Optimal Control with State Constraint and Non-concave Dynamics: A Model Arising in Economic Growth

We consider an optimal control problem arising in the context of economic theory of growth, on the lines of the works by Skiba and Askenazy–Le Van. The framework of the model is intertemporal infinite horizon utility maximization. The dynamics involves a state variable representing total endowment o...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics & optimization Vol. 76; no. 2; pp. 323 - 373
Main Authors Acquistapace, Paolo, Bartaloni, Francesco
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0095-4616
1432-0606
DOI10.1007/s00245-016-9353-5

Cover

Loading…
Abstract We consider an optimal control problem arising in the context of economic theory of growth, on the lines of the works by Skiba and Askenazy–Le Van. The framework of the model is intertemporal infinite horizon utility maximization. The dynamics involves a state variable representing total endowment of the social planner or average capital of the representative dynasty. From the mathematical viewpoint, the main features of the model are the following: (i) the dynamics is an increasing, unbounded and not globally concave function of the state; (ii) the state variable is subject to a static constraint; (iii) the admissible controls are merely locally integrable in the right half-line. Such assumptions seem to be weaker than those appearing in most of the existing literature. We give a direct proof of the existence of an optimal control for any initial capital k 0 ≥ 0 and we carry on a qualitative study of the value function; moreover, using dynamic programming methods, we show that the value function is a continuous viscosity solution of the associated Hamilton–Jacobi–Bellman equation.
AbstractList (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We consider an optimal control problem arising in the context of economic theory of growth, on the lines of the works by Skiba and Askenazy–Le Van. The framework of the model is intertemporal infinite horizon utility maximization. The dynamics involves a state variable representing total endowment of the social planner or average capital of the representative dynasty. From the mathematical viewpoint, the main features of the model are the following: (i) the dynamics is an increasing, unbounded and not globally concave function of the state; (ii) the state variable is subject to a static constraint; (iii) the admissible controls are merely locally integrable in the right half-line. Such assumptions seem to be weaker than those appearing in most of the existing literature. We give a direct proof of the existence of an optimal control for any initial capital ... and we carry on a qualitative study of the value function; moreover, using dynamic programming methods, we show that the value function is a continuous viscosity solution of the associated Hamilton–Jacobi–Bellman equation.
We consider an optimal control problem arising in the context of economic theory of growth, on the lines of the works by Skiba and Askenazy–Le Van. The framework of the model is intertemporal infinite horizon utility maximization. The dynamics involves a state variable representing total endowment of the social planner or average capital of the representative dynasty. From the mathematical viewpoint, the main features of the model are the following: (i) the dynamics is an increasing, unbounded and not globally concave function of the state; (ii) the state variable is subject to a static constraint; (iii) the admissible controls are merely locally integrable in the right half-line. Such assumptions seem to be weaker than those appearing in most of the existing literature. We give a direct proof of the existence of an optimal control for any initial capital k 0 ≥ 0 and we carry on a qualitative study of the value function; moreover, using dynamic programming methods, we show that the value function is a continuous viscosity solution of the associated Hamilton–Jacobi–Bellman equation.
Author Bartaloni, Francesco
Acquistapace, Paolo
Author_xml – sequence: 1
  givenname: Paolo
  surname: Acquistapace
  fullname: Acquistapace, Paolo
  email: acquistp@dm.unipi.it
  organization: Dipartimento di Matematica, Università di Pisa
– sequence: 2
  givenname: Francesco
  surname: Bartaloni
  fullname: Bartaloni, Francesco
  organization: Dipartimento di Matematica, Università di Pisa
BookMark eNp9kMtOAyEUQInRxLb6Ae5IXKP3DjPM4K6pz8THQl0TSqliRqhAbfr30tSFMdEVCZwD3DMkuz54S8gRwgkCtKcJoKobBiiY5A1nzQ4ZYM0rBgLELhkAyIbVAsU-Gab0BgXngg_I9GGR3bvu6ST4HENPVy6_0sess91spRy185lqP6P3wTMTvNGflp6vvX53Jp3RMb0LM9vTcXTJ-RfqPL0oVCin9CqGVX49IHtz3Sd7-L2OyPPlxdPkmt0-XN1MxrfMcBSZoe4QjdCmqkXF5wZQC2mxm9lWNCBBoplJ6PS86hqL7dRUgJ2RUkIzbVvB-Ygcb-9dxPCxtCmrt7CMvjypUNZcCN4BFqrdUiaGlKKdK-PKtG4zvna9QlCboGobVJWgahNUNcXEX-YilnRx_a9TbZ1UWP9i448__Sl9Adq9iHI
CitedBy_id crossref_primary_10_1007_s10957_021_01871_6
crossref_primary_10_1007_s10957_020_01660_7
crossref_primary_10_1016_j_jmateco_2024_102991
crossref_primary_10_1016_j_jmateco_2020_09_008
Cites_doi 10.1007/978-1-4613-8165-5
10.2307/2224098
10.2307/1914229
10.1006/jeth.1998.2489
10.1016/j.jmateco.2007.05.002
10.1016/0304-3932(88)90168-7
10.1007/978-3-642-76755-5
10.1007/978-1-4612-6380-7
10.1086/261420
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
Applied Mathematics and Optimization is a copyright of Springer, 2017.
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: Applied Mathematics and Optimization is a copyright of Springer, 2017.
DBID AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
88I
8AO
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
M0C
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s00245-016-9353-5
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (New)
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
ProQuest Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1432-0606
EndPage 373
ExternalDocumentID 10_1007_s00245_016_9353_5
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T9H
TH9
TN5
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WHG
WJK
WK8
YLTOR
Z45
Z81
Z8U
ZL0
ZMTXR
ZWQNP
ZY4
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7XB
8FK
ABRTQ
JQ2
L.-
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c316t-1a811c6ac24623fc01a69e18de76509091cd908af285e17bc2018c99905b77633
IEDL.DBID 8FG
ISSN 0095-4616
IngestDate Fri Jul 25 19:04:54 EDT 2025
Tue Jul 01 01:29:28 EDT 2025
Thu Apr 24 22:57:29 EDT 2025
Fri Feb 21 02:26:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Utility maximization
Hamilton Jacobi Bellman equation
Optimal control
Non-concave production function
Viscosity solutions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-1a811c6ac24623fc01a69e18de76509091cd908af285e17bc2018c99905b77633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1943663801
PQPubID 47316
PageCount 51
ParticipantIDs proquest_journals_1943663801
crossref_citationtrail_10_1007_s00245_016_9353_5
crossref_primary_10_1007_s00245_016_9353_5
springer_journals_10_1007_s00245_016_9353_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20171000
2017-10-00
20171001
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 20171000
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Applied mathematics & optimization
PublicationTitleAbbrev Appl Math Optim
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Askenazy, Le Van (CR1) 1999; 85
Zaslavski (CR15) 2006
Lucas (CR9) 1988; 22
Yong, Zhou (CR13) 1999
CR6
Fleming, Rishel (CR7) 1975
Zaslavski (CR16) 2014
Freni, Gozzi, Pignotti (CR8) 2008; 44
Cesari (CR4) 1983
Skiba (CR12) 1978; 46
Zabczyk (CR14) 1995
Edwards (CR5) 1995
Romer (CR11) 1986; 94
Carlson, Haurie, Leizarowitz (CR3) 1991
Barro, Sala-i-Martin (CR2) 1999
Ramsey (CR10) 1928; 38
DA Carlson (9353_CR3) 1991
J Yong (9353_CR13) 1999
L Cesari (9353_CR4) 1983
PM Romer (9353_CR11) 1986; 94
RE Lucas (9353_CR9) 1988; 22
9353_CR6
J Zabczyk (9353_CR14) 1995
AJ Zaslavski (9353_CR15) 2006
AJ Zaslavski (9353_CR16) 2014
AK Skiba (9353_CR12) 1978; 46
P Askenazy (9353_CR1) 1999; 85
RE Edwards (9353_CR5) 1995
FP Ramsey (9353_CR10) 1928; 38
WH Fleming (9353_CR7) 1975
G Freni (9353_CR8) 2008; 44
RJ Barro (9353_CR2) 1999
References_xml – year: 1999
  ident: CR13
  publication-title: Stochastic Controls—Hamiltonian Systems and HJB Equations
– year: 1983
  ident: CR4
  publication-title: Optimization—Theory and Applications
  doi: 10.1007/978-1-4613-8165-5
– volume: 38
  start-page: 543
  issue: 152
  year: 1928
  end-page: 559
  ident: CR10
  article-title: A mathematical theory of saving
  publication-title: Econ. J.
  doi: 10.2307/2224098
– volume: 46
  start-page: 527
  issue: 3
  year: 1978
  end-page: 539
  ident: CR12
  article-title: Optimal growth with a convex-concave production function
  publication-title: Econometrica
  doi: 10.2307/1914229
– year: 1995
  ident: CR5
  publication-title: Functional Analysis
– volume: 85
  start-page: 27
  issue: 1
  year: 1999
  end-page: 54
  ident: CR1
  article-title: A model of optimal growth strategy
  publication-title: J. Econ. Theory
  doi: 10.1006/jeth.1998.2489
– volume: 44
  start-page: 55
  issue: 1
  year: 2008
  end-page: 86
  ident: CR8
  article-title: Optimal strategies in linear multisector models: Value function and optimality conditions
  publication-title: J. Math. Econ.
  doi: 10.1016/j.jmateco.2007.05.002
– volume: 22
  start-page: 3
  year: 1988
  end-page: 42
  ident: CR9
  article-title: On the mechanics of economic development
  publication-title: J. Monet. Econ.
  doi: 10.1016/0304-3932(88)90168-7
– ident: CR6
– year: 1991
  ident: CR3
  publication-title: Infinite Horizon Optimal Control
  doi: 10.1007/978-3-642-76755-5
– year: 1975
  ident: CR7
  publication-title: Deterministic and Stochastic Optimal Control
  doi: 10.1007/978-1-4612-6380-7
– year: 2014
  ident: CR16
  publication-title: Turnpike Phenomenon and Infinite Horizon Optimal Control. Springer Optimization and Its Applications
– volume: 94
  start-page: 1002
  issue: 5
  year: 1986
  end-page: 1035
  ident: CR11
  article-title: Increasing return and long-run growth
  publication-title: J. Political Econ.
  doi: 10.1086/261420
– year: 1995
  ident: CR14
  publication-title: Mathematical Control Theory—An Introduction
– year: 2006
  ident: CR15
  publication-title: Turnpike Properties in the Calculus of Variations and Optimal Control
– year: 1999
  ident: CR2
  publication-title: Economic Growth
– volume-title: Economic Growth
  year: 1999
  ident: 9353_CR2
– volume-title: Deterministic and Stochastic Optimal Control
  year: 1975
  ident: 9353_CR7
  doi: 10.1007/978-1-4612-6380-7
– volume-title: Stochastic Controls—Hamiltonian Systems and HJB Equations
  year: 1999
  ident: 9353_CR13
– volume: 85
  start-page: 27
  issue: 1
  year: 1999
  ident: 9353_CR1
  publication-title: J. Econ. Theory
  doi: 10.1006/jeth.1998.2489
– volume-title: Infinite Horizon Optimal Control
  year: 1991
  ident: 9353_CR3
  doi: 10.1007/978-3-642-76755-5
– volume: 22
  start-page: 3
  year: 1988
  ident: 9353_CR9
  publication-title: J. Monet. Econ.
  doi: 10.1016/0304-3932(88)90168-7
– ident: 9353_CR6
– volume-title: Optimization—Theory and Applications
  year: 1983
  ident: 9353_CR4
  doi: 10.1007/978-1-4613-8165-5
– volume-title: Functional Analysis
  year: 1995
  ident: 9353_CR5
– volume: 94
  start-page: 1002
  issue: 5
  year: 1986
  ident: 9353_CR11
  publication-title: J. Political Econ.
  doi: 10.1086/261420
– volume-title: Mathematical Control Theory—An Introduction
  year: 1995
  ident: 9353_CR14
– volume-title: Turnpike Phenomenon and Infinite Horizon Optimal Control. Springer Optimization and Its Applications
  year: 2014
  ident: 9353_CR16
– volume: 38
  start-page: 543
  issue: 152
  year: 1928
  ident: 9353_CR10
  publication-title: Econ. J.
  doi: 10.2307/2224098
– volume: 44
  start-page: 55
  issue: 1
  year: 2008
  ident: 9353_CR8
  publication-title: J. Math. Econ.
  doi: 10.1016/j.jmateco.2007.05.002
– volume: 46
  start-page: 527
  issue: 3
  year: 1978
  ident: 9353_CR12
  publication-title: Econometrica
  doi: 10.2307/1914229
– volume-title: Turnpike Properties in the Calculus of Variations and Optimal Control
  year: 2006
  ident: 9353_CR15
SSID ssj0002363
Score 2.1204648
Snippet We consider an optimal control problem arising in the context of economic theory of growth, on the lines of the works by Skiba and Askenazy–Le Van. The...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We consider an optimal control problem arising in the context of economic theory of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 323
SubjectTerms Calculus of Variations and Optimal Control; Optimization
Constraints
Continuity (mathematics)
Control
Dynamic programming
Economic development
Economic growth
Economic models
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical and Computational Physics
Optimal control
Optimization
Proving
Simulation
State variable
Systems Theory
Theoretical
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L3oQP3E6JQdPSiBJm7T1NqZzCJsXB7uV5gsH2omt_v2-dG2dooLHtklK8pL3fi_vC6Fz5SIqeeaIUCIhwPAkUcoaYpg0UoQu087fd4wncjQN72ZiVsdxF423e2OSrDh1G-xWWQlB9ZUkCURAxDraEKC6-2095f2W_fKgLp-WCBJKJhtT5k9DfBVGnwjzm1G0kjXDHbRdg0TcX1J1F63ZfA9traQOhKdxm2-12EfqHk7-M3QZLD3Psb9exRWQ9K-KqhBEibPc4MkiJ6AD6-zd4utlOfriCvexL4rmfzn3lwd4nuMmZBnfgqZePh6g6fDmYTAidfUEogMmS8KymDEtM81DgDhOU5bJxLLY2MhnzQOcoE1C48zxWFgWKQ1QINaAF6lQEXCd4BB18kVujxA2QSQiGhlqXRxqZWLAYNJxzw8sV452EW2WMdV1anE_sae0TYpcrXzq3cn8yqeiiy7aLi_LvBp_Ne41tEnrI1akLAkDgEsgYbvosqHXyuffBjv-V-sTtMm9IK_c93qoU76-2VOAIaU6q7bdB4Q80Zg
  priority: 102
  providerName: Springer Nature
Title Optimal Control with State Constraint and Non-concave Dynamics: A Model Arising in Economic Growth
URI https://link.springer.com/article/10.1007/s00245-016-9353-5
https://www.proquest.com/docview/1943663801
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYoXNoD4tGqSwH5wAlk1XZiJ-GCdmF3EYhthViJnqL4pa5UstCE_v7OZJPlIcHJShwniu1883k8mY-QAxMSrmURmDIqYwB4mhnjHXNCO63iUNiA_o6riT6fxhe36rZ1uFVtWGWHiQ1Qu7lFH_l3WGxHYB0BUE_uHxiqRuHuaiuh8YGsCbA0OMPT0XiJxDJqldQyxWItdLeryZskojLGsDXNskhFTL20S09k89X-aGN2RhtkveWLtL8Y4E2y4sst8ulZFkE4ulqmXq22ifkBIHAHTU4XQegUPa204ZR4qmo0IWpalI5O5iWD5bAt_nl6tlCmr45pn6I-Gj5yhn4EOitp9_cyHcOivf79mUxHw5vTc9YKKTAbCV0zUaRCWF1YGQPbCZaLQmdepM4nmEAPKIN1GU-LIFPlRWIssILUAnXkyiQAQNEXslrOS_-VUBclKuGJ4z6ksTUuBTqmg0Ro8NIE3iO868bctlnG8cX-5Mv8yE3P5xhZhj2fqx45XDa5X6TYeO_i3W5s8vZrq_KnudEjR914Pat-62Y779_sG_ko0Yg3oXu7ZLX---j3gILUZr-ZZ_tkrT8aDCZYjn9dDqEcDCc_r6F2Kvv_AYMH2qQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gHpSD8RkXUfugF03Hfkz3zJgQQ8BlEXa9QMJt7GckgVlgRwl_yt9I9ezMgiZy4ziPrslUV9erq78CeGdjzrQwkSqrSooKT1Nrg6eea69VFo2LKd8xnujRQfbtUB0uwZ_-LEwqq-x1Yquo_dSlHPknDLYlWkdUqF9Oz2jqGpV2V_sWGnOx2A2XFxiyzdZ3tnB-3wsx_Lq_OaJdVwHqJNcN5abg3GnjRIamPzrGjS4DL3zIE5oc2k_nS1aYKAoVeG4dmsjCoR_FlM1xNUqkew_uZ1KWqYSwGG4vNL-QXee2UtFMc93vorIWtFRkqUxO01IqSdXfdvDauf1nP7Y1c8PH8KjzT8nGXKCewFKon8LKDdRCvBovoF5nz8B-R6VzgkM250XvJGV2SevDpluztgdFQ0ztyWRaUwy_nfkdyNZlbU6QwGeyQVI_tvTJo5S3IEc16U9Lk-3z6UXz8zkc3AmLX8ByPa3DSyBe5ipnuWchFpmzvkD3T0eRVFEQNrIBsJ6NletQzdOPHVcLPOaW81WqZEucr9QAPiyGnM4hPW57ea2fm6pb3bPqWhYH8LGfrxuP_0ds9XZib-HBaH-8V-3tTHZfwUORHIi2bHANlpvzX-E1uj-NfdPKHIEfdy3kV40LD-w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IJ5ioYAPcAFZtZ3YSZAQqrpsW0oXDlTqLfgpKtFs6Qaq_jV-HTPZZFuQ6K3HPDxxxuOZz-PxDMALlwphlE1cO11xVHiGOxcDD9IEo_NkfSJ_x97UbO_nHw70wQr8Hs7CUFjloBM7RR1mnnzk67jYztA6okJdT31YxOfx5N3xD04VpGindSinsRCR3Xh2isu3-dudMY71S6Um779sbvO-wgD3mTQtl7aU0hvrVY4wIHkhramiLEMsKLMc2lIfKlHapEodZeE8msvSI6YS2hU4MzOkew2uF9gtqp5QTraWVkBlfRW3SvPcSDPsqIouganKKWTO8CrTGdd_28RzoPvP3mxn8iZ34HaPVdnGQrjuwkps7sGtCxkM8WpvmfZ1fh_cJ1RAR9hkcxEAz8jLyzo8S7fmXT2KltkmsOms4bgU9_ZXZOOzxh4hgTdsg1FtNvrkIfkw2GHDhpPTbOtkdtp-ewD7V8Lih7DazJr4CFjICl2IIoiYyty7UCIUNEmRWorKJTECMbCx9n2Gc_qx7_UyN3PH-Zqi2ojztR7Bq2WT40V6j8teXhvGpu5n-rw-l8sRvB7G68Lj_xF7fDmx53ADxbv-uDPdfQI3FWGJLoJwDVbbk5_xKSKh1j3rRI7B16uW8T9TRxQZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Control+with+State+Constraint+and+Non-concave+Dynamics%3A+A+Model+Arising+in+Economic+Growth&rft.jtitle=Applied+mathematics+%26+optimization&rft.au=Acquistapace%2C+Paolo&rft.au=Bartaloni%2C+Francesco&rft.date=2017-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0095-4616&rft.eissn=1432-0606&rft.volume=76&rft.issue=2&rft.spage=323&rft_id=info:doi/10.1007%2Fs00245-016-9353-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0095-4616&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0095-4616&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0095-4616&client=summon