Recognition of mixture control chart patterns based on fusion feature reduction and fireworks algorithm-optimized MSVM

Unnatural control chart patterns (CCPs) can be associated with the quality problems of the production process. It is quite critical to detect and identify these patterns effectively based on process data. Various machine learning techniques to CCPs recognition have been studied on the process only s...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 23; no. 1; pp. 15 - 26
Main Authors Zhang, Min, Yuan, Yi, Wang, Ruiqi, Cheng, Wenming
Format Journal Article
LanguageEnglish
Published London Springer London 01.02.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Unnatural control chart patterns (CCPs) can be associated with the quality problems of the production process. It is quite critical to detect and identify these patterns effectively based on process data. Various machine learning techniques to CCPs recognition have been studied on the process only suffer from basic CCPs of unnatural patterns. Practical production process data may be the combination of two or more basic patterns simultaneously in reality. This paper proposes a mixture CCPs recognition method based on fusion feature reduction (FFR) and fireworks algorithm-optimized multiclass support vector machine (MSVM). FFR algorithm consists of three main sub-networks: statistical and shape features, features fusion and kernel principal component analysis feature dimensionality reduction, which make the features more effective. In MSVM classifier algorithm, the kernel function parameters play a very significant role in mixture CCPs recognition accuracy. Therefore, fireworks algorithm is proposed to select the two-dimensional parameters of the classifier. The results of the proposed algorithm are benchmarked with popular genetic algorithm and particle swarm optimization methods. Simulation results demonstrate that the proposed method can gain the higher recognition accuracy and significantly reduce the running time.
AbstractList Unnatural control chart patterns (CCPs) can be associated with the quality problems of the production process. It is quite critical to detect and identify these patterns effectively based on process data. Various machine learning techniques to CCPs recognition have been studied on the process only suffer from basic CCPs of unnatural patterns. Practical production process data may be the combination of two or more basic patterns simultaneously in reality. This paper proposes a mixture CCPs recognition method based on fusion feature reduction (FFR) and fireworks algorithm-optimized multiclass support vector machine (MSVM). FFR algorithm consists of three main sub-networks: statistical and shape features, features fusion and kernel principal component analysis feature dimensionality reduction, which make the features more effective. In MSVM classifier algorithm, the kernel function parameters play a very significant role in mixture CCPs recognition accuracy. Therefore, fireworks algorithm is proposed to select the two-dimensional parameters of the classifier. The results of the proposed algorithm are benchmarked with popular genetic algorithm and particle swarm optimization methods. Simulation results demonstrate that the proposed method can gain the higher recognition accuracy and significantly reduce the running time.
Author Wang, Ruiqi
Yuan, Yi
Cheng, Wenming
Zhang, Min
Author_xml – sequence: 1
  givenname: Min
  orcidid: 0000-0002-0905-9303
  surname: Zhang
  fullname: Zhang, Min
  email: zhmzhangmin16@126.com
  organization: School of Mechanical Engineering, Southwest Jiaotong University
– sequence: 2
  givenname: Yi
  surname: Yuan
  fullname: Yuan, Yi
  organization: School of Mechanical Engineering, Southwest Jiaotong University
– sequence: 3
  givenname: Ruiqi
  surname: Wang
  fullname: Wang, Ruiqi
  organization: School of Mechanical Engineering, Southwest Jiaotong University
– sequence: 4
  givenname: Wenming
  surname: Cheng
  fullname: Cheng, Wenming
  organization: School of Mechanical Engineering, Southwest Jiaotong University
BookMark eNp9kMtOAyEUhompiW31AdyRuB6FgTIzS9N4S9qYeIs7wjDQUluowHh7epnWaGKiLA5n8X_nnHwD0LPOKgAOMTrGCBUnIVVKM4TLDBW0zNgO6GNKSFaMRo-9757iPTAIYYEQISQv--DlRkk3syYaZ6HTcGXeYusVlM5G75ZQzoWPcC1iVN4GWIugGpiiug0doZXYxL1qWrmZIWwDtfHq1fmnAMVy5ryJ81Xm1tGszEeip7cP032wq8UyqIOvfwjuz8_uxpfZ5Prianw6ySTBLGYYa9awUlDNdI5lqaq6qComhCgqyghjFaFIq7zGjSSjphF1emWdU8IwqkVDhuBoO3ft3XOrQuQL13qbVvKcjHJUVKSkKYW3KeldCF5pvvZmJfw7x4h3evlWL096eaeXs8QUvxhpougURC_M8l8y35IhbbEz5X9u-hv6BDbMk4s
CitedBy_id crossref_primary_10_3390_math11163589
crossref_primary_10_1016_j_cie_2023_109410
crossref_primary_10_1109_ACCESS_2020_3036006
crossref_primary_10_1088_1742_6596_2146_1_012028
crossref_primary_10_1145_3362788
crossref_primary_10_1016_j_cie_2022_108437
crossref_primary_10_1016_j_measurement_2024_116424
crossref_primary_10_1108_IJPPM_08_2020_0463
crossref_primary_10_1016_j_cie_2024_110674
crossref_primary_10_3390_app12020787
crossref_primary_10_3390_math11153291
crossref_primary_10_1016_j_eswa_2021_115689
crossref_primary_10_1016_j_cie_2021_107538
crossref_primary_10_1088_1361_6501_ac60d4
crossref_primary_10_3390_math10060934
crossref_primary_10_12677_DSC_2022_111001
crossref_primary_10_3390_pr9091484
crossref_primary_10_1155_2020_6694732
crossref_primary_10_3390_machines11010115
crossref_primary_10_1080_08982112_2024_2340529
crossref_primary_10_1109_ACCESS_2020_2976795
crossref_primary_10_3390_math13020259
crossref_primary_10_1007_s00500_022_06955_7
crossref_primary_10_1016_j_isatra_2024_09_001
Cites_doi 10.1016/j.asoc.2017.04.061
10.1109/CEC.2007.4424483
10.1016/j.cie.2016.02.016
10.1016/j.neucom.2014.06.068
10.1016/j.isatra.2016.03.004
10.3390/s120912489
10.1016/j.asej.2014.10.009
10.1016/j.neucom.2016.04.004
10.1080/0020754042000268884
10.1016/j.cie.2006.07.013
10.1016/j.cherd.2017.04.024
10.1016/j.jprocont.2016.01.001
10.1080/002075499190987
10.1016/j.cie.2013.09.012
10.1016/j.isatra.2010.06.005
10.1016/j.asoc.2010.10.016
10.1007/s10845-007-0028-6
10.1016/j.neucom.2010.06.036
10.1016/j.cie.2012.10.009
10.1109/IPEMC.2016.7512529
10.1016/j.cie.2008.10.006
10.1016/j.isatra.2012.09.007
10.1016/j.solener.2016.10.044
10.1109/ECC.2015.7331026
10.1007/s00170-016-8745-7
10.1016/j.ijepes.2016.04.005
10.1002/aic.10325
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2018
2018© Springer-Verlag London Ltd., part of Springer Nature 2018
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2018
– notice: 2018© Springer-Verlag London Ltd., part of Springer Nature 2018
DBID AAYXX
CITATION
DOI 10.1007/s10044-018-0748-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
EndPage 26
ExternalDocumentID 10_1007_s10044_018_0748_6
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 2682016CX031
– fundername: National Natural Science Foundation of China
  grantid: 51675450
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c316t-11f6d68a4f6f21c8e9b7996aaa79463669340fe2b1dc35ddabbbb8b243610bad3
IEDL.DBID U2A
ISSN 1433-7541
IngestDate Fri Jul 25 03:27:00 EDT 2025
Tue Jul 01 01:15:16 EDT 2025
Thu Apr 24 22:58:24 EDT 2025
Fri Feb 21 02:29:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fireworks algorithm
Parameters optimization
Fusion feature reduction
Multiclass support vector machines
Control chart patterns recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-11f6d68a4f6f21c8e9b7996aaa79463669340fe2b1dc35ddabbbb8b243610bad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0905-9303
PQID 2352079384
PQPubID 2043691
PageCount 12
ParticipantIDs proquest_journals_2352079384
crossref_primary_10_1007_s10044_018_0748_6
crossref_citationtrail_10_1007_s10044_018_0748_6
springer_journals_10_1007_s10044_018_0748_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References ZhangYDWuLClassification of fruits using computer vision and a multiclass support vector machineSensors2012129124891250510.3390/s120912489
ReddyKSPanwarLKKumarRBinary fireworks algorithm for profit based unit commitment (PBUC) problemInt J Electr Power Energy Syst20168327028210.1016/j.ijepes.2016.04.005
ShaoYEChiuCCApplying emerging soft computing approaches to control chart pattern recognition for an SPC–EPC processNeurocomputing2016201192810.1016/j.neucom.2016.04.004
Kallas M, Mourot G, Maquin D et al (2014) Diagnosis of nonlinear systems using kernel principal component analysis. In: European workshop on advanced control and diagnosis
DuSHuangDLvJRecognition of concurrent control chart patterns using wavelet transform decomposition and multiclass support vector machinesComput Ind Eng201366468369510.1016/j.cie.2013.09.012
RanaeeVEbrahimzadehAGhaderiRApplication of the PSO-SVM model for recognition of control chart patternsISA Trans201049457758610.1016/j.isatra.2010.06.005
GauriSKCharkabortySFeature-based recognition of control chart patternsComput Ind Eng200651472674210.1016/j.cie.2006.07.013
TianYDubWMakiscVImproved cost-optimal Bayesian control chart based auto-correlated chemical process monitoringChem Eng Res Des2017123637510.1016/j.cherd.2017.04.024
GuhRSTannockJDTRecognition of control chart concurrent patterns using a neural network approachInt J Prod Res19993781743176510.1080/002075499190987
ZhangMChengWRecognition of mixture control chart pattern using multiclass support vector machine and genetic algorithm based on statistical and shape featuresMath Probl Eng20155110
SangeethaK.Sudhakar BabuT.RajasekarN.Fireworks Algorithm-Based Maximum Power Point Tracking for Uniform Irradiation as Well as Under Partial Shading ConditionAdvances in Intelligent Systems and Computing2016New DelhiSpringer India7988
Zhang Q, Liu H, Dai C (2016) Fireworks explosion optimization algorithm for parameter identification of PV model. In: IEEE international power electronics and motion control conference. IEEE, pp 1587–1591
GoswamiDChakrabortySParametric optimization of ultrasonic machining process using gravitational search and fireworks algorithmsAIN SHAMS Eng J20156131533110.1016/j.asej.2014.10.009
WangCHKuoWIdentification of control chart patterns using wavelet filtering and robust fuzzy clusteringJ Intell Manuf200718334335010.1007/s10845-007-0028-6
TanYingZhuYuanchunFireworks Algorithm for OptimizationLecture Notes in Computer Science2010Berlin, HeidelbergSpringer Berlin Heidelberg355364
Peter HeQJoe QinSA new fault diagnose is method using fault directions in fisher discriminant analysisAIChE J200551255557110.1002/aic.10325
YangWAZhouWLiaoWIdentification and quantification of concurrent control chart patterns using extreme-point symmetric mode decomposition and extreme learning machinesNeurocomputing2015147126027010.1016/j.neucom.2014.06.068
KhormaliAAddehJA novel approach for recognition of control chart patterns: type-2 fuzzy clustering optimized support vector machineISA Trans20166325626410.1016/j.isatra.2016.03.004
WeiJXZhangRSHYuZXA BPSO-SVM algorithm based on memory renewal and enhanced mutation mechanisms for feature selectionAppl Soft Comput20175817619210.1016/j.asoc.2017.04.061
RanaeeVEbrahimzadehAControl chart pattern recognition using a novel hybrid intelligent methodAppl Soft Comput20111122676268610.1016/j.asoc.2010.10.016
GutierrezHDLTPhamDTEstimation and generation of training patterns for control chart pattern recognitionComput Ind Eng201695728210.1016/j.cie.2016.02.016
XieLGuNLiDConcurrent control chart patterns recognition with singular spectrum analysis and support vector machineComput Ind Eng201364128028910.1016/j.cie.2012.10.009
GuhRShiueYOn-line identification of control chart patterns using self-organizing approachesInt J Prod Res20054361225125410.1080/0020754042000268884
HuangJYanXRelated and independent variable fault detection based on KPCA and SVDDJ Process Control201639889910.1016/j.jprocont.2016.01.001
FazaiRTaoualiOHarkatMFA new fault detection method for nonlinear process monitoringInt J Adv Manuf Technol2016873425343610.1007/s00170-016-8745-7
ElaissiIJaffelITaoualiOOnline prediction model based on the SVD-KPCA methodISA Trans20135219610410.1016/j.isatra.2012.09.007
LuCJShaoYELiPHMixture control chart patterns recognition using independent component analysis and support vector machineNeurocomputing201174111904190810.1016/j.neucom.2010.06.036
MontgomeryDCIntroduction to statistical quality control2001New YorkWiley0997.62503
GauriSKChakrabortySRecognition of control chart patterns using improved selection of featuresComput Ind Eng20095641577158810.1016/j.cie.2008.10.006
Alba E, Garcia-Nieto J, Jourdan L et al (2007) Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms. In: IEEE congress on evolutionary computation, 2007. CEC 2007. IEEE, pp 284–290
BabuTSRamJPSangeethaKParameter extraction of two diode solar PV model using fireworks algorithmSol Energy201614026527610.1016/j.solener.2016.10.044
R Guh (748_CR19) 2005; 43
RS Guh (748_CR6) 1999; 37
WA Yang (748_CR8) 2015; 147
HDLT Gutierrez (748_CR18) 2016; 95
YD Zhang (748_CR23) 2012; 12
S Du (748_CR13) 2013; 66
JX Wei (748_CR25) 2017; 58
Q Peter He (748_CR11) 2005; 51
KS Reddy (748_CR28) 2016; 83
748_CR15
TS Babu (748_CR31) 2016; 140
SK Gauri (748_CR4) 2006; 51
R Fazai (748_CR16) 2016; 87
J Huang (748_CR14) 2016; 39
A Khormali (748_CR21) 2016; 63
V Ranaee (748_CR22) 2011; 11
SK Gauri (748_CR10) 2009; 56
K. Sangeetha (748_CR27) 2016
CJ Lu (748_CR5) 2011; 74
CH Wang (748_CR20) 2007; 18
D Goswami (748_CR30) 2015; 6
DC Montgomery (748_CR1) 2001
M Zhang (748_CR9) 2015; 5
Y Tian (748_CR12) 2017; 123
Ying Tan (748_CR26) 2010
V Ranaee (748_CR2) 2010; 49
748_CR29
YE Shao (748_CR3) 2016; 201
L Xie (748_CR7) 2013; 64
I Elaissi (748_CR17) 2013; 52
748_CR24
References_xml – reference: RanaeeVEbrahimzadehAGhaderiRApplication of the PSO-SVM model for recognition of control chart patternsISA Trans201049457758610.1016/j.isatra.2010.06.005
– reference: Kallas M, Mourot G, Maquin D et al (2014) Diagnosis of nonlinear systems using kernel principal component analysis. In: European workshop on advanced control and diagnosis
– reference: WangCHKuoWIdentification of control chart patterns using wavelet filtering and robust fuzzy clusteringJ Intell Manuf200718334335010.1007/s10845-007-0028-6
– reference: ZhangYDWuLClassification of fruits using computer vision and a multiclass support vector machineSensors2012129124891250510.3390/s120912489
– reference: ZhangMChengWRecognition of mixture control chart pattern using multiclass support vector machine and genetic algorithm based on statistical and shape featuresMath Probl Eng20155110
– reference: DuSHuangDLvJRecognition of concurrent control chart patterns using wavelet transform decomposition and multiclass support vector machinesComput Ind Eng201366468369510.1016/j.cie.2013.09.012
– reference: TianYDubWMakiscVImproved cost-optimal Bayesian control chart based auto-correlated chemical process monitoringChem Eng Res Des2017123637510.1016/j.cherd.2017.04.024
– reference: GuhRSTannockJDTRecognition of control chart concurrent patterns using a neural network approachInt J Prod Res19993781743176510.1080/002075499190987
– reference: GauriSKChakrabortySRecognition of control chart patterns using improved selection of featuresComput Ind Eng20095641577158810.1016/j.cie.2008.10.006
– reference: Zhang Q, Liu H, Dai C (2016) Fireworks explosion optimization algorithm for parameter identification of PV model. In: IEEE international power electronics and motion control conference. IEEE, pp 1587–1591
– reference: WeiJXZhangRSHYuZXA BPSO-SVM algorithm based on memory renewal and enhanced mutation mechanisms for feature selectionAppl Soft Comput20175817619210.1016/j.asoc.2017.04.061
– reference: YangWAZhouWLiaoWIdentification and quantification of concurrent control chart patterns using extreme-point symmetric mode decomposition and extreme learning machinesNeurocomputing2015147126027010.1016/j.neucom.2014.06.068
– reference: GuhRShiueYOn-line identification of control chart patterns using self-organizing approachesInt J Prod Res20054361225125410.1080/0020754042000268884
– reference: XieLGuNLiDConcurrent control chart patterns recognition with singular spectrum analysis and support vector machineComput Ind Eng201364128028910.1016/j.cie.2012.10.009
– reference: TanYingZhuYuanchunFireworks Algorithm for OptimizationLecture Notes in Computer Science2010Berlin, HeidelbergSpringer Berlin Heidelberg355364
– reference: ShaoYEChiuCCApplying emerging soft computing approaches to control chart pattern recognition for an SPC–EPC processNeurocomputing2016201192810.1016/j.neucom.2016.04.004
– reference: HuangJYanXRelated and independent variable fault detection based on KPCA and SVDDJ Process Control201639889910.1016/j.jprocont.2016.01.001
– reference: GoswamiDChakrabortySParametric optimization of ultrasonic machining process using gravitational search and fireworks algorithmsAIN SHAMS Eng J20156131533110.1016/j.asej.2014.10.009
– reference: LuCJShaoYELiPHMixture control chart patterns recognition using independent component analysis and support vector machineNeurocomputing201174111904190810.1016/j.neucom.2010.06.036
– reference: MontgomeryDCIntroduction to statistical quality control2001New YorkWiley0997.62503
– reference: ElaissiIJaffelITaoualiOOnline prediction model based on the SVD-KPCA methodISA Trans20135219610410.1016/j.isatra.2012.09.007
– reference: GauriSKCharkabortySFeature-based recognition of control chart patternsComput Ind Eng200651472674210.1016/j.cie.2006.07.013
– reference: BabuTSRamJPSangeethaKParameter extraction of two diode solar PV model using fireworks algorithmSol Energy201614026527610.1016/j.solener.2016.10.044
– reference: FazaiRTaoualiOHarkatMFA new fault detection method for nonlinear process monitoringInt J Adv Manuf Technol2016873425343610.1007/s00170-016-8745-7
– reference: SangeethaK.Sudhakar BabuT.RajasekarN.Fireworks Algorithm-Based Maximum Power Point Tracking for Uniform Irradiation as Well as Under Partial Shading ConditionAdvances in Intelligent Systems and Computing2016New DelhiSpringer India7988
– reference: Peter HeQJoe QinSA new fault diagnose is method using fault directions in fisher discriminant analysisAIChE J200551255557110.1002/aic.10325
– reference: KhormaliAAddehJA novel approach for recognition of control chart patterns: type-2 fuzzy clustering optimized support vector machineISA Trans20166325626410.1016/j.isatra.2016.03.004
– reference: GutierrezHDLTPhamDTEstimation and generation of training patterns for control chart pattern recognitionComput Ind Eng201695728210.1016/j.cie.2016.02.016
– reference: ReddyKSPanwarLKKumarRBinary fireworks algorithm for profit based unit commitment (PBUC) problemInt J Electr Power Energy Syst20168327028210.1016/j.ijepes.2016.04.005
– reference: RanaeeVEbrahimzadehAControl chart pattern recognition using a novel hybrid intelligent methodAppl Soft Comput20111122676268610.1016/j.asoc.2010.10.016
– reference: Alba E, Garcia-Nieto J, Jourdan L et al (2007) Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms. In: IEEE congress on evolutionary computation, 2007. CEC 2007. IEEE, pp 284–290
– volume: 58
  start-page: 176
  year: 2017
  ident: 748_CR25
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.04.061
– ident: 748_CR24
  doi: 10.1109/CEC.2007.4424483
– start-page: 79
  volume-title: Advances in Intelligent Systems and Computing
  year: 2016
  ident: 748_CR27
– volume: 95
  start-page: 72
  year: 2016
  ident: 748_CR18
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2016.02.016
– volume: 147
  start-page: 260
  issue: 1
  year: 2015
  ident: 748_CR8
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.06.068
– volume-title: Introduction to statistical quality control
  year: 2001
  ident: 748_CR1
– volume: 63
  start-page: 256
  year: 2016
  ident: 748_CR21
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2016.03.004
– volume: 12
  start-page: 12489
  issue: 9
  year: 2012
  ident: 748_CR23
  publication-title: Sensors
  doi: 10.3390/s120912489
– volume: 6
  start-page: 315
  issue: 1
  year: 2015
  ident: 748_CR30
  publication-title: AIN SHAMS Eng J
  doi: 10.1016/j.asej.2014.10.009
– volume: 201
  start-page: 19
  year: 2016
  ident: 748_CR3
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.04.004
– volume: 43
  start-page: 1225
  issue: 6
  year: 2005
  ident: 748_CR19
  publication-title: Int J Prod Res
  doi: 10.1080/0020754042000268884
– volume: 51
  start-page: 726
  issue: 4
  year: 2006
  ident: 748_CR4
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2006.07.013
– volume: 123
  start-page: 63
  year: 2017
  ident: 748_CR12
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2017.04.024
– volume: 39
  start-page: 88
  year: 2016
  ident: 748_CR14
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2016.01.001
– volume: 5
  start-page: 1
  year: 2015
  ident: 748_CR9
  publication-title: Math Probl Eng
– volume: 37
  start-page: 1743
  issue: 8
  year: 1999
  ident: 748_CR6
  publication-title: Int J Prod Res
  doi: 10.1080/002075499190987
– volume: 66
  start-page: 683
  issue: 4
  year: 2013
  ident: 748_CR13
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2013.09.012
– volume: 49
  start-page: 577
  issue: 4
  year: 2010
  ident: 748_CR2
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2010.06.005
– volume: 11
  start-page: 2676
  issue: 2
  year: 2011
  ident: 748_CR22
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2010.10.016
– volume: 18
  start-page: 343
  issue: 3
  year: 2007
  ident: 748_CR20
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-007-0028-6
– volume: 74
  start-page: 1904
  issue: 11
  year: 2011
  ident: 748_CR5
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.06.036
– start-page: 355
  volume-title: Lecture Notes in Computer Science
  year: 2010
  ident: 748_CR26
– volume: 64
  start-page: 280
  issue: 1
  year: 2013
  ident: 748_CR7
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2012.10.009
– ident: 748_CR29
  doi: 10.1109/IPEMC.2016.7512529
– volume: 56
  start-page: 1577
  issue: 4
  year: 2009
  ident: 748_CR10
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2008.10.006
– volume: 52
  start-page: 96
  issue: 1
  year: 2013
  ident: 748_CR17
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2012.09.007
– volume: 140
  start-page: 265
  year: 2016
  ident: 748_CR31
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2016.10.044
– ident: 748_CR15
  doi: 10.1109/ECC.2015.7331026
– volume: 87
  start-page: 3425
  year: 2016
  ident: 748_CR16
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-016-8745-7
– volume: 83
  start-page: 270
  year: 2016
  ident: 748_CR28
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2016.04.005
– volume: 51
  start-page: 555
  issue: 2
  year: 2005
  ident: 748_CR11
  publication-title: AIChE J
  doi: 10.1002/aic.10325
SSID ssj0033328
Score 2.3797948
Snippet Unnatural control chart patterns (CCPs) can be associated with the quality problems of the production process. It is quite critical to detect and identify...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15
SubjectTerms Algorithms
Classifiers
Computer Science
Computer simulation
Control charts
Data processing
Fireworks
Genetic algorithms
Kernel functions
Machine learning
Parameters
Particle swarm optimization
Pattern Recognition
Principal components analysis
Reduction
Support vector machines
Theoretical Advances
Title Recognition of mixture control chart patterns based on fusion feature reduction and fireworks algorithm-optimized MSVM
URI https://link.springer.com/article/10.1007/s10044-018-0748-6
https://www.proquest.com/docview/2352079384
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-wgFCZe3bi5vnPHV1i40pBMgVK6nBgf0ehC7xhdNVDAO4nTmmk1xl_vAcsdNWpilxRY9BzOo-fjOwjt2FwE0hBiqGOQoGQ50VyVxBqZ2twy42xAW5yL4yE_uU6vu3vcTUS7x5JksNRvLrv1uUdMSAJuTxLxC82lPnUHJR7SQTS_jLHQUBXiAEaylCexlPnZFu-d0TTC_FAUDb7mcBH97oJEPHiV6hKasdUyWugCRtwdxwaGYk-GOLaCHi8iIqiucO3wePTkawS4g6Rjf8uqxfeBVbNqsHdiBsNU9-B_m2FnA9EnnnhG17CHqgx2YBc9gKvB6u62nozaf2NSg60Zj55h9dnl1dkqGh4e_N0_Jl1vBVKyRLQkSZwwQiruhKNJKW2uM0h9lFKecZ4JkTPed5bqxJQsNUZpeKSmnEG8pZVha2i2qiv7B-FS09xpqiH3ctyoPHeGZxnYCqWFFLLfQ_34kYuyIx73_S_uiillspdLAXIpvFwK0UO7_5fcv7JufDd5M0qu6A5gU1BQQM_9J3kP7UVpTl9_udn6j2ZvoHnq8--A4t5Es-3kwW5BkNLqbTQ3OLo5PdgOyvkC4G7hZg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFLZYOWwXBmMT3crwYachS43tOs6xQqBuoxygnXqL7NgeldqkalI08dfzbGLKpm3ScnSefciz34-8z99D6JPNRCANIYY6BglKmhHNVUGskQObWWacDWiLKzGa8q-zway9x11HtHssSQZL_eyyW597xIQk4PYkES_QLsQC0uO4pnQYzS9jLDRUhTiAkXTAk1jK_NMSvzqjbYT5W1E0-JqLfbTXBol4-KjVA7RjyzfodRsw4vY41jAUezLEsUN0dx0RQVWJK4eX85--RoBbSDr2t6wavAqsmmWNvRMzGETdxv82w84Gok-89oyuYQ1VGuzALnoAV43V4ke1nje3S1KBrVnO72H2-Ob7-C2aXpxPzkak7a1ACpaIhiSJE0ZIxZ1wNCmkzXQKqY9SyjPOMyEyxvvOUp2Ygg2MURoeqSlnEG9pZdg71Cmr0h4hXGiaOU015F6OG5VlzvA0BVuhtJBC9ruoHz9yXrTE477_xSLfUiZ7veSgl9zrJRdd9PlpyuqRdeNfwr2oubw9gHVOYQN67j_Ju-g0anP7-q-Lvf8v6RP0cjQZX-aXX66-fUCvqM_FA6K7hzrNemOPIWBp9MewQR8AkovixQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLfYkNAuY3xMK4zhAyeQtcZ2HPs4AdUGbEJsRbtFdmxDpTapmhSh_fU8u_HKEJu0HB3bh7zn95H38-8h9MYpEUlDiKWeQYJSKGK4roizMnfKMetdRFucieMx_3SZX_Z9TtuEdk8lydWdhsDSVHeHc-sP_7r4NuQBPSEJuEBJxAZ6CNY4C2o9pkfJFDPGYnNViAkYKXKepbLm_7a46ZjW0eY_BdLod0Y7aLsPGPHRSsJP0ANXP0WP--AR90ezhaHUnyGNPUO_viV0UFPjxuPZ5HeoF-Aeno7DjasOzyPDZt3i4NAshql-GX6hYe8i6SdeBHbXuIeuLfZgIwOYq8V6-qNZTLqfM9KA3ZlNrmD16fn30-doPPp48f6Y9H0WSMUy0ZEs88IKqbkXnmaVdMoUkAZprQP7PBNCMT70jprMViy3Vht4pKGcQexltGW7aLNuareHcGWo8oYayMM8t1opb3lRgN3QRkghhwM0TB-5rHoS8tALY1qu6ZODXEqQSxnkUooBenu9ZL5i4Lhr8n6SXNkfxrakoIyBB1DyAXqXpLl-fetmL-41-zV69PXDqPxycvb5JdqiIS2P4O59tNktlu4VxC6dOYj6-QeeeOcB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognition+of+mixture+control+chart+patterns+based+on+fusion+feature+reduction+and+fireworks+algorithm-optimized+MSVM&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Zhang%2C+Min&rft.au=Yuan%2C+Yi&rft.au=Wang%2C+Ruiqi&rft.au=Cheng+Wenming&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=23&rft.issue=1&rft.spage=15&rft.epage=26&rft_id=info:doi/10.1007%2Fs10044-018-0748-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon