Erosion Rate Prediction Model for Levee-Floodwall Overtopping Applications in Fine-Grained Soils
Characterizing soil erosion and predicting levee erosion rates for various levee soils and storm conditions during floodwall overtopping events is necessary in designing levee-floodwall systems. In this study, a series of laboratory scaled levee-floodwall erosion tests were conducted to determine er...
Saved in:
Published in | Geotechnical and geological engineering Vol. 36; no. 5; pp. 2823 - 2838 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.10.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0960-3182 1573-1529 |
DOI | 10.1007/s10706-018-0505-z |
Cover
Loading…
Abstract | Characterizing soil erosion and predicting levee erosion rates for various levee soils and storm conditions during floodwall overtopping events is necessary in designing levee-floodwall systems. In this study, a series of laboratory scaled levee-floodwall erosion tests were conducted to determine erosion characteristics of fine grained soils subject to overtopping from different floodwall heights with variable flow-rates. A decreasing rate of erosion was observed as a pool of water was generated in the created scour hole at the crest of the levee model. The erosion rates were also assessed using jet erosion test (JET) and erosion function apparatus (EFA) tests. The results of levee-floodwall overtopping along with soil geotechnical characteristics such as plasticity index, compaction level, and saturation level of the levee soils as well as hydraulic parameters such as water overtopping velocity were used to develop a levee-floodwall erosion rate prediction model. Then, the results of JET and EFA were integrated to develop another prediction model for levee-floodwall erosion rate estimation. Consequently, the prediction models were evaluated by conducting additional tests and comparing the prediction results with the actual measured erosion rates. |
---|---|
AbstractList | Characterizing soil erosion and predicting levee erosion rates for various levee soils and storm conditions during floodwall overtopping events is necessary in designing levee-floodwall systems. In this study, a series of laboratory scaled levee-floodwall erosion tests were conducted to determine erosion characteristics of fine grained soils subject to overtopping from different floodwall heights with variable flow-rates. A decreasing rate of erosion was observed as a pool of water was generated in the created scour hole at the crest of the levee model. The erosion rates were also assessed using jet erosion test (JET) and erosion function apparatus (EFA) tests. The results of levee-floodwall overtopping along with soil geotechnical characteristics such as plasticity index, compaction level, and saturation level of the levee soils as well as hydraulic parameters such as water overtopping velocity were used to develop a levee-floodwall erosion rate prediction model. Then, the results of JET and EFA were integrated to develop another prediction model for levee-floodwall erosion rate estimation. Consequently, the prediction models were evaluated by conducting additional tests and comparing the prediction results with the actual measured erosion rates. |
Author | Bahri, Parham Safarian Osouli, Abdolreza |
Author_xml | – sequence: 1 givenname: Abdolreza surname: Osouli fullname: Osouli, Abdolreza email: aosouli@siue.edu organization: Civil Engineering Department, Southern Illinois University – sequence: 2 givenname: Parham Safarian surname: Bahri fullname: Bahri, Parham Safarian organization: Civil Engineering Department, Southern Illinois University |
BookMark | eNp9kF9LwzAUxYNMcE4_gG8Bn6P3pk27Po6xTWEy8c9z7Jp0ZNSmJt3EfXpTKwiCPl0unN8995xTMqhtrQm5QLhCgPTaI6SQMMAxAwGCHY7IEEUaMRQ8G5AhZAmwCMf8hJx6vwUAngAOycvMWW9sTR_yVtN7p5Up2m6_s0pXtLSOLvVeazavrFXveVXR1V671jaNqTd00jSVKfKO8NTUdG5qzRYuD0PRR2sqf0aOy7zy-vx7jsjzfPY0vWHL1eJ2OlmyIsKkZTwSQhRCletUJKqAMaaAMWKpIhXzHHhW5lGmRJlypTBE5usyitVaQBFrweNoRC77u42zbzvtW7m1O1cHS8m5yMYIIhZBhb2qCLG906VsnHnN3YdEkF2Rsi9ShiJlV6Q8BCb9xRSm_YrchqDVvyTvSR9c6o12Pz_9DX0CRRiJ0Q |
CitedBy_id | crossref_primary_10_1061__ASCE_GT_1943_5606_0002743 crossref_primary_10_1061__ASCE_GT_1943_5606_0002915 crossref_primary_10_1016_j_ress_2022_109030 crossref_primary_10_1007_s10706_024_03046_2 crossref_primary_10_1080_19648189_2020_1818629 |
Cites_doi | 10.1201/9781315375045-134 10.1145/355769.355773 10.2112/JCOASTRES-D-14-00079.1 10.1007/s10706-014-9762-7 10.1016/j.proeng.2016.07.587 10.1520/GTJ20160152 10.1061/9780784412787.189 10.1016/j.compfluid.2008.01.025 10.1061/(ASCE)1090-0241(2008)134:5(618) 10.21236/AD0774723 10.1016/j.coastaleng.2008.09.005 10.1061/(ASCE)GT.1943-5606.0000538 10.1061/(ASCE)1090-0241(2001)127:2(105) 10.1520/GTJ104336 10.1016/j.oceaneng.2014.12.012 10.1016/S1001-6058(11)60398-4 10.13031/2013.16492 10.13031/2013.22686 10.1061/9780784479087.117 10.1007/s10333-011-0288-9 10.1016/j.oceaneng.2012.09.006 10.1061/(ASCE)1090-0241(2004)130:4(373) |
ContentType | Journal Article |
Copyright | Springer International Publishing AG, part of Springer Nature 2018 Geotechnical and Geological Engineering is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: Springer International Publishing AG, part of Springer Nature 2018 – notice: Geotechnical and Geological Engineering is a copyright of Springer, (2018). All Rights Reserved. |
DBID | AAYXX CITATION 7TN 7UA 8FE 8FG ABJCF AEUYN AFKRA BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H96 HCIFZ L.G L6V M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s10706-018-0505-z |
DatabaseName | CrossRef Oceanic Abstracts Water Resources Abstracts ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection ProQuest One Academic Middle East (New) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-1529 |
EndPage | 2838 |
ExternalDocumentID | 10_1007_s10706_018_0505_z |
GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29H 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67M 67Z 6NX 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LK5 LLZTM M4Y M7R M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OVD P0- P19 PCBAR PF0 PT4 PT5 PTHSS QOK QOS R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7Y Z7Z Z85 Z86 ZMTXR ~02 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7TN 7UA ABRTQ C1K DWQXO F1W H96 L.G PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c316t-23555c5dfb756dc081701411fd3d42a029fa39d5f72dd11002bf34db50c4e5243 |
IEDL.DBID | 8FG |
ISSN | 0960-3182 |
IngestDate | Fri Jul 25 11:04:23 EDT 2025 Thu Apr 24 23:06:07 EDT 2025 Tue Jul 01 01:44:15 EDT 2025 Fri Feb 21 02:31:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | EFA Levee Prediction model Soil JET Overtopping Erosion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-23555c5dfb756dc081701411fd3d42a029fa39d5f72dd11002bf34db50c4e5243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2259810545 |
PQPubID | 2043601 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2259810545 crossref_primary_10_1007_s10706_018_0505_z crossref_citationtrail_10_1007_s10706_018_0505_z springer_journals_10_1007_s10706_018_0505_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20181000 2018-10-00 20181001 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 20181000 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Geotechnical and geological engineering |
PublicationTitleAbbrev | Geotech Geol Eng |
PublicationYear | 2018 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Baars S (2004) Peat dike failure in the Netherlands. Official Publication of the European Water Association (EWA) PanYLiLAminiFOvertopping erosion and failure mechanism of earthen levee strengthened by vegetated HPTRM systemOcean Eng20159613914810.1016/j.oceaneng.2014.12.012 Amini F, Li L, Xu Y (2013) Slope stability analysis of three earthen levee strengthening systems under hurricane overtopping flow conditions. In Geo-Congress. San Diego, CA, pp 1882–1891 Karimpour M, Heinzl K, Stendback E, Galle K, Zamiran S, Osouli A (2015) Scour characteristics of saturated levees due to floodwall overtopping. In: IFCEE, pp 1298–1307 Do XK, Kim M, Thao Nguyen HP, Jung K (2016) Analysis of landslide dam failure caused by overtopping. In 12th International conference on hydroinformatics. Procedia Engineering, pp 990–994 HansonGRobinsonKCookKScour bellow an everfall: part IIPrediction. Trans ASAE2002454957964 Villarini G, Smith J, Baeck M, Krajewski W (2011) Examining flood frequency distributions in the Midwest U.S. American Water Resources Association, p 447 OsouliAKarimpourMSafarian BahriPErosion characteristics of silty to clayey soils using EFA and lab-scaled levee-floodwall testsGeotech Test J201740339641010.1520/GTJ20160152 YuanSLiLAminiFTangHSensitivity of combined turbulent wave overtopping and storm surge overflow response to variations in levee geometryJ Coast Res201531370271310.2112/JCOASTRES-D-14-00079.1 ASTM-D5852Standard test method for erodibility determination of soil in the field or in the laboratory by the jet index method2007PhiladelphiaAnnual Book of ASTM Standards XiaoHHuangWTaoJNumerical modeling of wave overtopping a levee during Hurricane KatrinaComput Fluids200938599199610.1016/j.compfluid.2008.01.025 LiLAminiFCuipingKBriaudJLErosion resistance of HPTRM strengthened levee from combined wave and surgeGeotech Geol Eng201432484785710.1007/s10706-014-9762-7 MarotDRegazzoniPWahlTEnergy-based method for providing soil surface erodibility rankingsJ Geotech Geoenviron Eng2011137121290129310.1061/(ASCE)GT.1943-5606.0000538 Allen P, Capello S, Coffman D (2010) Comparison of submerged jet testing to field erosion rates in clay and sand channels, blackland prairie ecosystem, Texas. In: 2nd Joint federal interagency conference, Las Vegas HansonGHuntSLessons learned using laboratory JET method to measure soil erodibility of compacted soilsAppl Eng Agric20072330531210.13031/2013.22686 HansonGJCookKRApparatus, test procedures, and analytical methods to measure soil erodibility in situAppl Eng Agric20042045546210.13031/2013.16492 LuthiMFanninRJMillarRGA modified hole erosion test (HET-P) deviceGeotech Test J20123541510.1520/GTJ104336 WanCFFellRInvestigation of rate of erosion of soils in embankment damsJ Geotech Geoenviron Eng2004130437338010.1061/(ASCE)1090-0241(2004)130:4(373) Wahl TL (2010) A comparison of the hole erosion test and jet erosion test. In: Joint federal interagency conference on sedimentation and hydrologic modeling, Las Vegas HughesSANadalNCLaboratory study of combined wave overtopping and storm surge overflow of a leveeCoast Eng200956324425910.1016/j.coastaleng.2008.09.005 LasdonLSWarenADJainARatnerMDesign and testing of a generalized reduced gradient code for nonlinear programmingJ ACM Trans Math Softw197841345010.1145/355769.355773 YuMHWeiHYLiangYZhaoYInvestigation of non-cohesive levee breach by overtopping flowHydrodyn Ser B201325457257910.1016/S1001-6058(11)60398-4 JohnsonEBTestikFYRavichandranNSchoolerJLevee scour from overtopping storm waves and scour counter measuresOcean Eng201357728210.1016/j.oceaneng.2012.09.006 BriaudJTingFChenHCaoYHanWKwakKErosion function apparatus for scour rate predictionsJ Geotech Geoenviron Eng200112710511310.1061/(ASCE)1090-0241(2001)127:2(105) Shafii I, Briaud JL, Chen HC, Shidlovskaya A (2016) Relationship between soil erodibility and engineering properties. In: ICSE 2016. Harris, Whitehouse & Moxon (eds), Oxford TirpakSMUnited States army corps of engineers, Galveston district operational experiences and response to Hurricane IkeShore Beach20097726070 BriaudJLChenHCGovindasamyAVStoresundRLevee erosion by overtopping in New Orleans during the Katrina HurricaneJ Geotech Geoenviron Eng200813461863210.1061/(ASCE)1090-0241(2008)134:5(618) ChangTChenSHuangSShelter effect evaluation of the willow works bank protection method: a case study for Beinn River Reach 2009 Typhoon Morakot eventPaddy Water Environ201111153310.1007/s10333-011-0288-9 Lasdon LS, Fox R, Ratner M (1973) Nonlinear optimization using the generalized reduced gradient method. Tech. Memp. 325, Department of Operatioanl Research, Case Western University, Cleveland, Ohio SA Hughes (505_CR15) 2009; 56 H Xiao (505_CR31) 2009; 38 ASTM-D5852 (505_CR3) 2007 505_CR4 505_CR9 505_CR26 505_CR28 505_CR29 L Li (505_CR100) 2014; 32 JL Briaud (505_CR6) 2008; 134 G Hanson (505_CR13) 2007; 23 D Marot (505_CR21) 2011; 137 J Briaud (505_CR5) 2001; 127 S Yuan (505_CR33) 2015; 31 EB Johnson (505_CR16) 2013; 57 M Luthi (505_CR20) 2012; 35 SM Tirpak (505_CR27) 2009; 77 LS Lasdon (505_CR19) 1978; 4 Y Pan (505_CR23) 2015; 96 A Osouli (505_CR22) 2017; 40 GJ Hanson (505_CR12) 2004; 20 505_CR17 505_CR18 MH Yu (505_CR32) 2013; 25 505_CR1 T Chang (505_CR8) 2011; 11 505_CR2 CF Wan (505_CR30) 2004; 130 G Hanson (505_CR14) 2002; 45 |
References_xml | – reference: WanCFFellRInvestigation of rate of erosion of soils in embankment damsJ Geotech Geoenviron Eng2004130437338010.1061/(ASCE)1090-0241(2004)130:4(373) – reference: BriaudJLChenHCGovindasamyAVStoresundRLevee erosion by overtopping in New Orleans during the Katrina HurricaneJ Geotech Geoenviron Eng200813461863210.1061/(ASCE)1090-0241(2008)134:5(618) – reference: LuthiMFanninRJMillarRGA modified hole erosion test (HET-P) deviceGeotech Test J20123541510.1520/GTJ104336 – reference: Wahl TL (2010) A comparison of the hole erosion test and jet erosion test. In: Joint federal interagency conference on sedimentation and hydrologic modeling, Las Vegas – reference: HughesSANadalNCLaboratory study of combined wave overtopping and storm surge overflow of a leveeCoast Eng200956324425910.1016/j.coastaleng.2008.09.005 – reference: LasdonLSWarenADJainARatnerMDesign and testing of a generalized reduced gradient code for nonlinear programmingJ ACM Trans Math Softw197841345010.1145/355769.355773 – reference: HansonGJCookKRApparatus, test procedures, and analytical methods to measure soil erodibility in situAppl Eng Agric20042045546210.13031/2013.16492 – reference: Karimpour M, Heinzl K, Stendback E, Galle K, Zamiran S, Osouli A (2015) Scour characteristics of saturated levees due to floodwall overtopping. In: IFCEE, pp 1298–1307 – reference: ChangTChenSHuangSShelter effect evaluation of the willow works bank protection method: a case study for Beinn River Reach 2009 Typhoon Morakot eventPaddy Water Environ201111153310.1007/s10333-011-0288-9 – reference: YuMHWeiHYLiangYZhaoYInvestigation of non-cohesive levee breach by overtopping flowHydrodyn Ser B201325457257910.1016/S1001-6058(11)60398-4 – reference: JohnsonEBTestikFYRavichandranNSchoolerJLevee scour from overtopping storm waves and scour counter measuresOcean Eng201357728210.1016/j.oceaneng.2012.09.006 – reference: Allen P, Capello S, Coffman D (2010) Comparison of submerged jet testing to field erosion rates in clay and sand channels, blackland prairie ecosystem, Texas. In: 2nd Joint federal interagency conference, Las Vegas – reference: MarotDRegazzoniPWahlTEnergy-based method for providing soil surface erodibility rankingsJ Geotech Geoenviron Eng2011137121290129310.1061/(ASCE)GT.1943-5606.0000538 – reference: ASTM-D5852Standard test method for erodibility determination of soil in the field or in the laboratory by the jet index method2007PhiladelphiaAnnual Book of ASTM Standards – reference: XiaoHHuangWTaoJNumerical modeling of wave overtopping a levee during Hurricane KatrinaComput Fluids200938599199610.1016/j.compfluid.2008.01.025 – reference: OsouliAKarimpourMSafarian BahriPErosion characteristics of silty to clayey soils using EFA and lab-scaled levee-floodwall testsGeotech Test J201740339641010.1520/GTJ20160152 – reference: Shafii I, Briaud JL, Chen HC, Shidlovskaya A (2016) Relationship between soil erodibility and engineering properties. In: ICSE 2016. Harris, Whitehouse & Moxon (eds), Oxford – reference: Amini F, Li L, Xu Y (2013) Slope stability analysis of three earthen levee strengthening systems under hurricane overtopping flow conditions. In Geo-Congress. San Diego, CA, pp 1882–1891 – reference: LiLAminiFCuipingKBriaudJLErosion resistance of HPTRM strengthened levee from combined wave and surgeGeotech Geol Eng201432484785710.1007/s10706-014-9762-7 – reference: Do XK, Kim M, Thao Nguyen HP, Jung K (2016) Analysis of landslide dam failure caused by overtopping. In 12th International conference on hydroinformatics. Procedia Engineering, pp 990–994 – reference: HansonGRobinsonKCookKScour bellow an everfall: part IIPrediction. Trans ASAE2002454957964 – reference: Baars S (2004) Peat dike failure in the Netherlands. Official Publication of the European Water Association (EWA) – reference: PanYLiLAminiFOvertopping erosion and failure mechanism of earthen levee strengthened by vegetated HPTRM systemOcean Eng20159613914810.1016/j.oceaneng.2014.12.012 – reference: TirpakSMUnited States army corps of engineers, Galveston district operational experiences and response to Hurricane IkeShore Beach20097726070 – reference: HansonGHuntSLessons learned using laboratory JET method to measure soil erodibility of compacted soilsAppl Eng Agric20072330531210.13031/2013.22686 – reference: BriaudJTingFChenHCaoYHanWKwakKErosion function apparatus for scour rate predictionsJ Geotech Geoenviron Eng200112710511310.1061/(ASCE)1090-0241(2001)127:2(105) – reference: YuanSLiLAminiFTangHSensitivity of combined turbulent wave overtopping and storm surge overflow response to variations in levee geometryJ Coast Res201531370271310.2112/JCOASTRES-D-14-00079.1 – reference: Lasdon LS, Fox R, Ratner M (1973) Nonlinear optimization using the generalized reduced gradient method. Tech. Memp. 325, Department of Operatioanl Research, Case Western University, Cleveland, Ohio – reference: Villarini G, Smith J, Baeck M, Krajewski W (2011) Examining flood frequency distributions in the Midwest U.S. American Water Resources Association, p 447 – volume-title: Standard test method for erodibility determination of soil in the field or in the laboratory by the jet index method year: 2007 ident: 505_CR3 – ident: 505_CR26 doi: 10.1201/9781315375045-134 – volume: 4 start-page: 34 issue: 1 year: 1978 ident: 505_CR19 publication-title: J ACM Trans Math Softw doi: 10.1145/355769.355773 – volume: 31 start-page: 702 issue: 3 year: 2015 ident: 505_CR33 publication-title: J Coast Res doi: 10.2112/JCOASTRES-D-14-00079.1 – volume: 32 start-page: 847 issue: 4 year: 2014 ident: 505_CR100 publication-title: Geotech Geol Eng doi: 10.1007/s10706-014-9762-7 – ident: 505_CR9 doi: 10.1016/j.proeng.2016.07.587 – volume: 40 start-page: 396 issue: 3 year: 2017 ident: 505_CR22 publication-title: Geotech Test J doi: 10.1520/GTJ20160152 – volume: 77 start-page: 60 issue: 2 year: 2009 ident: 505_CR27 publication-title: Shore Beach – ident: 505_CR2 doi: 10.1061/9780784412787.189 – ident: 505_CR1 – volume: 38 start-page: 991 issue: 5 year: 2009 ident: 505_CR31 publication-title: Comput Fluids doi: 10.1016/j.compfluid.2008.01.025 – volume: 134 start-page: 618 year: 2008 ident: 505_CR6 publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)1090-0241(2008)134:5(618) – volume: 45 start-page: 957 issue: 4 year: 2002 ident: 505_CR14 publication-title: Prediction. Trans ASAE – ident: 505_CR29 – ident: 505_CR18 doi: 10.21236/AD0774723 – volume: 56 start-page: 244 issue: 3 year: 2009 ident: 505_CR15 publication-title: Coast Eng doi: 10.1016/j.coastaleng.2008.09.005 – volume: 137 start-page: 1290 issue: 12 year: 2011 ident: 505_CR21 publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)GT.1943-5606.0000538 – volume: 127 start-page: 105 year: 2001 ident: 505_CR5 publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)1090-0241(2001)127:2(105) – volume: 35 start-page: 1 issue: 4 year: 2012 ident: 505_CR20 publication-title: Geotech Test J doi: 10.1520/GTJ104336 – volume: 96 start-page: 139 year: 2015 ident: 505_CR23 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2014.12.012 – volume: 25 start-page: 572 issue: 4 year: 2013 ident: 505_CR32 publication-title: Hydrodyn Ser B doi: 10.1016/S1001-6058(11)60398-4 – volume: 20 start-page: 455 year: 2004 ident: 505_CR12 publication-title: Appl Eng Agric doi: 10.13031/2013.16492 – volume: 23 start-page: 305 year: 2007 ident: 505_CR13 publication-title: Appl Eng Agric doi: 10.13031/2013.22686 – ident: 505_CR17 doi: 10.1061/9780784479087.117 – volume: 11 start-page: 15 year: 2011 ident: 505_CR8 publication-title: Paddy Water Environ doi: 10.1007/s10333-011-0288-9 – ident: 505_CR4 – volume: 57 start-page: 72 year: 2013 ident: 505_CR16 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2012.09.006 – volume: 130 start-page: 373 issue: 4 year: 2004 ident: 505_CR30 publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)1090-0241(2004)130:4(373) – ident: 505_CR28 |
SSID | ssj0002601 |
Score | 2.1766117 |
Snippet | Characterizing soil erosion and predicting levee erosion rates for various levee soils and storm conditions during floodwall overtopping events is necessary in... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2823 |
SubjectTerms | Civil Engineering Earth and Environmental Science Earth Sciences Erosion mechanisms Erosion rates Fine-grained soils Flood predictions Flow rates Geotechnical Engineering & Applied Earth Sciences Hydrogeology Levees Levees & battures Original Paper Overtopping Prediction models Saturation Scour Soil compaction Soil conditions Soil erosion Storms Terrestrial Pollution Tests Waste Management/Waste Technology |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7ovOjB3-J0Sg6elIwmTdrkOGSbqKj4A-apNk0qw7KJmwr76026dptDBc9NH2le8vKV973vARwJpggNYoFDaSRmWhAch6HCnjBEaJZKGecE2avg7IGdd3inqOMelGz3MiWZR-qZYrcw__sV2HVfw6NFWOJESFGBpUb78aI5CcBOJSuX2Avy4mBaJjN_MvL9OppizLm0aH7btNbgvpznmGTyUn8fqnoympNw_OeHrMNqgT5RY7xdNmDB9DZhZUaTcAuemnai1lno1qJQdPPmEjnOech1TcuQxbjo0nwYg1uO8v4ZZxm6dj2d-07o4Rk1ZhLiqNtDLWsZt10fCqPRXb-bDbbhodW8Pz3DRRsGnPgkGGJqIQlPuE5VyAOdeE7SjzBCUu1rRmOPyjT2peZpSLV2CnRUpT7TinsJM5wyfwcqvX7P7ALSVGqZGkNiR2gMjVCcenHih1wxqQStgld6I0oKjXLXKiOLpurKbvEiu3iRW7xoVIXjySuvY4GOvwbXShdHxVkdRDaiSWFhJuNVOCk9Nn38q7G9f43eh2XqXJ7zAGtQGb69mwOLZ4bqsNi_X9_T61I priority: 102 providerName: Springer Nature |
Title | Erosion Rate Prediction Model for Levee-Floodwall Overtopping Applications in Fine-Grained Soils |
URI | https://link.springer.com/article/10.1007/s10706-018-0505-z https://www.proquest.com/docview/2259810545 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA5eXvRBvOJ0Sh58UoJtmrTJk1RZJyo6poP5VJsmlUFZ1U2F_Xpzutap4J4KvZzCOafJ15yT70PoSDDlUj8RJJBGEqaFS5IgUMQRxhWaZVImZYPsrX_ZY1d93q8W3EZVW2U9JpYDtS5SWCM_tXknhQUDjJ-9vBJQjYLqaiWhsYiW7Rt9yHMRtb9HYqDLKrn2_HKXMK2rmtOtc0H5Ly0IaLmRye95aQY2_9RHy2knWkdrFV7E4TTAG2jBDDfR6g8WwS301LIWrXtx1-JG3HmD0gu4G4POWY4tKsU35sMYEkGT-meS5_gOVJgLoGZ4xuGPEjYeDHFkLZM2KEcYje-LQT7aRr2o9XBxSSrhBJJ6rj8m1IIInnKdqYD7OnWAhM9lrptpTzOaOFRmiSc1zwKqNXDGUZV5TCvupMxwyrwdtDQshmYXYU2llpkxbgItiIERilMnSb2AKyaVoA3k1G6L04pVHMQt8njGhwyejq2nY_B0PGmg4-9HXqaUGvNubtaxiKuvaxTPcqGBTur4zC7_a2xvvrF9tEIhIcpWvSZaGr-9mwMLOcbqsMyrQ7Qcth-vW_Z43rrtdO3ZHg2_AHHT1Uw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB6x5bC7B8RrteXpw-4FZG3i2Il9QIhHS4FuQTwkbmkcOwgpaoEWEPwofiOeNKEs0nLjnGQOM5_tcWbm-wB-Sa59FiaSRsoqyo30aRJFmnrS-tLwTKmkaJDthK1zfnAhLibguZqFwbbKak8sNmrTT_Ef-R-HOyVdMsDF5vUNRdUorK5WEhojWBzaxwd3ZRts7O-6-P5mrNk422nRUlWApoEfDilzJ6xIhcl0JEKTeshQ53Pfz0xgOEs8prIkUEZkETMGCdWYzgJutPBSbgXjgbP7BSY5TrTWYHK70Tk-ed37kaCrYPcLi7lkVtVRR8N6UXF7lxTV4-jTvyfhOL19V5EtDrrmNEyVGSrZGkFqBiZsbxa-v-EtnINuw1l0ASUnLlMlx7dY7MEAE1RWy4nLg0nb3ltLm9gW_5DkOTlC3ec-kkFckq03RXNy1SNNZ5nuoVaFNeS0f5UP5uH8U5z6A2q9fs_-BGKYMiqz1k-w6TGyUgvmJWkQCc2VlqwOXuW2OC15zFFOI4_HDMzo6dh5OkZPx091WHv95HpE4vHRy0tVLOJyPQ_iMfrqsF7FZ_z4v8YWPja2Cl9bZ3_bcXu_c7gI3xiCo2gUXILa8PbOLruEZ6hXSpQR6H42sF8Ak_UOVQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-QPQgPnF95uBJCdukSZscF7WuD1TUBW-1aVIRSlfcVWF_vZluu7uKCp6bzmFmOvnKzHwfQvuSa8qCRJJQWUW4kZQkYaiJJy2VhmdKJeWA7FXQ7vDzB_FQ6Zz26mn3uiU53GkAlqai33wxWXNi8S0s_4QlASU2MphGs64aU0j0DmuNSjHwZZVke0G5JszqtuZPJr5eTGO0-a1BWt470RJarAAjbg0jvIymbLGCFiZoBFfR44mz6PyLbx1wxDev0HsBf2MQOsuxg6X40r5bSyKYUv9I8hxfgwxzF7gZnnBrooeNnwscOcvkFKQjrMF33ee8t4Y60cn9UZtUygkk9WnQJ8yhCJEKk-lQBCb1gIWPckoz4xvOEo-pLPGVEVnIjAHSOKYznxstvJRbwbi_jmaKbmE3EDZMGZVZSxOYQQyt1IJ5SeqHQnOlJWsgr3ZbnFa04qBukcdjQmTwdOw8HYOn40EDHYxeeRlyavx1eLuORVx9Xr3YFSElHTLkooEO6_iMH_9qbPNfp_fQ3M1xFF-eXV1soXkGqVJO8W2jmf7rm91xaKSvd8uM-wSmbNVp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Erosion+Rate+Prediction+Model+for+Levee-Floodwall+Overtopping+Applications+in+Fine-Grained+Soils&rft.jtitle=Geotechnical+and+geological+engineering&rft.au=Osouli%2C+Abdolreza&rft.au=Parham+Safarian+Bahri&rft.date=2018-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0960-3182&rft.eissn=1573-1529&rft.volume=36&rft.issue=5&rft.spage=2823&rft.epage=2838&rft_id=info:doi/10.1007%2Fs10706-018-0505-z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3182&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3182&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3182&client=summon |