j.bbrc.2004.11.120 10.2337/dc10-1006 10.2337/db10-1655 10.1038/nrm2327 10.3945/jn.108.103754 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S 10.1056/NEJM197608192950804 10.1038/ng.287 10.1111/j.1464-5491.2009.02863.x 10.2337/diabetes.48.8.1600 10.1038/ng.507 10.1371/journal.pone.0013953 10.1038/clpt.2011.93 10.1038/ng.357 10.1016/j.cell.2008.08.026 10.2337/db12-0495 10.1139/y04-067 10.1038/oby.2012.128 10.2337/db12-0754 10.1016/j.cmet.2007.10.013 10.1038/oby.2009.510 10.2337/db09-0580 10.1074/jbc.M009817200 10.1016/S0140-6736(05)61032-X 10.2337/dc14-S014 10.1038/msb4100095 10.1152/ajpendo.00228.2013 10.1186/1471-2350-14-21 10.1038/msb.2012.43 10.4172/2155-6156.1000198 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2016 Metabolomics is a copyright of Springer, 2016. |
Copyright_xml | – notice: Springer Science+Business Media New York 2016 – notice: Metabolomics is a copyright of Springer, 2016. |
DBID | AAYXX CITATION 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s11306-016-1103-9 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1573-3890 |
ExternalDocumentID | 4197518181 10_1007_s11306_016_1103_9 |
GroupedDBID | --- -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 203 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5VS 67N 67Z 6NX 7X7 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHFT ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACUHS ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EN4 ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAK LK8 LLZTM LMP M4Y M7P MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM P2P PF0 PQQKQ PROAC PT4 Q2X QOR QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7U Z7V Z7W Z7Y Z82 Z83 Z87 ZMTXR ZOVNA ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7XB 8FK ABRTQ AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS |
ID | FETCH-LOGICAL-c316t-2979eb678f68d97811ec43a84f5b05bfc7c50fb64d363c93a2cfbd4f97e8a36c3 |
IEDL.DBID | U2A |
ISSN | 1573-3882 |
IngestDate | Fri Jul 25 11:08:22 EDT 2025 Thu Apr 24 23:01:35 EDT 2025 Tue Jul 01 01:56:24 EDT 2025 Fri Feb 21 02:37:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Type 2 diabetes Targeted metabolomics Genetic variants Serum metabolites Korean population Cohort study |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-2979eb678f68d97811ec43a84f5b05bfc7c50fb64d363c93a2cfbd4f97e8a36c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1824180518 |
PQPubID | 326279 |
ParticipantIDs | proquest_journals_1824180518 crossref_primary_10_1007_s11306_016_1103_9 crossref_citationtrail_10_1007_s11306_016_1103_9 springer_journals_10_1007_s11306_016_1103_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20161200 2016-12-00 20161201 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 20161200 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Heidelberg |
PublicationSubtitle | An Official Journal of the Metabolomics Society |
PublicationTitle | Metabolomics |
PublicationTitleAbbrev | Metabolomics |
PublicationYear | 2016 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Boender, van Rozen, Adan (CR5) 2012; 20 Herder, Karakas, Koenig (CR11) 2011; 90 Nicholson (CR23) 2006; 2 Czyzyk, Andrews, Coskun, Wade, Hawkins, Lockwood (CR8) 2013; 305 Koenig, Peterson, Jones, Saudek, Lehrman, Cerami (CR15) 1976; 295 Suhre, Meisinger, Doring, Altmaier, Belcredi, Gieger (CR32) 2010; 5 Mejia-Benitez, Klunder-Klunder, Yengo, Meyre, Aradillas, Cruz (CR19) 2013; 14 Alberti, Zimmet (CR2) 1998; 15 Xie, Wood, Lyssenko, Weedon, Knowles, Alkayyali (CR38) 2013; 62 Perseghin, Scifo, De Cobelli, Pagliato, Battezzati, Arcelloni (CR25) 1999; 48 Sekhar, McKay, Patel, Guthikonda, Reddy, Balasubramanyam (CR28) 2011; 34 Muoio, Newgard (CR21) 2008; 9 Bain, Stevens, Wenner, Ilkayeva, Muoio, Newgard (CR4) 2009; 58 Rathmann, Strassburger, Heier, Holle, Thorand, Giani (CR26) 2009; 26 Ho, Larson, Vasan, Ghorbani, Cheng, Rhee (CR12) 2013; 62 Holmes, Wilson, Nicholson (CR13) 2008; 134 Stumvoll, Goldstein, van Haeften (CR31) 2005; 365 Floegel, Stefan, Yu, Muhlenbruch, Drogan, Joost (CR9) 2013; 62 Soga, Ohishi, Matsui, Saito, Matsumoto, Takasaki (CR29) 2005; 326 Wijekoon, Skinner, Brosnan, Brosnan (CR35) 2004; 82 Wong, Tran, Pierce, Chan, Karmin, Choy (CR37) 1998; 273 Illig, Gieger, Zhai, Romisch-Margl, Wang-Sattler, Prehn (CR14) 2010; 42 Koves, Ussher, Noland, Slentz, Mosedale, Ilkayeva (CR16) 2008; 7 Liaw, Wiener (CR17) 2002; 2 Calvert, Graham, Mannik, Wise, Yeates (CR6) 1978; 2 Nugent, Prins, Whitehead, Wentworth, Chatterjee, O’Rahilly (CR24) 2001; 276 Sanghera, Blackett (CR27) 2012 Wang-Sattler, Yu, Herder, Messias, Floegel, He (CR34) 2012; 8 Lustgarten, Price, Phillips, Fielding (CR18) 2013; 8 Willer, Speliotes, Loos, Li, Lindgren, Heid (CR36) 2009; 41 Go, Hwang, Kim, Oh, Kim, Kwak (CR10) 2013; 58 American Diabetes (CR3) 2014; 37 Cho, Go, Kim, Heo, Oh, Ban (CR7) 2009; 41 Muoio, Newgard (CR22) 2008; 9 Wang, Larson, Vasan, Cheng, Rhee, McCabe (CR33) 2011; 17 Stancakova, Paananen, Soininen, Kangas, Bonnycastle, Morken (CR30) 2011; 60 Mihalik, Goodpaster, Kelley, Chace, Vockley, Toledo (CR20) 2010; 18 Adams, Hoppel, Lok, Zhao, Wong, Minkler (CR1) 2009; 139 DM Muoio (1103_CR21) 2008; 9 AJ Boender (1103_CR5) 2012; 20 M Stumvoll (1103_CR31) 2005; 365 CJ Willer (1103_CR36) 2009; 41 A Mejia-Benitez (1103_CR19) 2013; 14 C Nugent (1103_CR24) 2001; 276 T Illig (1103_CR14) 2010; 42 TR Koves (1103_CR16) 2008; 7 A Floegel (1103_CR9) 2013; 62 RV Sekhar (1103_CR28) 2011; 34 DK Sanghera (1103_CR27) 2012 SH Adams (1103_CR1) 2009; 139 MJ Go (1103_CR10) 2013; 58 YS Cho (1103_CR7) 2009; 41 JE Ho (1103_CR12) 2013; 62 SJ Mihalik (1103_CR20) 2010; 18 GD Calvert (1103_CR6) 1978; 2 C Herder (1103_CR11) 2011; 90 A Stancakova (1103_CR30) 2011; 60 EP Wijekoon (1103_CR35) 2004; 82 JK Nicholson (1103_CR23) 2006; 2 K Suhre (1103_CR32) 2010; 5 W Rathmann (1103_CR26) 2009; 26 JT Wong (1103_CR37) 1998; 273 W Xie (1103_CR38) 2013; 62 G Perseghin (1103_CR25) 1999; 48 T Soga (1103_CR29) 2005; 326 A Liaw (1103_CR17) 2002; 2 JR Bain (1103_CR4) 2009; 58 RJ Koenig (1103_CR15) 1976; 295 TJ Wang (1103_CR33) 2011; 17 DM Muoio (1103_CR22) 2008; 9 R Wang-Sattler (1103_CR34) 2012; 8 KG Alberti (1103_CR2) 1998; 15 TA Czyzyk (1103_CR8) 2013; 305 E Holmes (1103_CR13) 2008; 134 A American Diabetes (1103_CR3) 2014; 37 MS Lustgarten (1103_CR18) 2013; 8 |
References_xml | – volume: 17 start-page: 448 issue: 4 year: 2011 end-page: 453 ident: CR33 article-title: Metabolite profiles and the risk of developing diabetes publication-title: Nature Medicine doi: 10.1038/nm.2307 – volume: 2 start-page: 66 issue: 8080 year: 1978 end-page: 68 ident: CR6 article-title: Effects of therapy on plasma-high-density-lipoprotein-cholesterol concentration in diabetes mellitus publication-title: Lancet doi: 10.1016/S0140-6736(78)91380-6 – volume: 8 start-page: 615 year: 2012 ident: CR34 article-title: Novel biomarkers for pre-diabetes identified by metabolomics publication-title: Molecular Systems Biology doi: 10.1016/j.jmb.2011.10.043 – volume: 8 start-page: e84034 issue: 12 year: 2013 ident: CR18 article-title: Serum glycine is associated with regional body fat and insulin resistance in functionally-limited older adults publication-title: PLoS One doi: 10.1371/journal.pone.0084034 – volume: 62 start-page: 2141 issue: 6 year: 2013 end-page: 2150 ident: CR38 article-title: Genetic variants associated with glycine metabolism and their role in insulin sensitivity and type 2 diabetes publication-title: Diabetes doi: 10.2337/db12-0876 – volume: 273 start-page: 6830 issue: 12 year: 1998 end-page: 6836 ident: CR37 article-title: Lysophosphatidylcholine stimulates the release of arachidonic acid in human endothelial cells publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.273.12.6830 – volume: 58 start-page: 362 issue: 6 year: 2013 end-page: 365 ident: CR10 article-title: New susceptibility loci in MYL2, C12orf51 and OAS1 associated with 1-h plasma glucose as predisposing risk factors for type 2 diabetes in the Korean population publication-title: Journal of Human Genetics doi: 10.1038/jhg.2013.14 – volume: 326 start-page: 744 issue: 4 year: 2005 end-page: 751 ident: CR29 article-title: Lysophosphatidylcholine enhances glucose-dependent insulin secretion via an orphan G-protein-coupled receptor publication-title: Biochemical and Biophysical Research Communications doi: 10.1016/j.bbrc.2004.11.120 – volume: 34 start-page: 162 issue: 1 year: 2011 end-page: 167 ident: CR28 article-title: Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine publication-title: Diabetes Care doi: 10.2337/dc10-1006 – volume: 60 start-page: 1608 issue: 5 year: 2011 end-page: 1616 ident: CR30 article-title: Effects of 34 risk loci for type 2 diabetes or hyperglycemia on lipoprotein subclasses and their composition in 6,580 nondiabetic Finnish men publication-title: Diabetes doi: 10.2337/db10-1655 – volume: 9 start-page: 193 issue: 3 year: 2008 end-page: 205 ident: CR22 article-title: Mechanisms of disease: Molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes publication-title: Nature Reviews Molecular Cell Biology doi: 10.1038/nrm2327 – volume: 139 start-page: 1073 issue: 6 year: 2009 end-page: 1081 ident: CR1 article-title: Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid beta-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women publication-title: Journal of Nutrition doi: 10.3945/jn.108.103754 – year: 2012 ident: CR27 article-title: Type 2 Diabetes Genetics: Beyond GWAS publication-title: Journal of Diabetes and Metabolism – volume: 15 start-page: 539 issue: 7 year: 1998 end-page: 553 ident: CR2 article-title: Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation publication-title: Diabetic Medicine doi: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S – volume: 295 start-page: 417 issue: 8 year: 1976 end-page: 420 ident: CR15 article-title: Correlation of glucose regulation and hemoglobin AIc in diabetes mellitus publication-title: New England Journal of Medicine doi: 10.1056/NEJM197608192950804 – volume: 41 start-page: 25 issue: 1 year: 2009 end-page: 34 ident: CR36 article-title: Six new loci associated with body mass index highlight a neuronal influence on body weight regulation publication-title: Nature Genetics doi: 10.1038/ng.287 – volume: 26 start-page: 1212 issue: 12 year: 2009 end-page: 1219 ident: CR26 article-title: Incidence of Type 2 diabetes in the elderly German population and the effect of clinical and lifestyle risk factors: KORA S4/F4 cohort study publication-title: Diabetic Medicine doi: 10.1111/j.1464-5491.2009.02863.x – volume: 48 start-page: 1600 issue: 8 year: 1999 end-page: 1606 ident: CR25 article-title: Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents publication-title: Diabetes doi: 10.2337/diabetes.48.8.1600 – volume: 42 start-page: 137 issue: 2 year: 2010 end-page: 141 ident: CR14 article-title: A genome-wide perspective of genetic variation in human metabolism publication-title: Nature Genetics doi: 10.1038/ng.507 – volume: 5 start-page: e13953 issue: 11 year: 2010 ident: CR32 article-title: Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting publication-title: PLoS One doi: 10.1371/journal.pone.0013953 – volume: 90 start-page: 52 issue: 1 year: 2011 end-page: 66 ident: CR11 article-title: Biomarkers for the prediction of type 2 diabetes and cardiovascular disease publication-title: Clinical Pharmacology and Therapeutics doi: 10.1038/clpt.2011.93 – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: CR17 article-title: Classification and regression by randomForest publication-title: R News – volume: 41 start-page: 527 issue: 5 year: 2009 end-page: 534 ident: CR7 article-title: A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits publication-title: Nature Genetics doi: 10.1038/ng.357 – volume: 134 start-page: 714 issue: 5 year: 2008 end-page: 717 ident: CR13 article-title: Metabolic phenotyping in health and disease publication-title: Cell doi: 10.1016/j.cell.2008.08.026 – volume: 62 start-page: 639 issue: 2 year: 2013 end-page: 648 ident: CR9 article-title: Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach publication-title: Diabetes doi: 10.2337/db12-0495 – volume: 82 start-page: 506 issue: 7 year: 2004 end-page: 514 ident: CR35 article-title: Amino acid metabolism in the Zucker diabetic fatty rat: effects of insulin resistance and of type 2 diabetes publication-title: Canadian Journal of Physiology and Pharmacology doi: 10.1139/y04-067 – volume: 20 start-page: 2420 issue: 12 year: 2012 end-page: 2425 ident: CR5 article-title: Nutritional state affects the expression of the obesity-associated genes Etv5, Faim2, Fto, and Negr1 publication-title: Obesity (Silver Spring) doi: 10.1038/oby.2012.128 – volume: 62 start-page: 2689 issue: 8 year: 2013 end-page: 2698 ident: CR12 article-title: Metabolite profiles during oral glucose challenge publication-title: Diabetes doi: 10.2337/db12-0754 – volume: 7 start-page: 45 issue: 1 year: 2008 end-page: 56 ident: CR16 article-title: Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance publication-title: Cell Metabolism doi: 10.1016/j.cmet.2007.10.013 – volume: 18 start-page: 1695 issue: 9 year: 2010 end-page: 1700 ident: CR20 article-title: Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity publication-title: Obesity (Silver Spring) doi: 10.1038/oby.2009.510 – volume: 9 start-page: 193 issue: 3 year: 2008 end-page: 205 ident: CR21 article-title: Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes publication-title: Nature Reviews Molecular Cell Biology doi: 10.1038/nrm2327 – volume: 58 start-page: 2429 issue: 11 year: 2009 end-page: 2443 ident: CR4 article-title: Metabolomics applied to diabetes research: Moving from information to knowledge publication-title: Diabetes doi: 10.2337/db09-0580 – volume: 276 start-page: 9149 issue: 12 year: 2001 end-page: 9157 ident: CR24 article-title: Arachidonic acid stimulates glucose uptake in 3T3-L1 adipocytes by increasing GLUT1 and GLUT4 levels at the plasma membrane. Evidence for involvement of lipoxygenase metabolites and peroxisome proliferator-activated receptor gamma publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M009817200 – volume: 365 start-page: 1333 issue: 9467 year: 2005 end-page: 1346 ident: CR31 article-title: Type 2 diabetes: Principles of pathogenesis and therapy publication-title: Lancet doi: 10.1016/S0140-6736(05)61032-X – volume: 37 start-page: S14 issue: Suppl 1 year: 2014 end-page: S80 ident: CR3 article-title: Standards of medical care in diabetes–2014 publication-title: Diabetes Care doi: 10.2337/dc14-S014 – volume: 2 start-page: 52 year: 2006 ident: CR23 article-title: Global systems biology, personalized medicine and molecular epidemiology publication-title: Molecular System Biology doi: 10.1038/msb4100095 – volume: 305 start-page: E282 issue: 2 year: 2013 end-page: E292 ident: CR8 article-title: Genetic ablation of myelin protein zero-like 3 in mice increases energy expenditure, improves glycemic control, and reduces hepatic lipid synthesis publication-title: American Journal of Physiology Endocrinology and Metabolism doi: 10.1152/ajpendo.00228.2013 – volume: 14 start-page: 21 year: 2013 ident: CR19 article-title: Analysis of the contribution of FTO, NPC1, ENPP1, NEGR1, GNPDA2 and MC4R genes to obesity in Mexican children publication-title: BMC Medical Genetics doi: 10.1186/1471-2350-14-21 – volume: 134 start-page: 714 issue: 5 year: 2008 ident: 1103_CR13 publication-title: Cell doi: 10.1016/j.cell.2008.08.026 – volume: 18 start-page: 1695 issue: 9 year: 2010 ident: 1103_CR20 publication-title: Obesity (Silver Spring) doi: 10.1038/oby.2009.510 – volume: 62 start-page: 2689 issue: 8 year: 2013 ident: 1103_CR12 publication-title: Diabetes doi: 10.2337/db12-0754 – volume: 8 start-page: 615 year: 2012 ident: 1103_CR34 publication-title: Molecular Systems Biology doi: 10.1038/msb.2012.43 – volume: 48 start-page: 1600 issue: 8 year: 1999 ident: 1103_CR25 publication-title: Diabetes doi: 10.2337/diabetes.48.8.1600 – volume: 365 start-page: 1333 issue: 9467 year: 2005 ident: 1103_CR31 publication-title: Lancet doi: 10.1016/S0140-6736(05)61032-X – volume: 42 start-page: 137 issue: 2 year: 2010 ident: 1103_CR14 publication-title: Nature Genetics doi: 10.1038/ng.507 – volume: 2 start-page: 52 year: 2006 ident: 1103_CR23 publication-title: Molecular System Biology doi: 10.1038/msb4100095 – volume: 2 start-page: 66 issue: 8080 year: 1978 ident: 1103_CR6 publication-title: Lancet doi: 10.1016/S0140-6736(78)91380-6 – volume: 8 start-page: e84034 issue: 12 year: 2013 ident: 1103_CR18 publication-title: PLoS One doi: 10.1371/journal.pone.0084034 – volume: 326 start-page: 744 issue: 4 year: 2005 ident: 1103_CR29 publication-title: Biochemical and Biophysical Research Communications doi: 10.1016/j.bbrc.2004.11.120 – volume: 58 start-page: 362 issue: 6 year: 2013 ident: 1103_CR10 publication-title: Journal of Human Genetics doi: 10.1038/jhg.2013.14 – volume: 62 start-page: 2141 issue: 6 year: 2013 ident: 1103_CR38 publication-title: Diabetes doi: 10.2337/db12-0876 – volume: 14 start-page: 21 year: 2013 ident: 1103_CR19 publication-title: BMC Medical Genetics doi: 10.1186/1471-2350-14-21 – volume: 62 start-page: 639 issue: 2 year: 2013 ident: 1103_CR9 publication-title: Diabetes doi: 10.2337/db12-0495 – volume: 34 start-page: 162 issue: 1 year: 2011 ident: 1103_CR28 publication-title: Diabetes Care doi: 10.2337/dc10-1006 – volume: 20 start-page: 2420 issue: 12 year: 2012 ident: 1103_CR5 publication-title: Obesity (Silver Spring) doi: 10.1038/oby.2012.128 – volume: 17 start-page: 448 issue: 4 year: 2011 ident: 1103_CR33 publication-title: Nature Medicine doi: 10.1038/nm.2307 – volume: 305 start-page: E282 issue: 2 year: 2013 ident: 1103_CR8 publication-title: American Journal of Physiology Endocrinology and Metabolism doi: 10.1152/ajpendo.00228.2013 – volume: 5 start-page: e13953 issue: 11 year: 2010 ident: 1103_CR32 publication-title: PLoS One doi: 10.1371/journal.pone.0013953 – volume: 273 start-page: 6830 issue: 12 year: 1998 ident: 1103_CR37 publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.273.12.6830 – volume: 2 start-page: 18 year: 2002 ident: 1103_CR17 publication-title: R News – volume: 9 start-page: 193 issue: 3 year: 2008 ident: 1103_CR21 publication-title: Nature Reviews Molecular Cell Biology doi: 10.1038/nrm2327 – volume: 60 start-page: 1608 issue: 5 year: 2011 ident: 1103_CR30 publication-title: Diabetes doi: 10.2337/db10-1655 – volume: 7 start-page: 45 issue: 1 year: 2008 ident: 1103_CR16 publication-title: Cell Metabolism doi: 10.1016/j.cmet.2007.10.013 – volume: 41 start-page: 527 issue: 5 year: 2009 ident: 1103_CR7 publication-title: Nature Genetics doi: 10.1038/ng.357 – volume: 90 start-page: 52 issue: 1 year: 2011 ident: 1103_CR11 publication-title: Clinical Pharmacology and Therapeutics doi: 10.1038/clpt.2011.93 – volume: 26 start-page: 1212 issue: 12 year: 2009 ident: 1103_CR26 publication-title: Diabetic Medicine doi: 10.1111/j.1464-5491.2009.02863.x – year: 2012 ident: 1103_CR27 publication-title: Journal of Diabetes and Metabolism doi: 10.4172/2155-6156.1000198 – volume: 37 start-page: S14 issue: Suppl 1 year: 2014 ident: 1103_CR3 publication-title: Diabetes Care doi: 10.2337/dc14-S014 – volume: 15 start-page: 539 issue: 7 year: 1998 ident: 1103_CR2 publication-title: Diabetic Medicine doi: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S – volume: 9 start-page: 193 issue: 3 year: 2008 ident: 1103_CR22 publication-title: Nature Reviews Molecular Cell Biology doi: 10.1038/nrm2327 – volume: 41 start-page: 25 issue: 1 year: 2009 ident: 1103_CR36 publication-title: Nature Genetics doi: 10.1038/ng.287 – volume: 82 start-page: 506 issue: 7 year: 2004 ident: 1103_CR35 publication-title: Canadian Journal of Physiology and Pharmacology doi: 10.1139/y04-067 – volume: 58 start-page: 2429 issue: 11 year: 2009 ident: 1103_CR4 publication-title: Diabetes doi: 10.2337/db09-0580 – volume: 295 start-page: 417 issue: 8 year: 1976 ident: 1103_CR15 publication-title: New England Journal of Medicine doi: 10.1056/NEJM197608192950804 – volume: 276 start-page: 9149 issue: 12 year: 2001 ident: 1103_CR24 publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M009817200 – volume: 139 start-page: 1073 issue: 6 year: 2009 ident: 1103_CR1 publication-title: Journal of Nutrition doi: 10.3945/jn.108.103754 |
SSID | ssj0044970 |
Score | 2.2557483 |
Snippet | Introduction
Type 2 diabetes (T2D) is a multifactorial disease resulting from a complex interaction between environmental and genetic risk factors.... Introduction Type 2 diabetes (T2D) is a multifactorial disease resulting from a complex interaction between environmental and genetic risk factors.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Biochemistry Biomedical and Life Sciences Biomedicine Cell Biology Developmental Biology Life Sciences Molecular Medicine Original Article |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEF5RuPRSFUJVXtUcECpUq9re9Xr3VEUoKCKihwik3Kx4H1UlcEJiDpX48cxsbEKR4GzvHvyNZ779dh6MHfscOUXwimMsy7nUMuMmC5J7E4oitz7oKVUjX_1Wwxt5OcknreC2bNMqO58YHbWbWdLIfyIPlqlGE9K_5vecpkbR7Wo7QuMD24qty9Cei8nzgUtKE4fFpXkhuEAq2d1qxtI5dN50llYcA6Dg5v-4tCabr-5HY9i5-Mw-tXwR-iuAt9mGr3dYr1_jWfnuH5xAzOCM0niPPa6qbkMrw8EswPyhiZ29gcrsKRNnsQSkqUDKK2TQKa9A6e9_4M43aBO3VKi8hL81IDmE0QxpJbxAEcaDleIP30f98eAUaMbuotllNxeD6_Mhb6crcCtS1fDMFMZXGKuC0o46X6XeSjHVMuRVklfBFjZPQqWkE0pYI6aZDZWTwRReT4Wy4gvbrGe1_8pAO-u0NC5FfKVCmJzB4JhWVprEJ87ssaT7tqVtW4_TBIzbct00meAoKd2M4Chxydnzkvmq78Z7Lx92gJXtL7gs1wazx350IL54_NZm--9vdsA-ZtFqKKPlkG02iwd_hLykqb5F43sC4gHeHg priority: 102 providerName: ProQuest |
Title | Identification of putative biomarkers for type 2 diabetes using metabolomics in the Korea Association REsource (KARE) cohort |
URI | https://link.springer.com/article/10.1007/s11306-016-1103-9 https://www.proquest.com/docview/1824180518 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFLdWuHBBMIZgK9U7TNMAWUrij8THdEtBq1ahapXKKWocGyG1adWmByT-eJ7TZGUIkHbyIbEV5We_93vP74OQr0Ygp7BGUtRlgvKIB1QFllOjbBgKbWw0cdnIvwfyesR_jcW4zuNeNdHuzZVkJam3yW4obp31KymqLEZVi-wKNN3daRwFcSN-OVdVhzhfhIwy5I_NVeZrS_yrjLYM88WlaKVregdkvyaJEG9QPSQfTPGRHMUFGsizB_gGVdhm5Q8_Io-bVFtb-95gbmGxLqty3uBy6134zXIFyE3BuVshgMbdCi7m_Q5mpsSNMHXZySu4LwAZIfTnyCXhGXQwTDZufvjej4fJObjGusvyExn1kj8_rmndUoFq5suSBipUJkMFZWWUu3JXvtGcTSJuReaJzOpQC89mkudMMq3YJNA2y7lVoYkmTGp2THaKeWFOCES5ziOuch9B5ZL7uB5qRD_TXHnGy9Up8Zp_m-q63rhrezFNt5WSHRypizFzcKQ45eLvlMWm2MZ7L7cbwNL63K1StJbwS1DQRKfksgHx2eO3Fvv8X29_IXtBtYlcVEub7JTLtTlDblJmHdIKx2GH7Mbdn92eG69u-wmO3WRwM-xUO_UJ7X_gFg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeoALKhREoZQ5AOIhi92112sfKhQgVUraCEWt1NuS9QMhtZuQbFVV4jfxG5nZBylI9Nbzrn3wfJ75PE_GnvsUOUXwiqMtS7nUMuEmCZJ7E7IstT7oKVUjH47V8Fh-PklP1tivrhaG0io7nVgrajez5CN_hzxYxhohpN_Pf3CaGkXR1W6ERgOLkb-8wCfbcnf_E8r3RZLsDY4-Dnk7VYBbEauKJyYzvkAdHZR21PEp9laKqZYhLaK0CDazaRQKJZ1QwhoxTWwonAwm83oqlBW47y22LqmitcfWPwzGXyad7pfS1OPp4jQTXCB57eKodbEemgt6vSuOJldw87clXNHbfyKytaHb22B3W4YK_QZS99iaL--zzX6Jr_OzS3gJdc5o7YzfZD-bOt_QOv5gFmB-XtW9xIEK-yn3Z7EEJMZAvl5IoPP1AiXcf4MzXyEKT6k0egnfS0A6CqMZElm4ghuYDJoYA7wa9SeD10BTfRfVA3Z8Iyf_kPXKWekfMdDOOi2NixFRUiEwnEFzHBdWmshHzmyxqDvb3LbNzmnmxmm-atNM4sgpwY3EkeOSN3-WzJtOH9f9vN0JLG8v_TJfQXSLve2EeOXz_zZ7fP1mz9jt4dHhQX6wPx49YXeSGkGUT7PNetXi3D9FVlQVOy0UgX29afT_BtKeHUQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAXVCiIQoE5AOIhq0nsOPYBoRXdVctChSoq7S1s_EBIbXbZTVVV4pfx65hxkm5BoreeE_vg-ez55s3Yc58jpwhecdRlOZdaZtxkQXJvQlHk1gc9pWrkzwdq70h-nOSTNfa7r4WhtMr-TYwPtZtZ8pHvIA-WqUYI6Z3QpUV82R29n__kNEGKIq39OI0WImN_fobm2_Ld_i7K-kWWjYZfP-zxbsIAtyJVDc9MYXyF73VQ2lH3p9RbKaZahrxK8irYwuZJqJR0QglrxDSzoXIymMLrqVBW4L432M1CIKvCu1RMLow9KU0cVJfmheACaWwfUY1le6g4yI5XHJWv4OZvnbgiuv_EZqPKG22wOx1XhUELrrtszdf32OagRjv95BxeQswejW75TfarrfgNnQsQZgHmp03sKg5U4k9ZQIslIEUG8vpCBr3XFyj1_juc-AbxeExF0kv4UQMSUxjPkNLCJQTB4bCNNsCr8eBw-Bpovu-iuc-OruXcH7D1elb7hwy0s05L41LEllQIEWdQMaeVlSbxiTNbLOnPtrRd23OavnFcrho2kzhKSnUjcZS45M3Fknnb8-Oqn7d7gZXd9V-WK7Busbe9EC99_t9mj67e7Bm7hZgvP-0fjB-z21kEECXWbLP1ZnHqnyA9aqqnEYfAvl038P8ABCcgCw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+putative+biomarkers+for+type+2+diabetes+using+metabolomics+in+the+Korea+Association+REsource+%28KARE%29+cohort&rft.jtitle=Metabolomics&rft.au=Lee%2C+Heun-Sik&rft.au=Xu%2C+Tao&rft.au=Lee%2C+Young&rft.au=Kim%2C+Nam-Hee&rft.date=2016-12-01&rft.pub=Springer+US&rft.issn=1573-3882&rft.eissn=1573-3890&rft.volume=12&rft.issue=12&rft_id=info:doi/10.1007%2Fs11306-016-1103-9&rft.externalDocID=10_1007_s11306_016_1103_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-3882&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-3882&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-3882&client=summon |