Structural Damage Identification Using Ensemble Deep Convolutional Neural Network Models
The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visual methods, which may result in an unreliable damage characterization due to inspector subjectivity or insufficient level of expertise. As a result, a robust, reliable, and...
Saved in:
Published in | Computer modeling in engineering & sciences Vol. 134; no. 2; pp. 835 - 855 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Henderson
Tech Science Press
2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visual methods, which may result in an unreliable damage characterization due to inspector subjectivity or insufficient level of expertise. As a result, a robust, reliable, and repeatable method of damage identification is required. Ensemble learning algorithms for identifying structural damage are evaluated in this article, which use deep convolutional neural networks, including simple averaging, integrated stacking, separate stacking, and hybrid weighted averaging ensemble and differential evolution (WAE-DE) ensemble models. Damage identification is carried out on three types of damage. The proposed algorithms are used to analyze the damage of 4585 structural images. The effectiveness of the ensemble learning techniques is evaluated using the confusion matrix. For the testing dataset, the confusion matrix achieved an accuracy of 94 percent and a minimum recall of 92 percent for the best model (WAE-DE) in distinguishing damage types as flexural, shear, combined, or undamaged. |
---|---|
AbstractList | The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visual methods, which may result in an unreliable damage characterization due to inspector subjectivity or insufficient level of expertise. As a result, a robust, reliable, and repeatable method of damage identification is required. Ensemble learning algorithms for identifying structural damage are evaluated in this article, which use deep convolutional neural networks, including simple averaging, integrated stacking, separate stacking, and hybrid weighted averaging ensemble and differential evolution (WAE-DE) ensemble models. Damage identification is carried out on three types of damage. The proposed algorithms are used to analyze the damage of 4585 structural images. The effectiveness of the ensemble learning techniques is evaluated using the confusion matrix. For the testing dataset, the confusion matrix achieved an accuracy of 94 percent and a minimum recall of 92 percent for the best model (WAE-DE) in distinguishing damage types as flexural, shear, combined, or undamaged. |
Author | Sadegh Barkhordari, Mohammad G. Asteris, Panagiotis Jahed Armaghani, Danial |
Author_xml | – sequence: 1 givenname: Mohammad surname: Sadegh Barkhordari fullname: Sadegh Barkhordari, Mohammad – sequence: 2 givenname: Danial surname: Jahed Armaghani fullname: Jahed Armaghani, Danial – sequence: 3 givenname: Panagiotis surname: G. Asteris fullname: G. Asteris, Panagiotis |
BookMark | eNp9kMFOwzAMhiM0JLbBA3CrxLnDSdvQHNE2YNIYB5jELUoTd-pom5GkIN6ebuOAOHCyJf-fZX8jMmhti4RcUpgkjEN6rRv0EwaMTYBBnsIJGdKM8ZhmwAe_-jMy8n4LkPAkF0Py-hxcp0PnVB3NVKM2GC0MtqEqK61CZdto7at2E81bj01RYzRD3EVT237YutvPe26FB3yF4dO6t-jRGqz9OTktVe3x4qeOyfpu_jJ9iJdP94vp7TLWCeUhpgVjQvG0ZJSloJUpRSlyEIZlwnDNc5EXRampTlPgyKjIOeVoRJKZNDe0SMbk6rh35-x7hz7Ire1cf5aXCQOgvRIBfermmNLOeu-wlLoKh_-CU1UtKciDRrnXKPca5VFjT9I_5M5VjXJf_zDfZkB4Nw |
CitedBy_id | crossref_primary_10_1007_s10064_023_03472_1 crossref_primary_10_32604_cmes_2023_025694 crossref_primary_10_1016_j_clema_2025_100299 crossref_primary_10_1007_s10462_024_11099_1 crossref_primary_10_1007_s44150_024_00112_4 crossref_primary_10_3390_app12189227 crossref_primary_10_3390_su141811769 crossref_primary_10_3934_mbe_2024061 crossref_primary_10_1007_s12665_022_10436_3 crossref_primary_10_1016_j_trgeo_2022_100906 crossref_primary_10_1007_s00521_023_09062_2 |
Cites_doi | 10.1155/2021/9923704 10.1080/15732479.2021.1994617 10.32604/cmes.2021.017589 10.1007/s42107-021-00404-w 10.1016/j.jobe.2021.102977 10.1111/mice.12363 10.1007/s13349-020-00434-z 10.55461/QFKL9711 10.1061/(ASCE)ST.1943-541X.0003140 10.28991/cej-2020-03091534 10.1007/s13349-021-00505-9 10.1186/s40537-016-0043-6 10.1155/2021/5520515 10.1108/SASBE-01-2021-0010 10.12989/sem.2021.78.3.351 10.22115/SCCE.2021.287729.1325 10.1007/s00466-019-01706-2 10.1007/978-3-030-88315-7_3 10.1109/CVPR.2018.00474 10.1109/CVPR.2018.00907 10.1061/(ASCE)ST.1943-541X.0002745 10.1680/jmacr.19.00542 10.22060/ceej.2020.17738.6660 10.1007/s13762-022-04096-w 10.1007/s40996-021-00668-x 10.1007/s12517-021-08491-4 10.3390/ma15093019 10.1007/s40999-021-00689-7 10.3311/PPci.19323 10.1016/j.istruc.2021.08.053 10.32604/cmes.2021.012686 10.1016/j.istruc.2020.12.036 10.1155/2021/5298882 10.1007/978-1-4842-5940-5 10.1016/j.trc.2021.103009 10.1007/s13349-021-00537-1 10.1061/(ASCE)ST.1943-541X.0003304 10.1016/j.cemconcomp.2021.104159 10.5829/ije.2020.33.07a.05 10.1016/j.jrmge.2021.08.005 10.1007/978-1-4842-3790-8 |
ContentType | Journal Article |
Copyright | 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SC 7TB 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FR3 JQ2 KR7 L7M L~C L~D PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
DOI | 10.32604/cmes.2022.020840 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China Computer and Information Systems Abstracts Professional ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea Engineering Research Database ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1526-1506 |
EndPage | 855 |
ExternalDocumentID | 10_32604_cmes_2022_020840 |
GroupedDBID | -~X AAFWJ AAYXX ACIWK ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU CITATION EBS EJD F5P IPNFZ J9A OK1 PHGZM PHGZT PIMPY RTS 7SC 7TB 8FD ABUWG AZQEC DWQXO FR3 JQ2 KR7 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c316t-1b229a64f21240cadf9f9809d259d6c6898bbfc1c4406e2198616ed935d48d1b3 |
IEDL.DBID | BENPR |
ISSN | 1526-1506 1526-1492 |
IngestDate | Mon Jun 30 07:42:53 EDT 2025 Tue Jul 01 03:43:17 EDT 2025 Thu Apr 24 23:00:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-1b229a64f21240cadf9f9809d259d6c6898bbfc1c4406e2198616ed935d48d1b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3200120290?pq-origsite=%requestingapplication% |
PQID | 3200120290 |
PQPubID | 2048798 |
PageCount | 21 |
ParticipantIDs | proquest_journals_3200120290 crossref_citationtrail_10_32604_cmes_2022_020840 crossref_primary_10_32604_cmes_2022_020840 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-00-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Henderson |
PublicationPlace_xml | – name: Henderson |
PublicationTitle | Computer modeling in engineering & sciences |
PublicationYear | 2023 |
Publisher | Tech Science Press |
Publisher_xml | – name: Tech Science Press |
References | Hassanpour (ref2) 2020; 33 Alazzawi (ref26) 2021; 11 Bigdeli (ref17) 2021; 53 Price (ref40) 2006 Zoph (ref34) 2018 Barkhordari (ref41) 2022; 15 Patil (ref42) 2018 Flah (ref20) 2020 Wan (ref16) 2021; 2021 Naser (ref5) 2021; 44 Zhou (ref43) 2019 Wang (ref21) 2021; 29 Barkhordari (ref37) 2022 Mohammed (ref18) 2021; 2021 Barkhordari (ref46) 2021; 73 Han (ref6) 2021; 45 Sandler (ref33) 2018 Sony (ref25) 2021 Gao (ref31) 2018; 33 Sharma (ref24) 2020; 10 ref49 Zhang (ref1) 2021; 126 Yang (ref27) 2021 Chen (ref29) 2019; 64 Meng (ref22) 2021; 2021 ref35 Abdelkader (ref14) 2021 Es-haghi (ref4) 2022; 148 Ye (ref19) 2021; 147 Das (ref13) 2021; 122 He (ref51) 2016 Hammal (ref10) 2020; 6 Quqa (ref23) 2021; 12 Brownlee (ref52) 2016; 527 Amini (ref11) 2021; 78 Liu (ref8) 2021 Barkhordari (ref38) 2021; 34 Chen (ref28) 2021; 126 Weiss (ref36) 2016; 3 Kumar (ref44) 2020 Reis (ref15) 2021; 14 Gupta (ref12) 2021; 22 Gao (ref30) 2020; 146 Moehle (ref32) 2015 Michelucci (ref45) 2018 Murlidhar (ref7) 2021; 13 Zawad (ref9) 2021; 5 Simonyan (ref50) 2014 Barkhordari (ref47) 2022; 66 Brownlee (ref48) 2018 Ko (ref3) 2021; 129 Ahrari (ref39) 2022 |
References_xml | – volume: 2021 year: 2021 ident: ref18 article-title: Exploring the detection accuracy of concrete cracks using various CNN models publication-title: Advances in Materials Science and Engineering doi: 10.1155/2021/9923704 – start-page: 1 year: 2021 ident: ref27 article-title: Computer vision-based crack width identification using F-CNN model and pixel nonlinear calibration publication-title: Structure and Infrastructure Engineering doi: 10.1080/15732479.2021.1994617 – volume: 129 start-page: 1305–1328 year: 2021 ident: ref3 article-title: Effective elastic properties of 3-phase particle reinforced composites with randomly dispersed elastic spherical particles of different sizes publication-title: Computer Modeling in Engineering & Sciences doi: 10.32604/cmes.2021.017589 – volume: 22 start-page: 1671 year: 2021 ident: ref12 article-title: Damage detection in a cantilever beam using noisy mode shapes with an application of artificial neural network-based improved mode shape curvature technique publication-title: Asian Journal of Civil Engineering doi: 10.1007/s42107-021-00404-w – volume: 44 start-page: 102977 year: 2021 ident: ref5 article-title: StructuresNet and FireNet: Benchmarking databases and machine learning algorithms in structural and fire engineering domains publication-title: Journal of Building Engineering doi: 10.1016/j.jobe.2021.102977 – volume: 33 start-page: 748 year: 2018 ident: ref31 article-title: Deep transfer learning for image-based structural damage recognition publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12363 – volume: 10 start-page: 1057 year: 2020 ident: ref24 article-title: One-dimensional convolutional neural network-based damage detection in structural joints publication-title: Journal of Civil Structural Health Monitoring doi: 10.1007/s13349-020-00434-z – ident: ref49 doi: 10.55461/QFKL9711 – volume: 147 start-page: 04721008 year: 2021 ident: ref19 article-title: Structural crack detection from benchmark data sets using pruned fully convolutional networks publication-title: Journal of Structural Engineering doi: 10.1061/(ASCE)ST.1943-541X.0003140 – year: 2018 ident: ref48 publication-title: Better deep learning: Train faster, reduce overfitting, and make better predictions – volume: 6 start-page: 1124 year: 2020 ident: ref10 article-title: Neural-network based prediction of inelastic response spectra publication-title: Civil Engineering Journal doi: 10.28991/cej-2020-03091534 – volume: 11 start-page: 1225 year: 2021 ident: ref26 article-title: Damage identification using the PZT impedance signals and residual learning algorithm publication-title: Journal of Civil Structural Health Monitoring doi: 10.1007/s13349-021-00505-9 – volume: 3 start-page: 1 year: 2016 ident: ref36 article-title: A survey of transfer learning publication-title: Journal of Big Data doi: 10.1186/s40537-016-0043-6 – volume: 2021 year: 2021 ident: ref16 article-title: Attention-based convolutional neural network for pavement crack detection publication-title: Advances in Materials Science and Engineering doi: 10.1155/2021/5520515 – year: 2021 ident: ref14 article-title: On the hybridization of pre-trained deep learning and differential evolution algorithms for semantic crack detection and recognition in ensemble of infrastructures publication-title: Smart and Sustainable Built Environment doi: 10.1108/SASBE-01-2021-0010 – volume: 78 start-page: 351 year: 2021 ident: ref11 article-title: Seismic vulnerability macrozonation map of SMRFs located in Tehran via reliability framework publication-title: Structural Engineering and Mechanics doi: 10.12989/sem.2021.78.3.351 – volume: 5 start-page: 58 year: 2021 ident: ref9 article-title: A comparative review of image processing based crack detection techniques on civil engineering structures publication-title: Journal of Soft Computing in Civil Engineering doi: 10.22115/SCCE.2021.287729.1325 – year: 2020 ident: ref20 article-title: Classification, localization, and quantification of structural damage in concrete structures using convolutional neural networks publication-title: (Electronic Thesis and Dissertation) – volume: 64 start-page: 435 year: 2019 ident: ref29 article-title: Application of deep learning neural network to identify collision load conditions based on permanent plastic deformation of shell structures publication-title: Computational Mechanics doi: 10.1007/s00466-019-01706-2 – start-page: 37 year: 2022 ident: ref39 publication-title: Evolutionary and memetic computing for project portfolio selection and scheduling doi: 10.1007/978-3-030-88315-7_3 – start-page: 4510 year: 2018 ident: ref33 article-title: MobileNetV2: Inverted residuals and linear bottlenecks doi: 10.1109/CVPR.2018.00474 – volume: 527 start-page: 100 year: 2016 ident: ref52 publication-title: Machine learning mastery with python – year: 2021 ident: ref25 article-title: Bridge damage identification using deep learning-based convolutional neural networks (CNNs) publication-title: Civil and Environmental Engineering Publications – start-page: 8697 year: 2018 ident: ref34 article-title: Learning transferable architectures for scalable image recognition doi: 10.1109/CVPR.2018.00907 – volume: 146 start-page: 04020198 year: 2020 ident: ref30 article-title: PEER Hub ImageNet: A large-scale multiattribute benchmark data set of structural images publication-title: Journal of Structural Engineering doi: 10.1061/(ASCE)ST.1943-541X.0002745 – year: 2019 ident: ref43 publication-title: Ensemble methods: Foundations and algorithms – volume: 73 start-page: 988 year: 2021 ident: ref46 article-title: Numerical modelling strategy for predicting the response of reinforced concrete walls using timoshenko theory publication-title: Magazine of Concrete Research doi: 10.1680/jmacr.19.00542 – year: 2018 ident: ref42 article-title: Life prediction of bearing by using adaboost regressor – volume: 53 start-page: 3 year: 2021 ident: ref17 article-title: An intelligent method for crack classification in concrete structures based on deep neural networks publication-title: Amirkabir Journal of Civil Engineering doi: 10.22060/ceej.2020.17738.6660 – year: 2022 ident: ref37 article-title: Ensemble machine learning models for prediction of flyrock due to quarry blasting publication-title: International Journal of Environmental Science and Technology doi: 10.1007/s13762-022-04096-w – volume: 45 start-page: 1 year: 2021 ident: ref6 article-title: Vision-based crack detection of asphalt pavement using deep convolutional neural network publication-title: Iranian Journal of Science and Technology, Transactions of Civil Engineering doi: 10.1007/s40996-021-00668-x – volume: 14 start-page: 1 year: 2021 ident: ref15 article-title: ReCRNet: A deep residual network for crack detection in historical buildings publication-title: Arabian Journal of Geosciences doi: 10.1007/s12517-021-08491-4 – volume: 15 start-page: 3019 year: 2022 ident: ref41 article-title: The efficiency of hybrid intelligent models in predicting fiber-reinforced polymer concrete interfacial-bond strength publication-title: Materials doi: 10.3390/ma15093019 – start-page: 1 year: 2021 ident: ref8 article-title: A comparative study of artificial intelligent methods for explosive spalling diagnosis of hybrid fiber-reinforced ultra-high-performance concrete publication-title: International Journal of Civil Engineering doi: 10.1007/s40999-021-00689-7 – volume: 66 year: 2022 ident: ref47 article-title: Efficiency of hybrid algorithms for estimating the shear strength of deep reinforced concrete beams publication-title: Periodica Polytechnica Civil Engineering doi: 10.3311/PPci.19323 – volume: 34 start-page: 1155 year: 2021 ident: ref38 article-title: Response estimation of reinforced concrete shear walls using artificial neural network and simulated annealing algorithm publication-title: Structures doi: 10.1016/j.istruc.2021.08.053 – volume: 126 start-page: 755 year: 2021 ident: ref1 article-title: Study on the improvement of the application of complete ensemble empirical mode decomposition with adaptive noise in hydrology based on RBFNN data extension technology publication-title: Computer Modeling in Engineering & Sciences doi: 10.32604/cmes.2021.012686 – start-page: 1556 year: 2014 ident: ref50 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv preprint arXiv:1409 – volume: 29 start-page: 1537 year: 2021 ident: ref21 article-title: A novel structural damage identification scheme based on deep learning framework publication-title: Structures doi: 10.1016/j.istruc.2020.12.036 – volume: 2021 year: 2021 ident: ref22 article-title: A modified fully convolutional network for crack damage identification compared with conventional methods publication-title: Modelling and Simulation in Engineering doi: 10.1155/2021/5298882 – year: 2020 ident: ref44 publication-title: Ensemble learning for AI developers doi: 10.1007/978-1-4842-5940-5 – volume: 126 start-page: 103009 year: 2021 ident: ref28 article-title: A deep neural network inverse solution to recover pre-crash impact data of car collisions publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2021.103009 – volume: 12 start-page: 1 year: 2021 ident: ref23 article-title: Two-step approach for fatigue crack detection in steel bridges using convolutional neural networks publication-title: Journal of Civil Structural Health Monitoring doi: 10.1007/s13349-021-00537-1 – year: 2015 ident: ref32 publication-title: Seismic design of reinforced concrete buildings – volume: 148 start-page: 04022015 year: 2022 ident: ref4 article-title: Multicriteria decision-making methods in selecting seismic upgrading strategy of high-rise RC wall buildings publication-title: Journal of Structural Engineering doi: 10.1061/(ASCE)ST.1943-541X.0003304 – volume: 122 start-page: 104159 year: 2021 ident: ref13 article-title: Application of deep convolutional neural networks for automated and rapid identification and computation of crack statistics of thin cracks in strain hardening cementitious composites (SHCCs) publication-title: Cement and Concrete Composites doi: 10.1016/j.cemconcomp.2021.104159 – volume: 33 start-page: 1201 year: 2020 ident: ref2 article-title: Learning document image features with SqueezeNet convolutional neural network publication-title: International Journal of Engineering doi: 10.5829/ije.2020.33.07a.05 – volume: 13 start-page: 1413 year: 2021 ident: ref7 article-title: Prediction of flyrock distance induced by mine blasting using a novel harris hawks optimization-based multi-layer perceptron neural network publication-title: Journal of Rock Mechanics and Geotechnical Engineering doi: 10.1016/j.jrmge.2021.08.005 – start-page: 770 year: 2016 ident: ref51 article-title: Deep residual learning for image recognition – ident: ref35 – year: 2006 ident: ref40 publication-title: Differential evolution: A practical approach to global optimization – year: 2018 ident: ref45 publication-title: Applied deep learning—A case-based approach to understanding deep neural networks doi: 10.1007/978-1-4842-3790-8 |
SSID | ssj0036389 |
Score | 2.550375 |
Snippet | The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visual methods, which may result in... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 835 |
SubjectTerms | Algorithms Artificial neural networks Damage assessment Damage detection Ensemble learning Evolutionary computation Machine learning Neural networks |
Title | Structural Damage Identification Using Ensemble Deep Convolutional Neural Network Models |
URI | https://www.proquest.com/docview/3200120290 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwMhECbaXrz4Nlar4eDJBMsCpXAy2kcaExujNultw2tP7bZmG3-_wLI-Lp72wHL5hplhBvg-AG54PxuE40ykJekjRrR3KS4o0rQg3kGwcLGV_Tzj0zl7WvQXqeFWpWuVTUyMgdquTeiR9yiJ7zyJxPebDxRUo8LpapLQ2AVtH4KFaIH243j28trEYhrycWRMJRz5WoDU55p-y4JZz6xc4Osm5C4IVYbux-_M9Dcwx2wzOQT7aZsIH2q7HoEdVx6Dg0aCASaPPAGLt8j_Grgz4EitfHCA9dPbIvXiYLwTAMdl5VZ66eDIuQ0crsvPtOT8vMDPET_xQjgM6mjL6hTMJ-P34RQlsQRkaMa3KNOESMVZ4YFg2ChbyEIKLK2vbyw3XEihdWEyw3wKd94MgmfcWUn7lgmbaXoGWuW6dOcAWu5LZqWUyQrCFCbKGOfLNDfAllBVsA7ADVC5SUziQdBimfuKImKbB2zzgG1eY9sBt99TNjWNxn8_dxv08-RRVf5j_4v_hy_BXpCEr9skXdDyZnBXfuOw1ddpdXwBezXASA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB3R5NBegH6JQKA-tJdKW7xjx-weKkRJUCgQVS1IuW39tadkExQE4k_xGzv27rblwo3THnZtrZ7HM56x_R7ARzVID8J2ZmJyHCQSDU0plYnEiBJpgvDMx1L2xUSNr-T36WC6Bg_tXZhwrLL1idFRu4UNNfJ9gfGeJ-b8cHmdBNWosLvaSmjUZnHm7-8oZVt9PR3S-H5CPBldHo-TRlUgsSJVN0lqEHOtZElOW3KrXZmXecZzR4mAU1ZleWZMaVMrKdZ5-t9Mpcq7XAyczFxqBPX7ArpSKI4d6H4bTX78bH2_CPE_MrSiSij3wHoflZZIXO7buQ_84IhfgjBmqLb8HwkfB4IY3U42Yb1ZlrKj2o5ew5qv3sBGK_nAGg_wFqa_It9s4OpgQz0nZ8Tqq75lU_tj8QwCG1UrPzczz4beL9nxorptTJzaBT6Q-IgH0FlQY5ut3sHVs8D4HjrVovJbwJyiFF1rbdMSpeaorfWUFvoD7lDoUvaAt0AVtmEuDwIas4IymIhtEbAtArZFjW0PPv9tsqxpO576uN-iXzQzeFX8s7ftp19_gJfjy4vz4vx0crYDr4IcfV2i6UOHhsTv0qLlxuw1lsLg93Mb5x_TKPxL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Damage+Identification+Using+Ensemble+Deep+Convolutional+Neural+Network+Models&rft.jtitle=Computer+modeling+in+engineering+%26+sciences&rft.au=Sadegh+Barkhordari%2C+Mohammad&rft.au=Jahed+Armaghani%2C+Danial&rft.au=G.+Asteris%2C+Panagiotis&rft.date=2023&rft.issn=1526-1506&rft.volume=134&rft.issue=2&rft.spage=835&rft.epage=855&rft_id=info:doi/10.32604%2Fcmes.2022.020840&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmes_2022_020840 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-1506&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-1506&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-1506&client=summon |