A smart pipe energy harvester excited by fluid flow and base excitation

This paper presents an electromechanical dynamic modelling of the partially smart pipe structure subject to the vibration responses from fluid flow and input base excitation for generating the electrical energy. We believe that this work shows the first attempt to formulate a unified analytical appr...

Full description

Saved in:
Bibliographic Details
Published inActa mechanica Vol. 229; no. 11; pp. 4431 - 4458
Main Authors Lumentut, M. F., Friswell, M. I.
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.11.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0001-5970
1619-6937
DOI10.1007/s00707-018-2235-y

Cover

Abstract This paper presents an electromechanical dynamic modelling of the partially smart pipe structure subject to the vibration responses from fluid flow and input base excitation for generating the electrical energy. We believe that this work shows the first attempt to formulate a unified analytical approach of flow-induced vibrational smart pipe energy harvester in application to the smart sensor-based structural health monitoring systems including those to detect flutter instability. The arbitrary topology of the thin electrode segments located at the surface of the circumference region of the smart pipe has been used so that the electric charge cancellation can be avoided. The analytical techniques of the smart pipe conveying fluid with discontinuous piezoelectric segments and proof mass offset, connected with the standard AC–DC circuit interface, have been developed using the extended charge-type Hamiltonian mechanics. The coupled field equations reduced from the Ritz method-based weak form analytical approach have been further developed to formulate the orthonormalised dynamic equations. The reduced equations show combinations of the mechanical system of the elastic pipe and fluid flow, electromechanical system of the piezoelectric component, and electrical system of the circuit interface. The electromechanical multi-mode frequency and time signal waveform response equations have also been formulated to demonstrate the power harvesting behaviours. Initially, the optimal power output due to optimal load resistance without the fluid effect is discussed to compare with previous studies. For potential application, further parametric analytical studies of varying partially piezoelectric pipe segments have been explored to analyse the dynamic stability/instability of the smart pipe energy harvester due to the effect of fluid and input base excitation. Further proof between case studies also includes the effect of variable flow velocity for optimal power output, 3-D frequency response, the dynamic evolution of the smart pipe system based on the absolute velocity-time waveform signals, and DC power output-time waveform signals.
AbstractList This paper presents an electromechanical dynamic modelling of the partially smart pipe structure subject to the vibration responses from fluid flow and input base excitation for generating the electrical energy. We believe that this work shows the first attempt to formulate a unified analytical approach of flow-induced vibrational smart pipe energy harvester in application to the smart sensor-based structural health monitoring systems including those to detect flutter instability. The arbitrary topology of the thin electrode segments located at the surface of the circumference region of the smart pipe has been used so that the electric charge cancellation can be avoided. The analytical techniques of the smart pipe conveying fluid with discontinuous piezoelectric segments and proof mass offset, connected with the standard AC–DC circuit interface, have been developed using the extended charge-type Hamiltonian mechanics. The coupled field equations reduced from the Ritz method-based weak form analytical approach have been further developed to formulate the orthonormalised dynamic equations. The reduced equations show combinations of the mechanical system of the elastic pipe and fluid flow, electromechanical system of the piezoelectric component, and electrical system of the circuit interface. The electromechanical multi-mode frequency and time signal waveform response equations have also been formulated to demonstrate the power harvesting behaviours. Initially, the optimal power output due to optimal load resistance without the fluid effect is discussed to compare with previous studies. For potential application, further parametric analytical studies of varying partially piezoelectric pipe segments have been explored to analyse the dynamic stability/instability of the smart pipe energy harvester due to the effect of fluid and input base excitation. Further proof between case studies also includes the effect of variable flow velocity for optimal power output, 3-D frequency response, the dynamic evolution of the smart pipe system based on the absolute velocity-time waveform signals, and DC power output-time waveform signals.
Author Friswell, M. I.
Lumentut, M. F.
Author_xml – sequence: 1
  givenname: M. F.
  surname: Lumentut
  fullname: Lumentut, M. F.
  email: m.lumentut@curtin.edu.au
  organization: School of Civil and Mechanical Engineering, Curtin University
– sequence: 2
  givenname: M. I.
  surname: Friswell
  fullname: Friswell, M. I.
  organization: College of Engineering, Swansea University
BookMark eNp9kFFLwzAQx4NMcJt-AN8CPkeTtGnSxzF0Ewa-6HNI28vsmG1NOrXf3htVBEEhXLjkfnf3_8_IpGkbIORS8GvBub6JGLhmXBgmZaLYcEKmIhM5y_JET8iUcy6YyjU_I7MYd5hJnYopWS1ofHGhp13dAYUGwnagzy68QewhUPgo6x4qWgzU7w91hbF9p67BFxdh_HZ93Tbn5NS7fYSLr3tOnu5uH5drtnlY3S8XG1YmIuuZAC21SpUxGaSFg8qLIsEs56UxxpU-c95VGk9ROaWUAK9K7rQ3wqSJlsmcXI19u9C-HnBJu2sPocGRVvIcpetUK6wSY1UZ2hgDeNuFGmUOVnB79MuOfln0yx79sgMy-hfzra0Prt7_S8qRjDil2UL42elv6BPNwoGg
CitedBy_id crossref_primary_10_1007_s40430_024_05127_y
crossref_primary_10_1016_j_compstruc_2021_106680
crossref_primary_10_1007_s11071_023_08453_3
crossref_primary_10_3390_app10155294
crossref_primary_10_1016_j_cnsns_2024_108040
crossref_primary_10_1016_j_euromechsol_2020_104061
crossref_primary_10_1115_1_4050612
crossref_primary_10_1155_2021_6153291
crossref_primary_10_1016_j_compstruct_2020_112126
Cites_doi 10.1007/s00707-016-1726-y
10.1109/TUFFC.2012.2489
10.1016/j.ijsolstr.2009.04.024
10.1098/rspa.1961.0091
10.1016/j.jsv.2004.09.024
10.1007/978-3-540-68427-5
10.1016/j.jfluidstructs.2007.10.011
10.1007/s00707-012-0686-0
10.1080/014957301300158102
10.1016/S0020-7683(03)00222-1
10.1098/rspa.1961.0090
10.1006/jfls.1993.1011
10.1016/S0889-9746(05)80006-4
10.1007/s00707-004-0132-z
10.1098/rspa.1966.0188
10.1016/j.jfluidstructs.2011.08.005
10.1088/0964-1726/24/9/094008
10.1016/S0022-460X(74)80002-7
10.1088/0960-1317/18/10/104013
10.1016/j.jfluidstructs.2006.10.009
10.1115/1.3424371
10.1007/BF01176807
10.1088/0964-1726/22/9/094026
10.1007/BF01170704
10.1017/jfm.2012.494
10.1088/0964-1726/18/11/115005
10.1007/s00707-013-0864-8
10.1088/0964-1726/23/9/095037
10.1016/j.jfluidstructs.2004.09.004
10.1088/0964-1726/21/10/105029
10.1016/j.ymssp.2011.07.010
10.1016/j.jfluidstructs.2017.02.006
10.1007/BF01277582
10.1016/j.compstruc.2004.03.030
10.1016/j.jfluidstructs.2011.11.011
10.1088/0964-1726/24/10/105029
10.1088/0964-1726/10/4/310
10.1007/s00707-004-0182-2
10.1088/0964-1726/19/4/045023
10.1088/0964-1726/19/10/105010
10.1007/s00707-016-1775-2
10.1016/j.jsv.2010.01.028
10.2514/2.1189
10.1016/0888-3270(91)90044-6
10.1002/zamm.19560361104
10.1016/j.ymssp.2015.05.017
10.1109/TUFFC.2014.2997
10.1007/s00161-014-0357-6
10.1006/jfls.1999.0210
10.1006/jsvi.1999.2607
10.1006/jsvi.1995.0080
10.1177/1045389X9800900706
10.1007/s00707-017-1910-8
10.1016/j.jfluidstructs.2006.10.007
10.1088/0964-1726/21/12/125003
10.1088/0964-1726/19/12/125009
10.1177/1045389X09354787
10.1063/1.3457330
10.1243/0954406991522455
10.1098/rspa.1966.0187
10.1177/1045389X08099467
10.1177/1045389X11398164
10.1016/j.jfluidstructs.2006.10.006
10.1088/0964-1726/15/2/016
10.1088/1361-665X/26/3/035008
10.1088/0964-1726/13/2/008
10.1515/crll.1909.135.1
10.3233/JAE-2003-251
10.1115/1.4010447
ContentType Journal Article
Copyright Springer-Verlag GmbH Austria, part of Springer Nature 2018
Acta Mechanica is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag GmbH Austria, part of Springer Nature 2018
– notice: Acta Mechanica is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7TB
7XB
88I
8AO
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
GUQSH
HCIFZ
KR7
L6V
M2O
M2P
M7S
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1007/s00707-018-2235-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Research Library
Science Database
Engineering Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Research Library Prep
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1619-6937
EndPage 4458
ExternalDocumentID 10_1007_s00707_018_2235_y
GroupedDBID --Z
-5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
88I
8AO
8FE
8FG
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M2O
M2P
M4Y
M7S
MA-
MK~
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF-
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T9H
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z92
_50
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7TB
7XB
8FD
8FK
ABRTQ
FR3
KR7
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c316t-1e727545886e4baedf1b358890c888acf6afad7ad7bda5551ef5c0a7f81843723
IEDL.DBID 8FG
ISSN 0001-5970
IngestDate Sat Aug 23 14:19:37 EDT 2025
Tue Jul 01 03:37:44 EDT 2025
Thu Apr 24 23:02:14 EDT 2025
Fri Feb 21 02:35:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-1e727545886e4baedf1b358890c888acf6afad7ad7bda5551ef5c0a7f81843723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2092237475
PQPubID 47448
PageCount 28
ParticipantIDs proquest_journals_2092237475
crossref_primary_10_1007_s00707_018_2235_y
crossref_citationtrail_10_1007_s00707_018_2235_y
springer_journals_10_1007_s00707_018_2235_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20181100
2018-11-00
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 20181100
PublicationDecade 2010
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Acta mechanica
PublicationTitleAbbrev Acta Mech
PublicationYear 2018
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References Païdoussis, Issid (CR13) 1974; 33
Benjamin (CR6) 1961; 261
Holmes (CR4) 1978; 45
Païdoussis (CR25) 1999; 13
Modarres-Sadeghi, Semler, Wadham-Gagnon, Païdoussis (CR23) 2007; 23
De Bellis, Ruta, Elishakoff (CR16) 2015; 27
Feodos’ev (CR1) 1951; 10
Krommer (CR31) 2001; 10
Irschik, Krommer, Belyaev, Schlacher (CR35) 1998; 9
Païdoussis (CR24) 2014
CR77
Giacobbi, Rinaldi, Semler, Païdoussis (CR29) 2012; 30
Kuiper, Metrikine (CR26) 2005; 280
Gregory, Païdoussis (CR11) 1966; 293
Lumentut, Howard (CR56) 2017; 228
Bottema (CR8) 1955; 6
Krommer (CR43) 2004; 171
Lumentut, Francis, Howard (CR62) 2012; 59
Hémona, Amandolesea, Andriannec (CR71) 2017; 70
Fernandes, Pouget (CR32) 2003; 40
Wu, Shu (CR66) 2015; 24
Lumentut, Howard (CR53) 2016; 68–69
Lien, Shu, Wu, Lin (CR64) 2010; 19
CR3
Gregory, Païdoussis (CR10) 1966; 293
Irschik, Krommer, Pichler (CR36) 2003; 17
Vasques (CR47) 2012; 21
Housner (CR2) 1952; 19
Ali, Friswell, Adhikari (CR55) 2010; 19
Ritz (CR76) 1909; 135
Sokolnikoff (CR12) 1956
dell’Isola, Maurini, Porfiri (CR44) 2004; 13
Adhikari, Friswell, Inman (CR54) 2009; 18
Barrero-Gil, Alonso, Sanz-Andres (CR70) 2010; 329
Lumentut, Howard (CR68) 2017; 228
Lavooij, Tijsseling (CR19) 1991; 5
Heinrich (CR5) 1956; 36
Kim, Hoegen, Dugundji, Wardle (CR50) 2010; 19
Ikeda (CR74) 1990
Schoeftner, Krommer (CR46) 2012; 223
Hobbs, Hu (CR69) 2012; 28
Zhang, Gorman, Reese (CR20) 1999; 213
Goldschmidtboeing, Woias (CR49) 2008; 18
Niederberger, Morari (CR45) 2006; 15
Lumentut, Howard (CR52) 2013; 36
Zhang, Afzalul (CR63) 2014; 61
Tang, Wang (CR59) 2017; 228
Kapuria, Yasin (CR40) 2013; 224
Krommer, Vetyukov (CR39) 2009; 46
Krommer, Irschik (CR42) 2000; 141
Irschik, Pichler (CR37) 2001; 24
Païdoussis, Li (CR14) 1993; 7
Tichý, Erhart, Kittinger, Prívratská (CR75) 2010
Moita, Correia, Soares (CR33) 2004; 82
Lin, Wu, Lien, Shu (CR65) 2013; 22
Gorman, Reese, Zhang (CR17) 2000; 230
Krommer, Irschik (CR30) 2002; 154
Zhou, Hobeck, Cao, Inman (CR61) 2017; 26
Nye (CR73) 1984
Païdoussis, Semler, Wadham-Gagnon (CR27) 2005; 20
Benjamin (CR7) 1961; 261
Dalzell, Bonello (CR51) 2012; 21
Friswell, Adhikari (CR57) 2010; 108
Païdoussis, Semler, Wadham-Gagnon (CR22) 2007; 23
Michelin, Doaré (CR72) 2013; 714
Smith, Herrmann (CR9) 1971; 12
Lumentut, Howard (CR67) 2015; 24
Krommer, Zellhofer, Heilbrunner (CR38) 2003; 20
Karami, Inman (CR60) 2011; 22
Ruta, Elishakoff (CR15) 2004; 173
Kuiper, Metrikine (CR28) 2008; 24
Wadham-Gagnon, Païdoussis, Semler (CR21) 2007; 23
Lee, Pak, Hong (CR18) 1995; 180
Tzou, Tseng (CR41) 1991; 5
Lumentut, Howard (CR58) 2014; 23
Irschik, Ziegler (CR34) 2001; 39
Liao, Sodano (CR48) 2010; 21
M Krommer (2235_CR39) 2009; 46
H Zhang (2235_CR63) 2014; 61
O Bottema (2235_CR8) 1955; 6
DB Giacobbi (2235_CR29) 2012; 30
L Tang (2235_CR59) 2017; 228
D Niederberger (2235_CR45) 2006; 15
MP Païdoussis (2235_CR24) 2014
A Fernandes (2235_CR32) 2003; 40
MP Païdoussis (2235_CR22) 2007; 23
J Schoeftner (2235_CR46) 2012; 223
M Wadham-Gagnon (2235_CR21) 2007; 23
M Kim (2235_CR50) 2010; 19
2235_CR77
MF Lumentut (2235_CR56) 2017; 228
GW Housner (2235_CR2) 1952; 19
JF Nye (2235_CR73) 1984
TB Benjamin (2235_CR7) 1961; 261
M Krommer (2235_CR43) 2004; 171
2235_CR3
F Goldschmidtboeing (2235_CR49) 2008; 18
VP Feodos’ev (2235_CR1) 1951; 10
RW Gregory (2235_CR10) 1966; 293
Y Modarres-Sadeghi (2235_CR23) 2007; 23
F dell’Isola (2235_CR44) 2004; 13
Y Liao (2235_CR48) 2010; 21
PH Wu (2235_CR66) 2015; 24
MP Païdoussis (2235_CR13) 1974; 33
MF Lumentut (2235_CR67) 2015; 24
MF Lumentut (2235_CR62) 2012; 59
MF Lumentut (2235_CR58) 2014; 23
W Ritz (2235_CR76) 1909; 135
TB Benjamin (2235_CR6) 1961; 261
MI Friswell (2235_CR57) 2010; 108
GL Kuiper (2235_CR28) 2008; 24
M Krommer (2235_CR31) 2001; 10
M Krommer (2235_CR30) 2002; 154
A Karami (2235_CR60) 2011; 22
H Irschik (2235_CR36) 2003; 17
MP Païdoussis (2235_CR14) 1993; 7
PJ Holmes (2235_CR4) 1978; 45
YL Zhang (2235_CR20) 1999; 213
M Krommer (2235_CR42) 2000; 141
GC Ruta (2235_CR15) 2004; 173
T Ikeda (2235_CR74) 1990
H Irschik (2235_CR35) 1998; 9
H Irschik (2235_CR37) 2001; 24
S Adhikari (2235_CR54) 2009; 18
S Kapuria (2235_CR40) 2013; 224
MF Lumentut (2235_CR68) 2017; 228
G Heinrich (2235_CR5) 1956; 36
TE Smith (2235_CR9) 1971; 12
MP Païdoussis (2235_CR25) 1999; 13
P Dalzell (2235_CR51) 2012; 21
RW Gregory (2235_CR11) 1966; 293
CSW Lavooij (2235_CR19) 1991; 5
M Krommer (2235_CR38) 2003; 20
U Lee (2235_CR18) 1995; 180
SF Ali (2235_CR55) 2010; 19
WB Hobbs (2235_CR69) 2012; 28
S Michelin (2235_CR72) 2013; 714
J Tichý (2235_CR75) 2010
HS Tzou (2235_CR41) 1991; 5
IC Lien (2235_CR64) 2010; 19
MF Lumentut (2235_CR52) 2013; 36
HC Lin (2235_CR65) 2013; 22
JM Moita (2235_CR33) 2004; 82
IS Sokolnikoff (2235_CR12) 1956
MP Païdoussis (2235_CR27) 2005; 20
ML Bellis De (2235_CR16) 2015; 27
P Hémona (2235_CR71) 2017; 70
MF Lumentut (2235_CR53) 2016; 68–69
S Zhou (2235_CR61) 2017; 26
A Barrero-Gil (2235_CR70) 2010; 329
DG Gorman (2235_CR17) 2000; 230
CMA Vasques (2235_CR47) 2012; 21
H Irschik (2235_CR34) 2001; 39
GL Kuiper (2235_CR26) 2005; 280
References_xml – year: 1984
  ident: CR73
  publication-title: Physical Properties of Crystals: Their Representation by Tensors and Matrices
– volume: 228
  start-page: 631
  issue: 2
  year: 2017
  end-page: 650
  ident: CR56
  article-title: Intrinsic electromechanical dynamic equations for piezoelectric power harvesters
  publication-title: Acta Mech.
  doi: 10.1007/s00707-016-1726-y
– volume: 59
  start-page: 1555
  year: 2012
  end-page: 68
  ident: CR62
  article-title: Analytical techniques for broadband multielectromechanical piezoelectric bimorph beams with multifrequency power harvesting
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2012.2489
– year: 1956
  ident: CR12
  publication-title: Mathematical Theory of Elasticity
– volume: 46
  start-page: 3313
  year: 2009
  end-page: 3320
  ident: CR39
  article-title: Adaptive sensing of kinematic entities in the vicinity of a time-dependent geometrically nonlinear pre-deformed state
  publication-title: Int. J. Solid. Struct.
  doi: 10.1016/j.ijsolstr.2009.04.024
– volume: 261
  start-page: 487
  year: 1961
  end-page: 499
  ident: CR7
  article-title: Dynamics of a system of articulated pipes conveying fluid. II. Experiments
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1961.0091
– volume: 280
  start-page: 1051
  year: 2005
  end-page: 1065
  ident: CR26
  article-title: Dynamic stability of a submerged, free-hanging riser conveying fluid
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2004.09.024
– year: 2010
  ident: CR75
  publication-title: Fundamentals of Piezoelectric Sensorics
  doi: 10.1007/978-3-540-68427-5
– volume: 24
  start-page: 541
  year: 2008
  end-page: 558
  ident: CR28
  article-title: Experimental investigation of dynamic stability of a cantilever pipe aspirating fluid
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2007.10.011
– volume: 223
  start-page: 1983
  year: 2012
  end-page: 1998
  ident: CR46
  article-title: Single point vibration control for a passive piezoelectric Bernoulli–Euler beam subjected to spatially varying harmonic loads
  publication-title: Acta Mech.
  doi: 10.1007/s00707-012-0686-0
– volume: 24
  start-page: 565
  year: 2001
  end-page: 576
  ident: CR37
  article-title: Dynamic shape control of solids and structures by thermal expansion strains
  publication-title: J. Therm. Stresses
  doi: 10.1080/014957301300158102
– volume: 40
  start-page: 4331
  year: 2003
  end-page: 52
  ident: CR32
  article-title: Analytical and numerical approach to piezoelectric bimorph
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(03)00222-1
– volume: 261
  start-page: 457
  year: 1961
  end-page: 486
  ident: CR6
  article-title: Dynamics of a system of articulated pipes conveying fluid. I. Theory
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1961.0090
– volume: 7
  start-page: 137
  year: 1993
  end-page: 204
  ident: CR14
  article-title: Pipes conveying fluid: a model dynamical problem
  publication-title: J. Fluids Struct.
  doi: 10.1006/jfls.1993.1011
– year: 1990
  ident: CR74
  publication-title: Fundamentals of Piezoelectricity
– volume: 5
  start-page: 573
  year: 1991
  end-page: 95
  ident: CR19
  article-title: Fluid–structure interaction in liquid-filled piping systems
  publication-title: J. Fluids Struct.
  doi: 10.1016/S0889-9746(05)80006-4
– volume: 171
  start-page: 59
  year: 2004
  end-page: 73
  ident: CR43
  article-title: On the influence of pyroelectricity upon thermally induced vibrations of piezothermoelastic plates
  publication-title: Acta Mech.
  doi: 10.1007/s00707-004-0132-z
– ident: CR77
– volume: 293
  start-page: 528
  year: 1966
  end-page: 542
  ident: CR11
  article-title: Unstable oscillation of tubular cantilevers conveying fluid. II. Theory
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1966.0188
– volume: 28
  start-page: 103
  year: 2012
  end-page: 114
  ident: CR69
  article-title: Tree-inspired piezoelectric energy harvesting
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2011.08.005
– volume: 24
  start-page: 094008
  year: 2015
  ident: CR66
  article-title: Finite element modeling of electrically rectified piezoelectric energy harvesters
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/24/9/094008
– volume: 33
  start-page: 267
  year: 1974
  end-page: 294
  ident: CR13
  article-title: Dynamic stability of pipes conveying fluid
  publication-title: J. Sound Vib.
  doi: 10.1016/S0022-460X(74)80002-7
– volume: 18
  start-page: 104013
  year: 2008
  ident: CR49
  article-title: Characterization of different beam shapes for piezoelectric energy harvesting
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/18/10/104013
– volume: 23
  start-page: 569
  year: 2007
  end-page: 587
  ident: CR22
  article-title: Dynamics of cantilevered pipes conveying fluid. Part 2: dynamics of the system with intermediate spring support
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2006.10.009
– volume: 45
  start-page: 619
  year: 1978
  end-page: 622
  ident: CR4
  article-title: Pipes supported at both ends cannot flutter
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3424371
– volume: 141
  start-page: 51
  year: 2000
  end-page: 69
  ident: CR42
  article-title: A Reissner–Mindlin-type plate theory including the direct piezoelectric and the pyroelectric effect
  publication-title: Acta Mech.
  doi: 10.1007/BF01176807
– volume: 10
  start-page: 1013
  year: 1951
  end-page: 1024
  ident: CR1
  article-title: Vibrations and stability of a pipe when liquid flows through it
  publication-title: Inzh. Sb.
– volume: 22
  start-page: 094026
  year: 2013
  ident: CR65
  article-title: Analysis of an array of piezoelectric energy harvesters connected in series
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/9/094026
– volume: 154
  start-page: 141
  year: 2002
  end-page: 158
  ident: CR30
  article-title: An electromechanically coupled theory for piezoelastic beams taking into account the charge equation of electrostatics
  publication-title: Acta Mech.
  doi: 10.1007/BF01170704
– volume: 714
  start-page: 489
  year: 2013
  end-page: 504
  ident: CR72
  article-title: Energy harvesting efficiency of piezoelectric flags in axial flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.494
– volume: 18
  start-page: 115005
  year: 2009
  ident: CR54
  article-title: Piezoelectric energy harvesting from broadband random vibrations
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/18/11/115005
– volume: 224
  start-page: 1185
  year: 2013
  end-page: 1199
  ident: CR40
  article-title: Active vibration control of smart plates using directional actuation and sensing capability of piezoelectric composites
  publication-title: Acta Mech.
  doi: 10.1007/s00707-013-0864-8
– volume: 23
  start-page: 095037
  year: 2014
  ident: CR58
  article-title: Electromechanical finite element modelling for dynamic analysis of a cantilevered piezoelectric energy harvester with tip mass offset under base excitations
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/23/9/095037
– volume: 20
  start-page: 147
  year: 2005
  end-page: 156
  ident: CR27
  article-title: A reappraisal of why aspirating pipes do not flutter at infinitesimal flow
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2004.09.004
– volume: 21
  start-page: 105029
  year: 2012
  ident: CR51
  article-title: Analysis of an energy harvesting piezoelectric beam with energy storage circuit
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/21/10/105029
– volume: 36
  start-page: 66
  year: 2013
  end-page: 86
  ident: CR52
  article-title: Analytical and experimental comparisons of electromechanical vibration response of a piezoelectric bimorph beam for power harvesting
  publication-title: Mech. Syst. Signal Proc.
  doi: 10.1016/j.ymssp.2011.07.010
– volume: 70
  start-page: 390
  year: 2017
  end-page: 402
  ident: CR71
  article-title: Energy harvesting from galloping of prisms: a wind tunnel experiment
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2017.02.006
– volume: 12
  start-page: 175
  year: 1971
  end-page: 188
  ident: CR9
  article-title: Stability of circulatory elastic systems in the presence of magnetic damping
  publication-title: Acta Mech.
  doi: 10.1007/BF01277582
– volume: 82
  start-page: 1349
  issue: 17–19
  year: 2004
  end-page: 58
  ident: CR33
  article-title: Active control of adaptive laminated structures with bounded piezoelectric sensors and actuators
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2004.03.030
– volume: 30
  start-page: 73
  year: 2012
  end-page: 96
  ident: CR29
  article-title: The dynamics of a cantilevered pipe aspirating fluid studied by experimental, numerical and analytical methods
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2011.11.011
– volume: 24
  start-page: 105029
  year: 2015
  ident: CR67
  article-title: Effect of shunted piezoelectric control for tuning piezoelectric power harvesting system responses—analytical techniques
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/24/10/105029
– year: 2014
  ident: CR24
  publication-title: Fluid–Structure Interactions: Slender Structures and Axial Flow
– volume: 10
  start-page: 668
  year: 2001
  end-page: 680
  ident: CR31
  article-title: On the correction of the Bernoulli–Euler beam theory for smart piezoelectric beams
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/10/4/310
– volume: 173
  start-page: 89
  year: 2004
  end-page: 105
  ident: CR15
  article-title: Towards the resolution of the Smith–Herrmann paradox
  publication-title: Acta Mech.
  doi: 10.1007/s00707-004-0182-2
– volume: 17
  start-page: 251
  year: 2003
  end-page: 258
  ident: CR36
  article-title: Dynamic shape control of beam-type structures by piezoelectric actuation and sensing
  publication-title: Int. J. Appl. Electromagn. Mech.
– volume: 19
  start-page: 045023
  year: 2010
  ident: CR50
  article-title: Modeling and experimental verification of proof mass effects on vibration energy harvester performance
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/19/4/045023
– volume: 19
  start-page: 105010
  year: 2010
  ident: CR55
  article-title: Piezoelectric energy harvesting with parametric uncertainty
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/19/10/105010
– volume: 228
  start-page: 1321
  issue: 4
  year: 2017
  end-page: 1341
  ident: CR68
  article-title: Electromechanical analysis of an adaptive piezoelectric energy harvester controlled by two segmented electrodes with shunt circuit networks
  publication-title: Acta Mech.
  doi: 10.1007/s00707-016-1775-2
– volume: 329
  start-page: 2873
  issue: 24
  year: 2010
  end-page: 2883
  ident: CR70
  article-title: Energy harvesting from transverse galloping
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2010.01.028
– volume: 39
  start-page: 1985
  year: 2001
  end-page: 1990
  ident: CR34
  article-title: Eigenstrain without stress and static shape control of structures
  publication-title: AIAA J.
  doi: 10.2514/2.1189
– volume: 5
  start-page: 215
  year: 1991
  end-page: 231
  ident: CR41
  article-title: Distributed vibration control and identification of coupled elastic/piezoelectric systems: finite element formulation and applications
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/0888-3270(91)90044-6
– volume: 36
  start-page: 417
  year: 1956
  end-page: 427
  ident: CR5
  article-title: Schwingungen durchströmter Rohre (vibrations of pipes with flow)
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.19560361104
– volume: 68–69
  start-page: 562
  year: 2016
  end-page: 586
  ident: CR53
  article-title: Parametric design-based modal damped vibrational piezoelectric energy harvesters with arbitrary proof mass offset: numerical and analytical validations
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.05.017
– volume: 61
  start-page: 1016
  year: 2014
  end-page: 1023
  ident: CR63
  article-title: Design and analysis of a connected broadband multi-piezoelectric-bimorph-beam energy harvester
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2014.2997
– volume: 27
  start-page: 685
  year: 2015
  end-page: 701
  ident: CR16
  article-title: A contribution to the stability of an overhanging pipe conveying fluid
  publication-title: Contin. Mech. Thermodyn.
  doi: 10.1007/s00161-014-0357-6
– volume: 13
  start-page: 419
  year: 1999
  end-page: 425
  ident: CR25
  article-title: Aspirating pipes do not flutter at infinitesimally small flow
  publication-title: J. Fluids Struct.
  doi: 10.1006/jfls.1999.0210
– volume: 230
  start-page: 379
  year: 2000
  end-page: 392
  ident: CR17
  article-title: Vibration of a flexible pipe conveying viscous pulsating fluid flow
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.1999.2607
– volume: 180
  start-page: 297
  issue: 2
  year: 1995
  end-page: 311
  ident: CR18
  article-title: The dynamics of a piping system with internal unsteady flow
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.1995.0080
– volume: 9
  start-page: 546
  year: 1998
  end-page: 554
  ident: CR35
  article-title: Shaping of piezoelectric sensors/actuators for vibrations of slender beams: coupled theory and inappropriate shape functions
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X9800900706
– volume: 228
  start-page: 3997
  issue: 11
  year: 2017
  end-page: 4015
  ident: CR59
  article-title: Size effect of tip mass on performance of cantilevered piezoelectric energy harvester with a dynamic magnifier
  publication-title: Acta Mech.
  doi: 10.1007/s00707-017-1910-8
– volume: 23
  start-page: 589
  year: 2007
  end-page: 603
  ident: CR23
  article-title: Dynamics of cantilevered pipes conveying fluid. Part 3: three dimensional dynamics in the presence of an end-mass
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2006.10.007
– volume: 21
  start-page: 125003
  year: 2012
  ident: CR47
  article-title: Improved passive shunt vibration control of smart piezo-elastic beams using modal piezoelectric transducers with shaped electrodes
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/21/12/125003
– volume: 19
  start-page: 125009
  year: 2010
  ident: CR64
  article-title: Revisit of series-SSHI with comparisons to other interfacing circuits in piezoelectric energy harvesting
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/19/12/125009
– ident: CR3
– volume: 21
  start-page: 149
  year: 2010
  end-page: 159
  ident: CR48
  article-title: Modeling and comparison of bimorph power harvesters with piezoelectric elements connected in parallel and series
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X09354787
– volume: 19
  start-page: 205
  year: 1952
  end-page: 208
  ident: CR2
  article-title: Bending vibrations of a pipe line containing flowing fluid
  publication-title: J. Appl. Mech.
– volume: 108
  start-page: 014901
  year: 2010
  ident: CR57
  article-title: Sensor shape design for piezoelectric cantilever beams to harvest vibration energy
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3457330
– volume: 213
  start-page: 849
  year: 1999
  end-page: 60
  ident: CR20
  article-title: Analysis of the vibration of pipes conveying fluid
  publication-title: J. Mech. Eng. Sci.
  doi: 10.1243/0954406991522455
– volume: 293
  start-page: 512
  year: 1966
  end-page: 527
  ident: CR10
  article-title: Unstable oscillation of tubular cantilevers conveying fluid. I. Theory
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1966.0187
– volume: 20
  start-page: 1875
  year: 2003
  end-page: 1888
  ident: CR38
  article-title: Strain-type sensor networks for structural monitoring of beam-type structures
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X08099467
– volume: 22
  start-page: 271
  issue: 3
  year: 2011
  end-page: 282
  ident: CR60
  article-title: Electromechanical modeling of the low frequency zigzag micro energy harvester
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X11398164
– volume: 23
  start-page: 545
  year: 2007
  end-page: 567
  ident: CR21
  article-title: Dynamics of cantilevered pipes conveying fluid, part 1: nonlinear equations of three dimensional motion
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2006.10.006
– volume: 6
  start-page: 97
  year: 1955
  end-page: 104
  ident: CR8
  article-title: On the stability of equilibrium of a linear mechanical system
  publication-title: Z. Angew. Math. Mech.
– volume: 15
  start-page: 359
  year: 2006
  end-page: 364
  ident: CR45
  article-title: An autonomous shunt circuit for vibration damping
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/15/2/016
– volume: 26
  start-page: 035008
  year: 2017
  ident: CR61
  article-title: Analytical and experimental investigation of flexible longitudinal zigzag structures for enhanced multi-directional energy harvesting
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/26/3/035008
– volume: 135
  start-page: 1
  year: 1909
  end-page: 61
  ident: CR76
  article-title: Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik
  publication-title: J. Reine Angew. Math.
– volume: 13
  start-page: 299
  year: 2004
  end-page: 308
  ident: CR44
  article-title: Passive damping of beam vibrations through distributed electric networks and piezoelectric transducers: prototype design and experimental validation
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/13/2/008
– volume: 293
  start-page: 528
  year: 1966
  ident: 2235_CR11
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1966.0188
– volume: 108
  start-page: 014901
  year: 2010
  ident: 2235_CR57
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3457330
– volume: 26
  start-page: 035008
  year: 2017
  ident: 2235_CR61
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/26/3/035008
– volume: 135
  start-page: 1
  year: 1909
  ident: 2235_CR76
  publication-title: J. Reine Angew. Math.
  doi: 10.1515/crll.1909.135.1
– volume: 27
  start-page: 685
  year: 2015
  ident: 2235_CR16
  publication-title: Contin. Mech. Thermodyn.
  doi: 10.1007/s00161-014-0357-6
– volume: 68–69
  start-page: 562
  year: 2016
  ident: 2235_CR53
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.05.017
– volume: 230
  start-page: 379
  year: 2000
  ident: 2235_CR17
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.1999.2607
– volume: 17
  start-page: 251
  year: 2003
  ident: 2235_CR36
  publication-title: Int. J. Appl. Electromagn. Mech.
  doi: 10.3233/JAE-2003-251
– volume: 228
  start-page: 3997
  issue: 11
  year: 2017
  ident: 2235_CR59
  publication-title: Acta Mech.
  doi: 10.1007/s00707-017-1910-8
– volume: 12
  start-page: 175
  year: 1971
  ident: 2235_CR9
  publication-title: Acta Mech.
  doi: 10.1007/BF01277582
– volume: 224
  start-page: 1185
  year: 2013
  ident: 2235_CR40
  publication-title: Acta Mech.
  doi: 10.1007/s00707-013-0864-8
– volume: 228
  start-page: 1321
  issue: 4
  year: 2017
  ident: 2235_CR68
  publication-title: Acta Mech.
  doi: 10.1007/s00707-016-1775-2
– volume: 714
  start-page: 489
  year: 2013
  ident: 2235_CR72
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.494
– volume: 22
  start-page: 271
  issue: 3
  year: 2011
  ident: 2235_CR60
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X11398164
– volume: 23
  start-page: 569
  year: 2007
  ident: 2235_CR22
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2006.10.009
– volume: 46
  start-page: 3313
  year: 2009
  ident: 2235_CR39
  publication-title: Int. J. Solid. Struct.
  doi: 10.1016/j.ijsolstr.2009.04.024
– volume: 329
  start-page: 2873
  issue: 24
  year: 2010
  ident: 2235_CR70
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2010.01.028
– volume: 20
  start-page: 147
  year: 2005
  ident: 2235_CR27
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2004.09.004
– volume: 21
  start-page: 105029
  year: 2012
  ident: 2235_CR51
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/21/10/105029
– volume: 22
  start-page: 094026
  year: 2013
  ident: 2235_CR65
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/9/094026
– volume: 15
  start-page: 359
  year: 2006
  ident: 2235_CR45
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/15/2/016
– volume: 23
  start-page: 095037
  year: 2014
  ident: 2235_CR58
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/23/9/095037
– volume: 19
  start-page: 205
  year: 1952
  ident: 2235_CR2
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4010447
– volume: 261
  start-page: 457
  year: 1961
  ident: 2235_CR6
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1961.0090
– volume: 5
  start-page: 573
  year: 1991
  ident: 2235_CR19
  publication-title: J. Fluids Struct.
  doi: 10.1016/S0889-9746(05)80006-4
– volume: 21
  start-page: 125003
  year: 2012
  ident: 2235_CR47
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/21/12/125003
– volume: 24
  start-page: 541
  year: 2008
  ident: 2235_CR28
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2007.10.011
– volume: 20
  start-page: 1875
  year: 2003
  ident: 2235_CR38
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X08099467
– volume: 173
  start-page: 89
  year: 2004
  ident: 2235_CR15
  publication-title: Acta Mech.
  doi: 10.1007/s00707-004-0182-2
– volume: 13
  start-page: 299
  year: 2004
  ident: 2235_CR44
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/13/2/008
– volume: 33
  start-page: 267
  year: 1974
  ident: 2235_CR13
  publication-title: J. Sound Vib.
  doi: 10.1016/S0022-460X(74)80002-7
– volume: 70
  start-page: 390
  year: 2017
  ident: 2235_CR71
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2017.02.006
– ident: 2235_CR3
– volume-title: Fundamentals of Piezoelectric Sensorics
  year: 2010
  ident: 2235_CR75
  doi: 10.1007/978-3-540-68427-5
– volume-title: Fluid–Structure Interactions: Slender Structures and Axial Flow
  year: 2014
  ident: 2235_CR24
– volume: 30
  start-page: 73
  year: 2012
  ident: 2235_CR29
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2011.11.011
– volume: 23
  start-page: 545
  year: 2007
  ident: 2235_CR21
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2006.10.006
– volume: 24
  start-page: 105029
  year: 2015
  ident: 2235_CR67
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/24/10/105029
– volume: 82
  start-page: 1349
  issue: 17–19
  year: 2004
  ident: 2235_CR33
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2004.03.030
– volume: 180
  start-page: 297
  issue: 2
  year: 1995
  ident: 2235_CR18
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.1995.0080
– volume: 228
  start-page: 631
  issue: 2
  year: 2017
  ident: 2235_CR56
  publication-title: Acta Mech.
  doi: 10.1007/s00707-016-1726-y
– volume: 141
  start-page: 51
  year: 2000
  ident: 2235_CR42
  publication-title: Acta Mech.
  doi: 10.1007/BF01176807
– volume: 24
  start-page: 094008
  year: 2015
  ident: 2235_CR66
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/24/9/094008
– volume: 19
  start-page: 045023
  year: 2010
  ident: 2235_CR50
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/19/4/045023
– volume: 7
  start-page: 137
  year: 1993
  ident: 2235_CR14
  publication-title: J. Fluids Struct.
  doi: 10.1006/jfls.1993.1011
– volume: 39
  start-page: 1985
  year: 2001
  ident: 2235_CR34
  publication-title: AIAA J.
  doi: 10.2514/2.1189
– volume: 23
  start-page: 589
  year: 2007
  ident: 2235_CR23
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2006.10.007
– volume: 21
  start-page: 149
  year: 2010
  ident: 2235_CR48
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X09354787
– volume: 36
  start-page: 66
  year: 2013
  ident: 2235_CR52
  publication-title: Mech. Syst. Signal Proc.
  doi: 10.1016/j.ymssp.2011.07.010
– volume: 154
  start-page: 141
  year: 2002
  ident: 2235_CR30
  publication-title: Acta Mech.
  doi: 10.1007/BF01170704
– volume: 5
  start-page: 215
  year: 1991
  ident: 2235_CR41
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/0888-3270(91)90044-6
– volume: 223
  start-page: 1983
  year: 2012
  ident: 2235_CR46
  publication-title: Acta Mech.
  doi: 10.1007/s00707-012-0686-0
– volume: 36
  start-page: 417
  year: 1956
  ident: 2235_CR5
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.19560361104
– volume: 261
  start-page: 487
  year: 1961
  ident: 2235_CR7
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1961.0091
– volume: 18
  start-page: 104013
  year: 2008
  ident: 2235_CR49
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/18/10/104013
– volume: 18
  start-page: 115005
  year: 2009
  ident: 2235_CR54
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/18/11/115005
– volume: 280
  start-page: 1051
  year: 2005
  ident: 2235_CR26
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2004.09.024
– volume-title: Fundamentals of Piezoelectricity
  year: 1990
  ident: 2235_CR74
– volume: 40
  start-page: 4331
  year: 2003
  ident: 2235_CR32
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(03)00222-1
– volume: 10
  start-page: 1013
  year: 1951
  ident: 2235_CR1
  publication-title: Inzh. Sb.
– volume-title: Mathematical Theory of Elasticity
  year: 1956
  ident: 2235_CR12
– volume: 45
  start-page: 619
  year: 1978
  ident: 2235_CR4
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3424371
– volume: 28
  start-page: 103
  year: 2012
  ident: 2235_CR69
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2011.08.005
– ident: 2235_CR77
– volume: 19
  start-page: 125009
  year: 2010
  ident: 2235_CR64
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/19/12/125009
– volume: 293
  start-page: 512
  year: 1966
  ident: 2235_CR10
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1966.0187
– volume: 171
  start-page: 59
  year: 2004
  ident: 2235_CR43
  publication-title: Acta Mech.
  doi: 10.1007/s00707-004-0132-z
– volume: 61
  start-page: 1016
  year: 2014
  ident: 2235_CR63
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2014.2997
– volume: 9
  start-page: 546
  year: 1998
  ident: 2235_CR35
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X9800900706
– volume: 19
  start-page: 105010
  year: 2010
  ident: 2235_CR55
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/19/10/105010
– volume: 24
  start-page: 565
  year: 2001
  ident: 2235_CR37
  publication-title: J. Therm. Stresses
  doi: 10.1080/014957301300158102
– volume: 10
  start-page: 668
  year: 2001
  ident: 2235_CR31
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/10/4/310
– volume: 59
  start-page: 1555
  year: 2012
  ident: 2235_CR62
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2012.2489
– volume: 13
  start-page: 419
  year: 1999
  ident: 2235_CR25
  publication-title: J. Fluids Struct.
  doi: 10.1006/jfls.1999.0210
– volume: 6
  start-page: 97
  year: 1955
  ident: 2235_CR8
  publication-title: Z. Angew. Math. Mech.
– volume: 213
  start-page: 849
  year: 1999
  ident: 2235_CR20
  publication-title: J. Mech. Eng. Sci.
  doi: 10.1243/0954406991522455
– volume-title: Physical Properties of Crystals: Their Representation by Tensors and Matrices
  year: 1984
  ident: 2235_CR73
SSID ssj0012741
Score 2.249396
Snippet This paper presents an electromechanical dynamic modelling of the partially smart pipe structure subject to the vibration responses from fluid flow and input...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4431
SubjectTerms Classical and Continuum Physics
Computational fluid dynamics
Control
Dynamic models
Dynamic stability
Dynamical Systems
Energy harvesting
Engineering
Engineering Thermodynamics
Excitation
Flow generated vibrations
Flow velocity
Fluid flow
Flutter
Frequency response
Heat and Mass Transfer
Load resistance
Mathematical analysis
Original Paper
Piezoelectricity
Pipes
Ritz method
Segments
Smart sensors
Solid Mechanics
Stability analysis
Structural health monitoring
Theoretical and Applied Mechanics
Vibration
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL3oQn1itkoMnJbCPZB_HItYi6MlCbyFPLNRt6UPtv3eSfVRFBWFZ2J3sZJlJdr5hdmYQukytAB-HBSRU1hCa6ohIJTURgiow74yVWfwPj0l_QO-HbFjlcc_rv93rkKT_UjfJbr4yDbi-oNkoZmS1ibYYuO5uNw6ibhM6cPVYSswbEkDLTSjzJxZfjdEaYX4Linpb09tDuxVIxN1Sq_towxQHaOdT6cBDdNfF8xdQO56OpgYbn8GHn8Xs1Vc-wOZdOSyJ5Qrb8XKk4Tx5w6KAO2C2SrLXyREa9G6fbvqkaopAVBwmCxIaQBwu2pUlhkphtA1lDFd5oMCZFcomwgqdwiG1YICHjGUqEKnNXGeXNIqPUauYFOYE4TiTgP5CnQLoormlMoupoCwABnkGsKKNglo6vH4r17hizJtax16gHATKnUD5qo2umkemZbmMvwZ3apHzaufMeRTkQAUnB6a_rtWwJv_K7PRfo8_QduSWgU8q7KDWYrY054AuFvLCr6YPlE_F1Q
  priority: 102
  providerName: Springer Nature
Title A smart pipe energy harvester excited by fluid flow and base excitation
URI https://link.springer.com/article/10.1007/s00707-018-2235-y
https://www.proquest.com/docview/2092237475
Volume 229
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3rS8MwEA-6fdEP4hOnc-SDn5RAX-njk1TZA8Uh4mB-Kkma4GBudQ91_72X9DEVFEpLk_Yod9fcL7ncHULngWIwx6EWsYWSxAtSh3DBU8KYJ8C8U5pH8d_3_d7Aux3SYbHgNi-2VZZjohmo06nQa-QwSY_AkgH4pVfZG9FVo7R3tSihsYnqNlgaredhp1t5EXRqlhz-2gSAc-XVtEwS0cBsugQ9cVxKVj_t0hps_vKPGrPT2UU7BV7EcS7gPbQhJ_to-1sWwQPUjfH8FTQAZ6NMYmmC-fALm72bJAhYfgoNKzFfYTVejlI4Tz8wm0ALWLC824jnEA067aebHinqIxDh2v6C2BLAh3Z8hb70OJOpsrkLd5ElYF7LhPKZYmkAB08ZBWgkFRUWC1Soi7wEjnuEapPpRB4j7IYcgKCdBoC_vEh5PHQ95lELCEQhIIwGskruJOVX6RoW46RKe2wYmgBDE83QZNVAF9UrWZ4547-HmyXLk-InmidrkTfQZSmGdfefxE7-J3aKthwtdxNQ2ES1xWwpzwBZLHjLqE8L1ePu810brtft_sMjtA6c-Auawszl
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB5KPagH8Yn1mYNelMA-ku72IOKr1lcRUfC2JtkEC7WtbX30T_kbnWS7rQp6E5aF3eyGZfJt5ptMZgZgKzICbRzuUV8ZTVmUBlQqmVIhmEL1znkWxX9VL9fu2Pk9vy_ARx4LY7dV5nOim6jTtrJr5GikV1CTIfnl-51naqtGWe9qXkIjg8WFHryhydbbOzvG8d0OgurJ7VGNDqsKUBX65T71Naps6y6Ky5pJoVPjyxCvKp5Ca1AoUxZGpBEeMhUcCYU2XHkiMrEtjRLZRAc45U8wG9FahInDk_r1zchvYZPBZITbp0jVR35Uz6Utjdw2T0RmEHI6-K4Jx_T2h0fWKbrqLMwMGSo5yCA1BwXdmofpL3kLF-D0gPSeEHOk0-hool34IHkU3VeXdoHod2WJLJEDYpovjRTP7TciWngHdWbW7ACxCHf_IrslKLbaLb0MJIwlUk8_jZDxsYphMg6ZYNzDDioxcpoSeLl0kvyrbNWMZjJKtOwEmqBAEyvQZFCCndErnSxXx18Pr-UiT4a_bS8Zg6wEu_kwjJt_7Wzl7842YbJ2e3WZXJ7VL1ZhKrAYcOGMa1Dsd1_0OvKavtwYgonAw3_j9xPS_gfg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS8MwED-GguiD-InTqXnQFyXYryztg4ioc_Nj-KDgW03SBAXdppvO_Wv-dV7SdVNB34RSaNOGcvk197tc7g5gixuBNg7zqK-MphHPAiqVzKgQkUL1zlgexX_ZrNZvorNbdluCjyIWxm6rLOZEN1FnbWXXyNFIT1CTIflle2a4LeLquHbQeaa2gpT1tBblNHKInOtBH8237n7jGMd6OwhqJ9dHdTqsMEBV6Fd71Neovq3rKK7qSAqdGV-GeJV4Ci1DoUxVGJFxPGQmGJILbZjyBDexLZPCbdIDnP4necgTa_jFtdORB8Omhcmpt0-RtI88qp5LYMrdhk_EaBAyOviuE8dE94dv1qm82hzMDrkqOczBNQ8l3VqAmS8ZDBfh9JB0nxB9pPPQ0US7QEJyL17eXAIGot-VpbREDoh5fH3I8NzuE9HCO6g982YHjSW4-RfJLcNEq93SK0DCWCIJ9TOO3C9KTCTjMBIR87CDJEZ2UwavkE5afJWtn_GYjlIuO4GmKNDUCjQdlGFn9Eonz9rx18OVQuTp8AfupmO4lWG3GIZx86-drf7d2SZMIWrTi0bzfA2mAwsBF9dYgYney6teR4LTkxsOSQTu_hu6n3TWCrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+smart+pipe+energy+harvester+excited+by+fluid+flow+and+base+excitation&rft.jtitle=Acta+mechanica&rft.au=Lumentut%2C+M+F&rft.au=Friswell%2C+M+I&rft.date=2018-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0001-5970&rft.eissn=1619-6937&rft.volume=229&rft.issue=11&rft.spage=4431&rft.epage=4458&rft_id=info:doi/10.1007%2Fs00707-018-2235-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-5970&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-5970&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-5970&client=summon