Bi-objective optimization of pylon-engine-nacelle assembly: weight vs. tip clearance criterion
A realistic application of advanced structural and multi-objective optimization for the design of a fully assembled aircraft powerplant installation is presented. As opposed to the classical design process of powerplant installation that does not consider the influence of pylon sizing over engine ef...
Saved in:
Published in | Structural and multidisciplinary optimization Vol. 48; no. 3; pp. 637 - 652 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2013
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A realistic application of advanced structural and multi-objective optimization for the design of a fully assembled aircraft powerplant installation is presented. As opposed to the classical design process of powerplant installation that does not consider the influence of pylon sizing over engine efficiency, we develop in the present a fully integrated approach where both pylon and compressor intercase are designed at once. The main objective is to consider the impact of weight over tip clearance performance criterion and see how these two objectives are antagonistic. In this work, we perform in the same design session tasks traditionally devoted to the airframe manufacturer and aero-engine manufacturer. The overall weight of the assembly is minimized with respect to Specific Fuel Consumption (SFC) criterion. One interesting aspect of the process is that SFC criterion is based on highly proprietary models and its simulation and call within an optimization process is made available through the development of a webservice. One major phenomenon to consider in both pylon and engine design is Fan Blade Off (FBO) event, i.e. the sudden release of a blade. This event causes high impact loads and must be considered carefully in the design. Such a simulation is not an easy task and several nonlinear phenomena must be addressed (e.g. rotordynamics), not to mention the integration of this nonlinear dynamic response in a static structural optimization process. This article describes how the design of the full assembly is performed taking into account both objectives. Such a problem lies in multi-objective optimization field and then we describe the method we use to solve such a problem. The simulation of an FBO post-impact rotor dynamics is also described and we end up with the final results that show the influence of pylon-engine weight sizing over SFC. |
---|---|
AbstractList | A realistic application of advanced structural and multi-objective optimization for the design of a fully assembled aircraft powerplant installation is presented. As opposed to the classical design process of powerplant installation that does not consider the influence of pylon sizing over engine efficiency, we develop in the present a fully integrated approach where both pylon and compressor intercase are designed at once. The main objective is to consider the impact of weight over tip clearance performance criterion and see how these two objectives are antagonistic. In this work, we perform in the same design session tasks traditionally devoted to the airframe manufacturer and aero-engine manufacturer. The overall weight of the assembly is minimized with respect to Specific Fuel Consumption (SFC) criterion. One interesting aspect of the process is that SFC criterion is based on highly proprietary models and its simulation and call within an optimization process is made available through the development of a webservice. One major phenomenon to consider in both pylon and engine design is Fan Blade Off (FBO) event, i.e. the sudden release of a blade. This event causes high impact loads and must be considered carefully in the design. Such a simulation is not an easy task and several nonlinear phenomena must be addressed (e.g. rotordynamics), not to mention the integration of this nonlinear dynamic response in a static structural optimization process. This article describes how the design of the full assembly is performed taking into account both objectives. Such a problem lies in multi-objective optimization field and then we describe the method we use to solve such a problem. The simulation of an FBO post-impact rotor dynamics is also described and we end up with the final results that show the influence of pylon-engine weight sizing over SFC. |
Author | Eres, Hakki Blondeau, Christophe Toal, David Bettebghor, Dimitri |
Author_xml | – sequence: 1 givenname: Dimitri surname: Bettebghor fullname: Bettebghor, Dimitri email: dimitri.bettebghor@onera.fr organization: Structural Dynamics and Aeroelasticity Department, Onera, The French Aerospace Lab – sequence: 2 givenname: Christophe surname: Blondeau fullname: Blondeau, Christophe organization: Structural Dynamics and Aeroelasticity Department, Onera, The French Aerospace Lab – sequence: 3 givenname: David surname: Toal fullname: Toal, David organization: Computational Engineering & Design Research Group, University of Southampton – sequence: 4 givenname: Hakki surname: Eres fullname: Eres, Hakki organization: Computational Engineering & Design Research Group, University of Southampton |
BookMark | eNp9kE1LAzEQhoNUsK3-AG8Bz6nJfiRZb1r8AsGLgidDmp2tKdtkTdJK_fVurSgIeppheJ-Z4RmhgfMOEDpmdMIoFaeRUlZKQllOaEUlEXtoyDgrCSukHHz34ukAjWJcUEolLaoher6wxM8WYJJdA_Zdskv7rpP1DvsGd5vWOwJubh0Qpw20LWAdIyxn7eYMv4GdvyS8jhOcbIdNCzpoZwCbYBOEfskh2m90G-Hoq47R49Xlw_SG3N1f307P74jJGU8kk9UMOEBmRM21FLXIm6wwomoAODWGznTB6lL2s4JWRla8ED3T1II3upIyH6OT3d4u-NcVxKQWfhVcf1JlGc9KWVQ871NslzLBxxigUV2wSx02ilG11ah2GlWvUW01KtEz4hdjbPoUlIK27b9ktiNjf8XNIfz89Df0AWTJiao |
CitedBy_id | crossref_primary_10_1080_15376494_2023_2278171 crossref_primary_10_2514_1_B35128 crossref_primary_10_2514_1_C036275 crossref_primary_10_1007_s00158_014_1209_5 crossref_primary_10_1016_j_ast_2019_105516 crossref_primary_10_2514_1_J058117 crossref_primary_10_1007_s00158_019_02242_6 crossref_primary_10_1007_s00158_019_02452_y crossref_primary_10_1016_j_ast_2021_106910 crossref_primary_10_1016_j_matpr_2023_05_310 |
Cites_doi | 10.1007/978-0-387-21606-5_1 10.1007/s00158-003-0368-6 10.1115/1.2912781 10.1016/j.cma.2009.10.014 10.2514/6.2002-3790 10.1007/s00158-010-0530-x 10.1007/s00158-010-0554-2 10.1093/biomet/87.1.1 10.1016/0022-2496(77)90033-5 10.1016/0045-7825(90)90109-Y 10.1016/0045-7825(84)90005-7 10.1080/0305215X.2010.508524 10.1007/s00158-005-0575-4 10.1061/(ASCE)0893-1321(2009)22:3(260) 10.1002/9780470903704 10.1016/j.paerosci.2008.11.001 10.1007/BF01894079 10.2514/1.36762 10.1002/(SICI)1097-0207(20000530)48:3<351::AID-NME878>3.0.CO;2-P 10.1007/BF01637334 10.2514/6.2008-2333 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2013 Structural and Multidisciplinary Optimization is a copyright of Springer, (2013). All Rights Reserved. |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2013 – notice: Structural and Multidisciplinary Optimization is a copyright of Springer, (2013). All Rights Reserved. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s00158-013-0908-7 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection (ProQuest) ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1615-1488 |
EndPage | 652 |
ExternalDocumentID | 10_1007_s00158_013_0908_7 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 199 1N0 2.D 203 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8R Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR _50 ~02 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c316t-289be6ee2c7d6a87d73f24c79fee60cc0ba41d5824c409c89647289fd76fa9883 |
IEDL.DBID | BENPR |
ISSN | 1615-147X |
IngestDate | Fri Jul 25 11:02:17 EDT 2025 Tue Jul 01 01:31:35 EDT 2025 Thu Apr 24 22:50:18 EDT 2025 Fri Feb 21 02:32:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Equivalent static load case Rotordynamics Bi-objective optimization Aircraft component design Fan Blade Off simulation Thermo-mechanical model |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-289be6ee2c7d6a87d73f24c79fee60cc0ba41d5824c409c89647289fd76fa9883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2262584963 |
PQPubID | 2043658 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2262584963 crossref_primary_10_1007_s00158_013_0908_7 crossref_citationtrail_10_1007_s00158_013_0908_7 springer_journals_10_1007_s00158_013_0908_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20130900 2013-9-00 20130901 |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 9 year: 2013 text: 20130900 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Structural and multidisciplinary optimization |
PublicationTitleAbbrev | Struct Multidisc Optim |
PublicationYear | 2013 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | HeidariMCarlsonDLSinhaSSadeghiRHeydariCBayoumiHSonJAn efficient multi-disciplinary simulation of engine fan-blade out event using MD NASTRAN2008New YorkAmerican Institute of Aeronautics and Astronautics SinhaSKDorbalaSDynamic loads in the fan containment structure of a turbofan engineJ Aerosp Eng20092226010.1061/(ASCE)0893-1321(2009)22:3(260) ChoSChoiKKDesign sensitivity analysis and optimization of non-linear transient dynamics. Part 1: sizing designInt J Numer Methods Eng2000483351373179234010.1002/(SICI)1097-0207(20000530)48:3<351::AID-NME878>3.0.CO;2-P0991.74052 KimYIParkGJNonlinear dynamic response structural optimization using equivalent static loadsComput Methods Appl Mech Eng20101999–1266067610.1016/j.cma.2009.10.0141227.74045 Lawrence C, Carney K, Gallardo V (2003) A study of fan stage/casing interaction models. National Aeronautics and Space Administration, Glenn Research Center Grihon S (2005) Pylon design optimisation. In: Forum 1, VIVACE project KangBSParkGJAroraJSA review of optimization of structures subjected to transient loadsStruct Multidisc Optim20063128195219954410.1007/s00158-005-0575-41245.74057 CardosoJBAroraJSDesign sensitivity analysis of nonlinear dynamic response of structural and mechanical systemsStruct Multidisc Optim199241374610.1007/BF01894079 Husband JB (2007) Developing an efficient FEM structural simulation of a fan blade off test in a turbofan jet engine. PhD thesis, University of Saskatchewan MarlerRTAroraJSSurvey of multi-objective optimization methods for engineeringStruct Multidisc Optim2004266369395205737710.1007/s00158-003-0368-61243.90199 BettebghorDBartoliNGrihonSMorlierJSamuelidesMSurrogate modeling approximation using a mixture of experts based on em joint estimationStruct Multidisc Optim201143224325910.1007/s00158-010-0554-2 HaftkaRTAdelmanHMRecent developments in structural sensitivity analysisStruct Multidisc Optim19891313715110.1007/BF01637334 KennedyMCO’HaganAPredicting the output from a complex computer code when fast approximations are availableBiometrika2000871113176682410.1093/biomet/87.1.10974.62024 Michels G, Genberg V, Doyle K (2004) Using the DRESP3 to improve multidisciplinary optimization. In: MSC software, pp 2004–2030 ToalDJJBressloffNWKeaneAJHoldenCMEThe development of a hybridized particle swarm for kriging hyperparameter tuningEng Optim201143667569910.1080/0305215X.2010.508524 Anonymous (2012) Demonstration problems manual: MSC Nastran 2012. MacNeal-Schwendler Corporation Carney KS, Lawrence C, Carney DV (2002) Aircraft engine blade-out dynamics. In: Seventh international LS-DYNA users conference. Livermore Software Technology Corporation, Livermore, pp 14–17 ChoiKKKimNHStructural sensitivity analysis and optimization: nonlinear systems and applications, vol 22005New YorkSpringer MiettinenKNonlinear multiobjective optimization1999New YorkSpringer0949.90082 VanceJMRotordynamics of turbomachinery1988New YorkWiley-Interscience HsiehCCAroraJSDesign sensitivity analysis and optimization of dynamic responseComput Methods Appl Mech Eng198443219521910.1016/0045-7825(84)90005-70527.73092 Heidari MA, Carlson DL, Yantis T (2002) Rotor-dynamics analysis process. In: MSC Worldwide aerospace conference and technology showcase, 8–10 April 2002, pp 1–16 NiuMCYAirframe structural design: practical design information and data on aircraft structuresRecherche19996702 Jain R (2010) Prediction of transient loads and perforation of engine casing during blade-off event of fan rotor assembly. In: Proceedings of the IMPLAST 2010 conference, Providence, Rhode Island, USA, 12–14 October 2010 KimYIParkGJKolonayRMBlairMCanfieldRANonlinear dynamic response structural optimization of a joined-wing using equivalent static loadsJ Aircr200946382183110.2514/1.36762 ParkGJTechnical overview of the equivalent static loads method for non-linear static response structural optimizationStruct Multidisc Optim201143331933710.1007/s00158-010-0530-x RaoSSFreiheitTIA modified game theory approach to multiobjective optimizationJ Mech Des199111328610.1115/1.2912781 ForresterAIJKeaneAJRecent advances in surrogate-based optimizationProg Aerosp Sci2009451507910.1016/j.paerosci.2008.11.001 Lawrence C, Carney KS, Gallardo V, NASA Glenn Research Center (2001) Simulation of aircraft engine blade-out structural dynamics. National Aeronautics and Space Administration, Glenn Research Center SaatyTLA scaling method for priorities in hierarchical structuresJ Math Psychol197715323428168261910.1016/0022-2496(77)90033-50372.62084 Lattime SB, Steinetz BM, NASA Glenn Research Center (2002) Turbine engine clearance control systems: current practices and future directions. National Aeronautics and Space Administration, Glenn Research Center Vance JM, Murphy B, Zeidan F (2010) Machinery vibration and rotordynamics. Wiley Online Library TsayJJAroraJSNonlinear structural design sensitivity analysis for path dependent problems. Part 1: general theoryComput Methods Appl Mech Eng1990812183208106921410.1016/0045-7825(90)90109-Y0724.73158 Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning, vol 1. Springer Series of Statistics 908_CR9 GJ Park (908_CR27) 2011; 43 K Miettinen (908_CR25) 1999 908_CR8 TL Saaty (908_CR29) 1977; 15 908_CR1 908_CR4 JJ Tsay (908_CR32) 1990; 81 JB Cardoso (908_CR3) 1992; 4 RT Marler (908_CR23) 2004; 26 JM Vance (908_CR33) 1988 RT Haftka (908_CR10) 1989; 1 AIJ Forrester (908_CR7) 2009; 45 BS Kang (908_CR16) 2006; 31 M Heidari (908_CR11) 2008 908_CR24 908_CR22 908_CR21 908_CR20 SK Sinha (908_CR30) 2009; 22 S Cho (908_CR5) 2000; 48 MC Kennedy (908_CR17) 2000; 87 YI Kim (908_CR18) 2010; 199 D Bettebghor (908_CR2) 2011; 43 908_CR15 908_CR14 SS Rao (908_CR28) 1991; 113 KK Choi (908_CR6) 2005 DJJ Toal (908_CR31) 2011; 43 908_CR12 908_CR34 YI Kim (908_CR19) 2009; 46 CC Hsieh (908_CR13) 1984; 43 MCY Niu (908_CR26) 1999; 67 |
References_xml | – reference: KimYIParkGJNonlinear dynamic response structural optimization using equivalent static loadsComput Methods Appl Mech Eng20101999–1266067610.1016/j.cma.2009.10.0141227.74045 – reference: Lattime SB, Steinetz BM, NASA Glenn Research Center (2002) Turbine engine clearance control systems: current practices and future directions. National Aeronautics and Space Administration, Glenn Research Center – reference: ForresterAIJKeaneAJRecent advances in surrogate-based optimizationProg Aerosp Sci2009451507910.1016/j.paerosci.2008.11.001 – reference: SaatyTLA scaling method for priorities in hierarchical structuresJ Math Psychol197715323428168261910.1016/0022-2496(77)90033-50372.62084 – reference: Anonymous (2012) Demonstration problems manual: MSC Nastran 2012. MacNeal-Schwendler Corporation – reference: MarlerRTAroraJSSurvey of multi-objective optimization methods for engineeringStruct Multidisc Optim2004266369395205737710.1007/s00158-003-0368-61243.90199 – reference: ChoSChoiKKDesign sensitivity analysis and optimization of non-linear transient dynamics. Part 1: sizing designInt J Numer Methods Eng2000483351373179234010.1002/(SICI)1097-0207(20000530)48:3<351::AID-NME878>3.0.CO;2-P0991.74052 – reference: Husband JB (2007) Developing an efficient FEM structural simulation of a fan blade off test in a turbofan jet engine. PhD thesis, University of Saskatchewan – reference: Lawrence C, Carney K, Gallardo V (2003) A study of fan stage/casing interaction models. National Aeronautics and Space Administration, Glenn Research Center – reference: TsayJJAroraJSNonlinear structural design sensitivity analysis for path dependent problems. Part 1: general theoryComput Methods Appl Mech Eng1990812183208106921410.1016/0045-7825(90)90109-Y0724.73158 – reference: HaftkaRTAdelmanHMRecent developments in structural sensitivity analysisStruct Multidisc Optim19891313715110.1007/BF01637334 – reference: Jain R (2010) Prediction of transient loads and perforation of engine casing during blade-off event of fan rotor assembly. In: Proceedings of the IMPLAST 2010 conference, Providence, Rhode Island, USA, 12–14 October 2010 – reference: ToalDJJBressloffNWKeaneAJHoldenCMEThe development of a hybridized particle swarm for kriging hyperparameter tuningEng Optim201143667569910.1080/0305215X.2010.508524 – reference: HsiehCCAroraJSDesign sensitivity analysis and optimization of dynamic responseComput Methods Appl Mech Eng198443219521910.1016/0045-7825(84)90005-70527.73092 – reference: Michels G, Genberg V, Doyle K (2004) Using the DRESP3 to improve multidisciplinary optimization. In: MSC software, pp 2004–2030 – reference: KimYIParkGJKolonayRMBlairMCanfieldRANonlinear dynamic response structural optimization of a joined-wing using equivalent static loadsJ Aircr200946382183110.2514/1.36762 – reference: ChoiKKKimNHStructural sensitivity analysis and optimization: nonlinear systems and applications, vol 22005New YorkSpringer – reference: KennedyMCO’HaganAPredicting the output from a complex computer code when fast approximations are availableBiometrika2000871113176682410.1093/biomet/87.1.10974.62024 – reference: RaoSSFreiheitTIA modified game theory approach to multiobjective optimizationJ Mech Des199111328610.1115/1.2912781 – reference: Grihon S (2005) Pylon design optimisation. In: Forum 1, VIVACE project – reference: MiettinenKNonlinear multiobjective optimization1999New YorkSpringer0949.90082 – reference: SinhaSKDorbalaSDynamic loads in the fan containment structure of a turbofan engineJ Aerosp Eng20092226010.1061/(ASCE)0893-1321(2009)22:3(260) – reference: HeidariMCarlsonDLSinhaSSadeghiRHeydariCBayoumiHSonJAn efficient multi-disciplinary simulation of engine fan-blade out event using MD NASTRAN2008New YorkAmerican Institute of Aeronautics and Astronautics – reference: VanceJMRotordynamics of turbomachinery1988New YorkWiley-Interscience – reference: BettebghorDBartoliNGrihonSMorlierJSamuelidesMSurrogate modeling approximation using a mixture of experts based on em joint estimationStruct Multidisc Optim201143224325910.1007/s00158-010-0554-2 – reference: KangBSParkGJAroraJSA review of optimization of structures subjected to transient loadsStruct Multidisc Optim20063128195219954410.1007/s00158-005-0575-41245.74057 – reference: Carney KS, Lawrence C, Carney DV (2002) Aircraft engine blade-out dynamics. In: Seventh international LS-DYNA users conference. Livermore Software Technology Corporation, Livermore, pp 14–17 – reference: NiuMCYAirframe structural design: practical design information and data on aircraft structuresRecherche19996702 – reference: ParkGJTechnical overview of the equivalent static loads method for non-linear static response structural optimizationStruct Multidisc Optim201143331933710.1007/s00158-010-0530-x – reference: CardosoJBAroraJSDesign sensitivity analysis of nonlinear dynamic response of structural and mechanical systemsStruct Multidisc Optim199241374610.1007/BF01894079 – reference: Vance JM, Murphy B, Zeidan F (2010) Machinery vibration and rotordynamics. Wiley Online Library – reference: Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning, vol 1. Springer Series of Statistics – reference: Lawrence C, Carney KS, Gallardo V, NASA Glenn Research Center (2001) Simulation of aircraft engine blade-out structural dynamics. National Aeronautics and Space Administration, Glenn Research Center – reference: Heidari MA, Carlson DL, Yantis T (2002) Rotor-dynamics analysis process. In: MSC Worldwide aerospace conference and technology showcase, 8–10 April 2002, pp 1–16 – ident: 908_CR8 doi: 10.1007/978-0-387-21606-5_1 – ident: 908_CR15 – volume: 26 start-page: 369 issue: 6 year: 2004 ident: 908_CR23 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-003-0368-6 – ident: 908_CR21 – volume: 113 start-page: 286 year: 1991 ident: 908_CR28 publication-title: J Mech Des doi: 10.1115/1.2912781 – volume: 199 start-page: 660 issue: 9–12 year: 2010 ident: 908_CR18 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2009.10.014 – ident: 908_CR20 doi: 10.2514/6.2002-3790 – volume: 43 start-page: 319 issue: 3 year: 2011 ident: 908_CR27 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-010-0530-x – volume: 43 start-page: 243 issue: 2 year: 2011 ident: 908_CR2 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-010-0554-2 – ident: 908_CR24 – volume: 87 start-page: 1 issue: 1 year: 2000 ident: 908_CR17 publication-title: Biometrika doi: 10.1093/biomet/87.1.1 – ident: 908_CR4 – ident: 908_CR14 – volume: 67 start-page: 02 year: 1999 ident: 908_CR26 publication-title: Recherche – ident: 908_CR12 – ident: 908_CR1 – volume: 15 start-page: 234 issue: 3 year: 1977 ident: 908_CR29 publication-title: J Math Psychol doi: 10.1016/0022-2496(77)90033-5 – volume: 81 start-page: 183 issue: 2 year: 1990 ident: 908_CR32 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(90)90109-Y – volume: 43 start-page: 195 issue: 2 year: 1984 ident: 908_CR13 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(84)90005-7 – volume: 43 start-page: 675 issue: 6 year: 2011 ident: 908_CR31 publication-title: Eng Optim doi: 10.1080/0305215X.2010.508524 – ident: 908_CR22 – volume: 31 start-page: 81 issue: 2 year: 2006 ident: 908_CR16 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-005-0575-4 – volume-title: Nonlinear multiobjective optimization year: 1999 ident: 908_CR25 – volume: 22 start-page: 260 year: 2009 ident: 908_CR30 publication-title: J Aerosp Eng doi: 10.1061/(ASCE)0893-1321(2009)22:3(260) – ident: 908_CR9 – ident: 908_CR34 doi: 10.1002/9780470903704 – volume: 45 start-page: 50 issue: 1 year: 2009 ident: 908_CR7 publication-title: Prog Aerosp Sci doi: 10.1016/j.paerosci.2008.11.001 – volume: 4 start-page: 37 issue: 1 year: 1992 ident: 908_CR3 publication-title: Struct Multidisc Optim doi: 10.1007/BF01894079 – volume: 46 start-page: 821 issue: 3 year: 2009 ident: 908_CR19 publication-title: J Aircr doi: 10.2514/1.36762 – volume-title: Rotordynamics of turbomachinery year: 1988 ident: 908_CR33 – volume: 48 start-page: 351 issue: 3 year: 2000 ident: 908_CR5 publication-title: Int J Numer Methods Eng doi: 10.1002/(SICI)1097-0207(20000530)48:3<351::AID-NME878>3.0.CO;2-P – volume: 1 start-page: 137 issue: 3 year: 1989 ident: 908_CR10 publication-title: Struct Multidisc Optim doi: 10.1007/BF01637334 – volume-title: Structural sensitivity analysis and optimization: nonlinear systems and applications, vol 2 year: 2005 ident: 908_CR6 – volume-title: An efficient multi-disciplinary simulation of engine fan-blade out event using MD NASTRAN year: 2008 ident: 908_CR11 doi: 10.2514/6.2008-2333 |
SSID | ssj0008049 |
Score | 2.1371922 |
Snippet | A realistic application of advanced structural and multi-objective optimization for the design of a fully assembled aircraft powerplant installation is... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 637 |
SubjectTerms | Aircraft power supplies Airframes Assembly Computational Mathematics and Numerical Analysis Computer simulation Criteria Design optimization Dynamic response Engine design Engineering Engineering Design Impact loads Industrial Application Multiple objective analysis Nacelles Nonlinear dynamics Nonlinear phenomena Nonlinear response Rotor dynamics Simulation Sizing Theoretical and Applied Mechanics Tip clearance Weight |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L3oQP3E6JQdPSqRNuyT1NsUxBD052MmSpAlMtna4qvjf-5K2m4oKXtskh_deXn7vG6FTpWQobJaQLKIJiU1gXZCQkkQywa2SWeJnHd7ds8Ewvh11R3Ud97zJdm9Ckl5TL4rd3PPuEq8i51sQhK-itS6Y7i6Pa0h7C_UrKszrkAwJYz5qQpk_HfH1MVoizG9BUf_W9LfQZg0Sca_i6jZaMfkO2vjUOnAXPV6NSaGeKnWFC7j407qiEhcWz8AMz4nxG0guvXceA0w2UzV5v8Rv3h-KX-cXuBzPsHajIxz3MagQ17u5yPfQsH_zcD0g9awEoqOQlQTsJmWYMVTzjEnBMx5ZGmueWGNYoHWgZBxmXQHfwKLTwhWgwh6bcWZlIkS0j1p5kZsDhEMZUlhEZSRMHFuurA0jaVUMysEyw9ooaIiW6rqRuJtnMUkXLZA9nVOgc-ronPI2OltsmVVdNP5a3Gk4kdYXap4CSqSAlUBdtNF5w53l718PO_zX6iO0TivpACHpoFb5_GKOAXSU6sQL2Qcg-s41 priority: 102 providerName: Springer Nature |
Title | Bi-objective optimization of pylon-engine-nacelle assembly: weight vs. tip clearance criterion |
URI | https://link.springer.com/article/10.1007/s00158-013-0908-7 https://www.proquest.com/docview/2262584963 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RT9swED5B-zIeJgab6GCVH_Y0ZEic1Hb2MrVTSwUamiYqlZdFtmNLTJB0tDDx73dOnHabNF4d2w93l8_f3dl3AO-1VrF0RUaLhGU0tZHzSUJGM8WlcFoVWd3r8Msln87S8_lgHgJuy3CtssXEGqiLyvgY-SnSBIaHJdrLp8VP6rtG-exqaKGxDV2EYCk70B2NL79-W2OxbAiwpzU0TsW8zWtGdRnReOAvciU-ViGp-Ptk2tDNfzKk9cEz2YWXgTGSYaPiV7Blyz3Y-aOO4D58H93QSv9osItUiAJ34XklqRxZoE9eUlsvoKWqQ_UEObO907dPH8mvOjhKHpcnZHWzIMb3kfCmQBBPfCHnqnwNs8n46vOUhsYJ1CQxX1F0orTl1jIjCq6kKETiWGpE5qzlkTGRVmlcDCSOoXtnpH-NimtcIbhTmZTJG-iUVWkPgMQqZjiJqUTaNHVCOxcnyukUkcJxy3sQtULLTagq7ptb3Obresi1nHOUc-7lnIsefFgvWTQlNZ6bfNRqIg9_1zLf2EIPjlvtbD7_d7O3z292CC9YYw5oFUfQWd0_2HdIOVa6D9tyctaH7vDs-mLcD1aGozM2_A28wNaF |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V9gAcEOVDLJTWB7iADInjtR0kVLWFZUs_Tq20J1LbsaWibbLtLlT7p_iNjJ1kF5Dordck9mH88ubZ45kBeGWMTpUvc1pmLKfcJT4ECRnNtVDSG13msdfh0bEYnvKvo_5oBX51uTDhWmXHiZGoy9qGM_L3KBMYOkvEy_bkkoauUSG62rXQaGBx4ObXuGWbftz_hOv7mrHB55O9IW27ClCbpWJGcYdhnHCOWVkKrWQpM8-4lbl3TiTWJkbztOwrfIZ7H6tCqiaO8aUUXudKZTjvHVjjGXrykJk--LJgftXI7SCiaMrlqIuiJrFoadoP18aycDKiqPzbDy7F7T_x2OjmBg_hQatPyU4DqHVYcdUjuP9H1cLH8G33nNbme8OUpEbOuWiTOUntyWQ-rivq4gBa6RgYIKjQ3YUZzz-Q63gUS35O35HZ-YTY0LUiAI8ge4Wy0XX1BE5vxaBPYbWqK_cMSKpThh8xnSnHuZfG-zTT3nDkJS-c6EHSGa2wbQ3z0EpjXCyqL0c7F2jnIti5kD14sxgyaQp43PTxRrcSRfsvT4sl8nrwtlud5ev_Tvb85sm24O7w5OiwONw_PngB91gDDUTIBqzOrn64lyh2ZmYzIozA2W1D-jeplw7X |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VICF6qFoeIiW0PsAFZJL1Ora3Eoc-iBICFQci5cRi79pSUbobkW2j_Kr-xY73kbYIkDj0uh5bq_F45rPnBfDaGB0ol0Y0DVlEue057yRkNNJCSWd0GpW9Dr-ciuGEf5r2pxtw1eTClNHujUuyymnwVZqyojtPXXed-OZNvQ_CCv07g6Kyjqoc29US72yLD6MT3OA3jA0-fjse0rqtAE3CQBQUrxjGCmtZIlOhlUxl6BhPZOSsFb0k6RnNg7Sv8BtefhLlczVxjkulcDpSKsR1H8BD7pOP8QBN2OFa9asKb3sURQMup40b9U-_fNcQ3qDb3xyypZ0bbMNWDVDJYSVRO7Bhsyeweats4VP4fnRGc_OzUpUkR6VzXmdzktyR-WqWZ9SWE2imS88AQYhuz81sdUCW5VssuVy8J8XZnCS-bYWXPILqy9eNzrNnMLkXhj6HVpZn9gWQQAcMiZgOleXcSeNcEGpnOComJ6xoQ69hWpzURcx9L41ZvC6_XPI5Rj7Hns-xbMPb9ZR5VcHjX8SdZifi-jAvYkSoDHEaqqo2vGt252b4r4vt_hf1Pjz6ejKIP49Oxy_hMasEBeWlA63i14V9hdinMHulvBH4cd8Cfg1jYw-i |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bi-objective+optimization+of+pylon-engine-nacelle+assembly%3A+weight+vs.+tip+clearance+criterion&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Bettebghor%2C+Dimitri&rft.au=Blondeau%2C+Christophe&rft.au=Toal%2C+David&rft.au=Eres%2C+Hakki&rft.date=2013-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=48&rft.issue=3&rft.spage=637&rft.epage=652&rft_id=info:doi/10.1007%2Fs00158-013-0908-7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon |