Average number of zeros and mixed symplectic volume of Finsler sets
Let X be an n -dimensional manifold and V 1 , . . . , V n ⊂ C ∞ ( X , R ) finite-dimensional vector spaces with Euclidean metric. We assign to each V i a Finsler ellipsoid, i.e., a family of ellipsoids in the fibers of the cotangent bundle to X . We prove that the average number of isolated common z...
Saved in:
Published in | Geometric and functional analysis Vol. 28; no. 6; pp. 1517 - 1547 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.12.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Let
X
be an
n
-dimensional manifold and
V
1
,
.
.
.
,
V
n
⊂
C
∞
(
X
,
R
)
finite-dimensional vector spaces with Euclidean metric. We assign to each
V
i
a Finsler ellipsoid, i.e., a family of ellipsoids in the fibers of the cotangent bundle to
X
. We prove that the average number of isolated common zeros of
f
1
∈
V
1
,
.
.
.
,
f
n
∈
V
n
is equal to the mixed symplectic volume of these Finsler ellipsoids. If
X
is a homogeneous space of a compact Lie group and all vector spaces
V
i
together with their Euclidean metrics are invariant, then the average numbers of zeros satisfy the inequalities, similar to Hodge inequalities for intersection numbers of divisors on a projective variety. This is applied to the eigenspaces of Laplace operator of an invariant Riemannian metric. The proofs are based on a construction of the ring of normal densities on
X
, an analogue of the ring of differential forms. In particular, this construction is used to carry over the Crofton formula to the product of spheres. |
---|---|
AbstractList | Let X be an n-dimensional manifold and V1,...,Vn⊂C∞(X,R) finite-dimensional vector spaces with Euclidean metric. We assign to each Vi a Finsler ellipsoid, i.e., a family of ellipsoids in the fibers of the cotangent bundle to X. We prove that the average number of isolated common zeros of f1∈V1,...,fn∈Vn is equal to the mixed symplectic volume of these Finsler ellipsoids. If X is a homogeneous space of a compact Lie group and all vector spaces Vi together with their Euclidean metrics are invariant, then the average numbers of zeros satisfy the inequalities, similar to Hodge inequalities for intersection numbers of divisors on a projective variety. This is applied to the eigenspaces of Laplace operator of an invariant Riemannian metric. The proofs are based on a construction of the ring of normal densities on X, an analogue of the ring of differential forms. In particular, this construction is used to carry over the Crofton formula to the product of spheres. Let X be an n -dimensional manifold and V 1 , . . . , V n ⊂ C ∞ ( X , R ) finite-dimensional vector spaces with Euclidean metric. We assign to each V i a Finsler ellipsoid, i.e., a family of ellipsoids in the fibers of the cotangent bundle to X . We prove that the average number of isolated common zeros of f 1 ∈ V 1 , . . . , f n ∈ V n is equal to the mixed symplectic volume of these Finsler ellipsoids. If X is a homogeneous space of a compact Lie group and all vector spaces V i together with their Euclidean metrics are invariant, then the average numbers of zeros satisfy the inequalities, similar to Hodge inequalities for intersection numbers of divisors on a projective variety. This is applied to the eigenspaces of Laplace operator of an invariant Riemannian metric. The proofs are based on a construction of the ring of normal densities on X , an analogue of the ring of differential forms. In particular, this construction is used to carry over the Crofton formula to the product of spheres. |
Author | Akhiezer, Dmitri Kazarnovskii, Boris |
Author_xml | – sequence: 1 givenname: Dmitri surname: Akhiezer fullname: Akhiezer, Dmitri email: akhiezer@iitp.ru organization: Institute for Information Transmission Problems – sequence: 2 givenname: Boris surname: Kazarnovskii fullname: Kazarnovskii, Boris organization: Institute for Information Transmission Problems |
BookMark | eNp9kF1LwzAUhoNMcJv-AO8KXkeT5qPN5RhOhYE3Ct6FND0ZHW06k244f70ZFQRBr865eJ7z8c7QxPceELqm5JYSUtxFQghTmNASEy45VmdoSnlOcKkKMkk9oRJzzt4u0CzGbaKF4GKKlosDBLOBzO-7CkLWu-wTQh8z4-usaz6gzuKx27Vgh8Zmh77dd3CCVo2PbeIjDPESnTvTRrj6rnP0urp_WT7i9fPD03KxxpZROWDqqrwSUErqiATFpShNlY6msrBVRQpnnGIAhbOqrK1lJWeKlSWXxAnhas7m6Gacuwv9-x7ioLf9Pvi0UueUE6EKKYpE0ZGy6Y0YwOldaDoTjpoSfcpKj1nplJU-ZaVVcopfjm0GMzS9H4Jp2n_NfDRj2uI3EH5u-lv6AvFFfxQ |
CitedBy_id | crossref_primary_10_4213_faa3723 crossref_primary_10_1070_SM9559 crossref_primary_10_1134_S0016266320020033 crossref_primary_10_4213_sm9559 crossref_primary_10_5802_ahl_214 crossref_primary_10_1112_S0010437X22007722 |
Cites_doi | 10.1112/S0024609396001968 10.1090/S0002-9947-1981-0603763-8 10.1016/S0001-8708(03)00149-X 10.1007/s00039-007-0631-x 10.1007/s13324-012-0051-4 10.1090/S0273-0979-1995-00571-9 10.1016/j.aim.2006.07.009 10.4007/annals.2012.176.2.5 10.1090/S0002-9947-99-02240-0 10.1007/s11856-011-0008-6 10.1007/s13373-016-0089-y 10.1006/aima.1994.1086 10.1007/s11856-007-0049-z 10.1007/s00039-017-0406-y 10.1007/978-3-642-18855-8 10.1007/s00029-007-0045-5 10.1017/CBO9781139003858 10.1007/s12188-016-0138-1 10.1007/b138219 |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2018 Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2018 – notice: Copyright Springer Science & Business Media 2018 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00039-018-0464-9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1420-8970 |
EndPage | 1547 |
ExternalDocumentID | 10_1007_s00039_018_0464_9 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 29H 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 692 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KQ8 LAS LLZTM LO0 M4Y MA- MBV N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OK1 P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I REI RHV RNI ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c316t-1fb2b5e861f06e94658ab039167cbb07faf93ee7fc98dcc38439388460f55fd43 |
IEDL.DBID | U2A |
ISSN | 1016-443X |
IngestDate | Fri Jul 25 11:05:07 EDT 2025 Tue Jul 01 02:31:06 EDT 2025 Thu Apr 24 22:58:34 EDT 2025 Fri Feb 21 02:32:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | 53C30 58A05 52A39 Density Crofton formula Alexandrov–Fenchel inequalities Mixed volume |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-1fb2b5e861f06e94658ab039167cbb07faf93ee7fc98dcc38439388460f55fd43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2140597657 |
PQPubID | 2044207 |
PageCount | 31 |
ParticipantIDs | proquest_journals_2140597657 crossref_primary_10_1007_s00039_018_0464_9 crossref_citationtrail_10_1007_s00039_018_0464_9 springer_journals_10_1007_s00039_018_0464_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationSubtitle | GAFA |
PublicationTitle | Geometric and functional analysis |
PublicationTitleAbbrev | Geom. Funct. Anal |
PublicationYear | 2018 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Goodey, Schneider, Weil (CR18) 1997; 29 Gelfand, Smirnov (CR16) 1994; 109 Kaveh, Khovanskii (CR21) 2012; 176 Shifrin (CR28) 1981; 264 Aleksandrov (CR4) 1937; 2 Klain (CR25) 2000; 352 CR15 Howard, Hug (CR19) 2007; 159 CR10 Faifman (CR13) 2017; 27 Álvarez Paiva, Fernandes (CR3) 2008; 13 Ivrii (CR20) 2016; 6 Akhiezer, Kazarnovskii (CR1) 2017; 87 CR8 Courant, Hilbert (CR11) 1953 Schneider. (CR27) 2013 Akhiezer, Kazarnovskii (CR2) 2017; 78 Kazarnovskii (CR23) 1984; 18 Alesker (CR6) 2011; 181 Gallot, Hulin, Lafontaine (CR14) 2004 CR26 Gichev (CR17) 2013; 3 CR24 Alesker (CR5) 2007; 17 Alesker, Bernstein (CR7) 2004; 184 Bernig (CR9) 2007; 210 Edelman, Kostlan (CR12) 1995; 32 Kazarnovskii (CR22) 1981; 257 D. Faifman (464_CR13) 2017; 27 B. Kazarnovskii (464_CR23) 1984; 18 D. Klain (464_CR25) 2000; 352 464_CR26 J.-C. Álvarez Paiva (464_CR3) 2008; 13 S. Alesker (464_CR7) 2004; 184 V. Ivrii (464_CR20) 2016; 6 A. Bernig (464_CR9) 2007; 210 R. Courant (464_CR11) 1953 S. Alesker (464_CR5) 2007; 17 D. Akhiezer (464_CR1) 2017; 87 D. Akhiezer (464_CR2) 2017; 78 464_CR15 I.M. Gelfand (464_CR16) 1994; 109 S. Alesker (464_CR6) 2011; 181 K. Kaveh (464_CR21) 2012; 176 R. Schneider. (464_CR27) 2013 464_CR8 R. Howard (464_CR19) 2007; 159 T. Shifrin (464_CR28) 1981; 264 cr-split#-464_CR10.2 cr-split#-464_CR10.1 S Gallot (464_CR14) 2004 A. Edelman (464_CR12) 1995; 32 B. Kazarnovskii (464_CR22) 1981; 257 A.D. Aleksandrov (464_CR4) 1937; 2 V.M. Gichev (464_CR17) 2013; 3 464_CR24 P. Goodey (464_CR18) 1997; 29 |
References_xml | – volume: 29 start-page: 82 issue: 1 year: 1997 end-page: 88 ident: CR18 article-title: On the determination of convex bodies by projection functions publication-title: Bulletin of London Math. Soc, doi: 10.1112/S0024609396001968 – year: 1953 ident: CR11 publication-title: Methods of Mathematical Physics, I – volume: 264 start-page: 255 issue: 2 year: 1981 end-page: 293 ident: CR28 article-title: The kinematic formula in complex integral geometry publication-title: Trans. Amer. Math. Soc, doi: 10.1090/S0002-9947-1981-0603763-8 – volume: 184 start-page: 367 issue: 2 year: 2004 end-page: 379 ident: CR7 article-title: Range characterization of the cosine transform on higher Grassmannians publication-title: Advances in Math, doi: 10.1016/S0001-8708(03)00149-X – volume: 18 start-page: 40 issue: 4 year: 1984 end-page: 49 ident: CR23 article-title: Newton polyhedra and zeros of systems of exponential sums publication-title: Funct. Anal. Appl, – volume: 17 start-page: 1321 issue: 4 year: 2007 end-page: 1341 ident: CR5 article-title: Theory of valuations on manifolds: a survey publication-title: Geom. Funct. Anal, doi: 10.1007/s00039-007-0631-x – volume: 78 start-page: 145 issue: 1 year: 2017 end-page: 154 ident: CR2 article-title: An estimate for the average number of common zeros of Laplacian eigenfunctions publication-title: Trudy Mosk. Matem. Obshchestva, – ident: CR10 – volume: 3 start-page: 119 issue: 2 year: 2013 end-page: 144 ident: CR17 article-title: Metric properties in the mean of polynomials on compact isotropy irreducible homogeneous spaces publication-title: Anal. Math. Phys, doi: 10.1007/s13324-012-0051-4 – volume: 32 start-page: 1 issue: 1 year: 1995 end-page: 37 ident: CR12 article-title: How many zeros of a real random polynomial are real? publication-title: Bull. Amer. Math. Soc, doi: 10.1090/S0273-0979-1995-00571-9 – ident: CR8 – volume: 210 start-page: 733 issue: 2 year: 2007 end-page: 753 ident: CR9 article-title: Valuations with Crofton formula and Finsler geometry publication-title: Advances in Math, doi: 10.1016/j.aim.2006.07.009 – volume: 2 start-page: 1205 issue: 6 year: 1937 end-page: 1235 ident: CR4 article-title: To the theory of mixed volumes of convex bodies Part II: New inequalities for mixed volumes and their applications. publication-title: Matem. Sbornik, – volume: 176 start-page: 925 issue: 2 year: 2012 end-page: 978 ident: CR21 article-title: Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory publication-title: Ann. of Math, doi: 10.4007/annals.2012.176.2.5 – ident: CR15 – volume: 352 start-page: 71 issue: 1 year: 2000 end-page: 93 ident: CR25 article-title: Even valuations on convex bodies publication-title: Trans. Amer. Math. Soc, doi: 10.1090/S0002-9947-99-02240-0 – volume: 181 start-page: 189 issue: 1 year: 2011 end-page: 294 ident: CR6 article-title: A Fourier type transform on translation invariant valuations on convex sets publication-title: Israel J. Math, doi: 10.1007/s11856-011-0008-6 – volume: 6 start-page: 379 issue: 3 year: 2016 end-page: 452 ident: CR20 article-title: 100 years of Weyl’s law publication-title: Bulletin of Mathematical Sciences, doi: 10.1007/s13373-016-0089-y – volume: 109 start-page: 188 issue: 2 year: 1994 end-page: 227 ident: CR16 article-title: Lagrangians satisfying Crofton formulas, Radon transforms, and nonlocal differentials publication-title: Advances in Math, doi: 10.1006/aima.1994.1086 – volume: 159 start-page: 317 issue: 1 year: 2007 end-page: 341 ident: CR19 article-title: Smooth convex bodies with proportional projection functions publication-title: Israel J. Math, doi: 10.1007/s11856-007-0049-z – volume: 257 start-page: 804 issue: 4 year: 1981 end-page: 808 ident: CR22 article-title: On the zeros of exponential sums publication-title: Doklady AN SSSR, – volume: 27 start-page: 489 issue: 3 year: 2017 end-page: 540 ident: CR13 article-title: Crofton formulas and indefinite signature publication-title: Geom. Funct. Anal, doi: 10.1007/s00039-017-0406-y – year: 2004 ident: CR14 publication-title: Riemannian Geometry doi: 10.1007/978-3-642-18855-8 – ident: CR26 – ident: CR24 – volume: 13 start-page: 369 issue: 3 year: 2008 end-page: 390 ident: CR3 article-title: Gelfand transforms and Crofton formulas publication-title: Selecta Math. doi: 10.1007/s00029-007-0045-5 – year: 2013 ident: CR27 publication-title: Convex Bodies: The Brunn-Minkowski Theory doi: 10.1017/CBO9781139003858 – volume: 87 start-page: 105 issue: 1 year: 2017 end-page: 111 ident: CR1 article-title: On common zeros of eigenfunctions of the Laplace operator publication-title: Abh. Math. Sem. Univ. Hamburg doi: 10.1007/s12188-016-0138-1 – ident: 464_CR15 – volume: 159 start-page: 317 issue: 1 year: 2007 ident: 464_CR19 publication-title: Israel J. Math, doi: 10.1007/s11856-007-0049-z – volume: 32 start-page: 1 issue: 1 year: 1995 ident: 464_CR12 publication-title: Bull. Amer. Math. Soc, doi: 10.1090/S0273-0979-1995-00571-9 – volume: 264 start-page: 255 issue: 2 year: 1981 ident: 464_CR28 publication-title: Trans. Amer. Math. Soc, doi: 10.1090/S0002-9947-1981-0603763-8 – volume: 3 start-page: 119 issue: 2 year: 2013 ident: 464_CR17 publication-title: Anal. Math. Phys, doi: 10.1007/s13324-012-0051-4 – volume: 257 start-page: 804 issue: 4 year: 1981 ident: 464_CR22 publication-title: Doklady AN SSSR, – volume: 17 start-page: 1321 issue: 4 year: 2007 ident: 464_CR5 publication-title: Geom. Funct. Anal, doi: 10.1007/s00039-007-0631-x – volume-title: Convex Bodies: The Brunn-Minkowski Theory year: 2013 ident: 464_CR27 doi: 10.1017/CBO9781139003858 – volume: 27 start-page: 489 issue: 3 year: 2017 ident: 464_CR13 publication-title: Geom. Funct. Anal, doi: 10.1007/s00039-017-0406-y – volume: 87 start-page: 105 issue: 1 year: 2017 ident: 464_CR1 publication-title: Abh. Math. Sem. Univ. Hamburg doi: 10.1007/s12188-016-0138-1 – volume-title: Methods of Mathematical Physics, I year: 1953 ident: 464_CR11 – volume: 2 start-page: 1205 issue: 6 year: 1937 ident: 464_CR4 publication-title: Matem. Sbornik, – ident: #cr-split#-464_CR10.1 – ident: 464_CR8 doi: 10.1007/b138219 – volume: 109 start-page: 188 issue: 2 year: 1994 ident: 464_CR16 publication-title: Advances in Math, doi: 10.1006/aima.1994.1086 – volume: 352 start-page: 71 issue: 1 year: 2000 ident: 464_CR25 publication-title: Trans. Amer. Math. Soc, doi: 10.1090/S0002-9947-99-02240-0 – volume: 13 start-page: 369 issue: 3 year: 2008 ident: 464_CR3 publication-title: Selecta Math. doi: 10.1007/s00029-007-0045-5 – volume: 6 start-page: 379 issue: 3 year: 2016 ident: 464_CR20 publication-title: Bulletin of Mathematical Sciences, doi: 10.1007/s13373-016-0089-y – volume: 181 start-page: 189 issue: 1 year: 2011 ident: 464_CR6 publication-title: Israel J. Math, doi: 10.1007/s11856-011-0008-6 – volume: 18 start-page: 40 issue: 4 year: 1984 ident: 464_CR23 publication-title: Funct. Anal. Appl, – volume-title: Riemannian Geometry year: 2004 ident: 464_CR14 doi: 10.1007/978-3-642-18855-8 – volume: 78 start-page: 145 issue: 1 year: 2017 ident: 464_CR2 publication-title: Trudy Mosk. Matem. Obshchestva, – ident: 464_CR24 – ident: 464_CR26 – volume: 176 start-page: 925 issue: 2 year: 2012 ident: 464_CR21 publication-title: Ann. of Math, doi: 10.4007/annals.2012.176.2.5 – volume: 29 start-page: 82 issue: 1 year: 1997 ident: 464_CR18 publication-title: Bulletin of London Math. Soc, doi: 10.1112/S0024609396001968 – ident: #cr-split#-464_CR10.2 – volume: 184 start-page: 367 issue: 2 year: 2004 ident: 464_CR7 publication-title: Advances in Math, doi: 10.1016/S0001-8708(03)00149-X – volume: 210 start-page: 733 issue: 2 year: 2007 ident: 464_CR9 publication-title: Advances in Math, doi: 10.1016/j.aim.2006.07.009 |
SSID | ssj0005545 |
Score | 2.2468905 |
Snippet | Let
X
be an
n
-dimensional manifold and
V
1
,
.
.
.
,
V
n
⊂
C
∞
(
X
,
R
)
finite-dimensional vector spaces with Euclidean metric. We assign to each
V
i
a... Let X be an n-dimensional manifold and V1,...,Vn⊂C∞(X,R) finite-dimensional vector spaces with Euclidean metric. We assign to each Vi a Finsler ellipsoid,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1517 |
SubjectTerms | Analysis Ellipsoids Euclidean geometry Inequalities Invariants Lie groups Mathematics Mathematics and Statistics Operators (mathematics) Vector spaces |
Title | Average number of zeros and mixed symplectic volume of Finsler sets |
URI | https://link.springer.com/article/10.1007/s00039-018-0464-9 https://www.proquest.com/docview/2140597657 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7o9qIPXqbidI48-KQEekl6eezG6lC2JwfzqTRtAgPtxFZQf70nvQ1FBZ9a6EkKJyfJ9yXnAnCJlAFRge1S4ceKMpXgG7IO6rvaGpQtzfIwZzZ3pgt2u-TLOo47b7zdmyvJcqVug93KOFKkvp52R2TU34YuR-qu_bgWVrDx6-BlZWLNSilj9rK5yvypi6-b0QZhfrsULfea8AD2apBIgmpUD2FLZj3YrwEjqadj3oPdWZt0NT-CcYBmicsDqap8kLUiHxL_S-IsJU-rN2yav-tkwDosilTLkhYKV1n-iPK5LPJjWIST-_GU1jUSaGKbTkFNJSzBpeeYynCkzxBQxEJnfXfcRAjDVbHybSldlfhemiS2hwDE9hB0GIpzlTL7BDrZOpOnQGIvFTI2Yoe5inlWKlLDSyTKpdzVgSR9MBplRUmdQFzXsXiM2tTHpX4j1G-k9Rv5fbhqmzxX2TP-Eh40IxDVEymPLCSAyHkc7vbhuhmVzedfOzv7l_Q57FjaKko3lQF0ipdXeYFgoxBD6AbhaDTXz5uHu8mwNLZPrJHMQw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HtSDj6pYrboHT0ogyW6SzbEUS9W2pxZ6W7LJLhRqKiaC-uudzasoKngLZHYDM7Oz32ReANfoMiAqoIElw0hbTMf4hF6HFQZGGzRVTvEzZzzxhzP2MPfmVR13Vme71yHJwlI3xW5FHSm6vtykIzIr3IQtxALcqPLM7a3zOrxiMrHxSi3G6LwOZf60xdfLaI0wvwVFi7tmcAB7FUgkvVKqh7Ch0jbsV4CRVMcxa8PuuGm6mh1Bv4dqieaBlFM-yEqTD4XfJVGakKfFGy7N3k0zYFMWRUqzZIgGizRbIn2m8uwYZoO7aX9oVTMSrJg6fm45WrrSU9x3tO2rkCGgiKTp-u4HsZR2oCMdUqUCHYc8iWPKEYBQjqDD1p6nE0ZPoJWuUnUKJOKJVJEd-SzQjLuJTGweK6RLvMAUknTArpkl4qqBuJljsRRN6-OCvwL5Kwx_RdiBm2bJc9k94y_ibi0BUR2kTLjoAKLP43tBB25rqaxf_7rZ2b-or2B7OB2PxOh-8ngOO67RkCJlpQut_OVVXSDwyOVloWifpVbMJg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gujBR1WsVt2DJyWYxybZHEs11EeLBwu9hWyyC4WaFjeC-uudzasoKngLZHYDs7O732RmvgE4R5cBUYHjGzyIpUFlgk_odRiBr61BOsIqfuYMR95gTO8m7qTqc6rqbPc6JFnWNGiWpiy_WqTyqil8K2pK0Q1mOjWRGsEqrFFdDIwGPbZ7yxwPt-hSrD1Ug1JnUoc1f5ri68W0RJvfAqTFvRPuwFYFGEmvXOFdWBFZG7Yr8EiqranasDlsCFjVHvR7aKJ4VJCy4weZS_Ih8LskzlLyPH3DoepdEwPrEilSHlFaKJxmaobySuRqH8bhzVN_YFT9EozEsbzcsCS3uSuYZ0nTEwFFcBFzzQDv-Qnnpi9jGThC-DIJWJokDkMw4jAEIKZ0XZlS5wBa2TwTh0BilnIRm7FHfUmZnfLUZIlAudT1dVFJB8xaWVFSkYnrnhazqKFBLvQboX4jrd8o6MBFM2RRMmn8JdytVyCqNpWKbHQG0f_xXL8Dl_WqLF__OtnRv6TPYP3xOowebkf3x7BhawMpsle60MpfXsUJYpCcnxZ29gmlydBZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Average+number+of+zeros+and+mixed+symplectic+volume+of+Finsler+sets&rft.jtitle=Geometric+and+functional+analysis&rft.au=Akhiezer%2C+Dmitri&rft.au=Kazarnovskii%2C+Boris&rft.date=2018-12-01&rft.pub=Springer+International+Publishing&rft.issn=1016-443X&rft.eissn=1420-8970&rft.volume=28&rft.issue=6&rft.spage=1517&rft.epage=1547&rft_id=info:doi/10.1007%2Fs00039-018-0464-9&rft.externalDocID=10_1007_s00039_018_0464_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-443X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-443X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-443X&client=summon |