Nowcasting Multiparameter Phased-Array Weather Radar (MP-PAWR) Echoes of Localized Heavy Precipitation Using a 3D Recurrent Neural Network Trained with an Adversarial Technique
We present nowcasts of sudden heavy rains on meso- γ scales (2–20 km) using the high spatiotemporal resolution of a multiparameter phased-array weather radar (MP-PAWR) sensitive to rain droplets. The onset of typical storms is successfully predicted with 10-min lead time, i.e., the current predictab...
Saved in:
Published in | Journal of atmospheric and oceanic technology Vol. 40; no. 7; pp. 803 - 821 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Boston
American Meteorological Society
01.07.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0739-0572 1520-0426 |
DOI | 10.1175/JTECH-D-22-0109.1 |
Cover
Abstract | We present nowcasts of sudden heavy rains on meso-
γ
scales (2–20 km) using the high spatiotemporal resolution of a multiparameter phased-array weather radar (MP-PAWR) sensitive to rain droplets. The onset of typical storms is successfully predicted with 10-min lead time, i.e., the current predictability limit of rainfall caused by individual convective cores. A supervised recurrent neural network based on long short-term memory with 3D spatial convolutions (RN3D) is used to account for the horizontal and vertical changes of the convective cells with a time resolution of 30 s. The model uses radar reflectivity at horizontal polarization
Z
H
and the differential reflectivity. The input parameters are defined in a volume of 64 × 64 × 8 km
3
with the lowest level at 1.9 km and a resolution of 0.4 × 0.4 × 0.25 km
3
. The prediction is a 10-min sequence of
Z
H
at the lowest grid level. The model is trained with a large number of observations of summer 2020 and an adversarial technique. RN3D is tested with different types of rapidly evolving localized heavy rainfalls of summers 2018 and 2019. The model performance is compared to that of an advection model for 3D extrapolation of PAWR echoes (A3DM). RN3D better predicts the formation and dissipation of precipitation. However, RN3D tends to underestimate heavy rainfall especially when the storm is well developed. In this phase of the storm, A3DM nowcast scores are found slightly higher. The high skill of RN3D to predict the onset of sudden localized rainfall is illustrated with an example for which RN3D outperforms the operational precipitation nowcasting system of Japan Meteorological Agency (JMA). |
---|---|
AbstractList | We present nowcasts of sudden heavy rains on meso-γ scales (2–20 km) using the high spatiotemporal resolution of a multiparameter phased-array weather radar (MP-PAWR) sensitive to rain droplets. The onset of typical storms is successfully predicted with 10-min lead time, i.e., the current predictability limit of rainfall caused by individual convective cores. A supervised recurrent neural network based on long short-term memory with 3D spatial convolutions (RN3D) is used to account for the horizontal and vertical changes of the convective cells with a time resolution of 30 s. The model uses radar reflectivity at horizontal polarization ZH and the differential reflectivity. The input parameters are defined in a volume of 64 × 64 × 8 km3 with the lowest level at 1.9 km and a resolution of 0.4 × 0.4 × 0.25 km3. The prediction is a 10-min sequence of ZH at the lowest grid level. The model is trained with a large number of observations of summer 2020 and an adversarial technique. RN3D is tested with different types of rapidly evolving localized heavy rainfalls of summers 2018 and 2019. The model performance is compared to that of an advection model for 3D extrapolation of PAWR echoes (A3DM). RN3D better predicts the formation and dissipation of precipitation. However, RN3D tends to underestimate heavy rainfall especially when the storm is well developed. In this phase of the storm, A3DM nowcast scores are found slightly higher. The high skill of RN3D to predict the onset of sudden localized rainfall is illustrated with an example for which RN3D outperforms the operational precipitation nowcasting system of Japan Meteorological Agency (JMA).Significance StatementTemporal extrapolation of radar observations is a means of nowcasting sudden heavy rains, i.e., forecasts with a few tens of minutes and a high spatial resolution better than 500 m. They are necessary to set up warning systems to anticipate damage to infrastructure and reduce the fatalities these storms cause. It is a difficult task due to the storm suddenness, restricted area, and nonlinear behavior that are not well captured by current operational observation and numerical systems. In this study, we use a new high-resolution weather radar with polarimetric information and a 3D recurrent neural network to improve 10-min nowcasts, the current limit of operational systems. This is a first and essential step before applying such a method for increasing the prediction lead time. We present nowcasts of sudden heavy rains on meso- γ scales (2–20 km) using the high spatiotemporal resolution of a multiparameter phased-array weather radar (MP-PAWR) sensitive to rain droplets. The onset of typical storms is successfully predicted with 10-min lead time, i.e., the current predictability limit of rainfall caused by individual convective cores. A supervised recurrent neural network based on long short-term memory with 3D spatial convolutions (RN3D) is used to account for the horizontal and vertical changes of the convective cells with a time resolution of 30 s. The model uses radar reflectivity at horizontal polarization Z H and the differential reflectivity. The input parameters are defined in a volume of 64 × 64 × 8 km 3 with the lowest level at 1.9 km and a resolution of 0.4 × 0.4 × 0.25 km 3 . The prediction is a 10-min sequence of Z H at the lowest grid level. The model is trained with a large number of observations of summer 2020 and an adversarial technique. RN3D is tested with different types of rapidly evolving localized heavy rainfalls of summers 2018 and 2019. The model performance is compared to that of an advection model for 3D extrapolation of PAWR echoes (A3DM). RN3D better predicts the formation and dissipation of precipitation. However, RN3D tends to underestimate heavy rainfall especially when the storm is well developed. In this phase of the storm, A3DM nowcast scores are found slightly higher. The high skill of RN3D to predict the onset of sudden localized rainfall is illustrated with an example for which RN3D outperforms the operational precipitation nowcasting system of Japan Meteorological Agency (JMA). |
Author | Hanado, Hiroshi Maesaka, Takeshi Kawashima, Kohei Nakagawa, Katsuhiro Kawamura, Seiji Satoh, Shinsuke Kim, Dong-Kyun Ushio, Tomoo Baron, Philippe |
Author_xml | – sequence: 1 givenname: Philippe orcidid: 0000-0001-7141-5260 surname: Baron fullname: Baron, Philippe organization: a National Institute of Information and Communications Technology, Koganei, Japan, b Osaka University, Suita, Japan – sequence: 2 givenname: Kohei surname: Kawashima fullname: Kawashima, Kohei organization: b Osaka University, Suita, Japan – sequence: 3 givenname: Dong-Kyun surname: Kim fullname: Kim, Dong-Kyun organization: b Osaka University, Suita, Japan – sequence: 4 givenname: Hiroshi surname: Hanado fullname: Hanado, Hiroshi organization: a National Institute of Information and Communications Technology, Koganei, Japan – sequence: 5 givenname: Seiji surname: Kawamura fullname: Kawamura, Seiji organization: a National Institute of Information and Communications Technology, Koganei, Japan – sequence: 6 givenname: Takeshi surname: Maesaka fullname: Maesaka, Takeshi organization: c National Research Institute for Earth Science and Disaster Resilience, Tsukuba, Japan – sequence: 7 givenname: Katsuhiro surname: Nakagawa fullname: Nakagawa, Katsuhiro organization: a National Institute of Information and Communications Technology, Koganei, Japan – sequence: 8 givenname: Shinsuke surname: Satoh fullname: Satoh, Shinsuke organization: a National Institute of Information and Communications Technology, Koganei, Japan – sequence: 9 givenname: Tomoo surname: Ushio fullname: Ushio, Tomoo organization: b Osaka University, Suita, Japan |
BookMark | eNp9kU9vEzEQxS1UJNLCB-BmiQscttjezf45Rk2gRWmJolQ9WrP2LOuSrsPY2yh8qn5EHNoTB04jjd5vnua9U3Yy-AEZey_FuZTV9PO3zeLiMptnSmVCiuZcvmITOVUiE4UqT9hEVHmTiWml3rDTEO6FEDKX5YQ93fi9gRDd8INfj9vodkDwgBGJr3oIaLMZERz4HULs03INFoh_vF5lq9nd-hNfmN5j4L7jS29g636j5ZcIjwe-IjRu5yJE5wd-G44OwPM5X6MZiXCI_AZHgm0ace_pJ98QuCHxexd7DgOf2UekAOSSZoOmH9yvEd-y1x1sA757mWfs9stik35ffv96dTFbZib9FTNVGFBdW4BtQZrW1pWtbVnWCtpaVlWnmro1VkFhZdvKGiSaVgqERqk2oTY_Yx-e7-7IJ9sQ9b0faUiWOld5oZpKVmVSyWeVIR8CYad35B6ADloKfSxG_y1Gz7VS-liMlomp_mHMS0oxBbD9D_kHZbOYgw |
CitedBy_id | crossref_primary_10_5194_amt_17_4675_2024 crossref_primary_10_1007_s41324_025_00606_3 crossref_primary_10_1587_transele_2024MMI0001 crossref_primary_10_5194_amt_18_619_2025 |
ContentType | Journal Article |
Copyright | Copyright American Meteorological Society 2023 |
Copyright_xml | – notice: Copyright American Meteorological Society 2023 |
DBID | AAYXX CITATION 3V. 7TG 7TN 7UA 7XB 88F 88I 8AF 8FD 8FE 8FG 8FK 8G5 ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ GUQSH H8D H96 HCIFZ KL. L.G L7M M1Q M2O M2P MBDVC P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY Q9U S0X |
DOI | 10.1175/JTECH-D-22-0109.1 |
DatabaseName | CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Military Database (Alumni Edition) Science Database (Alumni Edition) STEM Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Military Database Research Library Science Database Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic SIRS Editorial |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest AP Science SciTech Premium Collection ProQuest Military Collection Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database Oceanic Abstracts ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Advanced Technologies Database with Aerospace ProQuest Central Basic ProQuest Science Journals ProQuest Military Collection (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Oceanography |
EISSN | 1520-0426 |
EndPage | 821 |
ExternalDocumentID | 10_1175_JTECH_D_22_0109_1 |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GroupedDBID | .4S .DC 29J 2WC 4.4 5GY 7XC 88I 8AF 8CJ 8FE 8FG 8FH 8G5 8R4 8R5 AAYXX ABDBF ABDNZ ABUWG ACGFO ACGOD ACUHS ACYGS AENEX AEUYN AFKRA AFRAH AGFAN ALMA_UNASSIGNED_HOLDINGS ALQLQ ARAPS ARCSS ATCPS AZQEC BENPR BES BGLVJ BHPHI BKSAR BPHCQ C1A CAG CCPQU CITATION COF CS3 D1J D1K DU5 DWQXO E3Z EAD EAP EBS EDH EDO EJD EMK EPL EST ESX F8P FRP GNUQQ GUQSH H13 HCIFZ I-F K6- LK5 M1Q M2O M2P M2Q M7R MV1 OK1 P2P P62 PATMY PCBAR PHGZM PHGZT PQQKQ PROAC PYCSY Q2X QF4 QM1 QN7 QO4 RWA RWE RWL RXW S0X TAE TR2 TUS U5U UNMZH ZY4 3V. 7TG 7TN 7UA 7XB 8FD 8FK C1K F1W H8D H96 KL. L.G L7M MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c316t-24ca2fb4adba1cbd87d8d6682ab8177f298bcd2a4d1bb18a1ecb10ea922b4cad3 |
IEDL.DBID | 8FG |
ISSN | 0739-0572 |
IngestDate | Sat Aug 23 14:37:50 EDT 2025 Tue Jul 01 01:35:47 EDT 2025 Thu Apr 24 23:11:23 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | http://www.ametsoc.org/PUBSReuseLicenses |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-24ca2fb4adba1cbd87d8d6682ab8177f298bcd2a4d1bb18a1ecb10ea922b4cad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7141-5260 |
OpenAccessLink | https://journals.ametsoc.org/downloadpdf/journals/atot/40/7/JTECH-D-22-0109.1.pdf |
PQID | 3234297176 |
PQPubID | 33207 |
PageCount | 19 |
ParticipantIDs | proquest_journals_3234297176 crossref_primary_10_1175_JTECH_D_22_0109_1 crossref_citationtrail_10_1175_JTECH_D_22_0109_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-00 20230701 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-00 |
PublicationDecade | 2020 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston |
PublicationTitle | Journal of atmospheric and oceanic technology |
PublicationYear | 2023 |
Publisher | American Meteorological Society |
Publisher_xml | – name: American Meteorological Society |
References | (bib39) 2004 Trömel, S. (bib52) 2021; 21 Wang, C. (bib54) 2021; 14 Jing, J. (bib21) 2019; 19 Shi, X. (bib46) 2015 Kato, A. (bib22) 2009; 5 Surcel, M. (bib49) 2015; 72 Myhre, G. (bib35) 2019; 9 Bertasius, G. (bib8) 2021 Bessho, K. (bib9) 2016; 94 Luo, W. (bib31) 2017 Yano, J.-I. (bib55) 2018; 99 Honda, T. (bib18) 2022a; 49 Kramar, M. R. (bib28) 2005; 133 Otsuka, S. (bib42) 2020 Tran, Q.-K. (bib51) 2019; 11 Yoshimi, K. (bib57) 2021; 16 Kim, D.-K. (bib25) 2022; 74 Ushio, T. (bib53) 2022 Kato, R. (bib23) 2022; 37 Kim, D.-K. (bib26) 2021 Baron, P. (bib6) 2021b; 11914 Han, L. (bib13) 2020; 58 Bechini, R. (bib7) 2017; 34 Nakamura, M. (bib37) 2008; 3 Han, L. (bib14) 2022a; 60 Nayak, D. R. (bib38) 2013; 72 Ayzel, G. (bib4) 2020; 13 Oprea, S. (bib40) 2022; 44 Shusse, Y. (bib48) 2015; 93 P.C., S. (bib43) 2016; 11 Nakakita, E. (bib36) 2017; 2017 Augros, C. (bib3) 2018; 144 Homeyer, C. R. (bib17) 2015; 72 Mirza, M. (bib34) 2014 Baron, P. (bib5) 2021a; 11859 Yao, S. (bib56) 2022; 15 Gou, Y. (bib12) 2019; 11 Ravuri, S. (bib45) 2021; 597 Han, L. (bib15) 2022b; 60 Otsuka, S. (bib41) 2016; 31 Le, H. (bib29) 2017 Shi, X. (bib47) 2017 Honda, T. (bib19) 2022b; 14 Mattos, E. V. (bib32) 2016; 121 Kikuchi, H. (bib24) 2020; 58 Isoda, F. (bib20) 2018; 14 Akbari Asanjan, A. (bib1) 2018; 123 Germann, U. (bib10) 2006; 63 Milletari, F. (bib33) 2016 Asai, K. (bib2) 2021; 38 Goodfellow, I. (bib11) 2014 Klein, B. (bib27) 2015 Li, L. (bib30) 1995; 34 Pulkkinen, S. (bib44) 2020; 58 He, K. (bib16) 2015 Tanamachi, R. L. (bib50) 2016; 31 |
References_xml | – year: 2014 ident: bib11 – volume: 44 start-page: 2806 year: 2022 ident: bib40 article-title: A review on deep learning techniques for video prediction – year: 2017 ident: bib47 – volume: 72 start-page: 32 year: 2013 ident: bib38 article-title: A survey on rainfall prediction using artificial neural network – start-page: 105774 year: 2021 ident: bib26 article-title: Improving precipitation nowcasting using a three-dimensional convolutional neural network model from multi parameter phased array weather radar observations – volume: 14 start-page: 5735 year: 2021 ident: bib54 article-title: Using conditional generative adversarial 3-D convolutional neural network for precise radar extrapolation – year: 2020 ident: bib42 – volume: 14 start-page: 64 year: 2018 ident: bib20 article-title: Temporal and spatial characteristics of localized rainfall on 26 July 2012 observed by phased array weather radar – volume: 11914 start-page: 1191416 year: 2021b ident: bib6 article-title: Comparative study of deep neural networks for very short-term prediction of torrential rains using polarimetric phased-array weather radar (MP-PAWR) – volume: 34 start-page: 1286 year: 1995 ident: bib30 article-title: Nowcasting of motion and growth of precipitation with radar over a complex orography – volume: 2017 start-page: 5962356 year: 2017 ident: bib36 article-title: Early detection of baby-rain-cell aloft in a severe storm and risk projection for urban flash flood – volume: 15 start-page: 7400 year: 2022 ident: bib56 article-title: An improved deep learning model for high-impact weather nowcasting – year: 2022 ident: bib53 – volume: 123 start-page: 12 543 year: 2018 ident: bib1 article-title: Short-term precipitation forecast based on the PERSIANN system and LSTM recurrent neural networks – volume: 9 start-page: 16063 year: 2019 ident: bib35 article-title: Frequency of extreme precipitation increases extensively with event rareness under global warming – volume: 31 start-page: 329 year: 2016 ident: bib41 article-title: Precipitation nowcasting with three-dimensional space–time extrapolation of dense and frequent phased-array weather radar observations – volume: 597 start-page: 672 year: 2021 ident: bib45 article-title: Skilful precipitation nowcasting using deep generative models of radar – volume: 63 start-page: 2092 year: 2006 ident: bib10 article-title: Predictability of precipitation from continental radar images. Part IV: Limits to prediction – volume: 16 start-page: 410 year: 2021 ident: bib57 article-title: Study on water level prediction using observational data from a multi-parameter phased array weather radar – volume: 38 start-page: 1561 year: 2021 ident: bib2 article-title: Validation of X-band multiparameter phased array weather radar by comparing data from Doppler weather radar with a parabolic dish antenna – start-page: 565 year: 2016 ident: bib33 – volume: 37 start-page: 1553 year: 2022 ident: bib23 article-title: Prediction of meso-γ-scale local heavy rain by ground-based cloud radar assimilation with water vapor nudging – volume: 21 start-page: 17 291 year: 2021 ident: bib52 article-title: Overview: Fusion of radar polarimetry and numerical atmospheric modelling towards an improved understanding of cloud and precipitation processes – volume: 13 start-page: 2631 year: 2020 ident: bib4 article-title: RainNet v1.0: A convolutional neural network for radar-based precipitation nowcasting – volume: 11 start-page: 2303 year: 2019 ident: bib51 article-title: Multi-channel weather radar echo extrapolation with convolutional recurrent neural networks – volume: 144 start-page: 1352 year: 2018 ident: bib3 article-title: Assimilation of radar dual-polarization observations in the AROME model – volume: 11 start-page: 22 year: 2019 ident: bib12 article-title: Utilization of a C-band polarimetric radar for severe rainfall event analysis in complex terrain over eastern China – volume: 72 start-page: 870 year: 2015 ident: bib17 article-title: Microphysical characteristics of overshooting convection from polarimetric radar observations – volume: 60 year: 2022a ident: bib14 article-title: Convective precipitation nowcasting using U-Net model – year: 2014 ident: bib34 – volume: 58 start-page: 3657 year: 2020 ident: bib24 article-title: Initial observations for precipitation cores with X-band dual polarized phased array weather radar – volume: 14 start-page: e2021MS002823 year: 2022b ident: bib19 article-title: Development of the real-time 30-s-update big data assimilation system for convective rainfall prediction with a phased array weather radar: Description and preliminary evaluation – year: 2017 ident: bib31 – volume: 121 start-page: 14 201 year: 2016 ident: bib32 article-title: Polarimetric radar characteristics of storms with and without lightning activity – volume: 93 start-page: 215 year: 2015 ident: bib48 article-title: Relationship between precipitation core behavior in cumulonimbus clouds and surface rainfall intensity on 18 August 2011 in the Kanto region, Japan – volume: 99 start-page: 699 year: 2018 ident: bib55 article-title: Scientific challenges of convective-scale numerical weather prediction – volume: 11859 start-page: 118590T year: 2021a ident: bib5 article-title: Very short-term prediction of torrential rains using polarimetric phased-array radar (MP-PAWR) and deep neural networks – volume: 49 start-page: e2021GL096927 year: 2022a ident: bib18 article-title: Advantage of 30-s-updating numerical weather prediction with a phased-array weather radar over operational nowcast for a convective precipitation system – year: 2017 ident: bib29 – volume: 11 start-page: 1003 year: 2016 ident: bib43 article-title: Accuracy of quantitative precipitation estimation using operational weather radars: A case study of heavy rainfall on 9–10 September 2015 in the east Kanto region, Japan – volume: 133 start-page: 2608 year: 2005 ident: bib28 article-title: The “owl horn” radar signature in developing southern plains supercells – year: 2015 ident: bib46 – volume: 94 start-page: 151 year: 2016 ident: bib9 article-title: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites – year: 2004 ident: bib39 – volume: 19 start-page: 3988 year: 2019 ident: bib21 article-title: MLC-LSTM: Exploiting the spatiotemporal correlation between multi-level weather radar echoes for echo sequence extrapolation – volume: 3 start-page: 15 year: 2008 ident: bib37 article-title: Effects of global warming on heavy rainfall during the baiu season projected by a cloud-system-resolving model – volume: 58 start-page: 7845 year: 2020 ident: bib44 article-title: Nowcasting of convective rainfall using volumetric radar observations – volume: 31 start-page: 19 year: 2016 ident: bib50 article-title: Rapid-scan, polarimetric observations of central Oklahoma severe storms on 31 May 2013 – volume: 72 start-page: 216 year: 2015 ident: bib49 article-title: A study on the scale dependence of the predictability of precipitation patterns – volume: 5 start-page: 89 year: 2009 ident: bib22 article-title: Localized heavy rainfall near Zoshigaya, Tokyo, Japan on 5 August 2008 observed by X-band polarimetric radar: Preliminary analysis – volume: 34 start-page: 2637 year: 2017 ident: bib7 article-title: An enhanced optical flow technique for radar nowcasting of precipitation and winds – year: 2021 ident: bib8 – volume: 60 year: 2022b ident: bib15 article-title: Advancing radar nowcasting through deep transfer learning – year: 2015 ident: bib16 – start-page: 4840 year: 2015 ident: bib27 – volume: 58 start-page: 1487 year: 2020 ident: bib13 article-title: Convolutional neural network for convective storm nowcasting using 3-D Doppler weather radar data – volume: 74 start-page: 17 year: 2022 ident: bib25 article-title: Nowcasting meso-γ-scale convective storms using convolutional LSTM models and high-resolution radar observations |
SSID | ssj0001316 |
Score | 2.4185293 |
Snippet | We present nowcasts of sudden heavy rains on meso-
γ
scales (2–20 km) using the high spatiotemporal resolution of a multiparameter phased-array weather radar... We present nowcasts of sudden heavy rains on meso-γ scales (2–20 km) using the high spatiotemporal resolution of a multiparameter phased-array weather radar... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 803 |
SubjectTerms | Advection Convective cells Echoes Extrapolation Heavy precipitation Heavy rainfall High resolution Horizontal polarization Lead time Long short-term memory Meteorological radar Neural networks Nowcasting Precipitation Radar Radar arrays Radar reflectivity Rain Rainfall Recurrent neural networks Reflectance Spatial discrimination Spatial memory Spatial resolution Storms Warning systems Weather Weather radar |
Title | Nowcasting Multiparameter Phased-Array Weather Radar (MP-PAWR) Echoes of Localized Heavy Precipitation Using a 3D Recurrent Neural Network Trained with an Adversarial Technique |
URI | https://www.proquest.com/docview/3234297176 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZge0FICAaIsjHdA0KAZBY7v5wnVNaWaqIlqjptb5F_VZs0kpJ0oPFX8Sfic9yhvewxSiwlvvPd-fzl-wh563Y6zMR54laaUDQpEkkV04aaVBnkT0uFxD7kbJ5NT5OT8_Q8NNy6AKvcxkQfqE2jsUd-FPPYhU63-cg-r39SVI3C09UgofGQ7DKXadDPxeTrbSRmsZc-xcMo6uoSHk41XcY8OlmOj6d0RDkCE6LiE7ubl-6GZZ9rJk_Jk1AkwrC36jPywNZ7ZDBz9W3T-jY4vIPjq0tXbPqrPfL4u7ayDuzTz8nfefNbyw4RzeD_sEWC7x8IfIHywqUtQ4dtK2_grK__YCGNbOH9rKTl8GzxAcYuJtoOmhV8w1R3-ccamFr56wZKJMNYB15v8HgDkBCPYIF9e2R6AqT7cC8_7_HlsEQNCjceG74ga_AK0J1Ev4fllkD2BTmdjJduqoI0A9VuTjeUJ1rylUqkUZJpZURuhMkywaUSLM9XvBBKGy4Tw5RiQjKrFYusLDhXbqiJX5KduqntKwJZsmI6EpZzLZIiMooxG0eJRu6xlGV6QKKtYSodvg_lM64qv3_J08rbshpVnFdoy4oNyMfbIeuetOO-hw-21q7C-u2q_972-v7b--QRCtD3AN4DsrNpr-0bV6Zs1KH3xUOy-2U8Lxf_AJHE6UA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9ABCQlBABArMARAgLfWu168DQqFJlbaJsaJU7c3sK6JSsUMSqMKPqvoT2fGjqJfeerTstWzN7Dy__YaQNy7TYcaPhNtpsaIiEZIqpg01gTLInxbEEuuQ4zQcHomDk-Bkg1y0Z2EQVtnaxMpQm1JjjXzH574znS75CL_Mf1GcGoXd1XaERq0Wh3Z97lK25ef9vpPvW873BtPdIW2mClDts3BFudCSz5SQRkmmlYkjE5swjLlUMYuiGU9ipQ2XwjClWCyZ1Yp5ViacK7fU-O69d8imwBOtHbL5dZBmkyvbz_xq2Cq2v6iLhHjTR3U-eudgOnDf0qccoRBe8old94TXHUHl3fYekgdNWAq9Wo8ekQ1bbJHu2EXU5aIqvMM72D07deFtdbVF7n_TVhYN3_VjcpmW51ouEUMN1ZlepBT_iVAbyH44R2lob7GQaziuI06YSCMX8H6c0ax3PPkAA2eF7RLKGYzQuZ7-tQaGVv5ZQ4b0G_OGSRwqhANI8PswwU4BcksBEoy4j09rRDtMceqFW48lZpAFVDOnlxJ3Gkxbyton5OhWxPaUdIqysM8IhGLGtBdbznUsEs8oxqzvCY1sZwELdZd4rWBy3fwfDuw4y6uMKQrySpZ5P-c8R1nmrEs-Xi2Z1zQhNz283Uo7byzGMv-v389vvv2a3B1Ox6N8tJ8eviD3uAu6avjwNumsFr_tSxckrdSrRjOBfL_tzfAP6Zko5A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVEIICUEBESgwB0CAtMS73tjOAaHQJEofCVaUqr2ZfVlUKklIAlX4VZz5dcz4UdRLbz1a9lq25vHN7Mx-w9grzHSEC2OFlpYYrjpKcyOs465tHPGntRNN-5CjcTQ8Vgen7dMt9rc-C0NtlbVPLBy1m1vaI2-FMkTXiclH1Mqrtoi0N_i0-MFpghRVWutxGqWKHPrNBaZvq4_7PZT1aykH_enekFcTBrgNRbTmUlktc6O0M1pY45LYJS6KEqlNIuI4l53EWCe1csIYkWjhrRGB1x0pDS51Ib73FtuOERVVg21_7o_TySUOiLAYvEqlMI5RkaxqqojXrYNpH7-lxyW1RQSdD-IqKl4FhQLpBvfZvSpEhW6pUw_Ylp_tsOYIo-v5stiEhzewd36GoW5xtcPufrFezyru64fsz3h-YfWK-qmhON9L9OLfqe0G0m8Imo53l0u9gZMy-oSJdnoJb0cpT7snk3fQR4_sVzDP4YiA9uy3dzD0-tcGUqLiWFSs4lB0O4CGsAcTqhoQzxQQ2Qh-_LjsbocpTcDA9bTdDHoGxfzplSarg2lNX_uIHd-I2B6zxmw-808YRCoXNki8lDZRncAZIXwYKEvMZ20R2SYLasFktvo_Gt5xnhXZU9zOCllmvUzKjGSZiSZ7f7lkUVKGXPfwbi3trPIeq-y_rj-9_vZLdhuNIDvaHx8-Y3ckxl9lJ_Eua6yXP_1zjJfW5kWlmMC-3rQt_ANAii0Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nowcasting+Multiparameter+Phased-Array+Weather+Radar+%28MP-PAWR%29+Echoes+of+Localized+Heavy+Precipitation+Using+a+3D+Recurrent+Neural+Network+Trained+with+an+Adversarial+Technique&rft.jtitle=Journal+of+atmospheric+and+oceanic+technology&rft.au=Baron%2C+Philippe&rft.au=Kawashima%2C+Kohei&rft.au=Kim%2C+Dong-Kyun&rft.au=Hanado%2C+Hiroshi&rft.date=2023-07-01&rft.issn=0739-0572&rft.eissn=1520-0426&rft.volume=40&rft.issue=7&rft.spage=803&rft.epage=821&rft_id=info:doi/10.1175%2FJTECH-D-22-0109.1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1175_JTECH_D_22_0109_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0739-0572&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0739-0572&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0739-0572&client=summon |