A CNN-based vortex identification method

Vortex identification and visualization are important for understanding the underlying physical mechanism of the flow field and have been intensively studied recently. Local vortex identification methods could provide results in a rapid way, but they require the choice of a suitable criterion and th...

Full description

Saved in:
Bibliographic Details
Published inJournal of visualization Vol. 22; no. 1; pp. 65 - 78
Main Authors Deng, Liang, Wang, Yueqing, Liu, Yang, Wang, Fang, Li, Sikun, Liu, Jie
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 13.02.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1343-8875
1875-8975
DOI10.1007/s12650-018-0523-1

Cover

Loading…
Abstract Vortex identification and visualization are important for understanding the underlying physical mechanism of the flow field and have been intensively studied recently. Local vortex identification methods could provide results in a rapid way, but they require the choice of a suitable criterion and threshold, which leads to poor robustness. Global vortex identification methods could obtain reliable results, while they require considerable user input and are computationally intractable for large-scale data sets. To address the problems described above, we present a novel vortex identification method based on the convolutional neural network (CNN). The proposed method integrates the advantages of both the local and global vortex identification methods to achieve higher precision and recall efficiently. In specific, the proposed method firstly obtains the labels of all grid points using a global and objective vortex identification method and then samples local patches around each point in the velocity field as the inputs of CNN. After that it trains the CNN to decide whether the central points of these patches belong to vortices. By this way, our method converts the vortex identification task to a binary classification problem, which could detect vortices quickly from the flow field in an objective and robust way. Extensive experimental results demonstrate the efficacy of our proposed method, and we expect this method can replace or supplement existing traditional methods. Graphical abstract
AbstractList Vortex identification and visualization are important for understanding the underlying physical mechanism of the flow field and have been intensively studied recently. Local vortex identification methods could provide results in a rapid way, but they require the choice of a suitable criterion and threshold, which leads to poor robustness. Global vortex identification methods could obtain reliable results, while they require considerable user input and are computationally intractable for large-scale data sets. To address the problems described above, we present a novel vortex identification method based on the convolutional neural network (CNN). The proposed method integrates the advantages of both the local and global vortex identification methods to achieve higher precision and recall efficiently. In specific, the proposed method firstly obtains the labels of all grid points using a global and objective vortex identification method and then samples local patches around each point in the velocity field as the inputs of CNN. After that it trains the CNN to decide whether the central points of these patches belong to vortices. By this way, our method converts the vortex identification task to a binary classification problem, which could detect vortices quickly from the flow field in an objective and robust way. Extensive experimental results demonstrate the efficacy of our proposed method, and we expect this method can replace or supplement existing traditional methods.Graphical abstract
Vortex identification and visualization are important for understanding the underlying physical mechanism of the flow field and have been intensively studied recently. Local vortex identification methods could provide results in a rapid way, but they require the choice of a suitable criterion and threshold, which leads to poor robustness. Global vortex identification methods could obtain reliable results, while they require considerable user input and are computationally intractable for large-scale data sets. To address the problems described above, we present a novel vortex identification method based on the convolutional neural network (CNN). The proposed method integrates the advantages of both the local and global vortex identification methods to achieve higher precision and recall efficiently. In specific, the proposed method firstly obtains the labels of all grid points using a global and objective vortex identification method and then samples local patches around each point in the velocity field as the inputs of CNN. After that it trains the CNN to decide whether the central points of these patches belong to vortices. By this way, our method converts the vortex identification task to a binary classification problem, which could detect vortices quickly from the flow field in an objective and robust way. Extensive experimental results demonstrate the efficacy of our proposed method, and we expect this method can replace or supplement existing traditional methods. Graphical abstract
Author Liu, Jie
Deng, Liang
Li, Sikun
Liu, Yang
Wang, Fang
Wang, Yueqing
Author_xml – sequence: 1
  givenname: Liang
  orcidid: 0000-0003-1444-4588
  surname: Deng
  fullname: Deng, Liang
  email: dengliang11@nudt.edu.cn
  organization: College of Computer, National University of Defense Technology, Computational Aerodynamics Institute, China Aerodynamics Research and Development Center
– sequence: 2
  givenname: Yueqing
  surname: Wang
  fullname: Wang, Yueqing
  organization: Computational Aerodynamics Institute, China Aerodynamics Research and Development Center
– sequence: 3
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  organization: College of Computer, National University of Defense Technology, Computational Aerodynamics Institute, China Aerodynamics Research and Development Center
– sequence: 4
  givenname: Fang
  surname: Wang
  fullname: Wang, Fang
  organization: Computational Aerodynamics Institute, China Aerodynamics Research and Development Center
– sequence: 5
  givenname: Sikun
  surname: Li
  fullname: Li, Sikun
  organization: College of Computer, National University of Defense Technology
– sequence: 6
  givenname: Jie
  surname: Liu
  fullname: Liu, Jie
  organization: College of Computer, National University of Defense Technology
BookMark eNp9kE1LAzEQhoMo2FZ_gLcFL16imWTzscdS_IJSL3oOaTbRlHa3Jqnovzd1BUHQ0wzD-8w7847RYdd3DqEzIJdAiLxKQAUnmIDChFOG4QCNQEmOVSP5YelZzbAqg2M0TmlFCIVawghdTKvZYoGXJrm2eutjdu9VaF2Xgw_W5NB31cbll749QUferJM7_a4T9HRz_Ti7w_OH2_vZdI4tA5ExOBCUt154MNwwwptGFFfLJGWNNI6IugbvRMuWVIrGGm-hNRacoswRSdgEnQ97t7F_3bmU9arfxa5YagpSlWWgoKhgUNnYpxSd19sYNiZ-aCB6H4geAtElEL0PRO8Z-YuxIX-9mKMJ639JOpCpuHTPLv7c9Df0CTm-c_o
CitedBy_id crossref_primary_10_1016_j_compfluid_2019_03_022
crossref_primary_10_1016_j_oceaneng_2023_115820
crossref_primary_10_1007_s40436_025_00545_0
crossref_primary_10_1080_19942060_2024_2407005
crossref_primary_10_1007_s12650_020_00732_0
crossref_primary_10_1115_1_4064478
crossref_primary_10_3390_e23101314
crossref_primary_10_1615_JFlowVisImageProc_2022041197
crossref_primary_10_1016_j_jcp_2023_111948
crossref_primary_10_1016_j_egyai_2021_100067
crossref_primary_10_3390_fractalfract7060467
crossref_primary_10_3390_math9161843
crossref_primary_10_1109_TVCG_2022_3167896
crossref_primary_10_1007_s00371_023_03176_3
crossref_primary_10_2514_1_J062091
crossref_primary_10_1007_s10707_025_00540_4
crossref_primary_10_1016_j_compfluid_2019_104318
crossref_primary_10_1007_s44267_023_00014_x
crossref_primary_10_1109_TVCG_2020_3028947
crossref_primary_10_1016_j_energy_2024_132828
crossref_primary_10_1063_5_0156975
crossref_primary_10_3390_sym15040864
crossref_primary_10_3390_jmse11020239
crossref_primary_10_3390_sym13030382
crossref_primary_10_1080_19942060_2022_2104930
crossref_primary_10_1007_s00371_020_01797_6
crossref_primary_10_1016_j_compfluid_2023_106104
crossref_primary_10_1109_ACCESS_2021_3100127
crossref_primary_10_1109_TVCG_2023_3326603
crossref_primary_10_1051_e3sconf_202127103009
crossref_primary_10_1007_s12650_024_00987_x
crossref_primary_10_1002_jcp_30569
crossref_primary_10_1109_ACCESS_2019_2931781
crossref_primary_10_3390_jpm10040286
crossref_primary_10_1016_j_eswa_2024_124080
crossref_primary_10_3390_app132011481
crossref_primary_10_1115_1_4056660
crossref_primary_10_1088_1742_6596_2141_1_012009
crossref_primary_10_1063_5_0079648
crossref_primary_10_1021_acs_iecr_3c01452
crossref_primary_10_3390_en15155719
crossref_primary_10_3390_math9161939
crossref_primary_10_1109_TGRS_2023_3320350
crossref_primary_10_1007_s00348_021_03265_w
crossref_primary_10_1007_s12650_020_00636_z
crossref_primary_10_1155_2020_8865001
crossref_primary_10_3934_math_20231522
crossref_primary_10_1016_j_mtcomm_2023_106281
crossref_primary_10_1007_s12206_022_1223_2
crossref_primary_10_1186_s42774_022_00113_1
Cites_doi 10.1017/S0022112095000462
10.1111/j.1467-8659.2008.01238.x
10.1098/rspa.2016.0807
10.1063/1.857730
10.1111/cgf.13319
10.1063/1.4951720
10.1139/tcsme-1987-0004
10.1111/cgf.12275
10.1017/S002211200999108X
10.1017/S0022112005004726
10.1109/TPAMI.2016.2577031
10.1063/1.1863284
10.1017/jfm.2016.865
10.1109/TIT.1967.1053964
10.1017/jfm.2016.151
10.23940/ijpe.18.03
10.1006/jcss.1997.1504
10.1007/s11433-016-0022-6
10.1109/IGARSS.2018.8519261
10.4208/cicp.OA-2018-0035
10.1109/PACIFICVIS.2015.715638
10.1109/ICDAR.2003.1227801
10.1109/CVPR.2014.81
10.1109/IGARSS.2018.8518411
10.1016/B978-012387582-2/50016-2
10.1109/VISUAL.1998.745333
ContentType Journal Article
Copyright The Visualization Society of Japan 2018
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: The Visualization Society of Japan 2018
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
DOI 10.1007/s12650-018-0523-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1875-8975
EndPage 78
ExternalDocumentID 10_1007_s12650_018_0523_1
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2016YFB0200701
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2KG
30V
4.4
406
408
40D
5GY
67Z
8TC
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
AYJHY
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
HMJXF
HRMNR
I0C
IKXTQ
IOS
ITM
IWAJR
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O93
O9J
P2P
P9P
PT4
R9I
RLLFE
ROL
RSV
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7R
Z7X
Z7Y
Z83
Z88
ZMTXR
~A9
2VQ
AAAVM
AAFNC
AAPKM
AARHV
AAYXX
ABBRH
ABDBE
ABFSG
ABUBZ
ABULA
ACBXY
ACPQW
ACSTC
ADZMO
AEBTG
AEKMD
AEZWR
AFDZB
AFHIU
AFLOW
AFOHR
AFRHK
AGGDS
AGIAB
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
CAG
CITATION
COF
FEDTE
H13
HF~
HZ~
MET
MIO
O9-
PT5
R89
RNI
RZK
S1Z
ABRTQ
ID FETCH-LOGICAL-c316t-1e1625df6f1a5a305996875c372397ae06441fe6d3b2769cafc1dac1e823e0703
IEDL.DBID U2A
ISSN 1343-8875
IngestDate Fri Jul 25 03:36:54 EDT 2025
Thu Apr 24 22:57:32 EDT 2025
Tue Jul 01 04:10:05 EDT 2025
Fri Feb 21 02:36:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords CNN
Vortex identification
Unsteady flow field
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-1e1625df6f1a5a305996875c372397ae06441fe6d3b2769cafc1dac1e823e0703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1444-4588
PQID 2178687181
PQPubID 2043635
PageCount 14
ParticipantIDs proquest_journals_2178687181
crossref_primary_10_1007_s12650_018_0523_1
crossref_citationtrail_10_1007_s12650_018_0523_1
springer_journals_10_1007_s12650_018_0523_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190213
PublicationDateYYYYMMDD 2019-02-13
PublicationDate_xml – month: 2
  year: 2019
  text: 20190213
  day: 13
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of visualization
PublicationTitleAbbrev J Vis
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Serra, Haller (CR22) 2016; 473
Freund, Schapire (CR7) 1997; 55
Serra, Haller (CR23) 2016; 26
Zhang, Zhang, Shu (CR28) 2009; 1
CR17
CR15
CR14
CR13
Hunt (CR11) 1987; 11
Günther, Theiselr (CR9) 2018; 1
Liu, Wang, Yang, Duan (CR16) 2016; 59
Wu, Xiong, Yang (CR26) 2005; 17
Zhang, Deng, Machiraju, Rangarajan, Thompson, Walters, Shen (CR27) 2014; 33
Schafhitzel, Vollrath, Gois, Weiskopf, Castelo, Ertl (CR21) 2008; 27
CR2
Jeong, Hussain (CR12) 1995; 285
CR6
CR8
Bin, Yi (CR1) 2018; 14
Ren, Girshick, Girshick, Sun (CR19) 2015; 39
Cover, Hart (CR5) 1967; 13
CR25
Mattia, George (CR18) 2016; 813
CR24
Chakraborty, Balachandar, Adrian (CR3) 2005; 535
CR20
Chong, Perry, Cantwell (CR4) 1990; 2
Haller, Hadjighasem, Farazmand, Huhn (CR10) 2015; 795
T Schafhitzel (523_CR21) 2008; 27
T Cover (523_CR5) 1967; 13
MS Chong (523_CR4) 1990; 2
523_CR17
S Zhang (523_CR28) 2009; 1
523_CR15
523_CR14
T Bin (523_CR1) 2018; 14
Y Freund (523_CR7) 1997; 55
523_CR13
M Serra (523_CR23) 2016; 26
JCR Hunt (523_CR11) 1987; 11
523_CR8
JZ Wu (523_CR26) 2005; 17
T Günther (523_CR9) 2018; 1
CQ Liu (523_CR16) 2016; 59
G Haller (523_CR10) 2015; 795
J Jeong (523_CR12) 1995; 285
S Ren (523_CR19) 2015; 39
523_CR20
523_CR6
523_CR25
523_CR2
523_CR24
S Mattia (523_CR18) 2016; 813
P Chakraborty (523_CR3) 2005; 535
L Zhang (523_CR27) 2014; 33
M Serra (523_CR22) 2016; 473
References_xml – volume: 285
  start-page: 69
  issue: 1
  year: 1995
  end-page: 94
  ident: CR12
  article-title: On the identification of a vortex
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112095000462
– volume: 27
  start-page: 1023
  year: 2008
  end-page: 1030
  ident: CR21
  article-title: Topology-preserving -based vortex core line detection for flow visualization
  publication-title: Comput Graph Forum
  doi: 10.1111/j.1467-8659.2008.01238.x
– volume: 473
  start-page: 1
  year: 2016
  end-page: 18
  ident: CR22
  article-title: Efficient computation of null-geodesic with applications to coherent vortex detection
  publication-title: Proc R Soc A: Math Phys Eng Sci
  doi: 10.1098/rspa.2016.0807
– ident: CR14
– ident: CR2
– volume: 2
  start-page: 765
  issue: 5
  year: 1990
  end-page: 777
  ident: CR4
  article-title: A general classification of three-dimensional flow fields
  publication-title: Phys Fluids A
  doi: 10.1063/1.857730
– ident: CR6
– volume: 1
  start-page: 1
  year: 2018
  end-page: 24
  ident: CR9
  article-title: The state of the art in vortex extraction
  publication-title: Comput Graph Forum
  doi: 10.1111/cgf.13319
– volume: 26
  start-page: 95
  issue: 5
  year: 2016
  end-page: 105
  ident: CR23
  article-title: Objective eulerian coherent structures
  publication-title: Chaos Interdiscip J Nonlinear Sci
  doi: 10.1063/1.4951720
– volume: 11
  start-page: 21
  issue: 1
  year: 1987
  end-page: 35
  ident: CR11
  article-title: Vorticity and vortex dynamics in complex turbulent flows
  publication-title: Trans Can Soc Mech Eng
  doi: 10.1139/tcsme-1987-0004
– ident: CR8
– volume: 33
  start-page: 1
  year: 2014
  end-page: 12
  ident: CR27
  article-title: Boosting techniques for physics-based vortex detection
  publication-title: Comput Graph Forum
  doi: 10.1111/cgf.12275
– volume: 1
  start-page: 343
  issue: 639
  year: 2009
  end-page: 372
  ident: CR28
  article-title: Topological structure of shock induced vortex breakdown
  publication-title: J Fluid Mech
  doi: 10.1017/S002211200999108X
– ident: CR25
– volume: 535
  start-page: 189
  issue: 4
  year: 2005
  end-page: 214
  ident: CR3
  article-title: On the relationships between local vortex identification schemes
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112005004726
– volume: 39
  start-page: 1137
  issue: 6
  year: 2015
  end-page: 1149
  ident: CR19
  article-title: Faster r-cnn: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2577031
– volume: 17
  start-page: 69
  issue: 3
  year: 2005
  end-page: 78
  ident: CR26
  article-title: Axial stretching and vortex definition
  publication-title: Phys Fluids
  doi: 10.1063/1.1863284
– volume: 813
  start-page: 436
  year: 2016
  end-page: 457
  ident: CR18
  article-title: Forecasting long-lived lagrangian vortices from their objective eulerian footprints
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2016.865
– ident: CR15
– ident: CR17
– ident: CR13
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  end-page: 27
  ident: CR5
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 795
  start-page: 136
  issue: 7
  year: 2015
  end-page: 173
  ident: CR10
  article-title: Defining coherent vortices objectively from the vorticity
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2016.151
– volume: 14
  start-page: 434
  issue: 3
  year: 2018
  end-page: 444
  ident: CR1
  article-title: CNN based flow field feature visualization method
  publication-title: Int J Perform Eng
  doi: 10.23940/ijpe.18.03
– volume: 55
  start-page: 119
  issue: 1
  year: 1997
  end-page: 139
  ident: CR7
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J Comput Syst Sci
  doi: 10.1006/jcss.1997.1504
– volume: 59
  start-page: 684
  issue: 8
  year: 2016
  end-page: 711
  ident: CR16
  article-title: New omega vortex identification method
  publication-title: Sci China Phys Mech Astron
  doi: 10.1007/s11433-016-0022-6
– ident: CR24
– ident: CR20
– volume: 27
  start-page: 1023
  year: 2008
  ident: 523_CR21
  publication-title: Comput Graph Forum
  doi: 10.1111/j.1467-8659.2008.01238.x
– ident: 523_CR6
  doi: 10.1109/IGARSS.2018.8519261
– volume: 39
  start-page: 1137
  issue: 6
  year: 2015
  ident: 523_CR19
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2577031
– volume: 813
  start-page: 436
  year: 2016
  ident: 523_CR18
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2016.865
– volume: 33
  start-page: 1
  year: 2014
  ident: 523_CR27
  publication-title: Comput Graph Forum
  doi: 10.1111/cgf.12275
– ident: 523_CR17
– volume: 26
  start-page: 95
  issue: 5
  year: 2016
  ident: 523_CR23
  publication-title: Chaos Interdiscip J Nonlinear Sci
  doi: 10.1063/1.4951720
– ident: 523_CR25
  doi: 10.4208/cicp.OA-2018-0035
– volume: 2
  start-page: 765
  issue: 5
  year: 1990
  ident: 523_CR4
  publication-title: Phys Fluids A
  doi: 10.1063/1.857730
– ident: 523_CR2
  doi: 10.1109/PACIFICVIS.2015.715638
– ident: 523_CR24
  doi: 10.1109/ICDAR.2003.1227801
– volume: 55
  start-page: 119
  issue: 1
  year: 1997
  ident: 523_CR7
  publication-title: J Comput Syst Sci
  doi: 10.1006/jcss.1997.1504
– ident: 523_CR8
  doi: 10.1109/CVPR.2014.81
– ident: 523_CR15
  doi: 10.1109/IGARSS.2018.8518411
– volume: 17
  start-page: 69
  issue: 3
  year: 2005
  ident: 523_CR26
  publication-title: Phys Fluids
  doi: 10.1063/1.1863284
– volume: 285
  start-page: 69
  issue: 1
  year: 1995
  ident: 523_CR12
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112095000462
– volume: 1
  start-page: 343
  issue: 639
  year: 2009
  ident: 523_CR28
  publication-title: J Fluid Mech
  doi: 10.1017/S002211200999108X
– volume: 11
  start-page: 21
  issue: 1
  year: 1987
  ident: 523_CR11
  publication-title: Trans Can Soc Mech Eng
  doi: 10.1139/tcsme-1987-0004
– volume: 795
  start-page: 136
  issue: 7
  year: 2015
  ident: 523_CR10
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2016.151
– volume: 14
  start-page: 434
  issue: 3
  year: 2018
  ident: 523_CR1
  publication-title: Int J Perform Eng
  doi: 10.23940/ijpe.18.03
– volume: 473
  start-page: 1
  year: 2016
  ident: 523_CR22
  publication-title: Proc R Soc A: Math Phys Eng Sci
  doi: 10.1098/rspa.2016.0807
– ident: 523_CR13
  doi: 10.1016/B978-012387582-2/50016-2
– volume: 535
  start-page: 189
  issue: 4
  year: 2005
  ident: 523_CR3
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112005004726
– volume: 1
  start-page: 1
  year: 2018
  ident: 523_CR9
  publication-title: Comput Graph Forum
  doi: 10.1111/cgf.13319
– volume: 59
  start-page: 684
  issue: 8
  year: 2016
  ident: 523_CR16
  publication-title: Sci China Phys Mech Astron
  doi: 10.1007/s11433-016-0022-6
– ident: 523_CR14
– ident: 523_CR20
  doi: 10.1109/VISUAL.1998.745333
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: 523_CR5
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1967.1053964
SSID ssj0021471
Score 2.4196572
Snippet Vortex identification and visualization are important for understanding the underlying physical mechanism of the flow field and have been intensively studied...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 65
SubjectTerms Artificial neural networks
Classical and Continuum Physics
Computational fluid dynamics
Computer Imaging
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Fluid flow
Heat and Mass Transfer
Identification
Identification methods
Methods
Pattern Recognition and Graphics
Regular Paper
Velocity distribution
Vision
Vortices
Title A CNN-based vortex identification method
URI https://link.springer.com/article/10.1007/s12650-018-0523-1
https://www.proquest.com/docview/2178687181
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7IdtGDP6bidI4ePIgSaH60a49lbA7FnRzMU0mTFASZYqf45_vSJauKCp6bPMiXvOT7mpf3AM6igS4MLwURsdBElFSSgtKCRKXQTNpCC8o-cL6dxpOZuJ5Hc_eOu_LR7v5Kst6pm8duDNkESt-E2F-ZBCVPO0Lpbpf1jGVrlUW9yhKcoAdF_irzJxNfD6OGYX67FK3PmvEubDuSGGSrWd2DDbPowI4jjIFzx6oDW5-yCe7DeRYMp1NizyUdvNkg2vfgQbtooHoCglW96AOYjUd3wwlxhRCI4jReEmooyhRdxghlJHmdUgVHpviAIZ2QJrSkpjSx5gUbxKmSpaJaKmoSxo316UNoLZ4W5ggCntb1MLUxVInQpEms0VzBy5BJxRjtQugRyZXLEm6LVTzmTX5jC2KOIOYWxBy7XKy7PK9SZPzVuOdhzp23VDnKogQHhGSjC5ce-ubzr8aO_9X6BDaR7aQ25JryHrSWL6_mFBnFsuhDO7u6vxn165X0AZeNv7A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8xcFAPoqgRRd3Bg9HUrB8bcCQERIGdIMHTsrVdYjRoZBjjX-_r6ECJmnBe27Tv9bW_3_o-AC68moo1TwQRvlBEJDQiMaUx8RKhWGQKLUgT4DwI_O5I3I-9sY3jnube7vmTZHZSL4PdGKIJpL51Yn5lEqQ8RYEU3CtAsXn70GsveBbNeZbgBG3Iyx8zfxvk53W0xJgrz6LZbdMpwTCf59zJ5OlmlsY38nMlheOaC9mFHYs-neZ8u-zBhp6UoWSRqGPtfFqG7W9pCvfhsum0goCYC08578Y798N5VNbNKNOsMy9EfQCjTnvY6hJbYYFITv2UUE2R_6jERx15Ec9ytaDAJK8xxCmRdg1aSrSveMxqfkNGiaQqklTXGdfmsDiEwuRloo_A4Y2s0KbSmkrh6kbdVzhczBOXRZIxWgE3F3QobfpxUwXjOVwmTjZyCVEuoZFLiF2uFl1e57k3_mtczbUXWjOchsi36rggRDEVuM6Vsfz852DHa7U-h83ucNAP-3dB7wS2EFI1jF835VUopG8zfYqwJY3P7Db9AoIP3cg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kgujBR1WsVs3BgyhLs4-kybFUS30FDxZ6W5J9gCCx2Cj-fGeTTaOigufsDuy3mcw3mRdCJ0FfZZoZjnnIFeaGpDgjJMOB4YqmdtCCtAXOd0k4nvDraTB1c07ndbZ7HZKsahpsl6a86M2U6TWFbxSYBbjBEba_NTG4P8vwNSY2p2tCBwuPi9QeF2cYtCmow5o_ifhqmBq2-S1AWtqd0SZad4TRG1Q3vIWWdN5GG448ek4152209qmz4DY6HXjDJMHWRinvzSbUvnuPymUGlZfhVbOjd9BkdPkwHGM3FAFLRsICE03AZVEmBFiDlJXtVeBkkvUpUItU-5bgGB0qltF-GMvUSKJSSXREmbb6vYta-XOu95DH4nI2ptKaSO7rOAoViMuY8WkqKSUd5NeICOk6htvBFU-i6XVsQRQAorAgCthyttgyq9pl_LW4W8MsnObMBbhIERwIiEcHndfQN49_Fbb_r9XHaOX-YiRur5KbA7QKJCi2mdiEdVGreHnVh0A0iuyofJk-AHBrxUs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CNN-based+vortex+identification+method&rft.jtitle=Journal+of+visualization&rft.au=Deng%2C+Liang&rft.au=Wang%2C+Yueqing&rft.au=Liu%2C+Yang&rft.au=Wang%2C+Fang&rft.date=2019-02-13&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1343-8875&rft.eissn=1875-8975&rft.volume=22&rft.issue=1&rft.spage=65&rft.epage=78&rft_id=info:doi/10.1007%2Fs12650-018-0523-1&rft.externalDocID=10_1007_s12650_018_0523_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-8875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-8875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-8875&client=summon