A CNN-based vortex identification method
Vortex identification and visualization are important for understanding the underlying physical mechanism of the flow field and have been intensively studied recently. Local vortex identification methods could provide results in a rapid way, but they require the choice of a suitable criterion and th...
Saved in:
Published in | Journal of visualization Vol. 22; no. 1; pp. 65 - 78 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
13.02.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1343-8875 1875-8975 |
DOI | 10.1007/s12650-018-0523-1 |
Cover
Loading…
Abstract | Vortex identification and visualization are important for understanding the underlying physical mechanism of the flow field and have been intensively studied recently. Local vortex identification methods could provide results in a rapid way, but they require the choice of a suitable criterion and threshold, which leads to poor robustness. Global vortex identification methods could obtain reliable results, while they require considerable user input and are computationally intractable for large-scale data sets. To address the problems described above, we present a novel vortex identification method based on the convolutional neural network (CNN). The proposed method integrates the advantages of both the local and global vortex identification methods to achieve higher precision and recall efficiently. In specific, the proposed method firstly obtains the labels of all grid points using a global and objective vortex identification method and then samples local patches around each point in the velocity field as the inputs of CNN. After that it trains the CNN to decide whether the central points of these patches belong to vortices. By this way, our method converts the vortex identification task to a binary classification problem, which could detect vortices quickly from the flow field in an objective and robust way. Extensive experimental results demonstrate the efficacy of our proposed method, and we expect this method can replace or supplement existing traditional methods.
Graphical abstract |
---|---|
AbstractList | Vortex identification and visualization are important for understanding the underlying physical mechanism of the flow field and have been intensively studied recently. Local vortex identification methods could provide results in a rapid way, but they require the choice of a suitable criterion and threshold, which leads to poor robustness. Global vortex identification methods could obtain reliable results, while they require considerable user input and are computationally intractable for large-scale data sets. To address the problems described above, we present a novel vortex identification method based on the convolutional neural network (CNN). The proposed method integrates the advantages of both the local and global vortex identification methods to achieve higher precision and recall efficiently. In specific, the proposed method firstly obtains the labels of all grid points using a global and objective vortex identification method and then samples local patches around each point in the velocity field as the inputs of CNN. After that it trains the CNN to decide whether the central points of these patches belong to vortices. By this way, our method converts the vortex identification task to a binary classification problem, which could detect vortices quickly from the flow field in an objective and robust way. Extensive experimental results demonstrate the efficacy of our proposed method, and we expect this method can replace or supplement existing traditional methods.Graphical abstract Vortex identification and visualization are important for understanding the underlying physical mechanism of the flow field and have been intensively studied recently. Local vortex identification methods could provide results in a rapid way, but they require the choice of a suitable criterion and threshold, which leads to poor robustness. Global vortex identification methods could obtain reliable results, while they require considerable user input and are computationally intractable for large-scale data sets. To address the problems described above, we present a novel vortex identification method based on the convolutional neural network (CNN). The proposed method integrates the advantages of both the local and global vortex identification methods to achieve higher precision and recall efficiently. In specific, the proposed method firstly obtains the labels of all grid points using a global and objective vortex identification method and then samples local patches around each point in the velocity field as the inputs of CNN. After that it trains the CNN to decide whether the central points of these patches belong to vortices. By this way, our method converts the vortex identification task to a binary classification problem, which could detect vortices quickly from the flow field in an objective and robust way. Extensive experimental results demonstrate the efficacy of our proposed method, and we expect this method can replace or supplement existing traditional methods. Graphical abstract |
Author | Liu, Jie Deng, Liang Li, Sikun Liu, Yang Wang, Fang Wang, Yueqing |
Author_xml | – sequence: 1 givenname: Liang orcidid: 0000-0003-1444-4588 surname: Deng fullname: Deng, Liang email: dengliang11@nudt.edu.cn organization: College of Computer, National University of Defense Technology, Computational Aerodynamics Institute, China Aerodynamics Research and Development Center – sequence: 2 givenname: Yueqing surname: Wang fullname: Wang, Yueqing organization: Computational Aerodynamics Institute, China Aerodynamics Research and Development Center – sequence: 3 givenname: Yang surname: Liu fullname: Liu, Yang organization: College of Computer, National University of Defense Technology, Computational Aerodynamics Institute, China Aerodynamics Research and Development Center – sequence: 4 givenname: Fang surname: Wang fullname: Wang, Fang organization: Computational Aerodynamics Institute, China Aerodynamics Research and Development Center – sequence: 5 givenname: Sikun surname: Li fullname: Li, Sikun organization: College of Computer, National University of Defense Technology – sequence: 6 givenname: Jie surname: Liu fullname: Liu, Jie organization: College of Computer, National University of Defense Technology |
BookMark | eNp9kE1LAzEQhoMo2FZ_gLcFL16imWTzscdS_IJSL3oOaTbRlHa3Jqnovzd1BUHQ0wzD-8w7847RYdd3DqEzIJdAiLxKQAUnmIDChFOG4QCNQEmOVSP5YelZzbAqg2M0TmlFCIVawghdTKvZYoGXJrm2eutjdu9VaF2Xgw_W5NB31cbll749QUferJM7_a4T9HRz_Ti7w_OH2_vZdI4tA5ExOBCUt154MNwwwptGFFfLJGWNNI6IugbvRMuWVIrGGm-hNRacoswRSdgEnQ97t7F_3bmU9arfxa5YagpSlWWgoKhgUNnYpxSd19sYNiZ-aCB6H4geAtElEL0PRO8Z-YuxIX-9mKMJ639JOpCpuHTPLv7c9Df0CTm-c_o |
CitedBy_id | crossref_primary_10_1016_j_compfluid_2019_03_022 crossref_primary_10_1016_j_oceaneng_2023_115820 crossref_primary_10_1007_s40436_025_00545_0 crossref_primary_10_1080_19942060_2024_2407005 crossref_primary_10_1007_s12650_020_00732_0 crossref_primary_10_1115_1_4064478 crossref_primary_10_3390_e23101314 crossref_primary_10_1615_JFlowVisImageProc_2022041197 crossref_primary_10_1016_j_jcp_2023_111948 crossref_primary_10_1016_j_egyai_2021_100067 crossref_primary_10_3390_fractalfract7060467 crossref_primary_10_3390_math9161843 crossref_primary_10_1109_TVCG_2022_3167896 crossref_primary_10_1007_s00371_023_03176_3 crossref_primary_10_2514_1_J062091 crossref_primary_10_1007_s10707_025_00540_4 crossref_primary_10_1016_j_compfluid_2019_104318 crossref_primary_10_1007_s44267_023_00014_x crossref_primary_10_1109_TVCG_2020_3028947 crossref_primary_10_1016_j_energy_2024_132828 crossref_primary_10_1063_5_0156975 crossref_primary_10_3390_sym15040864 crossref_primary_10_3390_jmse11020239 crossref_primary_10_3390_sym13030382 crossref_primary_10_1080_19942060_2022_2104930 crossref_primary_10_1007_s00371_020_01797_6 crossref_primary_10_1016_j_compfluid_2023_106104 crossref_primary_10_1109_ACCESS_2021_3100127 crossref_primary_10_1109_TVCG_2023_3326603 crossref_primary_10_1051_e3sconf_202127103009 crossref_primary_10_1007_s12650_024_00987_x crossref_primary_10_1002_jcp_30569 crossref_primary_10_1109_ACCESS_2019_2931781 crossref_primary_10_3390_jpm10040286 crossref_primary_10_1016_j_eswa_2024_124080 crossref_primary_10_3390_app132011481 crossref_primary_10_1115_1_4056660 crossref_primary_10_1088_1742_6596_2141_1_012009 crossref_primary_10_1063_5_0079648 crossref_primary_10_1021_acs_iecr_3c01452 crossref_primary_10_3390_en15155719 crossref_primary_10_3390_math9161939 crossref_primary_10_1109_TGRS_2023_3320350 crossref_primary_10_1007_s00348_021_03265_w crossref_primary_10_1007_s12650_020_00636_z crossref_primary_10_1155_2020_8865001 crossref_primary_10_3934_math_20231522 crossref_primary_10_1016_j_mtcomm_2023_106281 crossref_primary_10_1007_s12206_022_1223_2 crossref_primary_10_1186_s42774_022_00113_1 |
Cites_doi | 10.1017/S0022112095000462 10.1111/j.1467-8659.2008.01238.x 10.1098/rspa.2016.0807 10.1063/1.857730 10.1111/cgf.13319 10.1063/1.4951720 10.1139/tcsme-1987-0004 10.1111/cgf.12275 10.1017/S002211200999108X 10.1017/S0022112005004726 10.1109/TPAMI.2016.2577031 10.1063/1.1863284 10.1017/jfm.2016.865 10.1109/TIT.1967.1053964 10.1017/jfm.2016.151 10.23940/ijpe.18.03 10.1006/jcss.1997.1504 10.1007/s11433-016-0022-6 10.1109/IGARSS.2018.8519261 10.4208/cicp.OA-2018-0035 10.1109/PACIFICVIS.2015.715638 10.1109/ICDAR.2003.1227801 10.1109/CVPR.2014.81 10.1109/IGARSS.2018.8518411 10.1016/B978-012387582-2/50016-2 10.1109/VISUAL.1998.745333 |
ContentType | Journal Article |
Copyright | The Visualization Society of Japan 2018 Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: The Visualization Society of Japan 2018 – notice: Copyright Springer Nature B.V. 2019 |
DBID | AAYXX CITATION |
DOI | 10.1007/s12650-018-0523-1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1875-8975 |
EndPage | 78 |
ExternalDocumentID | 10_1007_s12650_018_0523_1 |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2016YFB0200701 |
GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29~ 2KG 30V 4.4 406 408 40D 5GY 67Z 8TC 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTD ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD AYJHY BGNMA CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 HMJXF HRMNR I0C IKXTQ IOS ITM IWAJR J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O93 O9J P2P P9P PT4 R9I RLLFE ROL RSV S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7R Z7X Z7Y Z83 Z88 ZMTXR ~A9 2VQ AAAVM AAFNC AAPKM AARHV AAYXX ABBRH ABDBE ABFSG ABUBZ ABULA ACBXY ACPQW ACSTC ADZMO AEBTG AEKMD AEZWR AFDZB AFHIU AFLOW AFOHR AFRHK AGGDS AGIAB AHPBZ AHSBF AHWEU AIXLP AJBLW ATHPR AYFIA CAG CITATION COF FEDTE H13 HF~ HZ~ MET MIO O9- PT5 R89 RNI RZK S1Z ABRTQ |
ID | FETCH-LOGICAL-c316t-1e1625df6f1a5a305996875c372397ae06441fe6d3b2769cafc1dac1e823e0703 |
IEDL.DBID | U2A |
ISSN | 1343-8875 |
IngestDate | Fri Jul 25 03:36:54 EDT 2025 Thu Apr 24 22:57:32 EDT 2025 Tue Jul 01 04:10:05 EDT 2025 Fri Feb 21 02:36:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | CNN Vortex identification Unsteady flow field |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-1e1625df6f1a5a305996875c372397ae06441fe6d3b2769cafc1dac1e823e0703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1444-4588 |
PQID | 2178687181 |
PQPubID | 2043635 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2178687181 crossref_primary_10_1007_s12650_018_0523_1 crossref_citationtrail_10_1007_s12650_018_0523_1 springer_journals_10_1007_s12650_018_0523_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190213 |
PublicationDateYYYYMMDD | 2019-02-13 |
PublicationDate_xml | – month: 2 year: 2019 text: 20190213 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Journal of visualization |
PublicationTitleAbbrev | J Vis |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Serra, Haller (CR22) 2016; 473 Freund, Schapire (CR7) 1997; 55 Serra, Haller (CR23) 2016; 26 Zhang, Zhang, Shu (CR28) 2009; 1 CR17 CR15 CR14 CR13 Hunt (CR11) 1987; 11 Günther, Theiselr (CR9) 2018; 1 Liu, Wang, Yang, Duan (CR16) 2016; 59 Wu, Xiong, Yang (CR26) 2005; 17 Zhang, Deng, Machiraju, Rangarajan, Thompson, Walters, Shen (CR27) 2014; 33 Schafhitzel, Vollrath, Gois, Weiskopf, Castelo, Ertl (CR21) 2008; 27 CR2 Jeong, Hussain (CR12) 1995; 285 CR6 CR8 Bin, Yi (CR1) 2018; 14 Ren, Girshick, Girshick, Sun (CR19) 2015; 39 Cover, Hart (CR5) 1967; 13 CR25 Mattia, George (CR18) 2016; 813 CR24 Chakraborty, Balachandar, Adrian (CR3) 2005; 535 CR20 Chong, Perry, Cantwell (CR4) 1990; 2 Haller, Hadjighasem, Farazmand, Huhn (CR10) 2015; 795 T Schafhitzel (523_CR21) 2008; 27 T Cover (523_CR5) 1967; 13 MS Chong (523_CR4) 1990; 2 523_CR17 S Zhang (523_CR28) 2009; 1 523_CR15 523_CR14 T Bin (523_CR1) 2018; 14 Y Freund (523_CR7) 1997; 55 523_CR13 M Serra (523_CR23) 2016; 26 JCR Hunt (523_CR11) 1987; 11 523_CR8 JZ Wu (523_CR26) 2005; 17 T Günther (523_CR9) 2018; 1 CQ Liu (523_CR16) 2016; 59 G Haller (523_CR10) 2015; 795 J Jeong (523_CR12) 1995; 285 S Ren (523_CR19) 2015; 39 523_CR20 523_CR6 523_CR25 523_CR2 523_CR24 S Mattia (523_CR18) 2016; 813 P Chakraborty (523_CR3) 2005; 535 L Zhang (523_CR27) 2014; 33 M Serra (523_CR22) 2016; 473 |
References_xml | – volume: 285 start-page: 69 issue: 1 year: 1995 end-page: 94 ident: CR12 article-title: On the identification of a vortex publication-title: J Fluid Mech doi: 10.1017/S0022112095000462 – volume: 27 start-page: 1023 year: 2008 end-page: 1030 ident: CR21 article-title: Topology-preserving -based vortex core line detection for flow visualization publication-title: Comput Graph Forum doi: 10.1111/j.1467-8659.2008.01238.x – volume: 473 start-page: 1 year: 2016 end-page: 18 ident: CR22 article-title: Efficient computation of null-geodesic with applications to coherent vortex detection publication-title: Proc R Soc A: Math Phys Eng Sci doi: 10.1098/rspa.2016.0807 – ident: CR14 – ident: CR2 – volume: 2 start-page: 765 issue: 5 year: 1990 end-page: 777 ident: CR4 article-title: A general classification of three-dimensional flow fields publication-title: Phys Fluids A doi: 10.1063/1.857730 – ident: CR6 – volume: 1 start-page: 1 year: 2018 end-page: 24 ident: CR9 article-title: The state of the art in vortex extraction publication-title: Comput Graph Forum doi: 10.1111/cgf.13319 – volume: 26 start-page: 95 issue: 5 year: 2016 end-page: 105 ident: CR23 article-title: Objective eulerian coherent structures publication-title: Chaos Interdiscip J Nonlinear Sci doi: 10.1063/1.4951720 – volume: 11 start-page: 21 issue: 1 year: 1987 end-page: 35 ident: CR11 article-title: Vorticity and vortex dynamics in complex turbulent flows publication-title: Trans Can Soc Mech Eng doi: 10.1139/tcsme-1987-0004 – ident: CR8 – volume: 33 start-page: 1 year: 2014 end-page: 12 ident: CR27 article-title: Boosting techniques for physics-based vortex detection publication-title: Comput Graph Forum doi: 10.1111/cgf.12275 – volume: 1 start-page: 343 issue: 639 year: 2009 end-page: 372 ident: CR28 article-title: Topological structure of shock induced vortex breakdown publication-title: J Fluid Mech doi: 10.1017/S002211200999108X – ident: CR25 – volume: 535 start-page: 189 issue: 4 year: 2005 end-page: 214 ident: CR3 article-title: On the relationships between local vortex identification schemes publication-title: J Fluid Mech doi: 10.1017/S0022112005004726 – volume: 39 start-page: 1137 issue: 6 year: 2015 end-page: 1149 ident: CR19 article-title: Faster r-cnn: towards real-time object detection with region proposal networks publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2016.2577031 – volume: 17 start-page: 69 issue: 3 year: 2005 end-page: 78 ident: CR26 article-title: Axial stretching and vortex definition publication-title: Phys Fluids doi: 10.1063/1.1863284 – volume: 813 start-page: 436 year: 2016 end-page: 457 ident: CR18 article-title: Forecasting long-lived lagrangian vortices from their objective eulerian footprints publication-title: J Fluid Mech doi: 10.1017/jfm.2016.865 – ident: CR15 – ident: CR17 – ident: CR13 – volume: 13 start-page: 21 issue: 1 year: 1967 end-page: 27 ident: CR5 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1967.1053964 – volume: 795 start-page: 136 issue: 7 year: 2015 end-page: 173 ident: CR10 article-title: Defining coherent vortices objectively from the vorticity publication-title: J Fluid Mech doi: 10.1017/jfm.2016.151 – volume: 14 start-page: 434 issue: 3 year: 2018 end-page: 444 ident: CR1 article-title: CNN based flow field feature visualization method publication-title: Int J Perform Eng doi: 10.23940/ijpe.18.03 – volume: 55 start-page: 119 issue: 1 year: 1997 end-page: 139 ident: CR7 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J Comput Syst Sci doi: 10.1006/jcss.1997.1504 – volume: 59 start-page: 684 issue: 8 year: 2016 end-page: 711 ident: CR16 article-title: New omega vortex identification method publication-title: Sci China Phys Mech Astron doi: 10.1007/s11433-016-0022-6 – ident: CR24 – ident: CR20 – volume: 27 start-page: 1023 year: 2008 ident: 523_CR21 publication-title: Comput Graph Forum doi: 10.1111/j.1467-8659.2008.01238.x – ident: 523_CR6 doi: 10.1109/IGARSS.2018.8519261 – volume: 39 start-page: 1137 issue: 6 year: 2015 ident: 523_CR19 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2016.2577031 – volume: 813 start-page: 436 year: 2016 ident: 523_CR18 publication-title: J Fluid Mech doi: 10.1017/jfm.2016.865 – volume: 33 start-page: 1 year: 2014 ident: 523_CR27 publication-title: Comput Graph Forum doi: 10.1111/cgf.12275 – ident: 523_CR17 – volume: 26 start-page: 95 issue: 5 year: 2016 ident: 523_CR23 publication-title: Chaos Interdiscip J Nonlinear Sci doi: 10.1063/1.4951720 – ident: 523_CR25 doi: 10.4208/cicp.OA-2018-0035 – volume: 2 start-page: 765 issue: 5 year: 1990 ident: 523_CR4 publication-title: Phys Fluids A doi: 10.1063/1.857730 – ident: 523_CR2 doi: 10.1109/PACIFICVIS.2015.715638 – ident: 523_CR24 doi: 10.1109/ICDAR.2003.1227801 – volume: 55 start-page: 119 issue: 1 year: 1997 ident: 523_CR7 publication-title: J Comput Syst Sci doi: 10.1006/jcss.1997.1504 – ident: 523_CR8 doi: 10.1109/CVPR.2014.81 – ident: 523_CR15 doi: 10.1109/IGARSS.2018.8518411 – volume: 17 start-page: 69 issue: 3 year: 2005 ident: 523_CR26 publication-title: Phys Fluids doi: 10.1063/1.1863284 – volume: 285 start-page: 69 issue: 1 year: 1995 ident: 523_CR12 publication-title: J Fluid Mech doi: 10.1017/S0022112095000462 – volume: 1 start-page: 343 issue: 639 year: 2009 ident: 523_CR28 publication-title: J Fluid Mech doi: 10.1017/S002211200999108X – volume: 11 start-page: 21 issue: 1 year: 1987 ident: 523_CR11 publication-title: Trans Can Soc Mech Eng doi: 10.1139/tcsme-1987-0004 – volume: 795 start-page: 136 issue: 7 year: 2015 ident: 523_CR10 publication-title: J Fluid Mech doi: 10.1017/jfm.2016.151 – volume: 14 start-page: 434 issue: 3 year: 2018 ident: 523_CR1 publication-title: Int J Perform Eng doi: 10.23940/ijpe.18.03 – volume: 473 start-page: 1 year: 2016 ident: 523_CR22 publication-title: Proc R Soc A: Math Phys Eng Sci doi: 10.1098/rspa.2016.0807 – ident: 523_CR13 doi: 10.1016/B978-012387582-2/50016-2 – volume: 535 start-page: 189 issue: 4 year: 2005 ident: 523_CR3 publication-title: J Fluid Mech doi: 10.1017/S0022112005004726 – volume: 1 start-page: 1 year: 2018 ident: 523_CR9 publication-title: Comput Graph Forum doi: 10.1111/cgf.13319 – volume: 59 start-page: 684 issue: 8 year: 2016 ident: 523_CR16 publication-title: Sci China Phys Mech Astron doi: 10.1007/s11433-016-0022-6 – ident: 523_CR14 – ident: 523_CR20 doi: 10.1109/VISUAL.1998.745333 – volume: 13 start-page: 21 issue: 1 year: 1967 ident: 523_CR5 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1967.1053964 |
SSID | ssj0021471 |
Score | 2.4196572 |
Snippet | Vortex identification and visualization are important for understanding the underlying physical mechanism of the flow field and have been intensively studied... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 65 |
SubjectTerms | Artificial neural networks Classical and Continuum Physics Computational fluid dynamics Computer Imaging Engineering Engineering Fluid Dynamics Engineering Thermodynamics Fluid flow Heat and Mass Transfer Identification Identification methods Methods Pattern Recognition and Graphics Regular Paper Velocity distribution Vision Vortices |
Title | A CNN-based vortex identification method |
URI | https://link.springer.com/article/10.1007/s12650-018-0523-1 https://www.proquest.com/docview/2178687181 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7IdtGDP6bidI4ePIgSaH60a49lbA7FnRzMU0mTFASZYqf45_vSJauKCp6bPMiXvOT7mpf3AM6igS4MLwURsdBElFSSgtKCRKXQTNpCC8o-cL6dxpOZuJ5Hc_eOu_LR7v5Kst6pm8duDNkESt-E2F-ZBCVPO0Lpbpf1jGVrlUW9yhKcoAdF_irzJxNfD6OGYX67FK3PmvEubDuSGGSrWd2DDbPowI4jjIFzx6oDW5-yCe7DeRYMp1NizyUdvNkg2vfgQbtooHoCglW96AOYjUd3wwlxhRCI4jReEmooyhRdxghlJHmdUgVHpviAIZ2QJrSkpjSx5gUbxKmSpaJaKmoSxo316UNoLZ4W5ggCntb1MLUxVInQpEms0VzBy5BJxRjtQugRyZXLEm6LVTzmTX5jC2KOIOYWxBy7XKy7PK9SZPzVuOdhzp23VDnKogQHhGSjC5ce-ubzr8aO_9X6BDaR7aQ25JryHrSWL6_mFBnFsuhDO7u6vxn165X0AZeNv7A |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8xcFAPoqgRRd3Bg9HUrB8bcCQERIGdIMHTsrVdYjRoZBjjX-_r6ECJmnBe27Tv9bW_3_o-AC68moo1TwQRvlBEJDQiMaUx8RKhWGQKLUgT4DwI_O5I3I-9sY3jnube7vmTZHZSL4PdGKIJpL51Yn5lEqQ8RYEU3CtAsXn70GsveBbNeZbgBG3Iyx8zfxvk53W0xJgrz6LZbdMpwTCf59zJ5OlmlsY38nMlheOaC9mFHYs-neZ8u-zBhp6UoWSRqGPtfFqG7W9pCvfhsum0goCYC08578Y798N5VNbNKNOsMy9EfQCjTnvY6hJbYYFITv2UUE2R_6jERx15Ec9ytaDAJK8xxCmRdg1aSrSveMxqfkNGiaQqklTXGdfmsDiEwuRloo_A4Y2s0KbSmkrh6kbdVzhczBOXRZIxWgE3F3QobfpxUwXjOVwmTjZyCVEuoZFLiF2uFl1e57k3_mtczbUXWjOchsi36rggRDEVuM6Vsfz852DHa7U-h83ucNAP-3dB7wS2EFI1jF835VUopG8zfYqwJY3P7Db9AoIP3cg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kgujBR1WsVs3BgyhLs4-kybFUS30FDxZ6W5J9gCCx2Cj-fGeTTaOigufsDuy3mcw3mRdCJ0FfZZoZjnnIFeaGpDgjJMOB4YqmdtCCtAXOd0k4nvDraTB1c07ndbZ7HZKsahpsl6a86M2U6TWFbxSYBbjBEba_NTG4P8vwNSY2p2tCBwuPi9QeF2cYtCmow5o_ifhqmBq2-S1AWtqd0SZad4TRG1Q3vIWWdN5GG448ek4152209qmz4DY6HXjDJMHWRinvzSbUvnuPymUGlZfhVbOjd9BkdPkwHGM3FAFLRsICE03AZVEmBFiDlJXtVeBkkvUpUItU-5bgGB0qltF-GMvUSKJSSXREmbb6vYta-XOu95DH4nI2ptKaSO7rOAoViMuY8WkqKSUd5NeICOk6htvBFU-i6XVsQRQAorAgCthyttgyq9pl_LW4W8MsnObMBbhIERwIiEcHndfQN49_Fbb_r9XHaOX-YiRur5KbA7QKJCi2mdiEdVGreHnVh0A0iuyofJk-AHBrxUs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CNN-based+vortex+identification+method&rft.jtitle=Journal+of+visualization&rft.au=Deng%2C+Liang&rft.au=Wang%2C+Yueqing&rft.au=Liu%2C+Yang&rft.au=Wang%2C+Fang&rft.date=2019-02-13&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1343-8875&rft.eissn=1875-8975&rft.volume=22&rft.issue=1&rft.spage=65&rft.epage=78&rft_id=info:doi/10.1007%2Fs12650-018-0523-1&rft.externalDocID=10_1007_s12650_018_0523_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-8875&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-8875&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-8875&client=summon |