Optimal Control with State Constraint and Non-concave Dynamics: A Model Arising in Economic Growth
We consider an optimal control problem arising in the context of economic theory of growth, on the lines of the works by Skiba and Askenazy–Le Van. The framework of the model is intertemporal infinite horizon utility maximization. The dynamics involves a state variable representing total endowment o...
Saved in:
Published in | Applied mathematics & optimization Vol. 76; no. 2; pp. 323 - 373 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0095-4616 1432-0606 |
DOI | 10.1007/s00245-016-9353-5 |
Cover
Loading…
Abstract | We consider an optimal control problem arising in the context of economic theory of growth, on the lines of the works by Skiba and Askenazy–Le Van. The framework of the model is intertemporal infinite horizon utility maximization. The dynamics involves a state variable representing total endowment of the social planner or average capital of the representative dynasty. From the mathematical viewpoint, the main features of the model are the following: (i) the dynamics is an increasing, unbounded and not globally concave function of the state; (ii) the state variable is subject to a static constraint; (iii) the admissible controls are merely locally integrable in the right half-line. Such assumptions seem to be weaker than those appearing in most of the existing literature. We give a direct proof of the existence of an optimal control for any initial capital
k
0
≥
0
and we carry on a qualitative study of the value function; moreover, using dynamic programming methods, we show that the value function is a continuous viscosity solution of the associated Hamilton–Jacobi–Bellman equation. |
---|---|
AbstractList | (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We consider an optimal control problem arising in the context of economic theory of growth, on the lines of the works by Skiba and Askenazy–Le Van. The framework of the model is intertemporal infinite horizon utility maximization. The dynamics involves a state variable representing total endowment of the social planner or average capital of the representative dynasty. From the mathematical viewpoint, the main features of the model are the following: (i) the dynamics is an increasing, unbounded and not globally concave function of the state; (ii) the state variable is subject to a static constraint; (iii) the admissible controls are merely locally integrable in the right half-line. Such assumptions seem to be weaker than those appearing in most of the existing literature. We give a direct proof of the existence of an optimal control for any initial capital ... and we carry on a qualitative study of the value function; moreover, using dynamic programming methods, we show that the value function is a continuous viscosity solution of the associated Hamilton–Jacobi–Bellman equation. We consider an optimal control problem arising in the context of economic theory of growth, on the lines of the works by Skiba and Askenazy–Le Van. The framework of the model is intertemporal infinite horizon utility maximization. The dynamics involves a state variable representing total endowment of the social planner or average capital of the representative dynasty. From the mathematical viewpoint, the main features of the model are the following: (i) the dynamics is an increasing, unbounded and not globally concave function of the state; (ii) the state variable is subject to a static constraint; (iii) the admissible controls are merely locally integrable in the right half-line. Such assumptions seem to be weaker than those appearing in most of the existing literature. We give a direct proof of the existence of an optimal control for any initial capital k 0 ≥ 0 and we carry on a qualitative study of the value function; moreover, using dynamic programming methods, we show that the value function is a continuous viscosity solution of the associated Hamilton–Jacobi–Bellman equation. |
Author | Bartaloni, Francesco Acquistapace, Paolo |
Author_xml | – sequence: 1 givenname: Paolo surname: Acquistapace fullname: Acquistapace, Paolo email: acquistp@dm.unipi.it organization: Dipartimento di Matematica, Università di Pisa – sequence: 2 givenname: Francesco surname: Bartaloni fullname: Bartaloni, Francesco organization: Dipartimento di Matematica, Università di Pisa |
BookMark | eNp9kMtOAyEUQInRxLb6Ae5IXKP3DjPM4K6pz8THQl0TSqliRqhAbfr30tSFMdEVCZwD3DMkuz54S8gRwgkCtKcJoKobBiiY5A1nzQ4ZYM0rBgLELhkAyIbVAsU-Gab0BgXngg_I9GGR3bvu6ST4HENPVy6_0sess91spRy185lqP6P3wTMTvNGflp6vvX53Jp3RMb0LM9vTcXTJ-RfqPL0oVCin9CqGVX49IHtz3Sd7-L2OyPPlxdPkmt0-XN1MxrfMcBSZoe4QjdCmqkXF5wZQC2mxm9lWNCBBoplJ6PS86hqL7dRUgJ2RUkIzbVvB-Ygcb-9dxPCxtCmrt7CMvjypUNZcCN4BFqrdUiaGlKKdK-PKtG4zvna9QlCboGobVJWgahNUNcXEX-YilnRx_a9TbZ1UWP9i448__Sl9Adq9iHI |
CitedBy_id | crossref_primary_10_1007_s10957_021_01871_6 crossref_primary_10_1007_s10957_020_01660_7 crossref_primary_10_1016_j_jmateco_2024_102991 crossref_primary_10_1016_j_jmateco_2020_09_008 |
Cites_doi | 10.1007/978-1-4613-8165-5 10.2307/2224098 10.2307/1914229 10.1006/jeth.1998.2489 10.1016/j.jmateco.2007.05.002 10.1016/0304-3932(88)90168-7 10.1007/978-3-642-76755-5 10.1007/978-1-4612-6380-7 10.1086/261420 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2016 Applied Mathematics and Optimization is a copyright of Springer, 2017. |
Copyright_xml | – notice: Springer Science+Business Media New York 2016 – notice: Applied Mathematics and Optimization is a copyright of Springer, 2017. |
DBID | AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 88I 8AO 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L6V M0C M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1007/s00245-016-9353-5 |
DatabaseName | CrossRef ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (New) Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global ProQuest Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1432-0606 |
EndPage | 373 |
ExternalDocumentID | 10_1007_s00245_016_9353_5 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBA EBLON EBR EBS EBU EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T9H TH9 TN5 TSG TSK TSV TUC TUS TWZ U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WHG WJK WK8 YLTOR Z45 Z81 Z8U ZL0 ZMTXR ZWQNP ZY4 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7XB 8FK ABRTQ JQ2 L.- MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c316t-1a811c6ac24623fc01a69e18de76509091cd908af285e17bc2018c99905b77633 |
IEDL.DBID | 8FG |
ISSN | 0095-4616 |
IngestDate | Fri Jul 25 19:04:54 EDT 2025 Tue Jul 01 01:29:28 EDT 2025 Thu Apr 24 22:57:29 EDT 2025 Fri Feb 21 02:26:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Utility maximization Hamilton Jacobi Bellman equation Optimal control Non-concave production function Viscosity solutions |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-1a811c6ac24623fc01a69e18de76509091cd908af285e17bc2018c99905b77633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1943663801 |
PQPubID | 47316 |
PageCount | 51 |
ParticipantIDs | proquest_journals_1943663801 crossref_citationtrail_10_1007_s00245_016_9353_5 crossref_primary_10_1007_s00245_016_9353_5 springer_journals_10_1007_s00245_016_9353_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20171000 2017-10-00 20171001 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 20171000 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Applied mathematics & optimization |
PublicationTitleAbbrev | Appl Math Optim |
PublicationYear | 2017 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Askenazy, Le Van (CR1) 1999; 85 Zaslavski (CR15) 2006 Lucas (CR9) 1988; 22 Yong, Zhou (CR13) 1999 CR6 Fleming, Rishel (CR7) 1975 Zaslavski (CR16) 2014 Freni, Gozzi, Pignotti (CR8) 2008; 44 Cesari (CR4) 1983 Skiba (CR12) 1978; 46 Zabczyk (CR14) 1995 Edwards (CR5) 1995 Romer (CR11) 1986; 94 Carlson, Haurie, Leizarowitz (CR3) 1991 Barro, Sala-i-Martin (CR2) 1999 Ramsey (CR10) 1928; 38 DA Carlson (9353_CR3) 1991 J Yong (9353_CR13) 1999 L Cesari (9353_CR4) 1983 PM Romer (9353_CR11) 1986; 94 RE Lucas (9353_CR9) 1988; 22 9353_CR6 J Zabczyk (9353_CR14) 1995 AJ Zaslavski (9353_CR15) 2006 AJ Zaslavski (9353_CR16) 2014 AK Skiba (9353_CR12) 1978; 46 P Askenazy (9353_CR1) 1999; 85 RE Edwards (9353_CR5) 1995 FP Ramsey (9353_CR10) 1928; 38 WH Fleming (9353_CR7) 1975 G Freni (9353_CR8) 2008; 44 RJ Barro (9353_CR2) 1999 |
References_xml | – year: 1999 ident: CR13 publication-title: Stochastic Controls—Hamiltonian Systems and HJB Equations – year: 1983 ident: CR4 publication-title: Optimization—Theory and Applications doi: 10.1007/978-1-4613-8165-5 – volume: 38 start-page: 543 issue: 152 year: 1928 end-page: 559 ident: CR10 article-title: A mathematical theory of saving publication-title: Econ. J. doi: 10.2307/2224098 – volume: 46 start-page: 527 issue: 3 year: 1978 end-page: 539 ident: CR12 article-title: Optimal growth with a convex-concave production function publication-title: Econometrica doi: 10.2307/1914229 – year: 1995 ident: CR5 publication-title: Functional Analysis – volume: 85 start-page: 27 issue: 1 year: 1999 end-page: 54 ident: CR1 article-title: A model of optimal growth strategy publication-title: J. Econ. Theory doi: 10.1006/jeth.1998.2489 – volume: 44 start-page: 55 issue: 1 year: 2008 end-page: 86 ident: CR8 article-title: Optimal strategies in linear multisector models: Value function and optimality conditions publication-title: J. Math. Econ. doi: 10.1016/j.jmateco.2007.05.002 – volume: 22 start-page: 3 year: 1988 end-page: 42 ident: CR9 article-title: On the mechanics of economic development publication-title: J. Monet. Econ. doi: 10.1016/0304-3932(88)90168-7 – ident: CR6 – year: 1991 ident: CR3 publication-title: Infinite Horizon Optimal Control doi: 10.1007/978-3-642-76755-5 – year: 1975 ident: CR7 publication-title: Deterministic and Stochastic Optimal Control doi: 10.1007/978-1-4612-6380-7 – year: 2014 ident: CR16 publication-title: Turnpike Phenomenon and Infinite Horizon Optimal Control. Springer Optimization and Its Applications – volume: 94 start-page: 1002 issue: 5 year: 1986 end-page: 1035 ident: CR11 article-title: Increasing return and long-run growth publication-title: J. Political Econ. doi: 10.1086/261420 – year: 1995 ident: CR14 publication-title: Mathematical Control Theory—An Introduction – year: 2006 ident: CR15 publication-title: Turnpike Properties in the Calculus of Variations and Optimal Control – year: 1999 ident: CR2 publication-title: Economic Growth – volume-title: Economic Growth year: 1999 ident: 9353_CR2 – volume-title: Deterministic and Stochastic Optimal Control year: 1975 ident: 9353_CR7 doi: 10.1007/978-1-4612-6380-7 – volume-title: Stochastic Controls—Hamiltonian Systems and HJB Equations year: 1999 ident: 9353_CR13 – volume: 85 start-page: 27 issue: 1 year: 1999 ident: 9353_CR1 publication-title: J. Econ. Theory doi: 10.1006/jeth.1998.2489 – volume-title: Infinite Horizon Optimal Control year: 1991 ident: 9353_CR3 doi: 10.1007/978-3-642-76755-5 – volume: 22 start-page: 3 year: 1988 ident: 9353_CR9 publication-title: J. Monet. Econ. doi: 10.1016/0304-3932(88)90168-7 – ident: 9353_CR6 – volume-title: Optimization—Theory and Applications year: 1983 ident: 9353_CR4 doi: 10.1007/978-1-4613-8165-5 – volume-title: Functional Analysis year: 1995 ident: 9353_CR5 – volume: 94 start-page: 1002 issue: 5 year: 1986 ident: 9353_CR11 publication-title: J. Political Econ. doi: 10.1086/261420 – volume-title: Mathematical Control Theory—An Introduction year: 1995 ident: 9353_CR14 – volume-title: Turnpike Phenomenon and Infinite Horizon Optimal Control. Springer Optimization and Its Applications year: 2014 ident: 9353_CR16 – volume: 38 start-page: 543 issue: 152 year: 1928 ident: 9353_CR10 publication-title: Econ. J. doi: 10.2307/2224098 – volume: 44 start-page: 55 issue: 1 year: 2008 ident: 9353_CR8 publication-title: J. Math. Econ. doi: 10.1016/j.jmateco.2007.05.002 – volume: 46 start-page: 527 issue: 3 year: 1978 ident: 9353_CR12 publication-title: Econometrica doi: 10.2307/1914229 – volume-title: Turnpike Properties in the Calculus of Variations and Optimal Control year: 2006 ident: 9353_CR15 |
SSID | ssj0002363 |
Score | 2.1204648 |
Snippet | We consider an optimal control problem arising in the context of economic theory of growth, on the lines of the works by Skiba and Askenazy–Le Van. The... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We consider an optimal control problem arising in the context of economic theory of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 323 |
SubjectTerms | Calculus of Variations and Optimal Control; Optimization Constraints Continuity (mathematics) Control Dynamic programming Economic development Economic growth Economic models Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Numerical and Computational Physics Optimal control Optimization Proving Simulation State variable Systems Theory Theoretical |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L3oQP3E6JQdPSiBJm7T1NqZzCJsXB7uV5gsH2omt_v2-dG2dooLHtklK8pL3fi_vC6Fz5SIqeeaIUCIhwPAkUcoaYpg0UoQu087fd4wncjQN72ZiVsdxF423e2OSrDh1G-xWWQlB9ZUkCURAxDraEKC6-2095f2W_fKgLp-WCBJKJhtT5k9DfBVGnwjzm1G0kjXDHbRdg0TcX1J1F63ZfA9traQOhKdxm2-12EfqHk7-M3QZLD3Psb9exRWQ9K-KqhBEibPc4MkiJ6AD6-zd4utlOfriCvexL4rmfzn3lwd4nuMmZBnfgqZePh6g6fDmYTAidfUEogMmS8KymDEtM81DgDhOU5bJxLLY2MhnzQOcoE1C48zxWFgWKQ1QINaAF6lQEXCd4BB18kVujxA2QSQiGhlqXRxqZWLAYNJxzw8sV452EW2WMdV1anE_sae0TYpcrXzq3cn8yqeiiy7aLi_LvBp_Ne41tEnrI1akLAkDgEsgYbvosqHXyuffBjv-V-sTtMm9IK_c93qoU76-2VOAIaU6q7bdB4Q80Zg priority: 102 providerName: Springer Nature |
Title | Optimal Control with State Constraint and Non-concave Dynamics: A Model Arising in Economic Growth |
URI | https://link.springer.com/article/10.1007/s00245-016-9353-5 https://www.proquest.com/docview/1943663801 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYoXNoD4tGqSwH5wAlk1XZiJ-GCdmF3EYhthViJnqL4pa5UstCE_v7OZJPlIcHJShwniu1883k8mY-QAxMSrmURmDIqYwB4mhnjHXNCO63iUNiA_o6riT6fxhe36rZ1uFVtWGWHiQ1Qu7lFH_l3WGxHYB0BUE_uHxiqRuHuaiuh8YGsCbA0OMPT0XiJxDJqldQyxWItdLeryZskojLGsDXNskhFTL20S09k89X-aGN2RhtkveWLtL8Y4E2y4sst8ulZFkE4ulqmXq22ifkBIHAHTU4XQegUPa204ZR4qmo0IWpalI5O5iWD5bAt_nl6tlCmr45pn6I-Gj5yhn4EOitp9_cyHcOivf79mUxHw5vTc9YKKTAbCV0zUaRCWF1YGQPbCZaLQmdepM4nmEAPKIN1GU-LIFPlRWIssILUAnXkyiQAQNEXslrOS_-VUBclKuGJ4z6ksTUuBTqmg0Ro8NIE3iO868bctlnG8cX-5Mv8yE3P5xhZhj2fqx45XDa5X6TYeO_i3W5s8vZrq_KnudEjR914Pat-62Y779_sG_ko0Yg3oXu7ZLX---j3gILUZr-ZZ_tkrT8aDCZYjn9dDqEcDCc_r6F2Kvv_AYMH2qQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gHpSD8RkXUfugF03Hfkz3zJgQQ8BlEXa9QMJt7GckgVlgRwl_yt9I9ezMgiZy4ziPrslUV9erq78CeGdjzrQwkSqrSooKT1Nrg6eea69VFo2LKd8xnujRQfbtUB0uwZ_-LEwqq-x1Yquo_dSlHPknDLYlWkdUqF9Oz2jqGpV2V_sWGnOx2A2XFxiyzdZ3tnB-3wsx_Lq_OaJdVwHqJNcN5abg3GnjRIamPzrGjS4DL3zIE5oc2k_nS1aYKAoVeG4dmsjCoR_FlM1xNUqkew_uZ1KWqYSwGG4vNL-QXee2UtFMc93vorIWtFRkqUxO01IqSdXfdvDauf1nP7Y1c8PH8KjzT8nGXKCewFKon8LKDdRCvBovoF5nz8B-R6VzgkM250XvJGV2SevDpluztgdFQ0ztyWRaUwy_nfkdyNZlbU6QwGeyQVI_tvTJo5S3IEc16U9Lk-3z6UXz8zkc3AmLX8ByPa3DSyBe5ipnuWchFpmzvkD3T0eRVFEQNrIBsJ6NletQzdOPHVcLPOaW81WqZEucr9QAPiyGnM4hPW57ea2fm6pb3bPqWhYH8LGfrxuP_0ds9XZib-HBaH-8V-3tTHZfwUORHIi2bHANlpvzX-E1uj-NfdPKHIEfdy3kV40LD-w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IJ5ioYAPcAFZtZ3YSZAQqrpsW0oXDlTqLfgpKtFs6Qaq_jV-HTPZZFuQ6K3HPDxxxuOZz-PxDMALlwphlE1cO11xVHiGOxcDD9IEo_NkfSJ_x97UbO_nHw70wQr8Hs7CUFjloBM7RR1mnnzk67jYztA6okJdT31YxOfx5N3xD04VpGindSinsRCR3Xh2isu3-dudMY71S6Um779sbvO-wgD3mTQtl7aU0hvrVY4wIHkhramiLEMsKLMc2lIfKlHapEodZeE8msvSI6YS2hU4MzOkew2uF9gtqp5QTraWVkBlfRW3SvPcSDPsqIouganKKWTO8CrTGdd_28RzoPvP3mxn8iZ34HaPVdnGQrjuwkps7sGtCxkM8WpvmfZ1fh_cJ1RAR9hkcxEAz8jLyzo8S7fmXT2KltkmsOms4bgU9_ZXZOOzxh4hgTdsg1FtNvrkIfkw2GHDhpPTbOtkdtp-ewD7V8Lih7DazJr4CFjICl2IIoiYyty7UCIUNEmRWorKJTECMbCx9n2Gc_qx7_UyN3PH-Zqi2ojztR7Bq2WT40V6j8teXhvGpu5n-rw-l8sRvB7G68Lj_xF7fDmx53ADxbv-uDPdfQI3FWGJLoJwDVbbk5_xKSKh1j3rRI7B16uW8T9TRxQZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Control+with+State+Constraint+and+Non-concave+Dynamics%3A+A+Model+Arising+in+Economic+Growth&rft.jtitle=Applied+mathematics+%26+optimization&rft.au=Acquistapace%2C+Paolo&rft.au=Bartaloni%2C+Francesco&rft.date=2017-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0095-4616&rft.eissn=1432-0606&rft.volume=76&rft.issue=2&rft.spage=323&rft_id=info:doi/10.1007%2Fs00245-016-9353-5&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0095-4616&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0095-4616&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0095-4616&client=summon |