Erosion Rate Prediction Model for Levee-Floodwall Overtopping Applications in Fine-Grained Soils

Characterizing soil erosion and predicting levee erosion rates for various levee soils and storm conditions during floodwall overtopping events is necessary in designing levee-floodwall systems. In this study, a series of laboratory scaled levee-floodwall erosion tests were conducted to determine er...

Full description

Saved in:
Bibliographic Details
Published inGeotechnical and geological engineering Vol. 36; no. 5; pp. 2823 - 2838
Main Authors Osouli, Abdolreza, Bahri, Parham Safarian
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.10.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0960-3182
1573-1529
DOI10.1007/s10706-018-0505-z

Cover

Loading…
Abstract Characterizing soil erosion and predicting levee erosion rates for various levee soils and storm conditions during floodwall overtopping events is necessary in designing levee-floodwall systems. In this study, a series of laboratory scaled levee-floodwall erosion tests were conducted to determine erosion characteristics of fine grained soils subject to overtopping from different floodwall heights with variable flow-rates. A decreasing rate of erosion was observed as a pool of water was generated in the created scour hole at the crest of the levee model. The erosion rates were also assessed using jet erosion test (JET) and erosion function apparatus (EFA) tests. The results of levee-floodwall overtopping along with soil geotechnical characteristics such as plasticity index, compaction level, and saturation level of the levee soils as well as hydraulic parameters such as water overtopping velocity were used to develop a levee-floodwall erosion rate prediction model. Then, the results of JET and EFA were integrated to develop another prediction model for levee-floodwall erosion rate estimation. Consequently, the prediction models were evaluated by conducting additional tests and comparing the prediction results with the actual measured erosion rates.
AbstractList Characterizing soil erosion and predicting levee erosion rates for various levee soils and storm conditions during floodwall overtopping events is necessary in designing levee-floodwall systems. In this study, a series of laboratory scaled levee-floodwall erosion tests were conducted to determine erosion characteristics of fine grained soils subject to overtopping from different floodwall heights with variable flow-rates. A decreasing rate of erosion was observed as a pool of water was generated in the created scour hole at the crest of the levee model. The erosion rates were also assessed using jet erosion test (JET) and erosion function apparatus (EFA) tests. The results of levee-floodwall overtopping along with soil geotechnical characteristics such as plasticity index, compaction level, and saturation level of the levee soils as well as hydraulic parameters such as water overtopping velocity were used to develop a levee-floodwall erosion rate prediction model. Then, the results of JET and EFA were integrated to develop another prediction model for levee-floodwall erosion rate estimation. Consequently, the prediction models were evaluated by conducting additional tests and comparing the prediction results with the actual measured erosion rates.
Author Bahri, Parham Safarian
Osouli, Abdolreza
Author_xml – sequence: 1
  givenname: Abdolreza
  surname: Osouli
  fullname: Osouli, Abdolreza
  email: aosouli@siue.edu
  organization: Civil Engineering Department, Southern Illinois University
– sequence: 2
  givenname: Parham Safarian
  surname: Bahri
  fullname: Bahri, Parham Safarian
  organization: Civil Engineering Department, Southern Illinois University
BookMark eNp9kF9LwzAUxYNMcE4_gG8Bn6P3pk27Po6xTWEy8c9z7Jp0ZNSmJt3EfXpTKwiCPl0unN8995xTMqhtrQm5QLhCgPTaI6SQMMAxAwGCHY7IEEUaMRQ8G5AhZAmwCMf8hJx6vwUAngAOycvMWW9sTR_yVtN7p5Up2m6_s0pXtLSOLvVeazavrFXveVXR1V671jaNqTd00jSVKfKO8NTUdG5qzRYuD0PRR2sqf0aOy7zy-vx7jsjzfPY0vWHL1eJ2OlmyIsKkZTwSQhRCletUJKqAMaaAMWKpIhXzHHhW5lGmRJlypTBE5usyitVaQBFrweNoRC77u42zbzvtW7m1O1cHS8m5yMYIIhZBhb2qCLG906VsnHnN3YdEkF2Rsi9ShiJlV6Q8BCb9xRSm_YrchqDVvyTvSR9c6o12Pz_9DX0CRRiJ0Q
CitedBy_id crossref_primary_10_1061__ASCE_GT_1943_5606_0002743
crossref_primary_10_1061__ASCE_GT_1943_5606_0002915
crossref_primary_10_1016_j_ress_2022_109030
crossref_primary_10_1007_s10706_024_03046_2
crossref_primary_10_1080_19648189_2020_1818629
Cites_doi 10.1201/9781315375045-134
10.1145/355769.355773
10.2112/JCOASTRES-D-14-00079.1
10.1007/s10706-014-9762-7
10.1016/j.proeng.2016.07.587
10.1520/GTJ20160152
10.1061/9780784412787.189
10.1016/j.compfluid.2008.01.025
10.1061/(ASCE)1090-0241(2008)134:5(618)
10.21236/AD0774723
10.1016/j.coastaleng.2008.09.005
10.1061/(ASCE)GT.1943-5606.0000538
10.1061/(ASCE)1090-0241(2001)127:2(105)
10.1520/GTJ104336
10.1016/j.oceaneng.2014.12.012
10.1016/S1001-6058(11)60398-4
10.13031/2013.16492
10.13031/2013.22686
10.1061/9780784479087.117
10.1007/s10333-011-0288-9
10.1016/j.oceaneng.2012.09.006
10.1061/(ASCE)1090-0241(2004)130:4(373)
ContentType Journal Article
Copyright Springer International Publishing AG, part of Springer Nature 2018
Geotechnical and Geological Engineering is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer International Publishing AG, part of Springer Nature 2018
– notice: Geotechnical and Geological Engineering is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
7TN
7UA
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H96
HCIFZ
L.G
L6V
M7S
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s10706-018-0505-z
DatabaseName CrossRef
Oceanic Abstracts
Water Resources Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
ProQuest One Academic Middle East (New)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1529
EndPage 2838
ExternalDocumentID 10_1007_s10706_018_0505_z
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29H
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67M
67Z
6NX
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LK5
LLZTM
M4Y
M7R
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OVD
P0-
P19
PCBAR
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7Y
Z7Z
Z85
Z86
ZMTXR
~02
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7TN
7UA
ABRTQ
C1K
DWQXO
F1W
H96
L.G
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c316t-23555c5dfb756dc081701411fd3d42a029fa39d5f72dd11002bf34db50c4e5243
IEDL.DBID 8FG
ISSN 0960-3182
IngestDate Fri Jul 25 11:04:23 EDT 2025
Thu Apr 24 23:06:07 EDT 2025
Tue Jul 01 01:44:15 EDT 2025
Fri Feb 21 02:31:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords EFA
Levee
Prediction model
Soil
JET
Overtopping
Erosion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-23555c5dfb756dc081701411fd3d42a029fa39d5f72dd11002bf34db50c4e5243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2259810545
PQPubID 2043601
PageCount 16
ParticipantIDs proquest_journals_2259810545
crossref_primary_10_1007_s10706_018_0505_z
crossref_citationtrail_10_1007_s10706_018_0505_z
springer_journals_10_1007_s10706_018_0505_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20181000
2018-10-00
20181001
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 20181000
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Geotechnical and geological engineering
PublicationTitleAbbrev Geotech Geol Eng
PublicationYear 2018
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Baars S (2004) Peat dike failure in the Netherlands. Official Publication of the European Water Association (EWA)
PanYLiLAminiFOvertopping erosion and failure mechanism of earthen levee strengthened by vegetated HPTRM systemOcean Eng20159613914810.1016/j.oceaneng.2014.12.012
Amini F, Li L, Xu Y (2013) Slope stability analysis of three earthen levee strengthening systems under hurricane overtopping flow conditions. In Geo-Congress. San Diego, CA, pp 1882–1891
Karimpour M, Heinzl K, Stendback E, Galle K, Zamiran S, Osouli A (2015) Scour characteristics of saturated levees due to floodwall overtopping. In: IFCEE, pp 1298–1307
Do XK, Kim M, Thao Nguyen HP, Jung K (2016) Analysis of landslide dam failure caused by overtopping. In 12th International conference on hydroinformatics. Procedia Engineering, pp 990–994
HansonGRobinsonKCookKScour bellow an everfall: part IIPrediction. Trans ASAE2002454957964
Villarini G, Smith J, Baeck M, Krajewski W (2011) Examining flood frequency distributions in the Midwest U.S. American Water Resources Association, p 447
OsouliAKarimpourMSafarian BahriPErosion characteristics of silty to clayey soils using EFA and lab-scaled levee-floodwall testsGeotech Test J201740339641010.1520/GTJ20160152
YuanSLiLAminiFTangHSensitivity of combined turbulent wave overtopping and storm surge overflow response to variations in levee geometryJ Coast Res201531370271310.2112/JCOASTRES-D-14-00079.1
ASTM-D5852Standard test method for erodibility determination of soil in the field or in the laboratory by the jet index method2007PhiladelphiaAnnual Book of ASTM Standards
XiaoHHuangWTaoJNumerical modeling of wave overtopping a levee during Hurricane KatrinaComput Fluids200938599199610.1016/j.compfluid.2008.01.025
LiLAminiFCuipingKBriaudJLErosion resistance of HPTRM strengthened levee from combined wave and surgeGeotech Geol Eng201432484785710.1007/s10706-014-9762-7
MarotDRegazzoniPWahlTEnergy-based method for providing soil surface erodibility rankingsJ Geotech Geoenviron Eng2011137121290129310.1061/(ASCE)GT.1943-5606.0000538
Allen P, Capello S, Coffman D (2010) Comparison of submerged jet testing to field erosion rates in clay and sand channels, blackland prairie ecosystem, Texas. In: 2nd Joint federal interagency conference, Las Vegas
HansonGHuntSLessons learned using laboratory JET method to measure soil erodibility of compacted soilsAppl Eng Agric20072330531210.13031/2013.22686
HansonGJCookKRApparatus, test procedures, and analytical methods to measure soil erodibility in situAppl Eng Agric20042045546210.13031/2013.16492
LuthiMFanninRJMillarRGA modified hole erosion test (HET-P) deviceGeotech Test J20123541510.1520/GTJ104336
WanCFFellRInvestigation of rate of erosion of soils in embankment damsJ Geotech Geoenviron Eng2004130437338010.1061/(ASCE)1090-0241(2004)130:4(373)
Wahl TL (2010) A comparison of the hole erosion test and jet erosion test. In: Joint federal interagency conference on sedimentation and hydrologic modeling, Las Vegas
HughesSANadalNCLaboratory study of combined wave overtopping and storm surge overflow of a leveeCoast Eng200956324425910.1016/j.coastaleng.2008.09.005
LasdonLSWarenADJainARatnerMDesign and testing of a generalized reduced gradient code for nonlinear programmingJ ACM Trans Math Softw197841345010.1145/355769.355773
YuMHWeiHYLiangYZhaoYInvestigation of non-cohesive levee breach by overtopping flowHydrodyn Ser B201325457257910.1016/S1001-6058(11)60398-4
JohnsonEBTestikFYRavichandranNSchoolerJLevee scour from overtopping storm waves and scour counter measuresOcean Eng201357728210.1016/j.oceaneng.2012.09.006
BriaudJTingFChenHCaoYHanWKwakKErosion function apparatus for scour rate predictionsJ Geotech Geoenviron Eng200112710511310.1061/(ASCE)1090-0241(2001)127:2(105)
Shafii I, Briaud JL, Chen HC, Shidlovskaya A (2016) Relationship between soil erodibility and engineering properties. In: ICSE 2016. Harris, Whitehouse & Moxon (eds), Oxford
TirpakSMUnited States army corps of engineers, Galveston district operational experiences and response to Hurricane IkeShore Beach20097726070
BriaudJLChenHCGovindasamyAVStoresundRLevee erosion by overtopping in New Orleans during the Katrina HurricaneJ Geotech Geoenviron Eng200813461863210.1061/(ASCE)1090-0241(2008)134:5(618)
ChangTChenSHuangSShelter effect evaluation of the willow works bank protection method: a case study for Beinn River Reach 2009 Typhoon Morakot eventPaddy Water Environ201111153310.1007/s10333-011-0288-9
Lasdon LS, Fox R, Ratner M (1973) Nonlinear optimization using the generalized reduced gradient method. Tech. Memp. 325, Department of Operatioanl Research, Case Western University, Cleveland, Ohio
SA Hughes (505_CR15) 2009; 56
H Xiao (505_CR31) 2009; 38
ASTM-D5852 (505_CR3) 2007
505_CR4
505_CR9
505_CR26
505_CR28
505_CR29
L Li (505_CR100) 2014; 32
JL Briaud (505_CR6) 2008; 134
G Hanson (505_CR13) 2007; 23
D Marot (505_CR21) 2011; 137
J Briaud (505_CR5) 2001; 127
S Yuan (505_CR33) 2015; 31
EB Johnson (505_CR16) 2013; 57
M Luthi (505_CR20) 2012; 35
SM Tirpak (505_CR27) 2009; 77
LS Lasdon (505_CR19) 1978; 4
Y Pan (505_CR23) 2015; 96
A Osouli (505_CR22) 2017; 40
GJ Hanson (505_CR12) 2004; 20
505_CR17
505_CR18
MH Yu (505_CR32) 2013; 25
505_CR1
T Chang (505_CR8) 2011; 11
505_CR2
CF Wan (505_CR30) 2004; 130
G Hanson (505_CR14) 2002; 45
References_xml – reference: WanCFFellRInvestigation of rate of erosion of soils in embankment damsJ Geotech Geoenviron Eng2004130437338010.1061/(ASCE)1090-0241(2004)130:4(373)
– reference: BriaudJLChenHCGovindasamyAVStoresundRLevee erosion by overtopping in New Orleans during the Katrina HurricaneJ Geotech Geoenviron Eng200813461863210.1061/(ASCE)1090-0241(2008)134:5(618)
– reference: LuthiMFanninRJMillarRGA modified hole erosion test (HET-P) deviceGeotech Test J20123541510.1520/GTJ104336
– reference: Wahl TL (2010) A comparison of the hole erosion test and jet erosion test. In: Joint federal interagency conference on sedimentation and hydrologic modeling, Las Vegas
– reference: HughesSANadalNCLaboratory study of combined wave overtopping and storm surge overflow of a leveeCoast Eng200956324425910.1016/j.coastaleng.2008.09.005
– reference: LasdonLSWarenADJainARatnerMDesign and testing of a generalized reduced gradient code for nonlinear programmingJ ACM Trans Math Softw197841345010.1145/355769.355773
– reference: HansonGJCookKRApparatus, test procedures, and analytical methods to measure soil erodibility in situAppl Eng Agric20042045546210.13031/2013.16492
– reference: Karimpour M, Heinzl K, Stendback E, Galle K, Zamiran S, Osouli A (2015) Scour characteristics of saturated levees due to floodwall overtopping. In: IFCEE, pp 1298–1307
– reference: ChangTChenSHuangSShelter effect evaluation of the willow works bank protection method: a case study for Beinn River Reach 2009 Typhoon Morakot eventPaddy Water Environ201111153310.1007/s10333-011-0288-9
– reference: YuMHWeiHYLiangYZhaoYInvestigation of non-cohesive levee breach by overtopping flowHydrodyn Ser B201325457257910.1016/S1001-6058(11)60398-4
– reference: JohnsonEBTestikFYRavichandranNSchoolerJLevee scour from overtopping storm waves and scour counter measuresOcean Eng201357728210.1016/j.oceaneng.2012.09.006
– reference: Allen P, Capello S, Coffman D (2010) Comparison of submerged jet testing to field erosion rates in clay and sand channels, blackland prairie ecosystem, Texas. In: 2nd Joint federal interagency conference, Las Vegas
– reference: MarotDRegazzoniPWahlTEnergy-based method for providing soil surface erodibility rankingsJ Geotech Geoenviron Eng2011137121290129310.1061/(ASCE)GT.1943-5606.0000538
– reference: ASTM-D5852Standard test method for erodibility determination of soil in the field or in the laboratory by the jet index method2007PhiladelphiaAnnual Book of ASTM Standards
– reference: XiaoHHuangWTaoJNumerical modeling of wave overtopping a levee during Hurricane KatrinaComput Fluids200938599199610.1016/j.compfluid.2008.01.025
– reference: OsouliAKarimpourMSafarian BahriPErosion characteristics of silty to clayey soils using EFA and lab-scaled levee-floodwall testsGeotech Test J201740339641010.1520/GTJ20160152
– reference: Shafii I, Briaud JL, Chen HC, Shidlovskaya A (2016) Relationship between soil erodibility and engineering properties. In: ICSE 2016. Harris, Whitehouse & Moxon (eds), Oxford
– reference: Amini F, Li L, Xu Y (2013) Slope stability analysis of three earthen levee strengthening systems under hurricane overtopping flow conditions. In Geo-Congress. San Diego, CA, pp 1882–1891
– reference: LiLAminiFCuipingKBriaudJLErosion resistance of HPTRM strengthened levee from combined wave and surgeGeotech Geol Eng201432484785710.1007/s10706-014-9762-7
– reference: Do XK, Kim M, Thao Nguyen HP, Jung K (2016) Analysis of landslide dam failure caused by overtopping. In 12th International conference on hydroinformatics. Procedia Engineering, pp 990–994
– reference: HansonGRobinsonKCookKScour bellow an everfall: part IIPrediction. Trans ASAE2002454957964
– reference: Baars S (2004) Peat dike failure in the Netherlands. Official Publication of the European Water Association (EWA)
– reference: PanYLiLAminiFOvertopping erosion and failure mechanism of earthen levee strengthened by vegetated HPTRM systemOcean Eng20159613914810.1016/j.oceaneng.2014.12.012
– reference: TirpakSMUnited States army corps of engineers, Galveston district operational experiences and response to Hurricane IkeShore Beach20097726070
– reference: HansonGHuntSLessons learned using laboratory JET method to measure soil erodibility of compacted soilsAppl Eng Agric20072330531210.13031/2013.22686
– reference: BriaudJTingFChenHCaoYHanWKwakKErosion function apparatus for scour rate predictionsJ Geotech Geoenviron Eng200112710511310.1061/(ASCE)1090-0241(2001)127:2(105)
– reference: YuanSLiLAminiFTangHSensitivity of combined turbulent wave overtopping and storm surge overflow response to variations in levee geometryJ Coast Res201531370271310.2112/JCOASTRES-D-14-00079.1
– reference: Lasdon LS, Fox R, Ratner M (1973) Nonlinear optimization using the generalized reduced gradient method. Tech. Memp. 325, Department of Operatioanl Research, Case Western University, Cleveland, Ohio
– reference: Villarini G, Smith J, Baeck M, Krajewski W (2011) Examining flood frequency distributions in the Midwest U.S. American Water Resources Association, p 447
– volume-title: Standard test method for erodibility determination of soil in the field or in the laboratory by the jet index method
  year: 2007
  ident: 505_CR3
– ident: 505_CR26
  doi: 10.1201/9781315375045-134
– volume: 4
  start-page: 34
  issue: 1
  year: 1978
  ident: 505_CR19
  publication-title: J ACM Trans Math Softw
  doi: 10.1145/355769.355773
– volume: 31
  start-page: 702
  issue: 3
  year: 2015
  ident: 505_CR33
  publication-title: J Coast Res
  doi: 10.2112/JCOASTRES-D-14-00079.1
– volume: 32
  start-page: 847
  issue: 4
  year: 2014
  ident: 505_CR100
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-014-9762-7
– ident: 505_CR9
  doi: 10.1016/j.proeng.2016.07.587
– volume: 40
  start-page: 396
  issue: 3
  year: 2017
  ident: 505_CR22
  publication-title: Geotech Test J
  doi: 10.1520/GTJ20160152
– volume: 77
  start-page: 60
  issue: 2
  year: 2009
  ident: 505_CR27
  publication-title: Shore Beach
– ident: 505_CR2
  doi: 10.1061/9780784412787.189
– ident: 505_CR1
– volume: 38
  start-page: 991
  issue: 5
  year: 2009
  ident: 505_CR31
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2008.01.025
– volume: 134
  start-page: 618
  year: 2008
  ident: 505_CR6
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)1090-0241(2008)134:5(618)
– volume: 45
  start-page: 957
  issue: 4
  year: 2002
  ident: 505_CR14
  publication-title: Prediction. Trans ASAE
– ident: 505_CR29
– ident: 505_CR18
  doi: 10.21236/AD0774723
– volume: 56
  start-page: 244
  issue: 3
  year: 2009
  ident: 505_CR15
  publication-title: Coast Eng
  doi: 10.1016/j.coastaleng.2008.09.005
– volume: 137
  start-page: 1290
  issue: 12
  year: 2011
  ident: 505_CR21
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)GT.1943-5606.0000538
– volume: 127
  start-page: 105
  year: 2001
  ident: 505_CR5
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)1090-0241(2001)127:2(105)
– volume: 35
  start-page: 1
  issue: 4
  year: 2012
  ident: 505_CR20
  publication-title: Geotech Test J
  doi: 10.1520/GTJ104336
– volume: 96
  start-page: 139
  year: 2015
  ident: 505_CR23
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2014.12.012
– volume: 25
  start-page: 572
  issue: 4
  year: 2013
  ident: 505_CR32
  publication-title: Hydrodyn Ser B
  doi: 10.1016/S1001-6058(11)60398-4
– volume: 20
  start-page: 455
  year: 2004
  ident: 505_CR12
  publication-title: Appl Eng Agric
  doi: 10.13031/2013.16492
– volume: 23
  start-page: 305
  year: 2007
  ident: 505_CR13
  publication-title: Appl Eng Agric
  doi: 10.13031/2013.22686
– ident: 505_CR17
  doi: 10.1061/9780784479087.117
– volume: 11
  start-page: 15
  year: 2011
  ident: 505_CR8
  publication-title: Paddy Water Environ
  doi: 10.1007/s10333-011-0288-9
– ident: 505_CR4
– volume: 57
  start-page: 72
  year: 2013
  ident: 505_CR16
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2012.09.006
– volume: 130
  start-page: 373
  issue: 4
  year: 2004
  ident: 505_CR30
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)1090-0241(2004)130:4(373)
– ident: 505_CR28
SSID ssj0002601
Score 2.1766117
Snippet Characterizing soil erosion and predicting levee erosion rates for various levee soils and storm conditions during floodwall overtopping events is necessary in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2823
SubjectTerms Civil Engineering
Earth and Environmental Science
Earth Sciences
Erosion mechanisms
Erosion rates
Fine-grained soils
Flood predictions
Flow rates
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Levees
Levees & battures
Original Paper
Overtopping
Prediction models
Saturation
Scour
Soil compaction
Soil conditions
Soil erosion
Storms
Terrestrial Pollution
Tests
Waste Management/Waste Technology
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7ovOjB3-J0Sg6elIwmTdrkOGSbqKj4A-apNk0qw7KJmwr76026dptDBc9NH2le8vKV973vARwJpggNYoFDaSRmWhAch6HCnjBEaJZKGecE2avg7IGdd3inqOMelGz3MiWZR-qZYrcw__sV2HVfw6NFWOJESFGBpUb78aI5CcBOJSuX2Avy4mBaJjN_MvL9OppizLm0aH7btNbgvpznmGTyUn8fqnoympNw_OeHrMNqgT5RY7xdNmDB9DZhZUaTcAuemnai1lno1qJQdPPmEjnOech1TcuQxbjo0nwYg1uO8v4ZZxm6dj2d-07o4Rk1ZhLiqNtDLWsZt10fCqPRXb-bDbbhodW8Pz3DRRsGnPgkGGJqIQlPuE5VyAOdeE7SjzBCUu1rRmOPyjT2peZpSLV2CnRUpT7TinsJM5wyfwcqvX7P7ALSVGqZGkNiR2gMjVCcenHih1wxqQStgld6I0oKjXLXKiOLpurKbvEiu3iRW7xoVIXjySuvY4GOvwbXShdHxVkdRDaiSWFhJuNVOCk9Nn38q7G9f43eh2XqXJ7zAGtQGb69mwOLZ4bqsNi_X9_T61I
  priority: 102
  providerName: Springer Nature
Title Erosion Rate Prediction Model for Levee-Floodwall Overtopping Applications in Fine-Grained Soils
URI https://link.springer.com/article/10.1007/s10706-018-0505-z
https://www.proquest.com/docview/2259810545
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA5eXvRBvOJ0Sh58UoJtmrTJk1RZJyo6poP5VJsmlUFZ1U2F_Xpzutap4J4KvZzCOafJ15yT70PoSDDlUj8RJJBGEqaFS5IgUMQRxhWaZVImZYPsrX_ZY1d93q8W3EZVW2U9JpYDtS5SWCM_tXknhQUDjJ-9vBJQjYLqaiWhsYiW7Rt9yHMRtb9HYqDLKrn2_HKXMK2rmtOtc0H5Ly0IaLmRye95aQY2_9RHy2knWkdrFV7E4TTAG2jBDDfR6g8WwS301LIWrXtx1-JG3HmD0gu4G4POWY4tKsU35sMYEkGT-meS5_gOVJgLoGZ4xuGPEjYeDHFkLZM2KEcYje-LQT7aRr2o9XBxSSrhBJJ6rj8m1IIInnKdqYD7OnWAhM9lrptpTzOaOFRmiSc1zwKqNXDGUZV5TCvupMxwyrwdtDQshmYXYU2llpkxbgItiIERilMnSb2AKyaVoA3k1G6L04pVHMQt8njGhwyejq2nY_B0PGmg4-9HXqaUGvNubtaxiKuvaxTPcqGBTur4zC7_a2xvvrF9tEIhIcpWvSZaGr-9mwMLOcbqsMyrQ7Qcth-vW_Z43rrtdO3ZHg2_AHHT1Uw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB6x5bC7B8RrteXpw-4FZG3i2Il9QIhHS4FuQTwkbmkcOwgpaoEWEPwofiOeNKEs0nLjnGQOM5_tcWbm-wB-Sa59FiaSRsoqyo30aRJFmnrS-tLwTKmkaJDthK1zfnAhLibguZqFwbbKak8sNmrTT_Ef-R-HOyVdMsDF5vUNRdUorK5WEhojWBzaxwd3ZRts7O-6-P5mrNk422nRUlWApoEfDilzJ6xIhcl0JEKTeshQ53Pfz0xgOEs8prIkUEZkETMGCdWYzgJutPBSbgXjgbP7BSY5TrTWYHK70Tk-ed37kaCrYPcLi7lkVtVRR8N6UXF7lxTV4-jTvyfhOL19V5EtDrrmNEyVGSrZGkFqBiZsbxa-v-EtnINuw1l0ASUnLlMlx7dY7MEAE1RWy4nLg0nb3ltLm9gW_5DkOTlC3ec-kkFckq03RXNy1SNNZ5nuoVaFNeS0f5UP5uH8U5z6A2q9fs_-BGKYMiqz1k-w6TGyUgvmJWkQCc2VlqwOXuW2OC15zFFOI4_HDMzo6dh5OkZPx091WHv95HpE4vHRy0tVLOJyPQ_iMfrqsF7FZ_z4v8YWPja2Cl9bZ3_bcXu_c7gI3xiCo2gUXILa8PbOLruEZ6hXSpQR6H42sF8Ak_UOVQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-QPQgPnF95uBJCdukSZscF7WuD1TUBW-1aVIRSlfcVWF_vZluu7uKCp6bzmFmOvnKzHwfQvuSa8qCRJJQWUW4kZQkYaiJJy2VhmdKJeWA7FXQ7vDzB_FQ6Zz26mn3uiU53GkAlqai33wxWXNi8S0s_4QlASU2MphGs64aU0j0DmuNSjHwZZVke0G5JszqtuZPJr5eTGO0-a1BWt470RJarAAjbg0jvIymbLGCFiZoBFfR44mz6PyLbx1wxDev0HsBf2MQOsuxg6X40r5bSyKYUv9I8hxfgwxzF7gZnnBrooeNnwscOcvkFKQjrMF33ee8t4Y60cn9UZtUygkk9WnQJ8yhCJEKk-lQBCb1gIWPckoz4xvOEo-pLPGVEVnIjAHSOKYznxstvJRbwbi_jmaKbmE3EDZMGZVZSxOYQQyt1IJ5SeqHQnOlJWsgr3ZbnFa04qBukcdjQmTwdOw8HYOn40EDHYxeeRlyavx1eLuORVx9Xr3YFSElHTLkooEO6_iMH_9qbPNfp_fQ3M1xFF-eXV1soXkGqVJO8W2jmf7rm91xaKSvd8uM-wSmbNVp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Erosion+Rate+Prediction+Model+for+Levee-Floodwall+Overtopping+Applications+in+Fine-Grained+Soils&rft.jtitle=Geotechnical+and+geological+engineering&rft.au=Osouli%2C+Abdolreza&rft.au=Parham+Safarian+Bahri&rft.date=2018-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0960-3182&rft.eissn=1573-1529&rft.volume=36&rft.issue=5&rft.spage=2823&rft.epage=2838&rft_id=info:doi/10.1007%2Fs10706-018-0505-z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3182&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3182&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3182&client=summon