Average number of zeros and mixed symplectic volume of Finsler sets

Let X be an n -dimensional manifold and V 1 , . . . , V n ⊂ C ∞ ( X , R ) finite-dimensional vector spaces with Euclidean metric. We assign to each V i a Finsler ellipsoid, i.e., a family of ellipsoids in the fibers of the cotangent bundle to X . We prove that the average number of isolated common z...

Full description

Saved in:
Bibliographic Details
Published inGeometric and functional analysis Vol. 28; no. 6; pp. 1517 - 1547
Main Authors Akhiezer, Dmitri, Kazarnovskii, Boris
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Let X be an n -dimensional manifold and V 1 , . . . , V n ⊂ C ∞ ( X , R ) finite-dimensional vector spaces with Euclidean metric. We assign to each V i a Finsler ellipsoid, i.e., a family of ellipsoids in the fibers of the cotangent bundle to X . We prove that the average number of isolated common zeros of f 1 ∈ V 1 , . . . , f n ∈ V n is equal to the mixed symplectic volume of these Finsler ellipsoids. If X is a homogeneous space of a compact Lie group and all vector spaces V i together with their Euclidean metrics are invariant, then the average numbers of zeros satisfy the inequalities, similar to Hodge inequalities for intersection numbers of divisors on a projective variety. This is applied to the eigenspaces of Laplace operator of an invariant Riemannian metric. The proofs are based on a construction of the ring of normal densities on X , an analogue of the ring of differential forms. In particular, this construction is used to carry over the Crofton formula to the product of spheres.
AbstractList Let X be an n-dimensional manifold and V1,...,Vn⊂C∞(X,R) finite-dimensional vector spaces with Euclidean metric. We assign to each Vi a Finsler ellipsoid, i.e., a family of ellipsoids in the fibers of the cotangent bundle to X. We prove that the average number of isolated common zeros of f1∈V1,...,fn∈Vn is equal to the mixed symplectic volume of these Finsler ellipsoids. If X is a homogeneous space of a compact Lie group and all vector spaces Vi together with their Euclidean metrics are invariant, then the average numbers of zeros satisfy the inequalities, similar to Hodge inequalities for intersection numbers of divisors on a projective variety. This is applied to the eigenspaces of Laplace operator of an invariant Riemannian metric. The proofs are based on a construction of the ring of normal densities on X, an analogue of the ring of differential forms. In particular, this construction is used to carry over the Crofton formula to the product of spheres.
Let X be an n -dimensional manifold and V 1 , . . . , V n ⊂ C ∞ ( X , R ) finite-dimensional vector spaces with Euclidean metric. We assign to each V i a Finsler ellipsoid, i.e., a family of ellipsoids in the fibers of the cotangent bundle to X . We prove that the average number of isolated common zeros of f 1 ∈ V 1 , . . . , f n ∈ V n is equal to the mixed symplectic volume of these Finsler ellipsoids. If X is a homogeneous space of a compact Lie group and all vector spaces V i together with their Euclidean metrics are invariant, then the average numbers of zeros satisfy the inequalities, similar to Hodge inequalities for intersection numbers of divisors on a projective variety. This is applied to the eigenspaces of Laplace operator of an invariant Riemannian metric. The proofs are based on a construction of the ring of normal densities on X , an analogue of the ring of differential forms. In particular, this construction is used to carry over the Crofton formula to the product of spheres.
Author Akhiezer, Dmitri
Kazarnovskii, Boris
Author_xml – sequence: 1
  givenname: Dmitri
  surname: Akhiezer
  fullname: Akhiezer, Dmitri
  email: akhiezer@iitp.ru
  organization: Institute for Information Transmission Problems
– sequence: 2
  givenname: Boris
  surname: Kazarnovskii
  fullname: Kazarnovskii, Boris
  organization: Institute for Information Transmission Problems
BookMark eNp9kF1LwzAUhoNMcJv-AO8KXkeT5qPN5RhOhYE3Ct6FND0ZHW06k244f70ZFQRBr865eJ7z8c7QxPceELqm5JYSUtxFQghTmNASEy45VmdoSnlOcKkKMkk9oRJzzt4u0CzGbaKF4GKKlosDBLOBzO-7CkLWu-wTQh8z4-usaz6gzuKx27Vgh8Zmh77dd3CCVo2PbeIjDPESnTvTRrj6rnP0urp_WT7i9fPD03KxxpZROWDqqrwSUErqiATFpShNlY6msrBVRQpnnGIAhbOqrK1lJWeKlSWXxAnhas7m6Gacuwv9-x7ioLf9Pvi0UueUE6EKKYpE0ZGy6Y0YwOldaDoTjpoSfcpKj1nplJU-ZaVVcopfjm0GMzS9H4Jp2n_NfDRj2uI3EH5u-lv6AvFFfxQ
CitedBy_id crossref_primary_10_4213_faa3723
crossref_primary_10_1070_SM9559
crossref_primary_10_1134_S0016266320020033
crossref_primary_10_4213_sm9559
crossref_primary_10_5802_ahl_214
crossref_primary_10_1112_S0010437X22007722
Cites_doi 10.1112/S0024609396001968
10.1090/S0002-9947-1981-0603763-8
10.1016/S0001-8708(03)00149-X
10.1007/s00039-007-0631-x
10.1007/s13324-012-0051-4
10.1090/S0273-0979-1995-00571-9
10.1016/j.aim.2006.07.009
10.4007/annals.2012.176.2.5
10.1090/S0002-9947-99-02240-0
10.1007/s11856-011-0008-6
10.1007/s13373-016-0089-y
10.1006/aima.1994.1086
10.1007/s11856-007-0049-z
10.1007/s00039-017-0406-y
10.1007/978-3-642-18855-8
10.1007/s00029-007-0045-5
10.1017/CBO9781139003858
10.1007/s12188-016-0138-1
10.1007/b138219
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Springer Nature Switzerland AG 2018
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
DOI 10.1007/s00039-018-0464-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1420-8970
EndPage 1547
ExternalDocumentID 10_1007_s00039_018_0464_9
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
29H
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
LO0
M4Y
MA-
MBV
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OK1
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RNI
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c316t-1fb2b5e861f06e94658ab039167cbb07faf93ee7fc98dcc38439388460f55fd43
IEDL.DBID U2A
ISSN 1016-443X
IngestDate Fri Jul 25 11:05:07 EDT 2025
Tue Jul 01 02:31:06 EDT 2025
Thu Apr 24 22:58:34 EDT 2025
Fri Feb 21 02:32:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords 53C30
58A05
52A39
Density
Crofton formula
Alexandrov–Fenchel inequalities
Mixed volume
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-1fb2b5e861f06e94658ab039167cbb07faf93ee7fc98dcc38439388460f55fd43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2140597657
PQPubID 2044207
PageCount 31
ParticipantIDs proquest_journals_2140597657
crossref_primary_10_1007_s00039_018_0464_9
crossref_citationtrail_10_1007_s00039_018_0464_9
springer_journals_10_1007_s00039_018_0464_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationSubtitle GAFA
PublicationTitle Geometric and functional analysis
PublicationTitleAbbrev Geom. Funct. Anal
PublicationYear 2018
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Goodey, Schneider, Weil (CR18) 1997; 29
Gelfand, Smirnov (CR16) 1994; 109
Kaveh, Khovanskii (CR21) 2012; 176
Shifrin (CR28) 1981; 264
Aleksandrov (CR4) 1937; 2
Klain (CR25) 2000; 352
CR15
Howard, Hug (CR19) 2007; 159
CR10
Faifman (CR13) 2017; 27
Álvarez Paiva, Fernandes (CR3) 2008; 13
Ivrii (CR20) 2016; 6
Akhiezer, Kazarnovskii (CR1) 2017; 87
CR8
Courant, Hilbert (CR11) 1953
Schneider. (CR27) 2013
Akhiezer, Kazarnovskii (CR2) 2017; 78
Kazarnovskii (CR23) 1984; 18
Alesker (CR6) 2011; 181
Gallot, Hulin, Lafontaine (CR14) 2004
CR26
Gichev (CR17) 2013; 3
CR24
Alesker (CR5) 2007; 17
Alesker, Bernstein (CR7) 2004; 184
Bernig (CR9) 2007; 210
Edelman, Kostlan (CR12) 1995; 32
Kazarnovskii (CR22) 1981; 257
D. Faifman (464_CR13) 2017; 27
B. Kazarnovskii (464_CR23) 1984; 18
D. Klain (464_CR25) 2000; 352
464_CR26
J.-C. Álvarez Paiva (464_CR3) 2008; 13
S. Alesker (464_CR7) 2004; 184
V. Ivrii (464_CR20) 2016; 6
A. Bernig (464_CR9) 2007; 210
R. Courant (464_CR11) 1953
S. Alesker (464_CR5) 2007; 17
D. Akhiezer (464_CR1) 2017; 87
D. Akhiezer (464_CR2) 2017; 78
464_CR15
I.M. Gelfand (464_CR16) 1994; 109
S. Alesker (464_CR6) 2011; 181
K. Kaveh (464_CR21) 2012; 176
R. Schneider. (464_CR27) 2013
464_CR8
R. Howard (464_CR19) 2007; 159
T. Shifrin (464_CR28) 1981; 264
cr-split#-464_CR10.2
cr-split#-464_CR10.1
S Gallot (464_CR14) 2004
A. Edelman (464_CR12) 1995; 32
B. Kazarnovskii (464_CR22) 1981; 257
A.D. Aleksandrov (464_CR4) 1937; 2
V.M. Gichev (464_CR17) 2013; 3
464_CR24
P. Goodey (464_CR18) 1997; 29
References_xml – volume: 29
  start-page: 82
  issue: 1
  year: 1997
  end-page: 88
  ident: CR18
  article-title: On the determination of convex bodies by projection functions
  publication-title: Bulletin of London Math. Soc,
  doi: 10.1112/S0024609396001968
– year: 1953
  ident: CR11
  publication-title: Methods of Mathematical Physics, I
– volume: 264
  start-page: 255
  issue: 2
  year: 1981
  end-page: 293
  ident: CR28
  article-title: The kinematic formula in complex integral geometry
  publication-title: Trans. Amer. Math. Soc,
  doi: 10.1090/S0002-9947-1981-0603763-8
– volume: 184
  start-page: 367
  issue: 2
  year: 2004
  end-page: 379
  ident: CR7
  article-title: Range characterization of the cosine transform on higher Grassmannians
  publication-title: Advances in Math,
  doi: 10.1016/S0001-8708(03)00149-X
– volume: 18
  start-page: 40
  issue: 4
  year: 1984
  end-page: 49
  ident: CR23
  article-title: Newton polyhedra and zeros of systems of exponential sums
  publication-title: Funct. Anal. Appl,
– volume: 17
  start-page: 1321
  issue: 4
  year: 2007
  end-page: 1341
  ident: CR5
  article-title: Theory of valuations on manifolds: a survey
  publication-title: Geom. Funct. Anal,
  doi: 10.1007/s00039-007-0631-x
– volume: 78
  start-page: 145
  issue: 1
  year: 2017
  end-page: 154
  ident: CR2
  article-title: An estimate for the average number of common zeros of Laplacian eigenfunctions
  publication-title: Trudy Mosk. Matem. Obshchestva,
– ident: CR10
– volume: 3
  start-page: 119
  issue: 2
  year: 2013
  end-page: 144
  ident: CR17
  article-title: Metric properties in the mean of polynomials on compact isotropy irreducible homogeneous spaces
  publication-title: Anal. Math. Phys,
  doi: 10.1007/s13324-012-0051-4
– volume: 32
  start-page: 1
  issue: 1
  year: 1995
  end-page: 37
  ident: CR12
  article-title: How many zeros of a real random polynomial are real?
  publication-title: Bull. Amer. Math. Soc,
  doi: 10.1090/S0273-0979-1995-00571-9
– ident: CR8
– volume: 210
  start-page: 733
  issue: 2
  year: 2007
  end-page: 753
  ident: CR9
  article-title: Valuations with Crofton formula and Finsler geometry
  publication-title: Advances in Math,
  doi: 10.1016/j.aim.2006.07.009
– volume: 2
  start-page: 1205
  issue: 6
  year: 1937
  end-page: 1235
  ident: CR4
  article-title: To the theory of mixed volumes of convex bodies Part II: New inequalities for mixed volumes and their applications.
  publication-title: Matem. Sbornik,
– volume: 176
  start-page: 925
  issue: 2
  year: 2012
  end-page: 978
  ident: CR21
  article-title: Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory
  publication-title: Ann. of Math,
  doi: 10.4007/annals.2012.176.2.5
– ident: CR15
– volume: 352
  start-page: 71
  issue: 1
  year: 2000
  end-page: 93
  ident: CR25
  article-title: Even valuations on convex bodies
  publication-title: Trans. Amer. Math. Soc,
  doi: 10.1090/S0002-9947-99-02240-0
– volume: 181
  start-page: 189
  issue: 1
  year: 2011
  end-page: 294
  ident: CR6
  article-title: A Fourier type transform on translation invariant valuations on convex sets
  publication-title: Israel J. Math,
  doi: 10.1007/s11856-011-0008-6
– volume: 6
  start-page: 379
  issue: 3
  year: 2016
  end-page: 452
  ident: CR20
  article-title: 100 years of Weyl’s law
  publication-title: Bulletin of Mathematical Sciences,
  doi: 10.1007/s13373-016-0089-y
– volume: 109
  start-page: 188
  issue: 2
  year: 1994
  end-page: 227
  ident: CR16
  article-title: Lagrangians satisfying Crofton formulas, Radon transforms, and nonlocal differentials
  publication-title: Advances in Math,
  doi: 10.1006/aima.1994.1086
– volume: 159
  start-page: 317
  issue: 1
  year: 2007
  end-page: 341
  ident: CR19
  article-title: Smooth convex bodies with proportional projection functions
  publication-title: Israel J. Math,
  doi: 10.1007/s11856-007-0049-z
– volume: 257
  start-page: 804
  issue: 4
  year: 1981
  end-page: 808
  ident: CR22
  article-title: On the zeros of exponential sums
  publication-title: Doklady AN SSSR,
– volume: 27
  start-page: 489
  issue: 3
  year: 2017
  end-page: 540
  ident: CR13
  article-title: Crofton formulas and indefinite signature
  publication-title: Geom. Funct. Anal,
  doi: 10.1007/s00039-017-0406-y
– year: 2004
  ident: CR14
  publication-title: Riemannian Geometry
  doi: 10.1007/978-3-642-18855-8
– ident: CR26
– ident: CR24
– volume: 13
  start-page: 369
  issue: 3
  year: 2008
  end-page: 390
  ident: CR3
  article-title: Gelfand transforms and Crofton formulas
  publication-title: Selecta Math.
  doi: 10.1007/s00029-007-0045-5
– year: 2013
  ident: CR27
  publication-title: Convex Bodies: The Brunn-Minkowski Theory
  doi: 10.1017/CBO9781139003858
– volume: 87
  start-page: 105
  issue: 1
  year: 2017
  end-page: 111
  ident: CR1
  article-title: On common zeros of eigenfunctions of the Laplace operator
  publication-title: Abh. Math. Sem. Univ. Hamburg
  doi: 10.1007/s12188-016-0138-1
– ident: 464_CR15
– volume: 159
  start-page: 317
  issue: 1
  year: 2007
  ident: 464_CR19
  publication-title: Israel J. Math,
  doi: 10.1007/s11856-007-0049-z
– volume: 32
  start-page: 1
  issue: 1
  year: 1995
  ident: 464_CR12
  publication-title: Bull. Amer. Math. Soc,
  doi: 10.1090/S0273-0979-1995-00571-9
– volume: 264
  start-page: 255
  issue: 2
  year: 1981
  ident: 464_CR28
  publication-title: Trans. Amer. Math. Soc,
  doi: 10.1090/S0002-9947-1981-0603763-8
– volume: 3
  start-page: 119
  issue: 2
  year: 2013
  ident: 464_CR17
  publication-title: Anal. Math. Phys,
  doi: 10.1007/s13324-012-0051-4
– volume: 257
  start-page: 804
  issue: 4
  year: 1981
  ident: 464_CR22
  publication-title: Doklady AN SSSR,
– volume: 17
  start-page: 1321
  issue: 4
  year: 2007
  ident: 464_CR5
  publication-title: Geom. Funct. Anal,
  doi: 10.1007/s00039-007-0631-x
– volume-title: Convex Bodies: The Brunn-Minkowski Theory
  year: 2013
  ident: 464_CR27
  doi: 10.1017/CBO9781139003858
– volume: 27
  start-page: 489
  issue: 3
  year: 2017
  ident: 464_CR13
  publication-title: Geom. Funct. Anal,
  doi: 10.1007/s00039-017-0406-y
– volume: 87
  start-page: 105
  issue: 1
  year: 2017
  ident: 464_CR1
  publication-title: Abh. Math. Sem. Univ. Hamburg
  doi: 10.1007/s12188-016-0138-1
– volume-title: Methods of Mathematical Physics, I
  year: 1953
  ident: 464_CR11
– volume: 2
  start-page: 1205
  issue: 6
  year: 1937
  ident: 464_CR4
  publication-title: Matem. Sbornik,
– ident: #cr-split#-464_CR10.1
– ident: 464_CR8
  doi: 10.1007/b138219
– volume: 109
  start-page: 188
  issue: 2
  year: 1994
  ident: 464_CR16
  publication-title: Advances in Math,
  doi: 10.1006/aima.1994.1086
– volume: 352
  start-page: 71
  issue: 1
  year: 2000
  ident: 464_CR25
  publication-title: Trans. Amer. Math. Soc,
  doi: 10.1090/S0002-9947-99-02240-0
– volume: 13
  start-page: 369
  issue: 3
  year: 2008
  ident: 464_CR3
  publication-title: Selecta Math.
  doi: 10.1007/s00029-007-0045-5
– volume: 6
  start-page: 379
  issue: 3
  year: 2016
  ident: 464_CR20
  publication-title: Bulletin of Mathematical Sciences,
  doi: 10.1007/s13373-016-0089-y
– volume: 181
  start-page: 189
  issue: 1
  year: 2011
  ident: 464_CR6
  publication-title: Israel J. Math,
  doi: 10.1007/s11856-011-0008-6
– volume: 18
  start-page: 40
  issue: 4
  year: 1984
  ident: 464_CR23
  publication-title: Funct. Anal. Appl,
– volume-title: Riemannian Geometry
  year: 2004
  ident: 464_CR14
  doi: 10.1007/978-3-642-18855-8
– volume: 78
  start-page: 145
  issue: 1
  year: 2017
  ident: 464_CR2
  publication-title: Trudy Mosk. Matem. Obshchestva,
– ident: 464_CR24
– ident: 464_CR26
– volume: 176
  start-page: 925
  issue: 2
  year: 2012
  ident: 464_CR21
  publication-title: Ann. of Math,
  doi: 10.4007/annals.2012.176.2.5
– volume: 29
  start-page: 82
  issue: 1
  year: 1997
  ident: 464_CR18
  publication-title: Bulletin of London Math. Soc,
  doi: 10.1112/S0024609396001968
– ident: #cr-split#-464_CR10.2
– volume: 184
  start-page: 367
  issue: 2
  year: 2004
  ident: 464_CR7
  publication-title: Advances in Math,
  doi: 10.1016/S0001-8708(03)00149-X
– volume: 210
  start-page: 733
  issue: 2
  year: 2007
  ident: 464_CR9
  publication-title: Advances in Math,
  doi: 10.1016/j.aim.2006.07.009
SSID ssj0005545
Score 2.2468905
Snippet Let X be an n -dimensional manifold and V 1 , . . . , V n ⊂ C ∞ ( X , R ) finite-dimensional vector spaces with Euclidean metric. We assign to each V i a...
Let X be an n-dimensional manifold and V1,...,Vn⊂C∞(X,R) finite-dimensional vector spaces with Euclidean metric. We assign to each Vi a Finsler ellipsoid,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1517
SubjectTerms Analysis
Ellipsoids
Euclidean geometry
Inequalities
Invariants
Lie groups
Mathematics
Mathematics and Statistics
Operators (mathematics)
Vector spaces
Title Average number of zeros and mixed symplectic volume of Finsler sets
URI https://link.springer.com/article/10.1007/s00039-018-0464-9
https://www.proquest.com/docview/2140597657
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7o9qIPXqbidI48-KQEekl6eezG6lC2JwfzqTRtAgPtxFZQf70nvQ1FBZ9a6EkKJyfJ9yXnAnCJlAFRge1S4ceKMpXgG7IO6rvaGpQtzfIwZzZ3pgt2u-TLOo47b7zdmyvJcqVug93KOFKkvp52R2TU34YuR-qu_bgWVrDx6-BlZWLNSilj9rK5yvypi6-b0QZhfrsULfea8AD2apBIgmpUD2FLZj3YrwEjqadj3oPdWZt0NT-CcYBmicsDqap8kLUiHxL_S-IsJU-rN2yav-tkwDosilTLkhYKV1n-iPK5LPJjWIST-_GU1jUSaGKbTkFNJSzBpeeYynCkzxBQxEJnfXfcRAjDVbHybSldlfhemiS2hwDE9hB0GIpzlTL7BDrZOpOnQGIvFTI2Yoe5inlWKlLDSyTKpdzVgSR9MBplRUmdQFzXsXiM2tTHpX4j1G-k9Rv5fbhqmzxX2TP-Eh40IxDVEymPLCSAyHkc7vbhuhmVzedfOzv7l_Q57FjaKko3lQF0ipdXeYFgoxBD6AbhaDTXz5uHu8mwNLZPrJHMQw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HtSDj6pYrboHT0ogyW6SzbEUS9W2pxZ6W7LJLhRqKiaC-uudzasoKngLZHYDM7Oz32ReANfoMiAqoIElw0hbTMf4hF6HFQZGGzRVTvEzZzzxhzP2MPfmVR13Vme71yHJwlI3xW5FHSm6vtykIzIr3IQtxALcqPLM7a3zOrxiMrHxSi3G6LwOZf60xdfLaI0wvwVFi7tmcAB7FUgkvVKqh7Ch0jbsV4CRVMcxa8PuuGm6mh1Bv4dqieaBlFM-yEqTD4XfJVGakKfFGy7N3k0zYFMWRUqzZIgGizRbIn2m8uwYZoO7aX9oVTMSrJg6fm45WrrSU9x3tO2rkCGgiKTp-u4HsZR2oCMdUqUCHYc8iWPKEYBQjqDD1p6nE0ZPoJWuUnUKJOKJVJEd-SzQjLuJTGweK6RLvMAUknTArpkl4qqBuJljsRRN6-OCvwL5Kwx_RdiBm2bJc9k94y_ibi0BUR2kTLjoAKLP43tBB25rqaxf_7rZ2b-or2B7OB2PxOh-8ngOO67RkCJlpQut_OVVXSDwyOVloWifpVbMJg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gujBR1WsVt2DJyWYxybZHEs11EeLBwu9hWyyC4WaFjeC-uudzasoKngLZHYDs7O732RmvgE4R5cBUYHjGzyIpUFlgk_odRiBr61BOsIqfuYMR95gTO8m7qTqc6rqbPc6JFnWNGiWpiy_WqTyqil8K2pK0Q1mOjWRGsEqrFFdDIwGPbZ7yxwPt-hSrD1Ug1JnUoc1f5ri68W0RJvfAqTFvRPuwFYFGEmvXOFdWBFZG7Yr8EiqranasDlsCFjVHvR7aKJ4VJCy4weZS_Ih8LskzlLyPH3DoepdEwPrEilSHlFaKJxmaobySuRqH8bhzVN_YFT9EozEsbzcsCS3uSuYZ0nTEwFFcBFzzQDv-Qnnpi9jGThC-DIJWJokDkMw4jAEIKZ0XZlS5wBa2TwTh0BilnIRm7FHfUmZnfLUZIlAudT1dVFJB8xaWVFSkYnrnhazqKFBLvQboX4jrd8o6MBFM2RRMmn8JdytVyCqNpWKbHQG0f_xXL8Dl_WqLF__OtnRv6TPYP3xOowebkf3x7BhawMpsle60MpfXsUJYpCcnxZ29gmlydBZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Average+number+of+zeros+and+mixed+symplectic+volume+of+Finsler+sets&rft.jtitle=Geometric+and+functional+analysis&rft.au=Akhiezer%2C+Dmitri&rft.au=Kazarnovskii%2C+Boris&rft.date=2018-12-01&rft.pub=Springer+International+Publishing&rft.issn=1016-443X&rft.eissn=1420-8970&rft.volume=28&rft.issue=6&rft.spage=1517&rft.epage=1547&rft_id=info:doi/10.1007%2Fs00039-018-0464-9&rft.externalDocID=10_1007_s00039_018_0464_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-443X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-443X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-443X&client=summon