Bi-objective optimization of pylon-engine-nacelle assembly: weight vs. tip clearance criterion

A realistic application of advanced structural and multi-objective optimization for the design of a fully assembled aircraft powerplant installation is presented. As opposed to the classical design process of powerplant installation that does not consider the influence of pylon sizing over engine ef...

Full description

Saved in:
Bibliographic Details
Published inStructural and multidisciplinary optimization Vol. 48; no. 3; pp. 637 - 652
Main Authors Bettebghor, Dimitri, Blondeau, Christophe, Toal, David, Eres, Hakki
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2013
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A realistic application of advanced structural and multi-objective optimization for the design of a fully assembled aircraft powerplant installation is presented. As opposed to the classical design process of powerplant installation that does not consider the influence of pylon sizing over engine efficiency, we develop in the present a fully integrated approach where both pylon and compressor intercase are designed at once. The main objective is to consider the impact of weight over tip clearance performance criterion and see how these two objectives are antagonistic. In this work, we perform in the same design session tasks traditionally devoted to the airframe manufacturer and aero-engine manufacturer. The overall weight of the assembly is minimized with respect to Specific Fuel Consumption (SFC) criterion. One interesting aspect of the process is that SFC criterion is based on highly proprietary models and its simulation and call within an optimization process is made available through the development of a webservice. One major phenomenon to consider in both pylon and engine design is Fan Blade Off (FBO) event, i.e. the sudden release of a blade. This event causes high impact loads and must be considered carefully in the design. Such a simulation is not an easy task and several nonlinear phenomena must be addressed (e.g. rotordynamics), not to mention the integration of this nonlinear dynamic response in a static structural optimization process. This article describes how the design of the full assembly is performed taking into account both objectives. Such a problem lies in multi-objective optimization field and then we describe the method we use to solve such a problem. The simulation of an FBO post-impact rotor dynamics is also described and we end up with the final results that show the influence of pylon-engine weight sizing over SFC.
AbstractList A realistic application of advanced structural and multi-objective optimization for the design of a fully assembled aircraft powerplant installation is presented. As opposed to the classical design process of powerplant installation that does not consider the influence of pylon sizing over engine efficiency, we develop in the present a fully integrated approach where both pylon and compressor intercase are designed at once. The main objective is to consider the impact of weight over tip clearance performance criterion and see how these two objectives are antagonistic. In this work, we perform in the same design session tasks traditionally devoted to the airframe manufacturer and aero-engine manufacturer. The overall weight of the assembly is minimized with respect to Specific Fuel Consumption (SFC) criterion. One interesting aspect of the process is that SFC criterion is based on highly proprietary models and its simulation and call within an optimization process is made available through the development of a webservice. One major phenomenon to consider in both pylon and engine design is Fan Blade Off (FBO) event, i.e. the sudden release of a blade. This event causes high impact loads and must be considered carefully in the design. Such a simulation is not an easy task and several nonlinear phenomena must be addressed (e.g. rotordynamics), not to mention the integration of this nonlinear dynamic response in a static structural optimization process. This article describes how the design of the full assembly is performed taking into account both objectives. Such a problem lies in multi-objective optimization field and then we describe the method we use to solve such a problem. The simulation of an FBO post-impact rotor dynamics is also described and we end up with the final results that show the influence of pylon-engine weight sizing over SFC.
Author Eres, Hakki
Blondeau, Christophe
Toal, David
Bettebghor, Dimitri
Author_xml – sequence: 1
  givenname: Dimitri
  surname: Bettebghor
  fullname: Bettebghor, Dimitri
  email: dimitri.bettebghor@onera.fr
  organization: Structural Dynamics and Aeroelasticity Department, Onera, The French Aerospace Lab
– sequence: 2
  givenname: Christophe
  surname: Blondeau
  fullname: Blondeau, Christophe
  organization: Structural Dynamics and Aeroelasticity Department, Onera, The French Aerospace Lab
– sequence: 3
  givenname: David
  surname: Toal
  fullname: Toal, David
  organization: Computational Engineering & Design Research Group, University of Southampton
– sequence: 4
  givenname: Hakki
  surname: Eres
  fullname: Eres, Hakki
  organization: Computational Engineering & Design Research Group, University of Southampton
BookMark eNp9kE1LAzEQhoNUsK3-AG8Bz6nJfiRZb1r8AsGLgidDmp2tKdtkTdJK_fVurSgIeppheJ-Z4RmhgfMOEDpmdMIoFaeRUlZKQllOaEUlEXtoyDgrCSukHHz34ukAjWJcUEolLaoher6wxM8WYJJdA_Zdskv7rpP1DvsGd5vWOwJubh0Qpw20LWAdIyxn7eYMv4GdvyS8jhOcbIdNCzpoZwCbYBOEfskh2m90G-Hoq47R49Xlw_SG3N1f307P74jJGU8kk9UMOEBmRM21FLXIm6wwomoAODWGznTB6lL2s4JWRla8ED3T1II3upIyH6OT3d4u-NcVxKQWfhVcf1JlGc9KWVQ871NslzLBxxigUV2wSx02ilG11ah2GlWvUW01KtEz4hdjbPoUlIK27b9ktiNjf8XNIfz89Df0AWTJiao
CitedBy_id crossref_primary_10_1080_15376494_2023_2278171
crossref_primary_10_2514_1_B35128
crossref_primary_10_2514_1_C036275
crossref_primary_10_1007_s00158_014_1209_5
crossref_primary_10_1016_j_ast_2019_105516
crossref_primary_10_2514_1_J058117
crossref_primary_10_1007_s00158_019_02242_6
crossref_primary_10_1007_s00158_019_02452_y
crossref_primary_10_1016_j_ast_2021_106910
crossref_primary_10_1016_j_matpr_2023_05_310
Cites_doi 10.1007/978-0-387-21606-5_1
10.1007/s00158-003-0368-6
10.1115/1.2912781
10.1016/j.cma.2009.10.014
10.2514/6.2002-3790
10.1007/s00158-010-0530-x
10.1007/s00158-010-0554-2
10.1093/biomet/87.1.1
10.1016/0022-2496(77)90033-5
10.1016/0045-7825(90)90109-Y
10.1016/0045-7825(84)90005-7
10.1080/0305215X.2010.508524
10.1007/s00158-005-0575-4
10.1061/(ASCE)0893-1321(2009)22:3(260)
10.1002/9780470903704
10.1016/j.paerosci.2008.11.001
10.1007/BF01894079
10.2514/1.36762
10.1002/(SICI)1097-0207(20000530)48:3<351::AID-NME878>3.0.CO;2-P
10.1007/BF01637334
10.2514/6.2008-2333
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2013
Structural and Multidisciplinary Optimization is a copyright of Springer, (2013). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2013
– notice: Structural and Multidisciplinary Optimization is a copyright of Springer, (2013). All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00158-013-0908-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (ProQuest)
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1615-1488
EndPage 652
ExternalDocumentID 10_1007_s00158_013_0908_7
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
2.D
203
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
_50
~02
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c316t-289be6ee2c7d6a87d73f24c79fee60cc0ba41d5824c409c89647289fd76fa9883
IEDL.DBID BENPR
ISSN 1615-147X
IngestDate Fri Jul 25 11:02:17 EDT 2025
Tue Jul 01 01:31:35 EDT 2025
Thu Apr 24 22:50:18 EDT 2025
Fri Feb 21 02:32:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Equivalent static load case
Rotordynamics
Bi-objective optimization
Aircraft component design
Fan Blade Off simulation
Thermo-mechanical model
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-289be6ee2c7d6a87d73f24c79fee60cc0ba41d5824c409c89647289fd76fa9883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2262584963
PQPubID 2043658
PageCount 16
ParticipantIDs proquest_journals_2262584963
crossref_primary_10_1007_s00158_013_0908_7
crossref_citationtrail_10_1007_s00158_013_0908_7
springer_journals_10_1007_s00158_013_0908_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130900
2013-9-00
20130901
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 9
  year: 2013
  text: 20130900
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Structural and multidisciplinary optimization
PublicationTitleAbbrev Struct Multidisc Optim
PublicationYear 2013
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References HeidariMCarlsonDLSinhaSSadeghiRHeydariCBayoumiHSonJAn efficient multi-disciplinary simulation of engine fan-blade out event using MD NASTRAN2008New YorkAmerican Institute of Aeronautics and Astronautics
SinhaSKDorbalaSDynamic loads in the fan containment structure of a turbofan engineJ Aerosp Eng20092226010.1061/(ASCE)0893-1321(2009)22:3(260)
ChoSChoiKKDesign sensitivity analysis and optimization of non-linear transient dynamics. Part 1: sizing designInt J Numer Methods Eng2000483351373179234010.1002/(SICI)1097-0207(20000530)48:3<351::AID-NME878>3.0.CO;2-P0991.74052
KimYIParkGJNonlinear dynamic response structural optimization using equivalent static loadsComput Methods Appl Mech Eng20101999–1266067610.1016/j.cma.2009.10.0141227.74045
Lawrence C, Carney K, Gallardo V (2003) A study of fan stage/casing interaction models. National Aeronautics and Space Administration, Glenn Research Center
Grihon S (2005) Pylon design optimisation. In: Forum 1, VIVACE project
KangBSParkGJAroraJSA review of optimization of structures subjected to transient loadsStruct Multidisc Optim20063128195219954410.1007/s00158-005-0575-41245.74057
CardosoJBAroraJSDesign sensitivity analysis of nonlinear dynamic response of structural and mechanical systemsStruct Multidisc Optim199241374610.1007/BF01894079
Husband JB (2007) Developing an efficient FEM structural simulation of a fan blade off test in a turbofan jet engine. PhD thesis, University of Saskatchewan
MarlerRTAroraJSSurvey of multi-objective optimization methods for engineeringStruct Multidisc Optim2004266369395205737710.1007/s00158-003-0368-61243.90199
BettebghorDBartoliNGrihonSMorlierJSamuelidesMSurrogate modeling approximation using a mixture of experts based on em joint estimationStruct Multidisc Optim201143224325910.1007/s00158-010-0554-2
HaftkaRTAdelmanHMRecent developments in structural sensitivity analysisStruct Multidisc Optim19891313715110.1007/BF01637334
KennedyMCO’HaganAPredicting the output from a complex computer code when fast approximations are availableBiometrika2000871113176682410.1093/biomet/87.1.10974.62024
Michels G, Genberg V, Doyle K (2004) Using the DRESP3 to improve multidisciplinary optimization. In: MSC software, pp 2004–2030
ToalDJJBressloffNWKeaneAJHoldenCMEThe development of a hybridized particle swarm for kriging hyperparameter tuningEng Optim201143667569910.1080/0305215X.2010.508524
Anonymous (2012) Demonstration problems manual: MSC Nastran 2012. MacNeal-Schwendler Corporation
Carney KS, Lawrence C, Carney DV (2002) Aircraft engine blade-out dynamics. In: Seventh international LS-DYNA users conference. Livermore Software Technology Corporation, Livermore, pp 14–17
ChoiKKKimNHStructural sensitivity analysis and optimization: nonlinear systems and applications, vol 22005New YorkSpringer
MiettinenKNonlinear multiobjective optimization1999New YorkSpringer0949.90082
VanceJMRotordynamics of turbomachinery1988New YorkWiley-Interscience
HsiehCCAroraJSDesign sensitivity analysis and optimization of dynamic responseComput Methods Appl Mech Eng198443219521910.1016/0045-7825(84)90005-70527.73092
Heidari MA, Carlson DL, Yantis T (2002) Rotor-dynamics analysis process. In: MSC Worldwide aerospace conference and technology showcase, 8–10 April 2002, pp 1–16
NiuMCYAirframe structural design: practical design information and data on aircraft structuresRecherche19996702
Jain R (2010) Prediction of transient loads and perforation of engine casing during blade-off event of fan rotor assembly. In: Proceedings of the IMPLAST 2010 conference, Providence, Rhode Island, USA, 12–14 October 2010
KimYIParkGJKolonayRMBlairMCanfieldRANonlinear dynamic response structural optimization of a joined-wing using equivalent static loadsJ Aircr200946382183110.2514/1.36762
ParkGJTechnical overview of the equivalent static loads method for non-linear static response structural optimizationStruct Multidisc Optim201143331933710.1007/s00158-010-0530-x
RaoSSFreiheitTIA modified game theory approach to multiobjective optimizationJ Mech Des199111328610.1115/1.2912781
ForresterAIJKeaneAJRecent advances in surrogate-based optimizationProg Aerosp Sci2009451507910.1016/j.paerosci.2008.11.001
Lawrence C, Carney KS, Gallardo V, NASA Glenn Research Center (2001) Simulation of aircraft engine blade-out structural dynamics. National Aeronautics and Space Administration, Glenn Research Center
SaatyTLA scaling method for priorities in hierarchical structuresJ Math Psychol197715323428168261910.1016/0022-2496(77)90033-50372.62084
Lattime SB, Steinetz BM, NASA Glenn Research Center (2002) Turbine engine clearance control systems: current practices and future directions. National Aeronautics and Space Administration, Glenn Research Center
Vance JM, Murphy B, Zeidan F (2010) Machinery vibration and rotordynamics. Wiley Online Library
TsayJJAroraJSNonlinear structural design sensitivity analysis for path dependent problems. Part 1: general theoryComput Methods Appl Mech Eng1990812183208106921410.1016/0045-7825(90)90109-Y0724.73158
Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning, vol 1. Springer Series of Statistics
908_CR9
GJ Park (908_CR27) 2011; 43
K Miettinen (908_CR25) 1999
908_CR8
TL Saaty (908_CR29) 1977; 15
908_CR1
908_CR4
JJ Tsay (908_CR32) 1990; 81
JB Cardoso (908_CR3) 1992; 4
RT Marler (908_CR23) 2004; 26
JM Vance (908_CR33) 1988
RT Haftka (908_CR10) 1989; 1
AIJ Forrester (908_CR7) 2009; 45
BS Kang (908_CR16) 2006; 31
M Heidari (908_CR11) 2008
908_CR24
908_CR22
908_CR21
908_CR20
SK Sinha (908_CR30) 2009; 22
S Cho (908_CR5) 2000; 48
MC Kennedy (908_CR17) 2000; 87
YI Kim (908_CR18) 2010; 199
D Bettebghor (908_CR2) 2011; 43
908_CR15
908_CR14
SS Rao (908_CR28) 1991; 113
KK Choi (908_CR6) 2005
DJJ Toal (908_CR31) 2011; 43
908_CR12
908_CR34
YI Kim (908_CR19) 2009; 46
CC Hsieh (908_CR13) 1984; 43
MCY Niu (908_CR26) 1999; 67
References_xml – reference: KimYIParkGJNonlinear dynamic response structural optimization using equivalent static loadsComput Methods Appl Mech Eng20101999–1266067610.1016/j.cma.2009.10.0141227.74045
– reference: Lattime SB, Steinetz BM, NASA Glenn Research Center (2002) Turbine engine clearance control systems: current practices and future directions. National Aeronautics and Space Administration, Glenn Research Center
– reference: ForresterAIJKeaneAJRecent advances in surrogate-based optimizationProg Aerosp Sci2009451507910.1016/j.paerosci.2008.11.001
– reference: SaatyTLA scaling method for priorities in hierarchical structuresJ Math Psychol197715323428168261910.1016/0022-2496(77)90033-50372.62084
– reference: Anonymous (2012) Demonstration problems manual: MSC Nastran 2012. MacNeal-Schwendler Corporation
– reference: MarlerRTAroraJSSurvey of multi-objective optimization methods for engineeringStruct Multidisc Optim2004266369395205737710.1007/s00158-003-0368-61243.90199
– reference: ChoSChoiKKDesign sensitivity analysis and optimization of non-linear transient dynamics. Part 1: sizing designInt J Numer Methods Eng2000483351373179234010.1002/(SICI)1097-0207(20000530)48:3<351::AID-NME878>3.0.CO;2-P0991.74052
– reference: Husband JB (2007) Developing an efficient FEM structural simulation of a fan blade off test in a turbofan jet engine. PhD thesis, University of Saskatchewan
– reference: Lawrence C, Carney K, Gallardo V (2003) A study of fan stage/casing interaction models. National Aeronautics and Space Administration, Glenn Research Center
– reference: TsayJJAroraJSNonlinear structural design sensitivity analysis for path dependent problems. Part 1: general theoryComput Methods Appl Mech Eng1990812183208106921410.1016/0045-7825(90)90109-Y0724.73158
– reference: HaftkaRTAdelmanHMRecent developments in structural sensitivity analysisStruct Multidisc Optim19891313715110.1007/BF01637334
– reference: Jain R (2010) Prediction of transient loads and perforation of engine casing during blade-off event of fan rotor assembly. In: Proceedings of the IMPLAST 2010 conference, Providence, Rhode Island, USA, 12–14 October 2010
– reference: ToalDJJBressloffNWKeaneAJHoldenCMEThe development of a hybridized particle swarm for kriging hyperparameter tuningEng Optim201143667569910.1080/0305215X.2010.508524
– reference: HsiehCCAroraJSDesign sensitivity analysis and optimization of dynamic responseComput Methods Appl Mech Eng198443219521910.1016/0045-7825(84)90005-70527.73092
– reference: Michels G, Genberg V, Doyle K (2004) Using the DRESP3 to improve multidisciplinary optimization. In: MSC software, pp 2004–2030
– reference: KimYIParkGJKolonayRMBlairMCanfieldRANonlinear dynamic response structural optimization of a joined-wing using equivalent static loadsJ Aircr200946382183110.2514/1.36762
– reference: ChoiKKKimNHStructural sensitivity analysis and optimization: nonlinear systems and applications, vol 22005New YorkSpringer
– reference: KennedyMCO’HaganAPredicting the output from a complex computer code when fast approximations are availableBiometrika2000871113176682410.1093/biomet/87.1.10974.62024
– reference: RaoSSFreiheitTIA modified game theory approach to multiobjective optimizationJ Mech Des199111328610.1115/1.2912781
– reference: Grihon S (2005) Pylon design optimisation. In: Forum 1, VIVACE project
– reference: MiettinenKNonlinear multiobjective optimization1999New YorkSpringer0949.90082
– reference: SinhaSKDorbalaSDynamic loads in the fan containment structure of a turbofan engineJ Aerosp Eng20092226010.1061/(ASCE)0893-1321(2009)22:3(260)
– reference: HeidariMCarlsonDLSinhaSSadeghiRHeydariCBayoumiHSonJAn efficient multi-disciplinary simulation of engine fan-blade out event using MD NASTRAN2008New YorkAmerican Institute of Aeronautics and Astronautics
– reference: VanceJMRotordynamics of turbomachinery1988New YorkWiley-Interscience
– reference: BettebghorDBartoliNGrihonSMorlierJSamuelidesMSurrogate modeling approximation using a mixture of experts based on em joint estimationStruct Multidisc Optim201143224325910.1007/s00158-010-0554-2
– reference: KangBSParkGJAroraJSA review of optimization of structures subjected to transient loadsStruct Multidisc Optim20063128195219954410.1007/s00158-005-0575-41245.74057
– reference: Carney KS, Lawrence C, Carney DV (2002) Aircraft engine blade-out dynamics. In: Seventh international LS-DYNA users conference. Livermore Software Technology Corporation, Livermore, pp 14–17
– reference: NiuMCYAirframe structural design: practical design information and data on aircraft structuresRecherche19996702
– reference: ParkGJTechnical overview of the equivalent static loads method for non-linear static response structural optimizationStruct Multidisc Optim201143331933710.1007/s00158-010-0530-x
– reference: CardosoJBAroraJSDesign sensitivity analysis of nonlinear dynamic response of structural and mechanical systemsStruct Multidisc Optim199241374610.1007/BF01894079
– reference: Vance JM, Murphy B, Zeidan F (2010) Machinery vibration and rotordynamics. Wiley Online Library
– reference: Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning, vol 1. Springer Series of Statistics
– reference: Lawrence C, Carney KS, Gallardo V, NASA Glenn Research Center (2001) Simulation of aircraft engine blade-out structural dynamics. National Aeronautics and Space Administration, Glenn Research Center
– reference: Heidari MA, Carlson DL, Yantis T (2002) Rotor-dynamics analysis process. In: MSC Worldwide aerospace conference and technology showcase, 8–10 April 2002, pp 1–16
– ident: 908_CR8
  doi: 10.1007/978-0-387-21606-5_1
– ident: 908_CR15
– volume: 26
  start-page: 369
  issue: 6
  year: 2004
  ident: 908_CR23
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-003-0368-6
– ident: 908_CR21
– volume: 113
  start-page: 286
  year: 1991
  ident: 908_CR28
  publication-title: J Mech Des
  doi: 10.1115/1.2912781
– volume: 199
  start-page: 660
  issue: 9–12
  year: 2010
  ident: 908_CR18
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2009.10.014
– ident: 908_CR20
  doi: 10.2514/6.2002-3790
– volume: 43
  start-page: 319
  issue: 3
  year: 2011
  ident: 908_CR27
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-010-0530-x
– volume: 43
  start-page: 243
  issue: 2
  year: 2011
  ident: 908_CR2
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-010-0554-2
– ident: 908_CR24
– volume: 87
  start-page: 1
  issue: 1
  year: 2000
  ident: 908_CR17
  publication-title: Biometrika
  doi: 10.1093/biomet/87.1.1
– ident: 908_CR4
– ident: 908_CR14
– volume: 67
  start-page: 02
  year: 1999
  ident: 908_CR26
  publication-title: Recherche
– ident: 908_CR12
– ident: 908_CR1
– volume: 15
  start-page: 234
  issue: 3
  year: 1977
  ident: 908_CR29
  publication-title: J Math Psychol
  doi: 10.1016/0022-2496(77)90033-5
– volume: 81
  start-page: 183
  issue: 2
  year: 1990
  ident: 908_CR32
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(90)90109-Y
– volume: 43
  start-page: 195
  issue: 2
  year: 1984
  ident: 908_CR13
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(84)90005-7
– volume: 43
  start-page: 675
  issue: 6
  year: 2011
  ident: 908_CR31
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2010.508524
– ident: 908_CR22
– volume: 31
  start-page: 81
  issue: 2
  year: 2006
  ident: 908_CR16
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-005-0575-4
– volume-title: Nonlinear multiobjective optimization
  year: 1999
  ident: 908_CR25
– volume: 22
  start-page: 260
  year: 2009
  ident: 908_CR30
  publication-title: J Aerosp Eng
  doi: 10.1061/(ASCE)0893-1321(2009)22:3(260)
– ident: 908_CR9
– ident: 908_CR34
  doi: 10.1002/9780470903704
– volume: 45
  start-page: 50
  issue: 1
  year: 2009
  ident: 908_CR7
  publication-title: Prog Aerosp Sci
  doi: 10.1016/j.paerosci.2008.11.001
– volume: 4
  start-page: 37
  issue: 1
  year: 1992
  ident: 908_CR3
  publication-title: Struct Multidisc Optim
  doi: 10.1007/BF01894079
– volume: 46
  start-page: 821
  issue: 3
  year: 2009
  ident: 908_CR19
  publication-title: J Aircr
  doi: 10.2514/1.36762
– volume-title: Rotordynamics of turbomachinery
  year: 1988
  ident: 908_CR33
– volume: 48
  start-page: 351
  issue: 3
  year: 2000
  ident: 908_CR5
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/(SICI)1097-0207(20000530)48:3<351::AID-NME878>3.0.CO;2-P
– volume: 1
  start-page: 137
  issue: 3
  year: 1989
  ident: 908_CR10
  publication-title: Struct Multidisc Optim
  doi: 10.1007/BF01637334
– volume-title: Structural sensitivity analysis and optimization: nonlinear systems and applications, vol 2
  year: 2005
  ident: 908_CR6
– volume-title: An efficient multi-disciplinary simulation of engine fan-blade out event using MD NASTRAN
  year: 2008
  ident: 908_CR11
  doi: 10.2514/6.2008-2333
SSID ssj0008049
Score 2.1371922
Snippet A realistic application of advanced structural and multi-objective optimization for the design of a fully assembled aircraft powerplant installation is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 637
SubjectTerms Aircraft power supplies
Airframes
Assembly
Computational Mathematics and Numerical Analysis
Computer simulation
Criteria
Design optimization
Dynamic response
Engine design
Engineering
Engineering Design
Impact loads
Industrial Application
Multiple objective analysis
Nacelles
Nonlinear dynamics
Nonlinear phenomena
Nonlinear response
Rotor dynamics
Simulation
Sizing
Theoretical and Applied Mechanics
Tip clearance
Weight
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L3oQP3E6JQdPSqRNuyT1NsUxBD052MmSpAlMtna4qvjf-5K2m4oKXtskh_deXn7vG6FTpWQobJaQLKIJiU1gXZCQkkQywa2SWeJnHd7ds8Ewvh11R3Ud97zJdm9Ckl5TL4rd3PPuEq8i51sQhK-itS6Y7i6Pa0h7C_UrKszrkAwJYz5qQpk_HfH1MVoizG9BUf_W9LfQZg0Sca_i6jZaMfkO2vjUOnAXPV6NSaGeKnWFC7j407qiEhcWz8AMz4nxG0guvXceA0w2UzV5v8Rv3h-KX-cXuBzPsHajIxz3MagQ17u5yPfQsH_zcD0g9awEoqOQlQTsJmWYMVTzjEnBMx5ZGmueWGNYoHWgZBxmXQHfwKLTwhWgwh6bcWZlIkS0j1p5kZsDhEMZUlhEZSRMHFuurA0jaVUMysEyw9ooaIiW6rqRuJtnMUkXLZA9nVOgc-ronPI2OltsmVVdNP5a3Gk4kdYXap4CSqSAlUBdtNF5w53l718PO_zX6iO0TivpACHpoFb5_GKOAXSU6sQL2Qcg-s41
  priority: 102
  providerName: Springer Nature
Title Bi-objective optimization of pylon-engine-nacelle assembly: weight vs. tip clearance criterion
URI https://link.springer.com/article/10.1007/s00158-013-0908-7
https://www.proquest.com/docview/2262584963
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RT9swED5B-zIeJgab6GCVH_Y0ZEic1Hb2MrVTSwUamiYqlZdFtmNLTJB0tDDx73dOnHabNF4d2w93l8_f3dl3AO-1VrF0RUaLhGU0tZHzSUJGM8WlcFoVWd3r8Msln87S8_lgHgJuy3CtssXEGqiLyvgY-SnSBIaHJdrLp8VP6rtG-exqaKGxDV2EYCk70B2NL79-W2OxbAiwpzU0TsW8zWtGdRnReOAvciU-ViGp-Ptk2tDNfzKk9cEz2YWXgTGSYaPiV7Blyz3Y-aOO4D58H93QSv9osItUiAJ34XklqRxZoE9eUlsvoKWqQ_UEObO907dPH8mvOjhKHpcnZHWzIMb3kfCmQBBPfCHnqnwNs8n46vOUhsYJ1CQxX1F0orTl1jIjCq6kKETiWGpE5qzlkTGRVmlcDCSOoXtnpH-NimtcIbhTmZTJG-iUVWkPgMQqZjiJqUTaNHVCOxcnyukUkcJxy3sQtULLTagq7ptb3Obresi1nHOUc-7lnIsefFgvWTQlNZ6bfNRqIg9_1zLf2EIPjlvtbD7_d7O3z292CC9YYw5oFUfQWd0_2HdIOVa6D9tyctaH7vDs-mLcD1aGozM2_A28wNaF
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V9gAcEOVDLJTWB7iADInjtR0kVLWFZUs_Tq20J1LbsaWibbLtLlT7p_iNjJ1kF5Dordck9mH88ubZ45kBeGWMTpUvc1pmLKfcJT4ECRnNtVDSG13msdfh0bEYnvKvo_5oBX51uTDhWmXHiZGoy9qGM_L3KBMYOkvEy_bkkoauUSG62rXQaGBx4ObXuGWbftz_hOv7mrHB55O9IW27ClCbpWJGcYdhnHCOWVkKrWQpM8-4lbl3TiTWJkbztOwrfIZ7H6tCqiaO8aUUXudKZTjvHVjjGXrykJk--LJgftXI7SCiaMrlqIuiJrFoadoP18aycDKiqPzbDy7F7T_x2OjmBg_hQatPyU4DqHVYcdUjuP9H1cLH8G33nNbme8OUpEbOuWiTOUntyWQ-rivq4gBa6RgYIKjQ3YUZzz-Q63gUS35O35HZ-YTY0LUiAI8ge4Wy0XX1BE5vxaBPYbWqK_cMSKpThh8xnSnHuZfG-zTT3nDkJS-c6EHSGa2wbQ3z0EpjXCyqL0c7F2jnIti5kD14sxgyaQp43PTxRrcSRfsvT4sl8nrwtlud5ev_Tvb85sm24O7w5OiwONw_PngB91gDDUTIBqzOrn64lyh2ZmYzIozA2W1D-jeplw7X
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VICF6qFoeIiW0PsAFZJL1Ora3Eoc-iBICFQci5cRi79pSUbobkW2j_Kr-xY73kbYIkDj0uh5bq_F45rPnBfDaGB0ol0Y0DVlEue057yRkNNJCSWd0GpW9Dr-ciuGEf5r2pxtw1eTClNHujUuyymnwVZqyojtPXXed-OZNvQ_CCv07g6Kyjqoc29US72yLD6MT3OA3jA0-fjse0rqtAE3CQBQUrxjGCmtZIlOhlUxl6BhPZOSsFb0k6RnNg7Sv8BtefhLlczVxjkulcDpSKsR1H8BD7pOP8QBN2OFa9asKb3sURQMup40b9U-_fNcQ3qDb3xyypZ0bbMNWDVDJYSVRO7Bhsyeweats4VP4fnRGc_OzUpUkR6VzXmdzktyR-WqWZ9SWE2imS88AQYhuz81sdUCW5VssuVy8J8XZnCS-bYWXPILqy9eNzrNnMLkXhj6HVpZn9gWQQAcMiZgOleXcSeNcEGpnOComJ6xoQ69hWpzURcx9L41ZvC6_XPI5Rj7Hns-xbMPb9ZR5VcHjX8SdZifi-jAvYkSoDHEaqqo2vGt252b4r4vt_hf1Pjz6ejKIP49Oxy_hMasEBeWlA63i14V9hdinMHulvBH4cd8Cfg1jYw-i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bi-objective+optimization+of+pylon-engine-nacelle+assembly%3A+weight+vs.+tip+clearance+criterion&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Bettebghor%2C+Dimitri&rft.au=Blondeau%2C+Christophe&rft.au=Toal%2C+David&rft.au=Eres%2C+Hakki&rft.date=2013-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=48&rft.issue=3&rft.spage=637&rft.epage=652&rft_id=info:doi/10.1007%2Fs00158-013-0908-7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon