Recognition of mixture control chart patterns based on fusion feature reduction and fireworks algorithm-optimized MSVM
Unnatural control chart patterns (CCPs) can be associated with the quality problems of the production process. It is quite critical to detect and identify these patterns effectively based on process data. Various machine learning techniques to CCPs recognition have been studied on the process only s...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 23; no. 1; pp. 15 - 26 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.02.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Unnatural control chart patterns (CCPs) can be associated with the quality problems of the production process. It is quite critical to detect and identify these patterns effectively based on process data. Various machine learning techniques to CCPs recognition have been studied on the process only suffer from basic CCPs of unnatural patterns. Practical production process data may be the combination of two or more basic patterns simultaneously in reality. This paper proposes a mixture CCPs recognition method based on fusion feature reduction (FFR) and fireworks algorithm-optimized multiclass support vector machine (MSVM). FFR algorithm consists of three main sub-networks: statistical and shape features, features fusion and kernel principal component analysis feature dimensionality reduction, which make the features more effective. In MSVM classifier algorithm, the kernel function parameters play a very significant role in mixture CCPs recognition accuracy. Therefore, fireworks algorithm is proposed to select the two-dimensional parameters of the classifier. The results of the proposed algorithm are benchmarked with popular genetic algorithm and particle swarm optimization methods. Simulation results demonstrate that the proposed method can gain the higher recognition accuracy and significantly reduce the running time. |
---|---|
AbstractList | Unnatural control chart patterns (CCPs) can be associated with the quality problems of the production process. It is quite critical to detect and identify these patterns effectively based on process data. Various machine learning techniques to CCPs recognition have been studied on the process only suffer from basic CCPs of unnatural patterns. Practical production process data may be the combination of two or more basic patterns simultaneously in reality. This paper proposes a mixture CCPs recognition method based on fusion feature reduction (FFR) and fireworks algorithm-optimized multiclass support vector machine (MSVM). FFR algorithm consists of three main sub-networks: statistical and shape features, features fusion and kernel principal component analysis feature dimensionality reduction, which make the features more effective. In MSVM classifier algorithm, the kernel function parameters play a very significant role in mixture CCPs recognition accuracy. Therefore, fireworks algorithm is proposed to select the two-dimensional parameters of the classifier. The results of the proposed algorithm are benchmarked with popular genetic algorithm and particle swarm optimization methods. Simulation results demonstrate that the proposed method can gain the higher recognition accuracy and significantly reduce the running time. |
Author | Wang, Ruiqi Yuan, Yi Cheng, Wenming Zhang, Min |
Author_xml | – sequence: 1 givenname: Min orcidid: 0000-0002-0905-9303 surname: Zhang fullname: Zhang, Min email: zhmzhangmin16@126.com organization: School of Mechanical Engineering, Southwest Jiaotong University – sequence: 2 givenname: Yi surname: Yuan fullname: Yuan, Yi organization: School of Mechanical Engineering, Southwest Jiaotong University – sequence: 3 givenname: Ruiqi surname: Wang fullname: Wang, Ruiqi organization: School of Mechanical Engineering, Southwest Jiaotong University – sequence: 4 givenname: Wenming surname: Cheng fullname: Cheng, Wenming organization: School of Mechanical Engineering, Southwest Jiaotong University |
BookMark | eNp9kMtOAyEUhompiW31AdyRuB6FgTIzS9N4S9qYeIs7wjDQUluowHh7epnWaGKiLA5n8X_nnHwD0LPOKgAOMTrGCBUnIVVKM4TLDBW0zNgO6GNKSFaMRo-9757iPTAIYYEQISQv--DlRkk3syYaZ6HTcGXeYusVlM5G75ZQzoWPcC1iVN4GWIugGpiiug0doZXYxL1qWrmZIWwDtfHq1fmnAMVy5ryJ81Xm1tGszEeip7cP032wq8UyqIOvfwjuz8_uxpfZ5Prianw6ySTBLGYYa9awUlDNdI5lqaq6qComhCgqyghjFaFIq7zGjSSjphF1emWdU8IwqkVDhuBoO3ft3XOrQuQL13qbVvKcjHJUVKSkKYW3KeldCF5pvvZmJfw7x4h3evlWL096eaeXs8QUvxhpougURC_M8l8y35IhbbEz5X9u-hv6BDbMk4s |
CitedBy_id | crossref_primary_10_3390_math11163589 crossref_primary_10_1016_j_cie_2023_109410 crossref_primary_10_1109_ACCESS_2020_3036006 crossref_primary_10_1088_1742_6596_2146_1_012028 crossref_primary_10_1145_3362788 crossref_primary_10_1016_j_cie_2022_108437 crossref_primary_10_1016_j_measurement_2024_116424 crossref_primary_10_1108_IJPPM_08_2020_0463 crossref_primary_10_1016_j_cie_2024_110674 crossref_primary_10_3390_app12020787 crossref_primary_10_3390_math11153291 crossref_primary_10_1016_j_eswa_2021_115689 crossref_primary_10_1016_j_cie_2021_107538 crossref_primary_10_1088_1361_6501_ac60d4 crossref_primary_10_3390_math10060934 crossref_primary_10_12677_DSC_2022_111001 crossref_primary_10_3390_pr9091484 crossref_primary_10_1155_2020_6694732 crossref_primary_10_3390_machines11010115 crossref_primary_10_1080_08982112_2024_2340529 crossref_primary_10_1109_ACCESS_2020_2976795 crossref_primary_10_3390_math13020259 crossref_primary_10_1007_s00500_022_06955_7 crossref_primary_10_1016_j_isatra_2024_09_001 |
Cites_doi | 10.1016/j.asoc.2017.04.061 10.1109/CEC.2007.4424483 10.1016/j.cie.2016.02.016 10.1016/j.neucom.2014.06.068 10.1016/j.isatra.2016.03.004 10.3390/s120912489 10.1016/j.asej.2014.10.009 10.1016/j.neucom.2016.04.004 10.1080/0020754042000268884 10.1016/j.cie.2006.07.013 10.1016/j.cherd.2017.04.024 10.1016/j.jprocont.2016.01.001 10.1080/002075499190987 10.1016/j.cie.2013.09.012 10.1016/j.isatra.2010.06.005 10.1016/j.asoc.2010.10.016 10.1007/s10845-007-0028-6 10.1016/j.neucom.2010.06.036 10.1016/j.cie.2012.10.009 10.1109/IPEMC.2016.7512529 10.1016/j.cie.2008.10.006 10.1016/j.isatra.2012.09.007 10.1016/j.solener.2016.10.044 10.1109/ECC.2015.7331026 10.1007/s00170-016-8745-7 10.1016/j.ijepes.2016.04.005 10.1002/aic.10325 |
ContentType | Journal Article |
Copyright | Springer-Verlag London Ltd., part of Springer Nature 2018 2018© Springer-Verlag London Ltd., part of Springer Nature 2018 |
Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2018 – notice: 2018© Springer-Verlag London Ltd., part of Springer Nature 2018 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10044-018-0748-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
EndPage | 26 |
ExternalDocumentID | 10_1007_s10044_018_0748_6 |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 2682016CX031 – fundername: National Natural Science Foundation of China grantid: 51675450 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c316t-11f6d68a4f6f21c8e9b7996aaa79463669340fe2b1dc35ddabbbb8b243610bad3 |
IEDL.DBID | U2A |
ISSN | 1433-7541 |
IngestDate | Fri Jul 25 03:27:00 EDT 2025 Tue Jul 01 01:15:16 EDT 2025 Thu Apr 24 22:58:24 EDT 2025 Fri Feb 21 02:29:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Fireworks algorithm Parameters optimization Fusion feature reduction Multiclass support vector machines Control chart patterns recognition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-11f6d68a4f6f21c8e9b7996aaa79463669340fe2b1dc35ddabbbb8b243610bad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0905-9303 |
PQID | 2352079384 |
PQPubID | 2043691 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2352079384 crossref_primary_10_1007_s10044_018_0748_6 crossref_citationtrail_10_1007_s10044_018_0748_6 springer_journals_10_1007_s10044_018_0748_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2020 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | ZhangYDWuLClassification of fruits using computer vision and a multiclass support vector machineSensors2012129124891250510.3390/s120912489 ReddyKSPanwarLKKumarRBinary fireworks algorithm for profit based unit commitment (PBUC) problemInt J Electr Power Energy Syst20168327028210.1016/j.ijepes.2016.04.005 ShaoYEChiuCCApplying emerging soft computing approaches to control chart pattern recognition for an SPC–EPC processNeurocomputing2016201192810.1016/j.neucom.2016.04.004 Kallas M, Mourot G, Maquin D et al (2014) Diagnosis of nonlinear systems using kernel principal component analysis. In: European workshop on advanced control and diagnosis DuSHuangDLvJRecognition of concurrent control chart patterns using wavelet transform decomposition and multiclass support vector machinesComput Ind Eng201366468369510.1016/j.cie.2013.09.012 RanaeeVEbrahimzadehAGhaderiRApplication of the PSO-SVM model for recognition of control chart patternsISA Trans201049457758610.1016/j.isatra.2010.06.005 GauriSKCharkabortySFeature-based recognition of control chart patternsComput Ind Eng200651472674210.1016/j.cie.2006.07.013 TianYDubWMakiscVImproved cost-optimal Bayesian control chart based auto-correlated chemical process monitoringChem Eng Res Des2017123637510.1016/j.cherd.2017.04.024 GuhRSTannockJDTRecognition of control chart concurrent patterns using a neural network approachInt J Prod Res19993781743176510.1080/002075499190987 ZhangMChengWRecognition of mixture control chart pattern using multiclass support vector machine and genetic algorithm based on statistical and shape featuresMath Probl Eng20155110 SangeethaK.Sudhakar BabuT.RajasekarN.Fireworks Algorithm-Based Maximum Power Point Tracking for Uniform Irradiation as Well as Under Partial Shading ConditionAdvances in Intelligent Systems and Computing2016New DelhiSpringer India7988 Zhang Q, Liu H, Dai C (2016) Fireworks explosion optimization algorithm for parameter identification of PV model. In: IEEE international power electronics and motion control conference. IEEE, pp 1587–1591 GoswamiDChakrabortySParametric optimization of ultrasonic machining process using gravitational search and fireworks algorithmsAIN SHAMS Eng J20156131533110.1016/j.asej.2014.10.009 WangCHKuoWIdentification of control chart patterns using wavelet filtering and robust fuzzy clusteringJ Intell Manuf200718334335010.1007/s10845-007-0028-6 TanYingZhuYuanchunFireworks Algorithm for OptimizationLecture Notes in Computer Science2010Berlin, HeidelbergSpringer Berlin Heidelberg355364 Peter HeQJoe QinSA new fault diagnose is method using fault directions in fisher discriminant analysisAIChE J200551255557110.1002/aic.10325 YangWAZhouWLiaoWIdentification and quantification of concurrent control chart patterns using extreme-point symmetric mode decomposition and extreme learning machinesNeurocomputing2015147126027010.1016/j.neucom.2014.06.068 KhormaliAAddehJA novel approach for recognition of control chart patterns: type-2 fuzzy clustering optimized support vector machineISA Trans20166325626410.1016/j.isatra.2016.03.004 WeiJXZhangRSHYuZXA BPSO-SVM algorithm based on memory renewal and enhanced mutation mechanisms for feature selectionAppl Soft Comput20175817619210.1016/j.asoc.2017.04.061 RanaeeVEbrahimzadehAControl chart pattern recognition using a novel hybrid intelligent methodAppl Soft Comput20111122676268610.1016/j.asoc.2010.10.016 GutierrezHDLTPhamDTEstimation and generation of training patterns for control chart pattern recognitionComput Ind Eng201695728210.1016/j.cie.2016.02.016 XieLGuNLiDConcurrent control chart patterns recognition with singular spectrum analysis and support vector machineComput Ind Eng201364128028910.1016/j.cie.2012.10.009 GuhRShiueYOn-line identification of control chart patterns using self-organizing approachesInt J Prod Res20054361225125410.1080/0020754042000268884 HuangJYanXRelated and independent variable fault detection based on KPCA and SVDDJ Process Control201639889910.1016/j.jprocont.2016.01.001 FazaiRTaoualiOHarkatMFA new fault detection method for nonlinear process monitoringInt J Adv Manuf Technol2016873425343610.1007/s00170-016-8745-7 ElaissiIJaffelITaoualiOOnline prediction model based on the SVD-KPCA methodISA Trans20135219610410.1016/j.isatra.2012.09.007 LuCJShaoYELiPHMixture control chart patterns recognition using independent component analysis and support vector machineNeurocomputing201174111904190810.1016/j.neucom.2010.06.036 MontgomeryDCIntroduction to statistical quality control2001New YorkWiley0997.62503 GauriSKChakrabortySRecognition of control chart patterns using improved selection of featuresComput Ind Eng20095641577158810.1016/j.cie.2008.10.006 Alba E, Garcia-Nieto J, Jourdan L et al (2007) Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms. In: IEEE congress on evolutionary computation, 2007. CEC 2007. IEEE, pp 284–290 BabuTSRamJPSangeethaKParameter extraction of two diode solar PV model using fireworks algorithmSol Energy201614026527610.1016/j.solener.2016.10.044 R Guh (748_CR19) 2005; 43 RS Guh (748_CR6) 1999; 37 WA Yang (748_CR8) 2015; 147 HDLT Gutierrez (748_CR18) 2016; 95 YD Zhang (748_CR23) 2012; 12 S Du (748_CR13) 2013; 66 JX Wei (748_CR25) 2017; 58 Q Peter He (748_CR11) 2005; 51 KS Reddy (748_CR28) 2016; 83 748_CR15 TS Babu (748_CR31) 2016; 140 SK Gauri (748_CR4) 2006; 51 R Fazai (748_CR16) 2016; 87 J Huang (748_CR14) 2016; 39 A Khormali (748_CR21) 2016; 63 V Ranaee (748_CR22) 2011; 11 SK Gauri (748_CR10) 2009; 56 K. Sangeetha (748_CR27) 2016 CJ Lu (748_CR5) 2011; 74 CH Wang (748_CR20) 2007; 18 D Goswami (748_CR30) 2015; 6 DC Montgomery (748_CR1) 2001 M Zhang (748_CR9) 2015; 5 Y Tian (748_CR12) 2017; 123 Ying Tan (748_CR26) 2010 V Ranaee (748_CR2) 2010; 49 748_CR29 YE Shao (748_CR3) 2016; 201 L Xie (748_CR7) 2013; 64 I Elaissi (748_CR17) 2013; 52 748_CR24 |
References_xml | – reference: RanaeeVEbrahimzadehAGhaderiRApplication of the PSO-SVM model for recognition of control chart patternsISA Trans201049457758610.1016/j.isatra.2010.06.005 – reference: Kallas M, Mourot G, Maquin D et al (2014) Diagnosis of nonlinear systems using kernel principal component analysis. In: European workshop on advanced control and diagnosis – reference: WangCHKuoWIdentification of control chart patterns using wavelet filtering and robust fuzzy clusteringJ Intell Manuf200718334335010.1007/s10845-007-0028-6 – reference: ZhangYDWuLClassification of fruits using computer vision and a multiclass support vector machineSensors2012129124891250510.3390/s120912489 – reference: ZhangMChengWRecognition of mixture control chart pattern using multiclass support vector machine and genetic algorithm based on statistical and shape featuresMath Probl Eng20155110 – reference: DuSHuangDLvJRecognition of concurrent control chart patterns using wavelet transform decomposition and multiclass support vector machinesComput Ind Eng201366468369510.1016/j.cie.2013.09.012 – reference: TianYDubWMakiscVImproved cost-optimal Bayesian control chart based auto-correlated chemical process monitoringChem Eng Res Des2017123637510.1016/j.cherd.2017.04.024 – reference: GuhRSTannockJDTRecognition of control chart concurrent patterns using a neural network approachInt J Prod Res19993781743176510.1080/002075499190987 – reference: GauriSKChakrabortySRecognition of control chart patterns using improved selection of featuresComput Ind Eng20095641577158810.1016/j.cie.2008.10.006 – reference: Zhang Q, Liu H, Dai C (2016) Fireworks explosion optimization algorithm for parameter identification of PV model. In: IEEE international power electronics and motion control conference. IEEE, pp 1587–1591 – reference: WeiJXZhangRSHYuZXA BPSO-SVM algorithm based on memory renewal and enhanced mutation mechanisms for feature selectionAppl Soft Comput20175817619210.1016/j.asoc.2017.04.061 – reference: YangWAZhouWLiaoWIdentification and quantification of concurrent control chart patterns using extreme-point symmetric mode decomposition and extreme learning machinesNeurocomputing2015147126027010.1016/j.neucom.2014.06.068 – reference: GuhRShiueYOn-line identification of control chart patterns using self-organizing approachesInt J Prod Res20054361225125410.1080/0020754042000268884 – reference: XieLGuNLiDConcurrent control chart patterns recognition with singular spectrum analysis and support vector machineComput Ind Eng201364128028910.1016/j.cie.2012.10.009 – reference: TanYingZhuYuanchunFireworks Algorithm for OptimizationLecture Notes in Computer Science2010Berlin, HeidelbergSpringer Berlin Heidelberg355364 – reference: ShaoYEChiuCCApplying emerging soft computing approaches to control chart pattern recognition for an SPC–EPC processNeurocomputing2016201192810.1016/j.neucom.2016.04.004 – reference: HuangJYanXRelated and independent variable fault detection based on KPCA and SVDDJ Process Control201639889910.1016/j.jprocont.2016.01.001 – reference: GoswamiDChakrabortySParametric optimization of ultrasonic machining process using gravitational search and fireworks algorithmsAIN SHAMS Eng J20156131533110.1016/j.asej.2014.10.009 – reference: LuCJShaoYELiPHMixture control chart patterns recognition using independent component analysis and support vector machineNeurocomputing201174111904190810.1016/j.neucom.2010.06.036 – reference: MontgomeryDCIntroduction to statistical quality control2001New YorkWiley0997.62503 – reference: ElaissiIJaffelITaoualiOOnline prediction model based on the SVD-KPCA methodISA Trans20135219610410.1016/j.isatra.2012.09.007 – reference: GauriSKCharkabortySFeature-based recognition of control chart patternsComput Ind Eng200651472674210.1016/j.cie.2006.07.013 – reference: BabuTSRamJPSangeethaKParameter extraction of two diode solar PV model using fireworks algorithmSol Energy201614026527610.1016/j.solener.2016.10.044 – reference: FazaiRTaoualiOHarkatMFA new fault detection method for nonlinear process monitoringInt J Adv Manuf Technol2016873425343610.1007/s00170-016-8745-7 – reference: SangeethaK.Sudhakar BabuT.RajasekarN.Fireworks Algorithm-Based Maximum Power Point Tracking for Uniform Irradiation as Well as Under Partial Shading ConditionAdvances in Intelligent Systems and Computing2016New DelhiSpringer India7988 – reference: Peter HeQJoe QinSA new fault diagnose is method using fault directions in fisher discriminant analysisAIChE J200551255557110.1002/aic.10325 – reference: KhormaliAAddehJA novel approach for recognition of control chart patterns: type-2 fuzzy clustering optimized support vector machineISA Trans20166325626410.1016/j.isatra.2016.03.004 – reference: GutierrezHDLTPhamDTEstimation and generation of training patterns for control chart pattern recognitionComput Ind Eng201695728210.1016/j.cie.2016.02.016 – reference: ReddyKSPanwarLKKumarRBinary fireworks algorithm for profit based unit commitment (PBUC) problemInt J Electr Power Energy Syst20168327028210.1016/j.ijepes.2016.04.005 – reference: RanaeeVEbrahimzadehAControl chart pattern recognition using a novel hybrid intelligent methodAppl Soft Comput20111122676268610.1016/j.asoc.2010.10.016 – reference: Alba E, Garcia-Nieto J, Jourdan L et al (2007) Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms. In: IEEE congress on evolutionary computation, 2007. CEC 2007. IEEE, pp 284–290 – volume: 58 start-page: 176 year: 2017 ident: 748_CR25 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.04.061 – ident: 748_CR24 doi: 10.1109/CEC.2007.4424483 – start-page: 79 volume-title: Advances in Intelligent Systems and Computing year: 2016 ident: 748_CR27 – volume: 95 start-page: 72 year: 2016 ident: 748_CR18 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2016.02.016 – volume: 147 start-page: 260 issue: 1 year: 2015 ident: 748_CR8 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.06.068 – volume-title: Introduction to statistical quality control year: 2001 ident: 748_CR1 – volume: 63 start-page: 256 year: 2016 ident: 748_CR21 publication-title: ISA Trans doi: 10.1016/j.isatra.2016.03.004 – volume: 12 start-page: 12489 issue: 9 year: 2012 ident: 748_CR23 publication-title: Sensors doi: 10.3390/s120912489 – volume: 6 start-page: 315 issue: 1 year: 2015 ident: 748_CR30 publication-title: AIN SHAMS Eng J doi: 10.1016/j.asej.2014.10.009 – volume: 201 start-page: 19 year: 2016 ident: 748_CR3 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.04.004 – volume: 43 start-page: 1225 issue: 6 year: 2005 ident: 748_CR19 publication-title: Int J Prod Res doi: 10.1080/0020754042000268884 – volume: 51 start-page: 726 issue: 4 year: 2006 ident: 748_CR4 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2006.07.013 – volume: 123 start-page: 63 year: 2017 ident: 748_CR12 publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2017.04.024 – volume: 39 start-page: 88 year: 2016 ident: 748_CR14 publication-title: J Process Control doi: 10.1016/j.jprocont.2016.01.001 – volume: 5 start-page: 1 year: 2015 ident: 748_CR9 publication-title: Math Probl Eng – volume: 37 start-page: 1743 issue: 8 year: 1999 ident: 748_CR6 publication-title: Int J Prod Res doi: 10.1080/002075499190987 – volume: 66 start-page: 683 issue: 4 year: 2013 ident: 748_CR13 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2013.09.012 – volume: 49 start-page: 577 issue: 4 year: 2010 ident: 748_CR2 publication-title: ISA Trans doi: 10.1016/j.isatra.2010.06.005 – volume: 11 start-page: 2676 issue: 2 year: 2011 ident: 748_CR22 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2010.10.016 – volume: 18 start-page: 343 issue: 3 year: 2007 ident: 748_CR20 publication-title: J Intell Manuf doi: 10.1007/s10845-007-0028-6 – volume: 74 start-page: 1904 issue: 11 year: 2011 ident: 748_CR5 publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.06.036 – start-page: 355 volume-title: Lecture Notes in Computer Science year: 2010 ident: 748_CR26 – volume: 64 start-page: 280 issue: 1 year: 2013 ident: 748_CR7 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2012.10.009 – ident: 748_CR29 doi: 10.1109/IPEMC.2016.7512529 – volume: 56 start-page: 1577 issue: 4 year: 2009 ident: 748_CR10 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2008.10.006 – volume: 52 start-page: 96 issue: 1 year: 2013 ident: 748_CR17 publication-title: ISA Trans doi: 10.1016/j.isatra.2012.09.007 – volume: 140 start-page: 265 year: 2016 ident: 748_CR31 publication-title: Sol Energy doi: 10.1016/j.solener.2016.10.044 – ident: 748_CR15 doi: 10.1109/ECC.2015.7331026 – volume: 87 start-page: 3425 year: 2016 ident: 748_CR16 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-016-8745-7 – volume: 83 start-page: 270 year: 2016 ident: 748_CR28 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2016.04.005 – volume: 51 start-page: 555 issue: 2 year: 2005 ident: 748_CR11 publication-title: AIChE J doi: 10.1002/aic.10325 |
SSID | ssj0033328 |
Score | 2.3797948 |
Snippet | Unnatural control chart patterns (CCPs) can be associated with the quality problems of the production process. It is quite critical to detect and identify... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 15 |
SubjectTerms | Algorithms Classifiers Computer Science Computer simulation Control charts Data processing Fireworks Genetic algorithms Kernel functions Machine learning Parameters Particle swarm optimization Pattern Recognition Principal components analysis Reduction Support vector machines Theoretical Advances |
Title | Recognition of mixture control chart patterns based on fusion feature reduction and fireworks algorithm-optimized MSVM |
URI | https://link.springer.com/article/10.1007/s10044-018-0748-6 https://www.proquest.com/docview/2352079384 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-wgFCZe3bi5vnPHV1i40pBMgVK6nBgf0ehC7xhdNVDAO4nTmmk1xl_vAcsdNWpilxRY9BzOo-fjOwjt2FwE0hBiqGOQoGQ50VyVxBqZ2twy42xAW5yL4yE_uU6vu3vcTUS7x5JksNRvLrv1uUdMSAJuTxLxC82lPnUHJR7SQTS_jLHQUBXiAEaylCexlPnZFu-d0TTC_FAUDb7mcBH97oJEPHiV6hKasdUyWugCRtwdxwaGYk-GOLaCHi8iIqiucO3wePTkawS4g6Rjf8uqxfeBVbNqsHdiBsNU9-B_m2FnA9EnnnhG17CHqgx2YBc9gKvB6u62nozaf2NSg60Zj55h9dnl1dkqGh4e_N0_Jl1vBVKyRLQkSZwwQiruhKNJKW2uM0h9lFKecZ4JkTPed5bqxJQsNUZpeKSmnEG8pZVha2i2qiv7B-FS09xpqiH3ctyoPHeGZxnYCqWFFLLfQ_34kYuyIx73_S_uiillspdLAXIpvFwK0UO7_5fcv7JufDd5M0qu6A5gU1BQQM_9J3kP7UVpTl9_udn6j2ZvoHnq8--A4t5Es-3kwW5BkNLqbTQ3OLo5PdgOyvkC4G7hZg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFLZYOWwXBmMT3crwYachS43tOs6xQqBuoxygnXqL7NgeldqkalI08dfzbGLKpm3ScnSefciz34-8z99D6JPNRCANIYY6BglKmhHNVUGskQObWWacDWiLKzGa8q-zway9x11HtHssSQZL_eyyW597xIQk4PYkES_QLsQC0uO4pnQYzS9jLDRUhTiAkXTAk1jK_NMSvzqjbYT5W1E0-JqLfbTXBol4-KjVA7RjyzfodRsw4vY41jAUezLEsUN0dx0RQVWJK4eX85--RoBbSDr2t6wavAqsmmWNvRMzGETdxv82w84Gok-89oyuYQ1VGuzALnoAV43V4ke1nje3S1KBrVnO72H2-Ob7-C2aXpxPzkak7a1ACpaIhiSJE0ZIxZ1wNCmkzXQKqY9SyjPOMyEyxvvOUp2Ygg2MURoeqSlnEG9pZdg71Cmr0h4hXGiaOU015F6OG5VlzvA0BVuhtJBC9ruoHz9yXrTE477_xSLfUiZ7veSgl9zrJRdd9PlpyuqRdeNfwr2oubw9gHVOYQN67j_Ju-g0anP7-q-Lvf8v6RP0cjQZX-aXX66-fUCvqM_FA6K7hzrNemOPIWBp9MewQR8AkovixQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLfYkNAuY3xMK4zhAyeQtcZ2HPs4AdUGbEJsRbtFdmxDpTapmhSh_fU8u_HKEJu0HB3bh7zn95H38-8h9MYpEUlDiKWeQYJSKGK4roizMnfKMetdRFucieMx_3SZX_Z9TtuEdk8lydWdhsDSVHeHc-sP_7r4NuQBPSEJuEBJxAZ6CNY4C2o9pkfJFDPGYnNViAkYKXKepbLm_7a46ZjW0eY_BdLod0Y7aLsPGPHRSsJP0ANXP0WP--AR90ezhaHUnyGNPUO_viV0UFPjxuPZ5HeoF-Aeno7DjasOzyPDZt3i4NAshql-GX6hYe8i6SdeBHbXuIeuLfZgIwOYq8V6-qNZTLqfM9KA3ZlNrmD16fn30-doPPp48f6Y9H0WSMUy0ZEs88IKqbkXnmaVdMoUkAZprQP7PBNCMT70jprMViy3Vht4pKGcQexltGW7aLNuareHcGWo8oYayMM8t1opb3lRgN3QRkghhwM0TB-5rHoS8tALY1qu6ZODXEqQSxnkUooBenu9ZL5i4Lhr8n6SXNkfxrakoIyBB1DyAXqXpLl-fetmL-41-zV69PXDqPxycvb5JdqiIS2P4O59tNktlu4VxC6dOYj6-QeeeOcB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognition+of+mixture+control+chart+patterns+based+on+fusion+feature+reduction+and+fireworks+algorithm-optimized+MSVM&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Zhang%2C+Min&rft.au=Yuan%2C+Yi&rft.au=Wang%2C+Ruiqi&rft.au=Cheng+Wenming&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=23&rft.issue=1&rft.spage=15&rft.epage=26&rft_id=info:doi/10.1007%2Fs10044-018-0748-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |