On minor prime factorizations for multivariate polynomial matrices

Multivariate polynomial matrix factorizations have been widely investigated during the past years due to the fundamental importance in the areas of multidimensional systems and signal processing. In this paper, minor prime factorizations for multivariate polynomial matrices are studied. We give a ne...

Full description

Saved in:
Bibliographic Details
Published inMultidimensional systems and signal processing Vol. 30; no. 1; pp. 493 - 502
Main Authors Guan, Jiancheng, Li, Weiqing, Ouyang, Baiyu
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multivariate polynomial matrix factorizations have been widely investigated during the past years due to the fundamental importance in the areas of multidimensional systems and signal processing. In this paper, minor prime factorizations for multivariate polynomial matrices are studied. We give a necessary and sufficient condition for the existence of a minor left prime factorization for a multivariate polynomial matrix. This result is a generalization of a theorem in Wang and Kwong (Math Control Signals Syst 17(4):297–311, 2005 ). On the basis of this result and a method in Fabiańska and Quadrat (Radon Ser Comp Appl Math 3:23–106, 2007 ), we give an algorithm to decide if a multivariate polynomial matrix has minor left prime factorizations and compute one if they exist.
AbstractList Multivariate polynomial matrix factorizations have been widely investigated during the past years due to the fundamental importance in the areas of multidimensional systems and signal processing. In this paper, minor prime factorizations for multivariate polynomial matrices are studied. We give a necessary and sufficient condition for the existence of a minor left prime factorization for a multivariate polynomial matrix. This result is a generalization of a theorem in Wang and Kwong (Math Control Signals Syst 17(4):297–311, 2005 ). On the basis of this result and a method in Fabiańska and Quadrat (Radon Ser Comp Appl Math 3:23–106, 2007 ), we give an algorithm to decide if a multivariate polynomial matrix has minor left prime factorizations and compute one if they exist.
Multivariate polynomial matrix factorizations have been widely investigated during the past years due to the fundamental importance in the areas of multidimensional systems and signal processing. In this paper, minor prime factorizations for multivariate polynomial matrices are studied. We give a necessary and sufficient condition for the existence of a minor left prime factorization for a multivariate polynomial matrix. This result is a generalization of a theorem in Wang and Kwong (Math Control Signals Syst 17(4):297–311, 2005). On the basis of this result and a method in Fabiańska and Quadrat (Radon Ser Comp Appl Math 3:23–106, 2007), we give an algorithm to decide if a multivariate polynomial matrix has minor left prime factorizations and compute one if they exist.
Author Guan, Jiancheng
Ouyang, Baiyu
Li, Weiqing
Author_xml – sequence: 1
  givenname: Jiancheng
  orcidid: 0000-0002-0418-5378
  surname: Guan
  fullname: Guan, Jiancheng
  email: jiancheng_guan@aliyun.com
  organization: College of Mathematics and Computer Science, Key Laboratory of High Performance Computing and Stochastic Information Processing (Ministry Of Education of China), Hunan Normal University
– sequence: 2
  givenname: Weiqing
  surname: Li
  fullname: Li, Weiqing
  organization: College of Mathematics and Computer Science, Key Laboratory of High Performance Computing and Stochastic Information Processing (Ministry Of Education of China), Hunan Normal University
– sequence: 3
  givenname: Baiyu
  surname: Ouyang
  fullname: Ouyang, Baiyu
  organization: College of Mathematics and Computer Science, Key Laboratory of High Performance Computing and Stochastic Information Processing (Ministry Of Education of China), Hunan Normal University
BookMark eNp9kE1LAzEQhoMo2FZ_gLcFz9FMks1mj1r8gkIveg7ZbSIpu0lNUqH-elMrCIKewjDvM5l5pujYB28QugByBYQ01wmA8BoTkJjUQmB-hCZQNwwTSfkxmpCWMixKcYqmKa0JKRSICbpd-mp0PsRqE91oKqv7HKL70NkFnypbGuN2yO5dR6ezqTZh2PkwOj1Uo87R9SadoROrh2TOv98Zerm_e54_4sXy4Wl-s8A9A5ExFVboVcu6lpm2tkZyS4FJovmKN9Z2pdmLrqGmB2msJMCN7BrOOmaAdTVlM3R5mLuJ4W1rUlbrsI2-fKkoCNkQzqAtqeaQ6mNIKRqrepe_rslRu0EBUXth6iBMFWFqL0zxQsIvcq9Ex92_DD0wqWT9q4k_O_0NfQLhsn_Z
CitedBy_id crossref_primary_10_1016_j_jsc_2022_07_005
crossref_primary_10_1007_s11424_024_1367_5
crossref_primary_10_1007_s11045_021_00768_x
crossref_primary_10_1109_TCSII_2022_3223934
crossref_primary_10_1155_2020_1684893
crossref_primary_10_1007_s11045_019_00694_z
Cites_doi 10.1007/s10440-012-9791-2
10.1109/TCS.1982.1085085
10.1109/PROC.1977.10582
10.1109/TCSII.2005.850516
10.1093/imamci/16.3.275
10.1016/j.jalgebra.2003.10.035
10.1016/j.laa.2004.04.020
10.1109/TCS.1979.1084614
10.1090/gsm/003
10.1016/S0024-3795(01)00370-6
10.1109/TCSI.2007.897720
10.1016/j.laa.2014.09.027
10.1023/A:1008427830183
10.1023/A:1008256224288
10.23919/ECC.2001.7076157
10.1137/S0363012902417127
10.1007/s00498-005-0155-6
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
DOI 10.1007/s11045-018-0566-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-0824
EndPage 502
ExternalDocumentID 10_1007_s11045_018_0566_4
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11371131
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5B
-5G
-BR
-EM
-~C
.DC
.VR
06D
0R~
0VY
123
1N0
203
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RSV
S16
S27
S3B
SAP
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z83
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
_50
~A9
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
5VS
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ARCEE
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
KOW
N2Q
NDZJH
O9-
OVD
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCLPG
SCV
T16
TEORI
ABRTQ
ID FETCH-LOGICAL-c316t-26f6ad93b93e95fe84f21380a4d47ffb6adc6b72ec18ef8014e8b743b3e13b523
IEDL.DBID U2A
ISSN 0923-6082
IngestDate Fri Jul 25 10:54:11 EDT 2025
Tue Jul 01 02:06:52 EDT 2025
Thu Apr 24 23:11:24 EDT 2025
Fri Feb 21 02:37:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Multidimensional systems
Matrix factorizations
Multivariate polynomial matrices
Minor prime factorizations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-26f6ad93b93e95fe84f21380a4d47ffb6adc6b72ec18ef8014e8b743b3e13b523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0418-5378
PQID 2168704319
PQPubID 2043747
PageCount 10
ParticipantIDs proquest_journals_2168704319
crossref_citationtrail_10_1007_s11045_018_0566_4
crossref_primary_10_1007_s11045_018_0566_4
springer_journals_10_1007_s11045_018_0566_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Multidimensional systems and signal processing
PublicationTitleAbbrev Multidim Syst Sign Process
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References WangMOn factor prime factorizations for n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-D polynomial matricesIEEE Transactions on Circuits and Systems I: Regular Papers200754613981405237059610.1109/TCSI.2007.8977201374.15026
EisenbudDCommutative algebra: with a view toward algebraic geometry2013New YorkSpringer0819.13001
FornasiniEValcherMEn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-D polynomial matrices with applications to multidimensional signal analysisMultidimensional Systems and Signal Process199729387408146868810.1023/A:10082562242880882.93038
WangMKwongCPOn multivariate polynomial matrix factorization problemsMathematics of Control, Signals, and Systems2005174297311217732010.1007/s00498-005-0155-61098.93010
PommaretJFQuadratAAlgebraic analysis of linear multidimensional control systemsIMA Journal of Mathematical Control and Information199916275297170665810.1093/imamci/16.3.2751158.93319
QuadratAThe fractional representation approach to synthesis problems: An algebraic analysis viewpoint part I: (Weakly) doubly coprime factorizationsSIAM Journal on Control and Optimization2003421266299198274510.1137/S03630129024171271035.93017
LinZXuLFanHOn minor prime factorization for n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-D polynomial matricesIEEE Transactions on Circuits and Systems II: Express Briefs200552956857110.1109/TCSII.2005.850516
LiuJWangMFurther remarks on multivariate polynomial matrix factorizationsLinear Algebra and its Applications2015465204213327467110.1016/j.laa.2014.09.0271310.15021
MatsumuraHReidMCommutative ring theory1989CambridgeCambridge University Press
GuiverJPBoseNKPolynomial matrix primitive factorization over arbitrary coefficient field and related resultsIEEE Transactions on Circuits and Systems CAS1982291064965768727910.1109/TCS.1982.10850850504.65020
SrinivasVA generalized Serre problemJournal of Algebra20042782621627207165610.1016/j.jalgebra.2003.10.0351079.13005
BoseNKBuchbergerBGuiverJPApplied multidimensional systems theory2003DordrechtKluwer
BrownWCMatrices over commutative rings1993New YorkMarcel Dekker Inc0782.15001
YoulaDCGnaviGNotes on n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-dimensional system theoryIEEE Transactions on Circuits and Systems19792610511152165710.1109/TCS.1979.10846140394.93004
MorfMLevyBCKungSYNew results in 2-D systems theory, Part I: 2-D polynomial matrices, factorization, and coprimenessProceedings of the IEEE197765486187210.1109/PROC.1977.10582
FabiańskaAQuadratAApplications of the Quillen-Suslin theorem to multidimensional systems theoryRadon Series Computational and Applied Mathematics200732310624027091197.13011
AdamsWWLoustaunauPAn introduction to Gröbner bases1994ProvidenceAmerican Mathematical Society10.1090/gsm/0030803.13015
RotmanJJAn introduction to homological algebra2008New YorkSpringer1157.18001
Decker, W., Greuel, G. M., Pfister, G., & Schönemann, H. (2015). Singular 4-0-2—A computer algebra system for polynomial computations. http://www.singular.uni-kl.de. Accessed 20 Dec 2016.
Pommaret, J. F. (2001). Solving Bose conjecture on linear multidimensional systems. In Proceedings of the European control conference (pp. 1853–1855).
WangMFengDOn Lin–Bose problemLinear Algebra and its Applications2004390279285208365910.1016/j.laa.2004.04.0201056.15013
QuadratAGrade filtration of linear functional systemsActa Applicandae Mathematicae20131272786310114310.1007/s10440-012-9791-21327.16037
LinZNotes on n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-D polynomial matrix factorizationMultidimensional Systems and Signal Process.1999104379393172863510.1023/A:10084278301830939.93017
LinZBoseNKA generalization of Serre’s conjecture and some related issuesLinear Algebra and its Applications2001338125138186111710.1016/S0024-3795(01)00370-61017.13006
A Quadrat (566_CR17) 2003; 42
Z Lin (566_CR10) 2001; 338
M Wang (566_CR22) 2004; 390
A Fabiańska (566_CR6) 2007; 3
JP Guiver (566_CR8) 1982; 29
M Morf (566_CR14) 1977; 65
JF Pommaret (566_CR16) 1999; 16
V Srinivas (566_CR20) 2004; 278
M Wang (566_CR23) 2005; 17
WW Adams (566_CR1) 1994
JJ Rotman (566_CR19) 2008
566_CR4
DC Youla (566_CR24) 1979; 26
WC Brown (566_CR3) 1993
566_CR15
Z Lin (566_CR9) 1999; 10
Z Lin (566_CR11) 2005; 52
NK Bose (566_CR2) 2003
J Liu (566_CR12) 2015; 465
E Fornasini (566_CR7) 1997; 29
M Wang (566_CR21) 2007; 54
D Eisenbud (566_CR5) 2013
A Quadrat (566_CR18) 2013; 127
H Matsumura (566_CR13) 1989
References_xml – reference: AdamsWWLoustaunauPAn introduction to Gröbner bases1994ProvidenceAmerican Mathematical Society10.1090/gsm/0030803.13015
– reference: FornasiniEValcherMEn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-D polynomial matrices with applications to multidimensional signal analysisMultidimensional Systems and Signal Process199729387408146868810.1023/A:10082562242880882.93038
– reference: LiuJWangMFurther remarks on multivariate polynomial matrix factorizationsLinear Algebra and its Applications2015465204213327467110.1016/j.laa.2014.09.0271310.15021
– reference: EisenbudDCommutative algebra: with a view toward algebraic geometry2013New YorkSpringer0819.13001
– reference: MatsumuraHReidMCommutative ring theory1989CambridgeCambridge University Press
– reference: Pommaret, J. F. (2001). Solving Bose conjecture on linear multidimensional systems. In Proceedings of the European control conference (pp. 1853–1855).
– reference: PommaretJFQuadratAAlgebraic analysis of linear multidimensional control systemsIMA Journal of Mathematical Control and Information199916275297170665810.1093/imamci/16.3.2751158.93319
– reference: YoulaDCGnaviGNotes on n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-dimensional system theoryIEEE Transactions on Circuits and Systems19792610511152165710.1109/TCS.1979.10846140394.93004
– reference: RotmanJJAn introduction to homological algebra2008New YorkSpringer1157.18001
– reference: BrownWCMatrices over commutative rings1993New YorkMarcel Dekker Inc0782.15001
– reference: Decker, W., Greuel, G. M., Pfister, G., & Schönemann, H. (2015). Singular 4-0-2—A computer algebra system for polynomial computations. http://www.singular.uni-kl.de. Accessed 20 Dec 2016.
– reference: FabiańskaAQuadratAApplications of the Quillen-Suslin theorem to multidimensional systems theoryRadon Series Computational and Applied Mathematics200732310624027091197.13011
– reference: WangMKwongCPOn multivariate polynomial matrix factorization problemsMathematics of Control, Signals, and Systems2005174297311217732010.1007/s00498-005-0155-61098.93010
– reference: LinZNotes on n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-D polynomial matrix factorizationMultidimensional Systems and Signal Process.1999104379393172863510.1023/A:10084278301830939.93017
– reference: SrinivasVA generalized Serre problemJournal of Algebra20042782621627207165610.1016/j.jalgebra.2003.10.0351079.13005
– reference: WangMOn factor prime factorizations for n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-D polynomial matricesIEEE Transactions on Circuits and Systems I: Regular Papers200754613981405237059610.1109/TCSI.2007.8977201374.15026
– reference: WangMFengDOn Lin–Bose problemLinear Algebra and its Applications2004390279285208365910.1016/j.laa.2004.04.0201056.15013
– reference: LinZBoseNKA generalization of Serre’s conjecture and some related issuesLinear Algebra and its Applications2001338125138186111710.1016/S0024-3795(01)00370-61017.13006
– reference: LinZXuLFanHOn minor prime factorization for n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-D polynomial matricesIEEE Transactions on Circuits and Systems II: Express Briefs200552956857110.1109/TCSII.2005.850516
– reference: GuiverJPBoseNKPolynomial matrix primitive factorization over arbitrary coefficient field and related resultsIEEE Transactions on Circuits and Systems CAS1982291064965768727910.1109/TCS.1982.10850850504.65020
– reference: QuadratAThe fractional representation approach to synthesis problems: An algebraic analysis viewpoint part I: (Weakly) doubly coprime factorizationsSIAM Journal on Control and Optimization2003421266299198274510.1137/S03630129024171271035.93017
– reference: BoseNKBuchbergerBGuiverJPApplied multidimensional systems theory2003DordrechtKluwer
– reference: MorfMLevyBCKungSYNew results in 2-D systems theory, Part I: 2-D polynomial matrices, factorization, and coprimenessProceedings of the IEEE197765486187210.1109/PROC.1977.10582
– reference: QuadratAGrade filtration of linear functional systemsActa Applicandae Mathematicae20131272786310114310.1007/s10440-012-9791-21327.16037
– volume: 127
  start-page: 27
  year: 2013
  ident: 566_CR18
  publication-title: Acta Applicandae Mathematicae
  doi: 10.1007/s10440-012-9791-2
– volume: 29
  start-page: 649
  issue: 10
  year: 1982
  ident: 566_CR8
  publication-title: IEEE Transactions on Circuits and Systems CAS
  doi: 10.1109/TCS.1982.1085085
– volume: 65
  start-page: 861
  issue: 4
  year: 1977
  ident: 566_CR14
  publication-title: Proceedings of the IEEE
  doi: 10.1109/PROC.1977.10582
– volume: 3
  start-page: 23
  year: 2007
  ident: 566_CR6
  publication-title: Radon Series Computational and Applied Mathematics
– volume: 52
  start-page: 568
  issue: 9
  year: 2005
  ident: 566_CR11
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
  doi: 10.1109/TCSII.2005.850516
– volume: 16
  start-page: 275
  year: 1999
  ident: 566_CR16
  publication-title: IMA Journal of Mathematical Control and Information
  doi: 10.1093/imamci/16.3.275
– volume: 278
  start-page: 621
  issue: 2
  year: 2004
  ident: 566_CR20
  publication-title: Journal of Algebra
  doi: 10.1016/j.jalgebra.2003.10.035
– volume-title: Applied multidimensional systems theory
  year: 2003
  ident: 566_CR2
– volume: 390
  start-page: 279
  year: 2004
  ident: 566_CR22
  publication-title: Linear Algebra and its Applications
  doi: 10.1016/j.laa.2004.04.020
– volume: 26
  start-page: 105
  year: 1979
  ident: 566_CR24
  publication-title: IEEE Transactions on Circuits and Systems
  doi: 10.1109/TCS.1979.1084614
– volume-title: An introduction to Gröbner bases
  year: 1994
  ident: 566_CR1
  doi: 10.1090/gsm/003
– volume: 338
  start-page: 125
  year: 2001
  ident: 566_CR10
  publication-title: Linear Algebra and its Applications
  doi: 10.1016/S0024-3795(01)00370-6
– volume: 54
  start-page: 1398
  issue: 6
  year: 2007
  ident: 566_CR21
  publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers
  doi: 10.1109/TCSI.2007.897720
– volume: 465
  start-page: 204
  year: 2015
  ident: 566_CR12
  publication-title: Linear Algebra and its Applications
  doi: 10.1016/j.laa.2014.09.027
– volume: 10
  start-page: 379
  issue: 4
  year: 1999
  ident: 566_CR9
  publication-title: Multidimensional Systems and Signal Process.
  doi: 10.1023/A:1008427830183
– volume: 29
  start-page: 387
  year: 1997
  ident: 566_CR7
  publication-title: Multidimensional Systems and Signal Process
  doi: 10.1023/A:1008256224288
– volume-title: An introduction to homological algebra
  year: 2008
  ident: 566_CR19
– volume-title: Commutative ring theory
  year: 1989
  ident: 566_CR13
– ident: 566_CR15
  doi: 10.23919/ECC.2001.7076157
– ident: 566_CR4
– volume-title: Matrices over commutative rings
  year: 1993
  ident: 566_CR3
– volume-title: Commutative algebra: with a view toward algebraic geometry
  year: 2013
  ident: 566_CR5
– volume: 42
  start-page: 266
  issue: 1
  year: 2003
  ident: 566_CR17
  publication-title: SIAM Journal on Control and Optimization
  doi: 10.1137/S0363012902417127
– volume: 17
  start-page: 297
  issue: 4
  year: 2005
  ident: 566_CR23
  publication-title: Mathematics of Control, Signals, and Systems
  doi: 10.1007/s00498-005-0155-6
SSID ssj0010016
Score 2.1819494
Snippet Multivariate polynomial matrix factorizations have been widely investigated during the past years due to the fundamental importance in the areas of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 493
SubjectTerms Artificial Intelligence
Circuits and Systems
Electrical Engineering
Engineering
Polynomial matrices
Radon
Signal processing
Signal,Image and Speech Processing
Title On minor prime factorizations for multivariate polynomial matrices
URI https://link.springer.com/article/10.1007/s11045-018-0566-4
https://www.proquest.com/docview/2168704319
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oXPRgfEYUSQ-eNE12t6XbHsGARCNeJMHTZrvbJiawEEAT_73TfYAaNfG0h3bnMH3MN52ZbwAuBd6KKmUJ9WJlKDd-TBWz7iE_9VVqwkRyV-_8MBSDEb8bt8dlHfeyynavQpL5Tb0pdkPPwSWaSYpGW1C-DfW2c91xE4-Czjp04EBMTrAXMCrQwFWhzJ9EfDVGG4T5LSia25r-PuyVIJF0ilU9gC2THcLuJ-rAI-g-ZmT6ks0WZO4I-knRN6cqqiQIRUmeK_iGvjDCSTKfTd5dBTKKneas_GZ5DKN-7-lmQMt-CDRhvljRQFgRp4ppxYxqWyO5DXwmvZinPLRW42AidBiYxJfGOloYIzUiBM2MzzR6nCdQy2aZOQViRCzD1KKQWDjGNOUlqCsljOaxkMI0wKsUEyUlWbjrWTGJNjTHTpcR6jJyuox4A67Wv8wLpoy_JjcrbUfloVlGgS_w9kBEoxpwXa3AZvhXYWf_mn0OOwh6VPGM0oTaavFqLhBYrHQL6p1-tzt039vn-14r31gf_zfHPA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIAD4ikGA3LgBIrUNlmaHAdiGrCNyybtVjVtIiGxbtoGEv8ep48NECBxTuqD09ifY_szwKVAq6hSllAvVoZy48dUMese8lNfpSZMJHf9zr2-6Az5w6g5Kvu451W1e5WSzC31qtkNIwdXaCYpOm1B-TpsIBaQro5rGLSWqQMHYnKCvYBRgQ6uSmX-JOKrM1ohzG9J0dzXtHdhpwSJpFWc6h6smWwftj9RBx7AzVNGxs_ZZEamjqCfFHNzqqZKglCU5LWCbxgLI5wk08nLu-tARrHjnJXfzA9h2L4b3HZoOQ-BJswXCxoIK-JUMa2YUU1rJLeBz6QX85SH1mpcTIQOA5P40lhHC2OkRoSgmfGZxojzCGrZJDPHQIyIZZhaFBILx5imvAR1pYTRPBZSmDp4lWKipCQLdzMrXqIVzbHTZYS6jJwuI16Hq-Un04Ip46_NjUrbUXlp5lHgC7QeiGhUHa6rE1gt_yrs5F-7L2CzM-h1o-59__EUthAAqeJJpQG1xezVnCHIWOjz_Kf6AAt_xx8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSAgOiKcYDOiBEyha02RpcxyPabwGBybtFjVtIiFtXbUVJP49Th8rIEDinNQHJ7U_x_ZnhE45WEUR0wi7odCYaRJiQY19yI-JiLUfBcz2Oz8MeH_IbkedUTnndF5Vu1cpyaKnwbI0JVk7jU27bnyDKMIWnQUYHDjHbBmtgDUm9loPve4ijWABTU6251HMwdlVac2fRHx1TDXa_JYgzf1ObxNtlIDR6RYnvIWWdLKN1j_RCO6gi8fEmbwk05mTWrJ-p5ihUzVYOgBLnbxu8A3iYoCWTjodv9tuZBA7yRn69XwXDXvXz5d9XM5GwBElPMMeNzyMBVWCatExOmDGIzRwQxYz3xgFixFXvqcjEmhjKWJ0oAAtKKoJVRB97qFGMk30PnI0DwM_NiAk5JY9TbgR6EpwrVjIA66byK0UI6OSONzOrxjLmvLY6lKCLqXVpWRNdLb4JC1YM_7a3Kq0LcsfaC49wsGSALoRTXRenUC9_Kuwg3_tPkGrT1c9eX8zuDtEa4CFRPG60kKNbPaqjwBvZOo4v1Mf01_LWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+minor+prime+factorizations+for+multivariate+polynomial+matrices&rft.jtitle=Multidimensional+systems+and+signal+processing&rft.au=Guan%2C+Jiancheng&rft.au=Li%2C+Weiqing&rft.au=Ouyang%2C+Baiyu&rft.date=2019-01-01&rft.issn=0923-6082&rft.eissn=1573-0824&rft.volume=30&rft.issue=1&rft.spage=493&rft.epage=502&rft_id=info:doi/10.1007%2Fs11045-018-0566-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11045_018_0566_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0923-6082&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0923-6082&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0923-6082&client=summon