Nowcasting Multiparameter Phased-Array Weather Radar (MP-PAWR) Echoes of Localized Heavy Precipitation Using a 3D Recurrent Neural Network Trained with an Adversarial Technique

We present nowcasts of sudden heavy rains on meso- γ scales (2–20 km) using the high spatiotemporal resolution of a multiparameter phased-array weather radar (MP-PAWR) sensitive to rain droplets. The onset of typical storms is successfully predicted with 10-min lead time, i.e., the current predictab...

Full description

Saved in:
Bibliographic Details
Published inJournal of atmospheric and oceanic technology Vol. 40; no. 7; pp. 803 - 821
Main Authors Baron, Philippe, Kawashima, Kohei, Kim, Dong-Kyun, Hanado, Hiroshi, Kawamura, Seiji, Maesaka, Takeshi, Nakagawa, Katsuhiro, Satoh, Shinsuke, Ushio, Tomoo
Format Journal Article
LanguageEnglish
Published Boston American Meteorological Society 01.07.2023
Subjects
Online AccessGet full text
ISSN0739-0572
1520-0426
DOI10.1175/JTECH-D-22-0109.1

Cover

Abstract We present nowcasts of sudden heavy rains on meso- γ scales (2–20 km) using the high spatiotemporal resolution of a multiparameter phased-array weather radar (MP-PAWR) sensitive to rain droplets. The onset of typical storms is successfully predicted with 10-min lead time, i.e., the current predictability limit of rainfall caused by individual convective cores. A supervised recurrent neural network based on long short-term memory with 3D spatial convolutions (RN3D) is used to account for the horizontal and vertical changes of the convective cells with a time resolution of 30 s. The model uses radar reflectivity at horizontal polarization Z H and the differential reflectivity. The input parameters are defined in a volume of 64 × 64 × 8 km 3 with the lowest level at 1.9 km and a resolution of 0.4 × 0.4 × 0.25 km 3 . The prediction is a 10-min sequence of Z H at the lowest grid level. The model is trained with a large number of observations of summer 2020 and an adversarial technique. RN3D is tested with different types of rapidly evolving localized heavy rainfalls of summers 2018 and 2019. The model performance is compared to that of an advection model for 3D extrapolation of PAWR echoes (A3DM). RN3D better predicts the formation and dissipation of precipitation. However, RN3D tends to underestimate heavy rainfall especially when the storm is well developed. In this phase of the storm, A3DM nowcast scores are found slightly higher. The high skill of RN3D to predict the onset of sudden localized rainfall is illustrated with an example for which RN3D outperforms the operational precipitation nowcasting system of Japan Meteorological Agency (JMA).
AbstractList We present nowcasts of sudden heavy rains on meso-γ scales (2–20 km) using the high spatiotemporal resolution of a multiparameter phased-array weather radar (MP-PAWR) sensitive to rain droplets. The onset of typical storms is successfully predicted with 10-min lead time, i.e., the current predictability limit of rainfall caused by individual convective cores. A supervised recurrent neural network based on long short-term memory with 3D spatial convolutions (RN3D) is used to account for the horizontal and vertical changes of the convective cells with a time resolution of 30 s. The model uses radar reflectivity at horizontal polarization ZH and the differential reflectivity. The input parameters are defined in a volume of 64 × 64 × 8 km3 with the lowest level at 1.9 km and a resolution of 0.4 × 0.4 × 0.25 km3. The prediction is a 10-min sequence of ZH at the lowest grid level. The model is trained with a large number of observations of summer 2020 and an adversarial technique. RN3D is tested with different types of rapidly evolving localized heavy rainfalls of summers 2018 and 2019. The model performance is compared to that of an advection model for 3D extrapolation of PAWR echoes (A3DM). RN3D better predicts the formation and dissipation of precipitation. However, RN3D tends to underestimate heavy rainfall especially when the storm is well developed. In this phase of the storm, A3DM nowcast scores are found slightly higher. The high skill of RN3D to predict the onset of sudden localized rainfall is illustrated with an example for which RN3D outperforms the operational precipitation nowcasting system of Japan Meteorological Agency (JMA).Significance StatementTemporal extrapolation of radar observations is a means of nowcasting sudden heavy rains, i.e., forecasts with a few tens of minutes and a high spatial resolution better than 500 m. They are necessary to set up warning systems to anticipate damage to infrastructure and reduce the fatalities these storms cause. It is a difficult task due to the storm suddenness, restricted area, and nonlinear behavior that are not well captured by current operational observation and numerical systems. In this study, we use a new high-resolution weather radar with polarimetric information and a 3D recurrent neural network to improve 10-min nowcasts, the current limit of operational systems. This is a first and essential step before applying such a method for increasing the prediction lead time.
We present nowcasts of sudden heavy rains on meso- γ scales (2–20 km) using the high spatiotemporal resolution of a multiparameter phased-array weather radar (MP-PAWR) sensitive to rain droplets. The onset of typical storms is successfully predicted with 10-min lead time, i.e., the current predictability limit of rainfall caused by individual convective cores. A supervised recurrent neural network based on long short-term memory with 3D spatial convolutions (RN3D) is used to account for the horizontal and vertical changes of the convective cells with a time resolution of 30 s. The model uses radar reflectivity at horizontal polarization Z H and the differential reflectivity. The input parameters are defined in a volume of 64 × 64 × 8 km 3 with the lowest level at 1.9 km and a resolution of 0.4 × 0.4 × 0.25 km 3 . The prediction is a 10-min sequence of Z H at the lowest grid level. The model is trained with a large number of observations of summer 2020 and an adversarial technique. RN3D is tested with different types of rapidly evolving localized heavy rainfalls of summers 2018 and 2019. The model performance is compared to that of an advection model for 3D extrapolation of PAWR echoes (A3DM). RN3D better predicts the formation and dissipation of precipitation. However, RN3D tends to underestimate heavy rainfall especially when the storm is well developed. In this phase of the storm, A3DM nowcast scores are found slightly higher. The high skill of RN3D to predict the onset of sudden localized rainfall is illustrated with an example for which RN3D outperforms the operational precipitation nowcasting system of Japan Meteorological Agency (JMA).
Author Hanado, Hiroshi
Maesaka, Takeshi
Kawashima, Kohei
Nakagawa, Katsuhiro
Kawamura, Seiji
Satoh, Shinsuke
Kim, Dong-Kyun
Ushio, Tomoo
Baron, Philippe
Author_xml – sequence: 1
  givenname: Philippe
  orcidid: 0000-0001-7141-5260
  surname: Baron
  fullname: Baron, Philippe
  organization: a National Institute of Information and Communications Technology, Koganei, Japan, b Osaka University, Suita, Japan
– sequence: 2
  givenname: Kohei
  surname: Kawashima
  fullname: Kawashima, Kohei
  organization: b Osaka University, Suita, Japan
– sequence: 3
  givenname: Dong-Kyun
  surname: Kim
  fullname: Kim, Dong-Kyun
  organization: b Osaka University, Suita, Japan
– sequence: 4
  givenname: Hiroshi
  surname: Hanado
  fullname: Hanado, Hiroshi
  organization: a National Institute of Information and Communications Technology, Koganei, Japan
– sequence: 5
  givenname: Seiji
  surname: Kawamura
  fullname: Kawamura, Seiji
  organization: a National Institute of Information and Communications Technology, Koganei, Japan
– sequence: 6
  givenname: Takeshi
  surname: Maesaka
  fullname: Maesaka, Takeshi
  organization: c National Research Institute for Earth Science and Disaster Resilience, Tsukuba, Japan
– sequence: 7
  givenname: Katsuhiro
  surname: Nakagawa
  fullname: Nakagawa, Katsuhiro
  organization: a National Institute of Information and Communications Technology, Koganei, Japan
– sequence: 8
  givenname: Shinsuke
  surname: Satoh
  fullname: Satoh, Shinsuke
  organization: a National Institute of Information and Communications Technology, Koganei, Japan
– sequence: 9
  givenname: Tomoo
  surname: Ushio
  fullname: Ushio, Tomoo
  organization: b Osaka University, Suita, Japan
BookMark eNp9kU9vEzEQxS1UJNLCB-BmiQscttjezf45Rk2gRWmJolQ9WrP2LOuSrsPY2yh8qn5EHNoTB04jjd5vnua9U3Yy-AEZey_FuZTV9PO3zeLiMptnSmVCiuZcvmITOVUiE4UqT9hEVHmTiWml3rDTEO6FEDKX5YQ93fi9gRDd8INfj9vodkDwgBGJr3oIaLMZERz4HULs03INFoh_vF5lq9nd-hNfmN5j4L7jS29g636j5ZcIjwe-IjRu5yJE5wd-G44OwPM5X6MZiXCI_AZHgm0ace_pJ98QuCHxexd7DgOf2UekAOSSZoOmH9yvEd-y1x1sA757mWfs9stik35ffv96dTFbZib9FTNVGFBdW4BtQZrW1pWtbVnWCtpaVlWnmro1VkFhZdvKGiSaVgqERqk2oTY_Yx-e7-7IJ9sQ9b0faUiWOld5oZpKVmVSyWeVIR8CYad35B6ADloKfSxG_y1Gz7VS-liMlomp_mHMS0oxBbD9D_kHZbOYgw
CitedBy_id crossref_primary_10_5194_amt_17_4675_2024
crossref_primary_10_1007_s41324_025_00606_3
crossref_primary_10_1587_transele_2024MMI0001
crossref_primary_10_5194_amt_18_619_2025
ContentType Journal Article
Copyright Copyright American Meteorological Society 2023
Copyright_xml – notice: Copyright American Meteorological Society 2023
DBID AAYXX
CITATION
3V.
7TG
7TN
7UA
7XB
88F
88I
8AF
8FD
8FE
8FG
8FK
8G5
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
L.G
L7M
M1Q
M2O
M2P
MBDVC
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
Q9U
S0X
DOI 10.1175/JTECH-D-22-0109.1
DatabaseName CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Military Database
Research Library
Science Database
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
SIRS Editorial
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest AP Science
SciTech Premium Collection
ProQuest Military Collection
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
Oceanic Abstracts
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies Database with Aerospace
ProQuest Central Basic
ProQuest Science Journals
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Oceanography
EISSN 1520-0426
EndPage 821
ExternalDocumentID 10_1175_JTECH_D_22_0109_1
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID .4S
.DC
29J
2WC
4.4
5GY
7XC
88I
8AF
8CJ
8FE
8FG
8FH
8G5
8R4
8R5
AAYXX
ABDBF
ABDNZ
ABUWG
ACGFO
ACGOD
ACUHS
ACYGS
AENEX
AEUYN
AFKRA
AFRAH
AGFAN
ALMA_UNASSIGNED_HOLDINGS
ALQLQ
ARAPS
ARCSS
ATCPS
AZQEC
BENPR
BES
BGLVJ
BHPHI
BKSAR
BPHCQ
C1A
CAG
CCPQU
CITATION
COF
CS3
D1J
D1K
DU5
DWQXO
E3Z
EAD
EAP
EBS
EDH
EDO
EJD
EMK
EPL
EST
ESX
F8P
FRP
GNUQQ
GUQSH
H13
HCIFZ
I-F
K6-
LK5
M1Q
M2O
M2P
M2Q
M7R
MV1
OK1
P2P
P62
PATMY
PCBAR
PHGZM
PHGZT
PQQKQ
PROAC
PYCSY
Q2X
QF4
QM1
QN7
QO4
RWA
RWE
RWL
RXW
S0X
TAE
TR2
TUS
U5U
UNMZH
ZY4
3V.
7TG
7TN
7UA
7XB
8FD
8FK
C1K
F1W
H8D
H96
KL.
L.G
L7M
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c316t-24ca2fb4adba1cbd87d8d6682ab8177f298bcd2a4d1bb18a1ecb10ea922b4cad3
IEDL.DBID 8FG
ISSN 0739-0572
IngestDate Sat Aug 23 14:37:50 EDT 2025
Tue Jul 01 01:35:47 EDT 2025
Thu Apr 24 23:11:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://www.ametsoc.org/PUBSReuseLicenses
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-24ca2fb4adba1cbd87d8d6682ab8177f298bcd2a4d1bb18a1ecb10ea922b4cad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7141-5260
OpenAccessLink https://journals.ametsoc.org/downloadpdf/journals/atot/40/7/JTECH-D-22-0109.1.pdf
PQID 3234297176
PQPubID 33207
PageCount 19
ParticipantIDs proquest_journals_3234297176
crossref_primary_10_1175_JTECH_D_22_0109_1
crossref_citationtrail_10_1175_JTECH_D_22_0109_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-00
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-00
PublicationDecade 2020
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationTitle Journal of atmospheric and oceanic technology
PublicationYear 2023
Publisher American Meteorological Society
Publisher_xml – name: American Meteorological Society
References (bib39) 2004
Trömel, S. (bib52) 2021; 21
Wang, C. (bib54) 2021; 14
Jing, J. (bib21) 2019; 19
Shi, X. (bib46) 2015
Kato, A. (bib22) 2009; 5
Surcel, M. (bib49) 2015; 72
Myhre, G. (bib35) 2019; 9
Bertasius, G. (bib8) 2021
Bessho, K. (bib9) 2016; 94
Luo, W. (bib31) 2017
Yano, J.-I. (bib55) 2018; 99
Honda, T. (bib18) 2022a; 49
Kramar, M. R. (bib28) 2005; 133
Otsuka, S. (bib42) 2020
Tran, Q.-K. (bib51) 2019; 11
Yoshimi, K. (bib57) 2021; 16
Kim, D.-K. (bib25) 2022; 74
Ushio, T. (bib53) 2022
Kato, R. (bib23) 2022; 37
Kim, D.-K. (bib26) 2021
Baron, P. (bib6) 2021b; 11914
Han, L. (bib13) 2020; 58
Bechini, R. (bib7) 2017; 34
Nakamura, M. (bib37) 2008; 3
Han, L. (bib14) 2022a; 60
Nayak, D. R. (bib38) 2013; 72
Ayzel, G. (bib4) 2020; 13
Oprea, S. (bib40) 2022; 44
Shusse, Y. (bib48) 2015; 93
P.C., S. (bib43) 2016; 11
Nakakita, E. (bib36) 2017; 2017
Augros, C. (bib3) 2018; 144
Homeyer, C. R. (bib17) 2015; 72
Mirza, M. (bib34) 2014
Baron, P. (bib5) 2021a; 11859
Yao, S. (bib56) 2022; 15
Gou, Y. (bib12) 2019; 11
Ravuri, S. (bib45) 2021; 597
Han, L. (bib15) 2022b; 60
Otsuka, S. (bib41) 2016; 31
Le, H. (bib29) 2017
Shi, X. (bib47) 2017
Honda, T. (bib19) 2022b; 14
Mattos, E. V. (bib32) 2016; 121
Kikuchi, H. (bib24) 2020; 58
Isoda, F. (bib20) 2018; 14
Akbari Asanjan, A. (bib1) 2018; 123
Germann, U. (bib10) 2006; 63
Milletari, F. (bib33) 2016
Asai, K. (bib2) 2021; 38
Goodfellow, I. (bib11) 2014
Klein, B. (bib27) 2015
Li, L. (bib30) 1995; 34
Pulkkinen, S. (bib44) 2020; 58
He, K. (bib16) 2015
Tanamachi, R. L. (bib50) 2016; 31
References_xml – year: 2014
  ident: bib11
– volume: 44
  start-page: 2806
  year: 2022
  ident: bib40
  article-title: A review on deep learning techniques for video prediction
– year: 2017
  ident: bib47
– volume: 72
  start-page: 32
  year: 2013
  ident: bib38
  article-title: A survey on rainfall prediction using artificial neural network
– start-page: 105774
  year: 2021
  ident: bib26
  article-title: Improving precipitation nowcasting using a three-dimensional convolutional neural network model from multi parameter phased array weather radar observations
– volume: 14
  start-page: 5735
  year: 2021
  ident: bib54
  article-title: Using conditional generative adversarial 3-D convolutional neural network for precise radar extrapolation
– year: 2020
  ident: bib42
– volume: 14
  start-page: 64
  year: 2018
  ident: bib20
  article-title: Temporal and spatial characteristics of localized rainfall on 26 July 2012 observed by phased array weather radar
– volume: 11914
  start-page: 1191416
  year: 2021b
  ident: bib6
  article-title: Comparative study of deep neural networks for very short-term prediction of torrential rains using polarimetric phased-array weather radar (MP-PAWR)
– volume: 34
  start-page: 1286
  year: 1995
  ident: bib30
  article-title: Nowcasting of motion and growth of precipitation with radar over a complex orography
– volume: 2017
  start-page: 5962356
  year: 2017
  ident: bib36
  article-title: Early detection of baby-rain-cell aloft in a severe storm and risk projection for urban flash flood
– volume: 15
  start-page: 7400
  year: 2022
  ident: bib56
  article-title: An improved deep learning model for high-impact weather nowcasting
– year: 2022
  ident: bib53
– volume: 123
  start-page: 12 543
  year: 2018
  ident: bib1
  article-title: Short-term precipitation forecast based on the PERSIANN system and LSTM recurrent neural networks
– volume: 9
  start-page: 16063
  year: 2019
  ident: bib35
  article-title: Frequency of extreme precipitation increases extensively with event rareness under global warming
– volume: 31
  start-page: 329
  year: 2016
  ident: bib41
  article-title: Precipitation nowcasting with three-dimensional space–time extrapolation of dense and frequent phased-array weather radar observations
– volume: 597
  start-page: 672
  year: 2021
  ident: bib45
  article-title: Skilful precipitation nowcasting using deep generative models of radar
– volume: 63
  start-page: 2092
  year: 2006
  ident: bib10
  article-title: Predictability of precipitation from continental radar images. Part IV: Limits to prediction
– volume: 16
  start-page: 410
  year: 2021
  ident: bib57
  article-title: Study on water level prediction using observational data from a multi-parameter phased array weather radar
– volume: 38
  start-page: 1561
  year: 2021
  ident: bib2
  article-title: Validation of X-band multiparameter phased array weather radar by comparing data from Doppler weather radar with a parabolic dish antenna
– start-page: 565
  year: 2016
  ident: bib33
– volume: 37
  start-page: 1553
  year: 2022
  ident: bib23
  article-title: Prediction of meso-γ-scale local heavy rain by ground-based cloud radar assimilation with water vapor nudging
– volume: 21
  start-page: 17 291
  year: 2021
  ident: bib52
  article-title: Overview: Fusion of radar polarimetry and numerical atmospheric modelling towards an improved understanding of cloud and precipitation processes
– volume: 13
  start-page: 2631
  year: 2020
  ident: bib4
  article-title: RainNet v1.0: A convolutional neural network for radar-based precipitation nowcasting
– volume: 11
  start-page: 2303
  year: 2019
  ident: bib51
  article-title: Multi-channel weather radar echo extrapolation with convolutional recurrent neural networks
– volume: 144
  start-page: 1352
  year: 2018
  ident: bib3
  article-title: Assimilation of radar dual-polarization observations in the AROME model
– volume: 11
  start-page: 22
  year: 2019
  ident: bib12
  article-title: Utilization of a C-band polarimetric radar for severe rainfall event analysis in complex terrain over eastern China
– volume: 72
  start-page: 870
  year: 2015
  ident: bib17
  article-title: Microphysical characteristics of overshooting convection from polarimetric radar observations
– volume: 60
  year: 2022a
  ident: bib14
  article-title: Convective precipitation nowcasting using U-Net model
– year: 2014
  ident: bib34
– volume: 58
  start-page: 3657
  year: 2020
  ident: bib24
  article-title: Initial observations for precipitation cores with X-band dual polarized phased array weather radar
– volume: 14
  start-page: e2021MS002823
  year: 2022b
  ident: bib19
  article-title: Development of the real-time 30-s-update big data assimilation system for convective rainfall prediction with a phased array weather radar: Description and preliminary evaluation
– year: 2017
  ident: bib31
– volume: 121
  start-page: 14 201
  year: 2016
  ident: bib32
  article-title: Polarimetric radar characteristics of storms with and without lightning activity
– volume: 93
  start-page: 215
  year: 2015
  ident: bib48
  article-title: Relationship between precipitation core behavior in cumulonimbus clouds and surface rainfall intensity on 18 August 2011 in the Kanto region, Japan
– volume: 99
  start-page: 699
  year: 2018
  ident: bib55
  article-title: Scientific challenges of convective-scale numerical weather prediction
– volume: 11859
  start-page: 118590T
  year: 2021a
  ident: bib5
  article-title: Very short-term prediction of torrential rains using polarimetric phased-array radar (MP-PAWR) and deep neural networks
– volume: 49
  start-page: e2021GL096927
  year: 2022a
  ident: bib18
  article-title: Advantage of 30-s-updating numerical weather prediction with a phased-array weather radar over operational nowcast for a convective precipitation system
– year: 2017
  ident: bib29
– volume: 11
  start-page: 1003
  year: 2016
  ident: bib43
  article-title: Accuracy of quantitative precipitation estimation using operational weather radars: A case study of heavy rainfall on 9–10 September 2015 in the east Kanto region, Japan
– volume: 133
  start-page: 2608
  year: 2005
  ident: bib28
  article-title: The “owl horn” radar signature in developing southern plains supercells
– year: 2015
  ident: bib46
– volume: 94
  start-page: 151
  year: 2016
  ident: bib9
  article-title: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites
– year: 2004
  ident: bib39
– volume: 19
  start-page: 3988
  year: 2019
  ident: bib21
  article-title: MLC-LSTM: Exploiting the spatiotemporal correlation between multi-level weather radar echoes for echo sequence extrapolation
– volume: 3
  start-page: 15
  year: 2008
  ident: bib37
  article-title: Effects of global warming on heavy rainfall during the baiu season projected by a cloud-system-resolving model
– volume: 58
  start-page: 7845
  year: 2020
  ident: bib44
  article-title: Nowcasting of convective rainfall using volumetric radar observations
– volume: 31
  start-page: 19
  year: 2016
  ident: bib50
  article-title: Rapid-scan, polarimetric observations of central Oklahoma severe storms on 31 May 2013
– volume: 72
  start-page: 216
  year: 2015
  ident: bib49
  article-title: A study on the scale dependence of the predictability of precipitation patterns
– volume: 5
  start-page: 89
  year: 2009
  ident: bib22
  article-title: Localized heavy rainfall near Zoshigaya, Tokyo, Japan on 5 August 2008 observed by X-band polarimetric radar: Preliminary analysis
– volume: 34
  start-page: 2637
  year: 2017
  ident: bib7
  article-title: An enhanced optical flow technique for radar nowcasting of precipitation and winds
– year: 2021
  ident: bib8
– volume: 60
  year: 2022b
  ident: bib15
  article-title: Advancing radar nowcasting through deep transfer learning
– year: 2015
  ident: bib16
– start-page: 4840
  year: 2015
  ident: bib27
– volume: 58
  start-page: 1487
  year: 2020
  ident: bib13
  article-title: Convolutional neural network for convective storm nowcasting using 3-D Doppler weather radar data
– volume: 74
  start-page: 17
  year: 2022
  ident: bib25
  article-title: Nowcasting meso-γ-scale convective storms using convolutional LSTM models and high-resolution radar observations
SSID ssj0001316
Score 2.4185293
Snippet We present nowcasts of sudden heavy rains on meso- γ scales (2–20 km) using the high spatiotemporal resolution of a multiparameter phased-array weather radar...
We present nowcasts of sudden heavy rains on meso-γ scales (2–20 km) using the high spatiotemporal resolution of a multiparameter phased-array weather radar...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 803
SubjectTerms Advection
Convective cells
Echoes
Extrapolation
Heavy precipitation
Heavy rainfall
High resolution
Horizontal polarization
Lead time
Long short-term memory
Meteorological radar
Neural networks
Nowcasting
Precipitation
Radar
Radar arrays
Radar reflectivity
Rain
Rainfall
Recurrent neural networks
Reflectance
Spatial discrimination
Spatial memory
Spatial resolution
Storms
Warning systems
Weather
Weather radar
Title Nowcasting Multiparameter Phased-Array Weather Radar (MP-PAWR) Echoes of Localized Heavy Precipitation Using a 3D Recurrent Neural Network Trained with an Adversarial Technique
URI https://www.proquest.com/docview/3234297176
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZge0FICAaIsjHdA0KAZBY7v5wnVNaWaqIlqjptb5F_VZs0kpJ0oPFX8Sfic9yhvewxSiwlvvPd-fzl-wh563Y6zMR54laaUDQpEkkV04aaVBnkT0uFxD7kbJ5NT5OT8_Q8NNy6AKvcxkQfqE2jsUd-FPPYhU63-cg-r39SVI3C09UgofGQ7DKXadDPxeTrbSRmsZc-xcMo6uoSHk41XcY8OlmOj6d0RDkCE6LiE7ubl-6GZZ9rJk_Jk1AkwrC36jPywNZ7ZDBz9W3T-jY4vIPjq0tXbPqrPfL4u7ayDuzTz8nfefNbyw4RzeD_sEWC7x8IfIHywqUtQ4dtK2_grK__YCGNbOH9rKTl8GzxAcYuJtoOmhV8w1R3-ccamFr56wZKJMNYB15v8HgDkBCPYIF9e2R6AqT7cC8_7_HlsEQNCjceG74ga_AK0J1Ev4fllkD2BTmdjJduqoI0A9VuTjeUJ1rylUqkUZJpZURuhMkywaUSLM9XvBBKGy4Tw5RiQjKrFYusLDhXbqiJX5KduqntKwJZsmI6EpZzLZIiMooxG0eJRu6xlGV6QKKtYSodvg_lM64qv3_J08rbshpVnFdoy4oNyMfbIeuetOO-hw-21q7C-u2q_972-v7b--QRCtD3AN4DsrNpr-0bV6Zs1KH3xUOy-2U8Lxf_AJHE6UA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9ABCQlBABArMARAgLfWu168DQqFJlbaJsaJU7c3sK6JSsUMSqMKPqvoT2fGjqJfeerTstWzN7Dy__YaQNy7TYcaPhNtpsaIiEZIqpg01gTLInxbEEuuQ4zQcHomDk-Bkg1y0Z2EQVtnaxMpQm1JjjXzH574znS75CL_Mf1GcGoXd1XaERq0Wh3Z97lK25ef9vpPvW873BtPdIW2mClDts3BFudCSz5SQRkmmlYkjE5swjLlUMYuiGU9ipQ2XwjClWCyZ1Yp5ViacK7fU-O69d8imwBOtHbL5dZBmkyvbz_xq2Cq2v6iLhHjTR3U-eudgOnDf0qccoRBe8old94TXHUHl3fYekgdNWAq9Wo8ekQ1bbJHu2EXU5aIqvMM72D07deFtdbVF7n_TVhYN3_VjcpmW51ouEUMN1ZlepBT_iVAbyH44R2lob7GQaziuI06YSCMX8H6c0ax3PPkAA2eF7RLKGYzQuZ7-tQaGVv5ZQ4b0G_OGSRwqhANI8PswwU4BcksBEoy4j09rRDtMceqFW48lZpAFVDOnlxJ3Gkxbyton5OhWxPaUdIqysM8IhGLGtBdbznUsEs8oxqzvCY1sZwELdZd4rWBy3fwfDuw4y6uMKQrySpZ5P-c8R1nmrEs-Xi2Z1zQhNz283Uo7byzGMv-v389vvv2a3B1Ox6N8tJ8eviD3uAu6avjwNumsFr_tSxckrdSrRjOBfL_tzfAP6Zko5A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVEIICUEBESgwB0CAtMS73tjOAaHQJEofCVaUqr2ZfVlUKklIAlX4VZz5dcz4UdRLbz1a9lq25vHN7Mx-w9grzHSEC2OFlpYYrjpKcyOs465tHPGntRNN-5CjcTQ8Vgen7dMt9rc-C0NtlbVPLBy1m1vaI2-FMkTXiclH1Mqrtoi0N_i0-MFpghRVWutxGqWKHPrNBaZvq4_7PZT1aykH_enekFcTBrgNRbTmUlktc6O0M1pY45LYJS6KEqlNIuI4l53EWCe1csIYkWjhrRGB1x0pDS51Ib73FtuOERVVg21_7o_TySUOiLAYvEqlMI5RkaxqqojXrYNpH7-lxyW1RQSdD-IqKl4FhQLpBvfZvSpEhW6pUw_Ylp_tsOYIo-v5stiEhzewd36GoW5xtcPufrFezyru64fsz3h-YfWK-qmhON9L9OLfqe0G0m8Imo53l0u9gZMy-oSJdnoJb0cpT7snk3fQR4_sVzDP4YiA9uy3dzD0-tcGUqLiWFSs4lB0O4CGsAcTqhoQzxQQ2Qh-_LjsbocpTcDA9bTdDHoGxfzplSarg2lNX_uIHd-I2B6zxmw-808YRCoXNki8lDZRncAZIXwYKEvMZ20R2SYLasFktvo_Gt5xnhXZU9zOCllmvUzKjGSZiSZ7f7lkUVKGXPfwbi3trPIeq-y_rj-9_vZLdhuNIDvaHx8-Y3ckxl9lJ_Eua6yXP_1zjJfW5kWlmMC-3rQt_ANAii0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nowcasting+Multiparameter+Phased-Array+Weather+Radar+%28MP-PAWR%29+Echoes+of+Localized+Heavy+Precipitation+Using+a+3D+Recurrent+Neural+Network+Trained+with+an+Adversarial+Technique&rft.jtitle=Journal+of+atmospheric+and+oceanic+technology&rft.au=Baron%2C+Philippe&rft.au=Kawashima%2C+Kohei&rft.au=Kim%2C+Dong-Kyun&rft.au=Hanado%2C+Hiroshi&rft.date=2023-07-01&rft.issn=0739-0572&rft.eissn=1520-0426&rft.volume=40&rft.issue=7&rft.spage=803&rft.epage=821&rft_id=info:doi/10.1175%2FJTECH-D-22-0109.1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1175_JTECH_D_22_0109_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0739-0572&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0739-0572&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0739-0572&client=summon