Structural Damage Identification Using Ensemble Deep Convolutional Neural Network Models

The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visual methods, which may result in an unreliable damage characterization due to inspector subjectivity or insufficient level of expertise. As a result, a robust, reliable, and...

Full description

Saved in:
Bibliographic Details
Published inComputer modeling in engineering & sciences Vol. 134; no. 2; pp. 835 - 855
Main Authors Sadegh Barkhordari, Mohammad, Jahed Armaghani, Danial, G. Asteris, Panagiotis
Format Journal Article
LanguageEnglish
Published Henderson Tech Science Press 2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visual methods, which may result in an unreliable damage characterization due to inspector subjectivity or insufficient level of expertise. As a result, a robust, reliable, and repeatable method of damage identification is required. Ensemble learning algorithms for identifying structural damage are evaluated in this article, which use deep convolutional neural networks, including simple averaging, integrated stacking, separate stacking, and hybrid weighted averaging ensemble and differential evolution (WAE-DE) ensemble models. Damage identification is carried out on three types of damage. The proposed algorithms are used to analyze the damage of 4585 structural images. The effectiveness of the ensemble learning techniques is evaluated using the confusion matrix. For the testing dataset, the confusion matrix achieved an accuracy of 94 percent and a minimum recall of 92 percent for the best model (WAE-DE) in distinguishing damage types as flexural, shear, combined, or undamaged.
AbstractList The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visual methods, which may result in an unreliable damage characterization due to inspector subjectivity or insufficient level of expertise. As a result, a robust, reliable, and repeatable method of damage identification is required. Ensemble learning algorithms for identifying structural damage are evaluated in this article, which use deep convolutional neural networks, including simple averaging, integrated stacking, separate stacking, and hybrid weighted averaging ensemble and differential evolution (WAE-DE) ensemble models. Damage identification is carried out on three types of damage. The proposed algorithms are used to analyze the damage of 4585 structural images. The effectiveness of the ensemble learning techniques is evaluated using the confusion matrix. For the testing dataset, the confusion matrix achieved an accuracy of 94 percent and a minimum recall of 92 percent for the best model (WAE-DE) in distinguishing damage types as flexural, shear, combined, or undamaged.
Author Sadegh Barkhordari, Mohammad
G. Asteris, Panagiotis
Jahed Armaghani, Danial
Author_xml – sequence: 1
  givenname: Mohammad
  surname: Sadegh Barkhordari
  fullname: Sadegh Barkhordari, Mohammad
– sequence: 2
  givenname: Danial
  surname: Jahed Armaghani
  fullname: Jahed Armaghani, Danial
– sequence: 3
  givenname: Panagiotis
  surname: G. Asteris
  fullname: G. Asteris, Panagiotis
BookMark eNp9kMFOwzAMhiM0JLbBA3CrxLnDSdvQHNE2YNIYB5jELUoTd-pom5GkIN6ebuOAOHCyJf-fZX8jMmhti4RcUpgkjEN6rRv0EwaMTYBBnsIJGdKM8ZhmwAe_-jMy8n4LkPAkF0Py-hxcp0PnVB3NVKM2GC0MtqEqK61CZdto7at2E81bj01RYzRD3EVT237YutvPe26FB3yF4dO6t-jRGqz9OTktVe3x4qeOyfpu_jJ9iJdP94vp7TLWCeUhpgVjQvG0ZJSloJUpRSlyEIZlwnDNc5EXRampTlPgyKjIOeVoRJKZNDe0SMbk6rh35-x7hz7Ire1cf5aXCQOgvRIBfermmNLOeu-wlLoKh_-CU1UtKciDRrnXKPca5VFjT9I_5M5VjXJf_zDfZkB4Nw
CitedBy_id crossref_primary_10_1007_s10064_023_03472_1
crossref_primary_10_32604_cmes_2023_025694
crossref_primary_10_1016_j_clema_2025_100299
crossref_primary_10_1007_s10462_024_11099_1
crossref_primary_10_1007_s44150_024_00112_4
crossref_primary_10_3390_app12189227
crossref_primary_10_3390_su141811769
crossref_primary_10_3934_mbe_2024061
crossref_primary_10_1007_s12665_022_10436_3
crossref_primary_10_1016_j_trgeo_2022_100906
crossref_primary_10_1007_s00521_023_09062_2
Cites_doi 10.1155/2021/9923704
10.1080/15732479.2021.1994617
10.32604/cmes.2021.017589
10.1007/s42107-021-00404-w
10.1016/j.jobe.2021.102977
10.1111/mice.12363
10.1007/s13349-020-00434-z
10.55461/QFKL9711
10.1061/(ASCE)ST.1943-541X.0003140
10.28991/cej-2020-03091534
10.1007/s13349-021-00505-9
10.1186/s40537-016-0043-6
10.1155/2021/5520515
10.1108/SASBE-01-2021-0010
10.12989/sem.2021.78.3.351
10.22115/SCCE.2021.287729.1325
10.1007/s00466-019-01706-2
10.1007/978-3-030-88315-7_3
10.1109/CVPR.2018.00474
10.1109/CVPR.2018.00907
10.1061/(ASCE)ST.1943-541X.0002745
10.1680/jmacr.19.00542
10.22060/ceej.2020.17738.6660
10.1007/s13762-022-04096-w
10.1007/s40996-021-00668-x
10.1007/s12517-021-08491-4
10.3390/ma15093019
10.1007/s40999-021-00689-7
10.3311/PPci.19323
10.1016/j.istruc.2021.08.053
10.32604/cmes.2021.012686
10.1016/j.istruc.2020.12.036
10.1155/2021/5298882
10.1007/978-1-4842-5940-5
10.1016/j.trc.2021.103009
10.1007/s13349-021-00537-1
10.1061/(ASCE)ST.1943-541X.0003304
10.1016/j.cemconcomp.2021.104159
10.5829/ije.2020.33.07a.05
10.1016/j.jrmge.2021.08.005
10.1007/978-1-4842-3790-8
ContentType Journal Article
Copyright 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7TB
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FR3
JQ2
KR7
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.32604/cmes.2022.020840
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
Computer and Information Systems Abstracts Professional
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
Engineering Research Database
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1526-1506
EndPage 855
ExternalDocumentID 10_32604_cmes_2022_020840
GroupedDBID -~X
AAFWJ
AAYXX
ACIWK
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
F5P
IPNFZ
J9A
OK1
PHGZM
PHGZT
PIMPY
RTS
7SC
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
JQ2
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c316t-1b229a64f21240cadf9f9809d259d6c6898bbfc1c4406e2198616ed935d48d1b3
IEDL.DBID BENPR
ISSN 1526-1506
1526-1492
IngestDate Mon Jun 30 07:42:53 EDT 2025
Tue Jul 01 03:43:17 EDT 2025
Thu Apr 24 23:00:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-1b229a64f21240cadf9f9809d259d6c6898bbfc1c4406e2198616ed935d48d1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3200120290?pq-origsite=%requestingapplication%
PQID 3200120290
PQPubID 2048798
PageCount 21
ParticipantIDs proquest_journals_3200120290
crossref_citationtrail_10_32604_cmes_2022_020840
crossref_primary_10_32604_cmes_2022_020840
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computer modeling in engineering & sciences
PublicationYear 2023
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Hassanpour (ref2) 2020; 33
Alazzawi (ref26) 2021; 11
Bigdeli (ref17) 2021; 53
Price (ref40) 2006
Zoph (ref34) 2018
Barkhordari (ref41) 2022; 15
Patil (ref42) 2018
Flah (ref20) 2020
Wan (ref16) 2021; 2021
Naser (ref5) 2021; 44
Zhou (ref43) 2019
Wang (ref21) 2021; 29
Barkhordari (ref37) 2022
Mohammed (ref18) 2021; 2021
Barkhordari (ref46) 2021; 73
Han (ref6) 2021; 45
Sandler (ref33) 2018
Sony (ref25) 2021
Gao (ref31) 2018; 33
Sharma (ref24) 2020; 10
ref49
Zhang (ref1) 2021; 126
Yang (ref27) 2021
Chen (ref29) 2019; 64
Meng (ref22) 2021; 2021
ref35
Abdelkader (ref14) 2021
Es-haghi (ref4) 2022; 148
Ye (ref19) 2021; 147
Das (ref13) 2021; 122
He (ref51) 2016
Hammal (ref10) 2020; 6
Quqa (ref23) 2021; 12
Brownlee (ref52) 2016; 527
Amini (ref11) 2021; 78
Liu (ref8) 2021
Barkhordari (ref38) 2021; 34
Chen (ref28) 2021; 126
Weiss (ref36) 2016; 3
Kumar (ref44) 2020
Reis (ref15) 2021; 14
Gupta (ref12) 2021; 22
Gao (ref30) 2020; 146
Moehle (ref32) 2015
Michelucci (ref45) 2018
Murlidhar (ref7) 2021; 13
Zawad (ref9) 2021; 5
Simonyan (ref50) 2014
Barkhordari (ref47) 2022; 66
Brownlee (ref48) 2018
Ko (ref3) 2021; 129
Ahrari (ref39) 2022
References_xml – volume: 2021
  year: 2021
  ident: ref18
  article-title: Exploring the detection accuracy of concrete cracks using various CNN models
  publication-title: Advances in Materials Science and Engineering
  doi: 10.1155/2021/9923704
– start-page: 1
  year: 2021
  ident: ref27
  article-title: Computer vision-based crack width identification using F-CNN model and pixel nonlinear calibration
  publication-title: Structure and Infrastructure Engineering
  doi: 10.1080/15732479.2021.1994617
– volume: 129
  start-page: 1305–1328
  year: 2021
  ident: ref3
  article-title: Effective elastic properties of 3-phase particle reinforced composites with randomly dispersed elastic spherical particles of different sizes
  publication-title: Computer Modeling in Engineering & Sciences
  doi: 10.32604/cmes.2021.017589
– volume: 22
  start-page: 1671
  year: 2021
  ident: ref12
  article-title: Damage detection in a cantilever beam using noisy mode shapes with an application of artificial neural network-based improved mode shape curvature technique
  publication-title: Asian Journal of Civil Engineering
  doi: 10.1007/s42107-021-00404-w
– volume: 44
  start-page: 102977
  year: 2021
  ident: ref5
  article-title: StructuresNet and FireNet: Benchmarking databases and machine learning algorithms in structural and fire engineering domains
  publication-title: Journal of Building Engineering
  doi: 10.1016/j.jobe.2021.102977
– volume: 33
  start-page: 748
  year: 2018
  ident: ref31
  article-title: Deep transfer learning for image-based structural damage recognition
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/mice.12363
– volume: 10
  start-page: 1057
  year: 2020
  ident: ref24
  article-title: One-dimensional convolutional neural network-based damage detection in structural joints
  publication-title: Journal of Civil Structural Health Monitoring
  doi: 10.1007/s13349-020-00434-z
– ident: ref49
  doi: 10.55461/QFKL9711
– volume: 147
  start-page: 04721008
  year: 2021
  ident: ref19
  article-title: Structural crack detection from benchmark data sets using pruned fully convolutional networks
  publication-title: Journal of Structural Engineering
  doi: 10.1061/(ASCE)ST.1943-541X.0003140
– year: 2018
  ident: ref48
  publication-title: Better deep learning: Train faster, reduce overfitting, and make better predictions
– volume: 6
  start-page: 1124
  year: 2020
  ident: ref10
  article-title: Neural-network based prediction of inelastic response spectra
  publication-title: Civil Engineering Journal
  doi: 10.28991/cej-2020-03091534
– volume: 11
  start-page: 1225
  year: 2021
  ident: ref26
  article-title: Damage identification using the PZT impedance signals and residual learning algorithm
  publication-title: Journal of Civil Structural Health Monitoring
  doi: 10.1007/s13349-021-00505-9
– volume: 3
  start-page: 1
  year: 2016
  ident: ref36
  article-title: A survey of transfer learning
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-016-0043-6
– volume: 2021
  year: 2021
  ident: ref16
  article-title: Attention-based convolutional neural network for pavement crack detection
  publication-title: Advances in Materials Science and Engineering
  doi: 10.1155/2021/5520515
– year: 2021
  ident: ref14
  article-title: On the hybridization of pre-trained deep learning and differential evolution algorithms for semantic crack detection and recognition in ensemble of infrastructures
  publication-title: Smart and Sustainable Built Environment
  doi: 10.1108/SASBE-01-2021-0010
– volume: 78
  start-page: 351
  year: 2021
  ident: ref11
  article-title: Seismic vulnerability macrozonation map of SMRFs located in Tehran via reliability framework
  publication-title: Structural Engineering and Mechanics
  doi: 10.12989/sem.2021.78.3.351
– volume: 5
  start-page: 58
  year: 2021
  ident: ref9
  article-title: A comparative review of image processing based crack detection techniques on civil engineering structures
  publication-title: Journal of Soft Computing in Civil Engineering
  doi: 10.22115/SCCE.2021.287729.1325
– year: 2020
  ident: ref20
  article-title: Classification, localization, and quantification of structural damage in concrete structures using convolutional neural networks
  publication-title: (Electronic Thesis and Dissertation)
– volume: 64
  start-page: 435
  year: 2019
  ident: ref29
  article-title: Application of deep learning neural network to identify collision load conditions based on permanent plastic deformation of shell structures
  publication-title: Computational Mechanics
  doi: 10.1007/s00466-019-01706-2
– start-page: 37
  year: 2022
  ident: ref39
  publication-title: Evolutionary and memetic computing for project portfolio selection and scheduling
  doi: 10.1007/978-3-030-88315-7_3
– start-page: 4510
  year: 2018
  ident: ref33
  article-title: MobileNetV2: Inverted residuals and linear bottlenecks
  doi: 10.1109/CVPR.2018.00474
– volume: 527
  start-page: 100
  year: 2016
  ident: ref52
  publication-title: Machine learning mastery with python
– year: 2021
  ident: ref25
  article-title: Bridge damage identification using deep learning-based convolutional neural networks (CNNs)
  publication-title: Civil and Environmental Engineering Publications
– start-page: 8697
  year: 2018
  ident: ref34
  article-title: Learning transferable architectures for scalable image recognition
  doi: 10.1109/CVPR.2018.00907
– volume: 146
  start-page: 04020198
  year: 2020
  ident: ref30
  article-title: PEER Hub ImageNet: A large-scale multiattribute benchmark data set of structural images
  publication-title: Journal of Structural Engineering
  doi: 10.1061/(ASCE)ST.1943-541X.0002745
– year: 2019
  ident: ref43
  publication-title: Ensemble methods: Foundations and algorithms
– volume: 73
  start-page: 988
  year: 2021
  ident: ref46
  article-title: Numerical modelling strategy for predicting the response of reinforced concrete walls using timoshenko theory
  publication-title: Magazine of Concrete Research
  doi: 10.1680/jmacr.19.00542
– year: 2018
  ident: ref42
  article-title: Life prediction of bearing by using adaboost regressor
– volume: 53
  start-page: 3
  year: 2021
  ident: ref17
  article-title: An intelligent method for crack classification in concrete structures based on deep neural networks
  publication-title: Amirkabir Journal of Civil Engineering
  doi: 10.22060/ceej.2020.17738.6660
– year: 2022
  ident: ref37
  article-title: Ensemble machine learning models for prediction of flyrock due to quarry blasting
  publication-title: International Journal of Environmental Science and Technology
  doi: 10.1007/s13762-022-04096-w
– volume: 45
  start-page: 1
  year: 2021
  ident: ref6
  article-title: Vision-based crack detection of asphalt pavement using deep convolutional neural network
  publication-title: Iranian Journal of Science and Technology, Transactions of Civil Engineering
  doi: 10.1007/s40996-021-00668-x
– volume: 14
  start-page: 1
  year: 2021
  ident: ref15
  article-title: ReCRNet: A deep residual network for crack detection in historical buildings
  publication-title: Arabian Journal of Geosciences
  doi: 10.1007/s12517-021-08491-4
– volume: 15
  start-page: 3019
  year: 2022
  ident: ref41
  article-title: The efficiency of hybrid intelligent models in predicting fiber-reinforced polymer concrete interfacial-bond strength
  publication-title: Materials
  doi: 10.3390/ma15093019
– start-page: 1
  year: 2021
  ident: ref8
  article-title: A comparative study of artificial intelligent methods for explosive spalling diagnosis of hybrid fiber-reinforced ultra-high-performance concrete
  publication-title: International Journal of Civil Engineering
  doi: 10.1007/s40999-021-00689-7
– volume: 66
  year: 2022
  ident: ref47
  article-title: Efficiency of hybrid algorithms for estimating the shear strength of deep reinforced concrete beams
  publication-title: Periodica Polytechnica Civil Engineering
  doi: 10.3311/PPci.19323
– volume: 34
  start-page: 1155
  year: 2021
  ident: ref38
  article-title: Response estimation of reinforced concrete shear walls using artificial neural network and simulated annealing algorithm
  publication-title: Structures
  doi: 10.1016/j.istruc.2021.08.053
– volume: 126
  start-page: 755
  year: 2021
  ident: ref1
  article-title: Study on the improvement of the application of complete ensemble empirical mode decomposition with adaptive noise in hydrology based on RBFNN data extension technology
  publication-title: Computer Modeling in Engineering & Sciences
  doi: 10.32604/cmes.2021.012686
– start-page: 1556
  year: 2014
  ident: ref50
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv preprint arXiv:1409
– volume: 29
  start-page: 1537
  year: 2021
  ident: ref21
  article-title: A novel structural damage identification scheme based on deep learning framework
  publication-title: Structures
  doi: 10.1016/j.istruc.2020.12.036
– volume: 2021
  year: 2021
  ident: ref22
  article-title: A modified fully convolutional network for crack damage identification compared with conventional methods
  publication-title: Modelling and Simulation in Engineering
  doi: 10.1155/2021/5298882
– year: 2020
  ident: ref44
  publication-title: Ensemble learning for AI developers
  doi: 10.1007/978-1-4842-5940-5
– volume: 126
  start-page: 103009
  year: 2021
  ident: ref28
  article-title: A deep neural network inverse solution to recover pre-crash impact data of car collisions
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2021.103009
– volume: 12
  start-page: 1
  year: 2021
  ident: ref23
  article-title: Two-step approach for fatigue crack detection in steel bridges using convolutional neural networks
  publication-title: Journal of Civil Structural Health Monitoring
  doi: 10.1007/s13349-021-00537-1
– year: 2015
  ident: ref32
  publication-title: Seismic design of reinforced concrete buildings
– volume: 148
  start-page: 04022015
  year: 2022
  ident: ref4
  article-title: Multicriteria decision-making methods in selecting seismic upgrading strategy of high-rise RC wall buildings
  publication-title: Journal of Structural Engineering
  doi: 10.1061/(ASCE)ST.1943-541X.0003304
– volume: 122
  start-page: 104159
  year: 2021
  ident: ref13
  article-title: Application of deep convolutional neural networks for automated and rapid identification and computation of crack statistics of thin cracks in strain hardening cementitious composites (SHCCs)
  publication-title: Cement and Concrete Composites
  doi: 10.1016/j.cemconcomp.2021.104159
– volume: 33
  start-page: 1201
  year: 2020
  ident: ref2
  article-title: Learning document image features with SqueezeNet convolutional neural network
  publication-title: International Journal of Engineering
  doi: 10.5829/ije.2020.33.07a.05
– volume: 13
  start-page: 1413
  year: 2021
  ident: ref7
  article-title: Prediction of flyrock distance induced by mine blasting using a novel harris hawks optimization-based multi-layer perceptron neural network
  publication-title: Journal of Rock Mechanics and Geotechnical Engineering
  doi: 10.1016/j.jrmge.2021.08.005
– start-page: 770
  year: 2016
  ident: ref51
  article-title: Deep residual learning for image recognition
– ident: ref35
– year: 2006
  ident: ref40
  publication-title: Differential evolution: A practical approach to global optimization
– year: 2018
  ident: ref45
  publication-title: Applied deep learning—A case-based approach to understanding deep neural networks
  doi: 10.1007/978-1-4842-3790-8
SSID ssj0036389
Score 2.550375
Snippet The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visual methods, which may result in...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 835
SubjectTerms Algorithms
Artificial neural networks
Damage assessment
Damage detection
Ensemble learning
Evolutionary computation
Machine learning
Neural networks
Title Structural Damage Identification Using Ensemble Deep Convolutional Neural Network Models
URI https://www.proquest.com/docview/3200120290
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwMhECbaXrz4Nlar4eDJBMsCpXAy2kcaExujNultw2tP7bZmG3-_wLI-Lp72wHL5hplhBvg-AG54PxuE40ykJekjRrR3KS4o0rQg3kGwcLGV_Tzj0zl7WvQXqeFWpWuVTUyMgdquTeiR9yiJ7zyJxPebDxRUo8LpapLQ2AVtH4KFaIH243j28trEYhrycWRMJRz5WoDU55p-y4JZz6xc4Osm5C4IVYbux-_M9Dcwx2wzOQT7aZsIH2q7HoEdVx6Dg0aCASaPPAGLt8j_Grgz4EitfHCA9dPbIvXiYLwTAMdl5VZ66eDIuQ0crsvPtOT8vMDPET_xQjgM6mjL6hTMJ-P34RQlsQRkaMa3KNOESMVZ4YFg2ChbyEIKLK2vbyw3XEihdWEyw3wKd94MgmfcWUn7lgmbaXoGWuW6dOcAWu5LZqWUyQrCFCbKGOfLNDfAllBVsA7ADVC5SUziQdBimfuKImKbB2zzgG1eY9sBt99TNjWNxn8_dxv08-RRVf5j_4v_hy_BXpCEr9skXdDyZnBXfuOw1ddpdXwBezXASA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB3R5NBegH6JQKA-tJdKW7xjx-weKkRJUCgQVS1IuW39tadkExQE4k_xGzv27rblwo3THnZtrZ7HM56x_R7ARzVID8J2ZmJyHCQSDU0plYnEiBJpgvDMx1L2xUSNr-T36WC6Bg_tXZhwrLL1idFRu4UNNfJ9gfGeJ-b8cHmdBNWosLvaSmjUZnHm7-8oZVt9PR3S-H5CPBldHo-TRlUgsSJVN0lqEHOtZElOW3KrXZmXecZzR4mAU1ZleWZMaVMrKdZ5-t9Mpcq7XAyczFxqBPX7ArpSKI4d6H4bTX78bH2_CPE_MrSiSij3wHoflZZIXO7buQ_84IhfgjBmqLb8HwkfB4IY3U42Yb1ZlrKj2o5ew5qv3sBGK_nAGg_wFqa_It9s4OpgQz0nZ8Tqq75lU_tj8QwCG1UrPzczz4beL9nxorptTJzaBT6Q-IgH0FlQY5ut3sHVs8D4HjrVovJbwJyiFF1rbdMSpeaorfWUFvoD7lDoUvaAt0AVtmEuDwIas4IymIhtEbAtArZFjW0PPv9tsqxpO576uN-iXzQzeFX8s7ftp19_gJfjy4vz4vx0crYDr4IcfV2i6UOHhsTv0qLlxuw1lsLg93Mb5x_TKPxL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Damage+Identification+Using+Ensemble+Deep+Convolutional+Neural+Network+Models&rft.jtitle=Computer+modeling+in+engineering+%26+sciences&rft.au=Sadegh+Barkhordari%2C+Mohammad&rft.au=Jahed+Armaghani%2C+Danial&rft.au=G.+Asteris%2C+Panagiotis&rft.date=2023&rft.issn=1526-1506&rft.volume=134&rft.issue=2&rft.spage=835&rft.epage=855&rft_id=info:doi/10.32604%2Fcmes.2022.020840&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmes_2022_020840
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-1506&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-1506&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-1506&client=summon